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ABSTRACT e o?cgl(

The coupling between the inviscid and viscous flows in the hypersonic
stagnation region is investigated at high flight velocities where radiative
energy transport is significant. A simple analytic solution for the flow
field is found, in which the velocity field is expressed in terms of the
density and two position coordinates. Solutions to the energy equation were
obtained, including radiation transport for a gray gas, using the analytic

flow field solution.
The results of the analysis show that under some conditions, the reduc-
tion in the convective heating due to radiation cooling can be pfedicted by

an inviscid flow analysis. It is also concluded that second-order boundary-

layer effects do not play an important role in radiatively coupled flow fields.
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NOMENCTIATURE

Subscript S denotes conditions behind the shock on the line of symmetry.

Numerical subscripts refer to the number of the term in the series expan-

sion of the function.

i C = pooks/K
_ 1 4
B( 7) T 7 cT 1
B = B(T)/B(TS)
1
E (x) = i)un'z eX/E

specific enthalpy

jax
]

K =  body radius of curvature
kR = radiation volumetric absorption co-efficient
k = k/p
k = k/k,
Pr = c

pu/K
qR = radiative flux
Re = p V/ Kbk
u = velocity component parallel body
v = velocity component perpendicular body
v = incident stream velocity
m = exponent in k = hlil; = 2.1, k.25

. n

n = exponent in h, a Ty; = 5/3

| l
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distance along body
distance perpendicular body
Dorodnitzyn variable

€ Re Pr

Radiation parameter

Po/Py

body angle

heat conduction co-efficient
viscosity co-efficient
density ahead of shock

optical thickness
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L. INTRODUCTION

At high flight velocities where radlative energy transport is significant,
there exists a coupling between the viscous and inviscid flow regions in the
shock layer. This coupling is due to radiation cooling and the transfer of
energy by emission and absorption. The purpose of the present investigation
is to examine this coupling in detail to determine whether or not the convec-
tive heating can be predicted by separating the shock layer flow field into
an inviscid and viscous region. When the shock layer gas is assumed to emit
but not to absorb radiant energy, the inviscid flow solution will yield a
zero wall temperature and thus does not provide a driving potential for the
convective heating.l When self absorption is taken into account, the inviscid
flow solution will yield a finite wall tem.perature.2 In the present investi-
gation, inviscid and viscous solutions are obtained in the region of the
stagnation point of a blunt body for a gas that both emits and absorbs radia-
tive energy. The viscous solution yields both the convective and radiative

' heating to a surface. The inviscid solution yields only the wall enthalpy
which, in conjunction with boundary layer theory, can be used to predict the
convective heating. More precisely, then, we would like to determine the
conditions under which the inviscid flow solution, for an emitting and absorb-
ing gas, can be used with boundary layer theory to predict the convective
heating. The complete viscous solution is used as a basis of comparison. A
second objective of this investigation is to determine whether or not any
discrepancies between the convective heating, obtained by the inviscid flow
plus boundary layer solutions, and the convective heating predicted by the

complete viscous solution, can be made up by second-order boundary-layer

theory.

A new hypersonic stagnation region flow field is used to investigate the
coupling between the inviscid and viscous flows. Goulard3 suggested a corres-
pondence between the radiating and non-radiating stagnation flow regimes, which
enabled him to solve the energy equation, the only equation where radiative

‘ effects are important. In this analysis the hypersonic approximation of small
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density ratio, € , across the shock is used. To the lowest order in ¢ , the
continuity and momentum equations are found to have a simple analytic solution
in the stagnation region, in which the velocity field is expressed in terms
of the density and two position co-ordinates, the one normal to the body being
Dorodnitzyn. This solution is used in place of the correspondence between

radiating and non-radiating flows suggested by Goulard.
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2. HYPERSONIC STAGNATION POINT FLOW

\'
——
v u
P’ Poo X
y
0
SHOCK

WAVE  BODY

Fig. 1

In this section a simple analytic axi-symmetric hypersonic flow solution,
valid in the stagnation region, is obtained. Boundary layer co-ordinates are
used, as indicated in Fig. (l) The velocity component, u, parallel to the
body surface, y = 0, is an odd function of distance, x, along the body sur-
face and all other flow variables are even functions of x. We therefore make

the following series expansions:

u/(kxV)

u,(y) + (KX)zuz(y) +o..

v/(eV) VI(Y) + (Kx)2v2(y) +...

(1)

p/{- a9p V2] = P+ 07Py0) +.

plpg = pyly) + (KX)zpz(y) +...

where P, > V, are the density, fluid velocity of the incident stream, «

is the curvative of the axi-symmetric body at the stagnation point, the suffix

p)
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denotes conditions immediately behind the shock along the line of symmetry,

x =0, and € = pw/ps. The flow variables have been non-dimensionalized with

respect to their values Jjust behind the shock on X

0, see Eq. (3). Only

the first terms in these expansions are considered in this report; the authors

intend to consider the second terms at a later date.

The conservation egquations across the shock are;

where

body

p,Veosd = -pv
Vsind = u
) (2)
Pw+p°°V cos29 = P + pv
h +2vZicos?o = h + 12
© 2

h is the angle of inclination of the

is the specific enthalpy and 6

normal to the axis of symmetry. For small 0, 60 may be taken as kX

and Eqs. (2) give

negle

are (

dimensionalize

-V pszu.- €) (3)

v

P
] S

b4 ’

cting ﬁPm in comparison with Ps These are the values used to non-

(1).

The continuity and x-momentum equation for a thin inviscid shock layer

Hayes and Probsteinu, p. 388)

2

1 0
X ox oux) + 3y (pv) + 2kpv = 0
du . du _ 10P
ugx tV dy Toeuv = T p ox (%)
ov v 2 1 0P
=+ Ve - Ku° = - ==
Yax T Voy p By
6
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Substituting (1) into (L4) and keeping only the lowest order in x, the equations

glve
. =0
2pquy * Kdy (pyvq) + 2€p4Vy
2, e M, _2(-9 (5)
YT Vidy M1 oy
2 dv — _Eﬁ(l_ €)d_?_.]:
1 dy Py dy

P. =1 (6)

at the shock y = Vg and o O at the body y = 0.

1d

We now utilize the hypersonic approximation of small € . We note first
‘ of all that since the shock stand off distance is of order € , that = — is

K dy

| of order e-l. Having established the order of magnitude of the a—)—’ operator,

we may now approximate Egs. (5) for small e. Terms neglected are, at the

shock, € times smaller than those retained,

il
<o

e d
| 2pq9y * (?E 8'37)("1"1)
/
vl

The third Eq. of (5) shows that pl varies negligibly across the layer.

(7)

3

S |m

Q-|1:L
1
<

Note that these eyiations may be written as differential equations for Uy

and p.v, aud the operator € 4 , with no further dependence on the
11 kp1 dy

density function pq: We therefore introduce the Dorodnitzyn independent

variable

y
-k
E{)pldy (8)

. and Egs. (7) become
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|
(=4

d
2uy g (PyYy)

(9)
du

2 1 _
Ut g =0

The appropriate boundary conditions are u, = 1, pPVy = -1 at the shock

1

z = Zs and plvl =0 at z = 0. The value of zS has to be determined in
the solution.
The solution is 6w = z

1

_ 2
pvy = 2 (10)
z =1
s

This solution will be used in the next section. It is attractive both
for its simplicity and its generality, being valid for all density distribu-

tions pl.

The following limitations must be noted. Firstly, only the first terms
in an expansion around the body are used. Secondly, these terms are deter-
mined only to their first terms in an € expansion. To this order of approxi-
mation the shock has been found to be at zS = 1. In the particular case of
a constant density solution, Eq. (8) gives a stand-off distance €/k. This
agrees with the first term of the exact constant density solution for a sphere,

due to LighthillS, which gives a stand-off distance

3 /8¢
p (1 - 3 + 3¢ +...)

for small € , (see Hayes and Probstein p. 159). The solution (10) may be
extended by substituting a series expansion in € for the flow variables into
(5), the first terms in the series being given by (10). The derivation of the

second term is not presented here, but it is encouraging to note that, in the
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constant density case, the stand-off distance is given %-(1..J@%§ .
Thirdly, and finally, we return to the approximations made to Egs. (5) for
small € . The order of magnitudes of the terms were determined from their
known values immediately behind the shock. The solution (10) may therefore
be used only in a region in which the same orders of magnitude apply. Only
the first two terms in the second of Egs. (5) are retained, and of these the
second term tends to zero on the body as vy o= O there, forcing both the
retained terms to tend to zero at the body. Hence, near the wall, the neg-
lected pressure gradient term will become larger than the retained terms,
which behave quadratically with 2z. The pressure term therefore exceeds the
retained terms in a sub-layer 1 63/2 thick. As the sub-layer occupies
only 61/2 of the shock layer, ogly small departures from (10) are caused
by neglecting the pressure term.

For the viscous solution, a term 10 Otﬁg)

p 9y \" 9y 1

right hand side of the second of Eq%. (4). We note that if po o this

is included in the

déu
viscous term 1s proportional to 1 and hence the solution (lO) is still

valid. d22
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3. RADIATION IN THE STAGNATION REGION

3

The work in this section is based upon that of Goulard™ and Thomasg. In
the stagnation region the kinetic energy is neglected in comparison with the
specific enthalpy and viscous dissipation in comparison with heat conduction.
The temperature, T, and the enthalpy in the stagnation region will be even
functions of x. The last of the shock Eqs. (2) shows that h, = 1/2V2, neg-
lecting h°° and l/2v2. We therefore substitute

1.2\ 2
b/(5 v ) = 0 + k) . -
11

T = T,5) + ()°Ty(y) +...

in the energy equation and keep only the terms independent of x, giving

(2o, v)oy oy a T\ o (12)
2ps P1¥1 dy dy dy dy

where K is the co-efficient of thermal conduction and qR is the radiative

flux. For the radiative flux, a one-dimensional formulation is used along

with the gray gas approximation (see Goulard3),
dg"t (® (13)
= -2 B(t)E,|t - 7| dt 13
L = rip|4B(n - 2| BWE, |t - 7|
0
where kR is the radiation volumetric absorpticon co-efficient, B 1s the

Planck function

y
1 4 -
7T 7 'J;)dey
is optical length, Ts its value at the shock and

1
0

10
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Define kR .V 47rB('rS)ks
k=% o Rt o TT
C pu (14)
B = €eRePr Pr=—1§—

where 1/2 V2 dhl = deTl and B is the viscosity behind the shock. Assume
that the viscosity varies inversely with density, PH = pgig  and that Pr
is constant. Substitution of prl from (l@ and replacing y by 2z from
(7) there follows

a%h,  ,dh 1 15
+ 2 = Tk|B(7) - —2-J' B(OE, [t - 7] dt (15)
0

1
B dzz dz

where E(T) = B(TLﬁB(TS) and k = k/ks. We postulate that nondimensional

n
enthalpyéjnd.temperature are related by an nth povwer law, hlaTﬁ. 5, giving
B(7) = h1 I and (15) becomes

2

1
B dz2 dz

;

_ cgh4/n 1% 4/n

= TR[)" - 3 nYPE )t - (16)
0

This equation has to be solved in conjunction with the definition of

y p Z
00
T =Idey =—E—jkdz

0 0
or in differential form
PLE _
dr . =5sg (27)
Uz n
Following Thomas we assume a power law dependence of k on hl, k = h?.

Thomas actually assumes a power law variation between kR and T. This is
equivalent as the pressure variation across the shock layer is negligible to

the lowest order in € .

dh dh

1dz
Rewriting 7;% , in (16) as 4z dr ‘Uhe equations are a pair of ordi-
nary differential equations for hl and T ,
11
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2 T
d"h dh s
1 1 21 _ .m|4/n 1 4/n
I R L -2J' hy"E |t - 7] dt
0 (18)
dr _ m
az -
where
C = Pty
K
The boundary conditions are
h, =1 @ z =1
1
(19)
h, =h_ ,7=0@ z =20

1 B

where hB is the prescribed value of hl at the body.

To calculate the radiative heat transfer, we have from (13)
R T T
q = or fB(t)EZ(T -ty dt -f B()E,(t - 7) dt
0 T
The total heat radiated from the shock layer is comprised of the contri-

bution at the shock plus the contribution at the body. It is given by:

R R .
q(0) - g (r) 2B )| s 4/
QR = pths - PV f hy [Ez(t)+ E (1g - t)] dt
" (20)
|5 ]
Qp ~ gal, hy PIE, () + Ey(r, - t)] at
0

J
Using the definitions following (14) and Eq. (8) the convective heat

transfer can be calculated

N -0 s W o W WL o
( dy>y=0 T 27 €e\dz Pr /z=0 2 €Pr \dz /z=0

as pu and Pr are assumed to be constant. Hence, non-dimensionalising,
dh
dT /1 3 _ (171
(k&30 )y=0 - (B dz>z=0 (21)
12
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4. METHOD OF SOLUTION

The viscous equation cf. (18) may be written as follows:

2

d"h dh
1 o (22)
— + Fl(z) iz - Fz(z)
dz
where Fl(z) = BZ?
B m|.4/n 1 7S 4/n (23)
F,(z) = pTh; [hl - 2{ hy "E [t - 7] dt]

The formal solution of (22) is given by

Z( T T z T
1 J;) fo exp (—{ Fldt)det dr + Cl{) exp (—{) Fldr> dr + hB

1- hy —j:[j: exp <—frF1dt>F2dt

t

1 1 T
J exp <—f0 Fldr> dr

0

=
It

dr

(24)

Picards' method was used on (24). An initial guess for the hl(z) profile
was tried with the new profile for the iteration procedure being obtained from

(24). After several iterations, convergence within 0.001 was attained.

The numerical method used to perform the indicated integrations was found
to be inaccurate for large values of Fl, where B was >100. The integral
that was the source of the inaccuracies was approximated by an asymptotic

expression.
r r T 3 3 r 2
_(f)Fz exp (-{ Fldt> it = fo F., exp [—‘g(r -t )]dt~F2(r)£ exp[-Bri(r-t)] dt (25)

giving a form that explicitly integrates to

F_(r) 3
A <1..e‘3r ) (26)

pr’

13
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One approximation made in obtaining (25) was to expand the argument of the
exponential about the point t = r and retain only the first order term in
(r - t). The other approximation resulted from the postulation that the main
contribution of the integrand occurred at t = r. For this reason Fe(t) was

set equal to Fg(r).
The asymptotic expression (26) was found to give virtually no error in
the integration for B > 100. For values of B < 100 the indicated integrations

were performed using conventional numerical techniques.

The inviscid equation is given by

.
o dby - |5 1 (5%
2’ - = TR|B(r) - EJ B)E, |t - 7| dt (27)
0

i.e. equation (15) with the term (1/B) dzhl/dzz =90,

The boundary condition hl = hB at z = 0 is extraneous and is omitted.
To deal with Eq. (27), B(t) was expanded about the point t =7 with
only the first two terms in the expansion being retained. The following

integrals occur in (27)
T
fsE1|t -7 dt=2 - a(r)
0

= - (28
where a(T) =Ey(1) + Ey(r - 7) (28)

r
J(;S(t - 'r)E1|t - T|dt =Bl(1')

where 31(7) ETEZ(‘T) - ('rS - T)E2(TS ~-T) + E3('r) - E3('rS -T)

Using the expansion for B(t), previously stated expressions for B(r)
and k, and Eq. (28), Eq. (27) becomes

dh, I‘a(T)hIIl+4/ n -
= 29

dz 2, 2T -1+4/n
21z" + Cn [31(7')h1 ]

1L

LOCKHEED MISSILES & SPACE COMPANY



hoh3-65-4

Formal integration gives

1
o[
z[z + -8 (mn YR

Z

Picards' method was used on (30) in the same manner that it was used on (2h).

In the original formulation of the viscous equation, the handling of B(t)
was done in the same manner as that done in the inviscid equation. However,
the solutions for large values of B seemed inconsistent using this original
formulation. It was felt that using the full expression for B(t) would
remedy the inconsistencies and so it was introduced into the viscous equation.
It was ascertained later that, in fact, the cause of the inconsistencies was
the inaccurate answers that the numerical method of integration provided for
B > 100. However, the full expression for B(t) was retained in the viscous
equation. Use of the exact expression for B(t) in the inviscid equation
introduces numerical difficulties as the equation is in an indeterminate form
at z = 0. For this reason the approximate expression was used in the inviscid

equation.

A comparison is made between the solutions of the viscous equations with
and without the use of the complete expression for B(t) in Fig. 2. This com-
parison was made to determine the effect of not using the full expression for
B(t) in the inviscid equation. It can be seen that the effect on the viscous
profile is small, never being over five percent for the example considered.

In the results section, this small error is observed in the inviscid solution.

15
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Fig. 2 Viscous Solution With Radiation
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5. DISCUSSION OF RESULTS

The solutions to the inviscid and viscous equations were obtained first
for typical values of the radiation cooling parameter, I' , and the Reynolds
number parameter, f . The enthalpy profiles for these solutions are presented
in Figs. 3 through 5. In Fig. 3 enthalpy profiles for flows without radiation
loss are presented for various values of B8 . It is seen that, as B increases,
the viscous region decreases and the enthalpy profile approaches the inviscid
enthalpy profile. The point at which the viscous profiles depart from the

inviscid profiles is a good indication of the edge of the viscous region.

The effect of increasing the radiation loss parameter for fixed values
of the Reynolds number parameter, 8 , is shown in Figs. 4 and 5. These results
show the existence of substantial gradients in the inviscid flow for large
values of T'. Note, however, the pronounced increase in the enthalpy gradients
in the viscous layer. The edge of the viscous layer can be easily identified

for the zero radiation loss profiles (I = 0).

In order to determine the conditions under which the reduction of the con-
vective heat transfer by radiation cooling can be predicted by considering only
the reduction in the driving enthalpy, inviscid and viscous solutions were
obtained for fixed flight velocities and a number of free stream altitudes.

The pertinent parameters were evaluated for each case and numerical solutions
to the appropriate equations were obtained. Viscous solutions with no radia-
tion loss were also obtained to provide a basis of comparison. Typical enthalpy
profiles for these cases are presented in Figs. 6 through 9. The slight dis-
crepancy between the inviscid and viscous profiles in the inviscid region of
the shock layer is attributed to the different manner employed in evaluating

B(t) in the two solutions.
In Fig. 10 ratios of the convective heating with radiation loss to the con-

vective heating without radiation loss, qc/(qc)o, are presented as a function

of flight altitude. This ratio of the convective heating was obtained from the

17
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Fig. 3 Inviscid and Viscous Enthalpy Profiles With No Radiation
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Fig. 4 Viscous Enthalpy Profiles for Different Values of T

19

LOCKHEED MISSILES & SPACE COMPANY



y/A

Fig. 5 Viscous Enthalpy Profiles for Different Values of T
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0.6

I' = 0 SOLUTION

INVISCID

VISCOUS
0.4
B = 1.69 x 10° Z = 150,000 FT
C =3.52 x 1072 V = 37,000 FT/SEC
0.2 T =1.76 x 107}
T =2.01 x 1072
S
i | { 1
0.0
0.0 0.2 0.4 0.6 0.8
y/A

Fig. 6 Viscous and Inviscid Enthalpy Profiles
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0.2 F
0.0 | | ] |
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Fig. 7 Inviscid and Viscous Enthalpy Profiles
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Fig. 8 Viscous and Inviscid Enthalpy Profiles

23

LOCKHEED MISSILES & SPACE COMPANY



s

«*

VISCOUS
INVISCID

I = 0 SOLUTION

B =172X 10° 7 = 150,000 FT
C = 4.12 % 10‘1 V = 50,000 FT/SEC
r =1.63
; o=1.11 x 10}
S
0.0 0.2 0.4 0.6 0.8
y/A

24

Fig. 9 Viscous and Inviscid Enthalpy Profiles
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viscous solution. Also shown in Fig. 10 are the values of the wall enthalpy
as obtained from the inviscid solution for the identical conditions. Since

the convective heat transfer can be expressed as

q, = h(H_ - H_) - K%
where Hé is the enthalpy obtained from the inviscid solution evaluated at

the wall, HW is the wall enthalpy, and h is the heat transfer coefficient,
the reduction in the convective heating by radiation cooling can be accounted
for by the reduction in the driving enthalpy, if the heat transfer coefficient
is unaffected by radiation cooling. Here we are assuming that in this coupled
problem the inviscid flow can be separated from the viscous flow. At high
altitudes the shock layer will become optically thin and the radiation loss

will be small so that the ratio qc/(qc)o will approach unity and the invis-
cid wall enthalpy, Hé, will approach zero. As the flight altitude is decreased
the inviscid wall enthalpy will increase since the optical depth and absorption
of radiant energy increases. On the other hand, decreasing the flight altitude
will also increase the radiation loss thereby causing a decrease in the ratio
qc/(qc)o. At some point where the Reynolds number is sufficiently high the two
curves should meet as they appear to do in Fig. 10. For large Reynolds numbers
the flow in the shock layer will be primarily inviscid and the radiation cool-
ing processes will be identical in both the viscous and inviscid solutions.
Therefore, we would expect that at sufficiently high Reynolds numbers the reduc-
tion in {he convective heating can be accounted for by the reduction in the wall
enthalpy from the inviscid solution. The present results seem to bear this out;
however, we were not able to obtain solutions at very low altitudes due to num-
erical difficulties and the question remains as to what is the correct limiting

value for the reduction in the convective heating by radiation cooling.

A second objective of this study was to investigate the possibility that
any discrepancy between the reduction in the convective heating as predicted by
the viscous analysis and the reduction in the wall enthalpy as obtained from
the inviscid solution could be made up by second-order boundary-layer effects.

In Appendix A a discussion of second-order boundary-layer theory for the case
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where both velocity and enthalpy gradients exist in the external flow is pre-
sented. The conclusion reached from a reexamination of the results of

Van Dyke ig that for the case where the enthalpy varies from one streamline
to another but is assumed constant along each streamline, the effect of
external enthalpy gradients is not a second-order but a third-order effect.
In the actual case, however, the total enthalpy varies along streamlines due
to radiation cooling. However, for the cases considered here where the
difference between the reduction in the convective heating, qc/(qc)o and the
inviscid wall enthalpy, Hé, are of the order of 0.1, the enthalpy gradients
in the inviscid flow are quite small and the enthalpy along streamlines varies
quite slowly. We therefore conclude that second-order boundary-layer effects
cannot make up the difference between the reduction in convective heating, as
predicted by a full viscous layer analysis, and the reduction in the driving

enthalpy, as predicted by an inviscid shock layer solution.

For nearly optically thin flows a radiation cooled layer will exist in
the inviscid flow in which the enthalpy will vary very rapidly along the stream-
lines. TFor these situations a second-order boundary-layer theory does not
exist. However, the difference between qc/(qc)o and H_, is so large that

the effects are not second-order but first-order.

In Fig. 11 and 12 the optical depths at the shock wave for the flight con-
ditions considered in Fig.l0 are presented. We note in passing that the
conditions at which the ratio of the convective heating qc/(qc)o approaches
the inviscid wall enthalpy He is where the optical depth is between 0.1 and
1.0.

The pertinent parameters for the conditions considered in Fig. 11 are

tabulated in Tables 1 and 2.
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6. CONCLUSION

Stagnation point flow with radiatlon was analyzed with the aim being to
predict the reduction in the convective heating in a simpler way than using
a full viscous analysis. There was discovered a range of velocity-altitude
conditions where the reduction in the wall enthalpy, as obtained from the
inviscid solution, approximates the reduction in convective heating to the
surface. This occurred when the optical depth of the shock layer was between
0.1 and 1.0. 'The conclusion was also reached that existing second-order
boundary-layer effects cannot make up the difference between the reduction
in convective heating, as predicted by a full viscous layer analysis, and the
reduction in the driving enthalpy, as predicted by an inviscid shock layer

solution.
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APPENDIX A

THE EFFECT OF ADIABATIC EXTERNAL FLOW GRADIENTS
ON HEAT TRANSFER AT AN AXISYMMETRIC STAGNATION POINT

by M. Van Dyke

In classical boundary-layer theory the boundary layer is regarded as
vanishingly thin, so that finite gradients in the external inviscid flow are
altogether negligible. The effect of such gradients appears in second-order
boundary-layer theory, together with the effects of surface curvature, slip
and temperature Jjump, and boundary-layer displacement. All these second-
order effects were analyzed for an axisymmetric stagnation point in reference
6. However, the numerical calculations were limited to an isoenergetic

; external flow -- one in which the stagnation enthalpy has the same value on
every streamline outside the boundary layer. The same is true of the addi-
‘ tional computations given in references 7 and 8 for other viscosity laws and

surface temperatures.

Fortunately, these results can be reinterpreted to apply to the more
general situation in which the external flow 1s adiabatic but not necessarily
isoenergetic -- that is, the stagnation enthalpy, like the entropy, is con-
stant along any one streamliine, but may vary from one streamline to another.
The results are particularly simple when expressed in terms of the external
vorticity. We give here the specific result for a thermally and calorically
perfect gas with Prandtl number 0.7 and viscosity proportional to temperature,
at the stagnation point of an axisymmetric body that is cooled to 1/5 of the
stagnation temperature. The heat transfer is increased from its classical

value due to the effects of external gradients by the factor

1+ 0.341V0 /Mg (1-A)
‘ ST o/ )372 -
(Wr)gy
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Here vy is the kinematic viscosity, w the vorticity, u the velocity
parallel to the body, and r the radius from the axis (or distance along the
surface); and the subscript ST denotes the limit as the stagnation point is
approached in the external inviscid flow. The external vorticity is normally

negative, and is conveniently found from

(‘ %)ST = (%%)ST * (" %)ST (2-)

Here y 1is the distance normal to the surface of the body, and k is
the curvature (counted positive for a convex body). However, the second-order
effects of curvature are often negligible compared with those of external
gradients, and then it is consistent to neglect the second term in equation

(2-A) compared with the first.

In general, the second-order correction to heat transfer would also con-
tain a term proportional to the gradient of stagnation enthalpy across stream-
‘ lines. However, this term is absent from equation (1-A) because the effect
disappears at a stagnation point; the reason being that the normal to the
surface cuts no streamlines.* As we move back on the body, the normal begins
to cut streamlines; and the effect is found to grow like the square of the
distance from the stagnation point. It would therefore appear in the second

term of a Blaslus series in which equation (l-A) is the first term.

The form of equation (l-A) holds, with a somewhat different numerical
coefficient, for other viscosity laws, values of Prandtl number, and surface
temperatures. For Prandtl number still 0.7, but viscosity proportional to
the square root of temperature, the values for a wide range of surface tem-
perature can be extracted from references 7 and 8. For incompressible flow,
the coefficient in equation (1-A) was found in reference 9 to be 0.5751 for a

Prandtl number of 0.7 and 0.5520 for a Prandtl number of unity.

*In incompressible flow, for example, it was found in reference 9 that the
second~order heat transfer depends on the inviscid surface gradient of stagna-
‘ tion enthalpy at a cusped plane leading edge (e.g., a flat plate) but not at
a blunt one.
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The result is accurate when the second-order correction represented by
the second term in equation (1-A) is small compared with unity. The result
will be only qualitatively correct when both terms are of the same order, and

worthless when the second term is large.

For studying flows with thermal radiation, it would be desirable to
relax the condition that the external flow is adiabatic. 1In particular, one
would admit a normal gradient of stagnstion enthalpy -- and hence of tempera-
ture -- at the stagnation point. However, this cannot be done using the
equations of reference 6, because in the outer fringes of the boundary layer
they describe adiabatic motion, and therefore possess no solutions that will
match an external temperature gradient near the stagnation point. Radiative
transfer would have to be included in the energy equation for the boundary
layer in order to calculate this additional correction to the above result.
Although this would seem to be a valuable extension of the theory, it would

require considerable analysis.
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