On some inequalities and their application to the Cauchy problem

$$
\begin{gathered}
\text { by } \\
\text { Avner Friedman }
\end{gathered}
$$

1. Two inequalities

Let A be a bounded operator in a complex Banach space X, and denote by $\sigma(A)$ the spectrum of A and by $R(\lambda ; A)$ its resolvent $(\lambda I-A)^{-1}$. If f is analytic on $\sigma(A)$, i.e., in some neighborhood W of $\sigma(A)$, then $f(A)$ is defined by [1 ;p.568]

$$
\begin{equation*}
f(A)=\frac{1}{2 \pi i} \int_{\Gamma} f(\lambda) R(\lambda ; A) d \lambda \tag{1.1}
\end{equation*}
$$

where Γ is a contour lying in $W \backslash \sigma(A)$. If $f(z)$ has a Taylor series exmansion $\Sigma a_{m} z^{m}$ which converges in W then $f(A)=\Sigma a_{m} A^{m}$. We denote by $\|A\|$ the norm of A. If A is an $N \times N$ matrix then we consider it as an operato in the complex N-dimensional euclidean space.

First inequality. Let A be an $N \times N$ matrix and let f be an analytic function on $\sigma(A)$ having a Taylor series expansion about $z=0$ which converges in a neighborhood W of $\sigma(A)$. Then

$$
\begin{equation*}
\|f(A)\| \leq \sum_{j=0}^{N-1} 2^{j}\|A\|^{j} \operatorname{Irfa}_{\lambda \varepsilon H(A)} b_{f}\left|f^{(j)}(\lambda)\right|, \tag{1,2}
\end{equation*}
$$

where $H(A)$ is the convex hull of the eigenvalues of A.
This result is due to Gelfand and Shilov [3].
We shall now derive, by a different method, an inequality of the same nature as (1.2), namely: there is a constant C depending only on N, such that, for any of sufficiently small,

$$
\begin{equation*}
\|f(A)\| \leq \frac{C}{\delta^{N-1}}(1+\|A\|)^{N-1} 1 \cdot u \cdot b \cdot|f(\lambda)| \tag{1.3}
\end{equation*}
$$

where $\sigma_{\delta}(A)=\{\lambda$; dist. $(\lambda, \sigma(A))<\delta\} ; \delta$ is restricted only by the require-
This work was partially supported by the Alfred P. Sloan Foundation and by the Nasa Grant NGR 14-007-021.
ments that $\sigma_{\delta}(\mathrm{A}) \subset \mathrm{W}$ and that $\delta \leq 1$.
Proof of (1.3). We employ (1.1) and shrink Γ to a contour B which, after cancelling out integrals on the same arcs but in reverse orientations, has length $\leq C^{\prime} \delta(C '$ depending only on N) and is such that $\left|\lambda-\lambda_{j}\right|=\delta$ for any eigenvalue λ_{j} of A and for all λ in the uncancelled part B^{\prime} of B. Then $|\operatorname{det}(\lambda I-A)|=\left|\left(\lambda-\lambda_{1}\right)^{\alpha_{l}} \ldots\left(\lambda-\lambda_{k}\right)^{\alpha_{k}}\right| \geq \delta^{-N}$ on B^{1}. Noting that $|\lambda| \leq\|A\|+\delta \leq\|A\|+1$ on B^{\prime}, we get $\|R(\lambda ; A)\| \leq$ $C^{\prime \prime}(I+\|A\|)^{N-I_{8}-N}$ on B^{\prime} ($C^{\prime \prime}$ depending only on N), and (1.3) follows.

Sepcond inequality. Consider a polynomial equation

$$
\begin{equation*}
\lambda^{N}+P_{1}(s) \lambda^{N-1}+\ldots+P_{N}(s)=0 \tag{1.4}
\end{equation*}
$$

where $P_{j}(s)$ are polynomials of degree p_{j} in the n-dimensional complex variable $s=\left(s_{1}, \ldots, s_{n}\right)$, and set $p_{0}=\max _{1 \leq j \leq N} \frac{p_{j}}{j}$. Denote by

$$
\begin{array}{ll}
\Lambda(s)=\max _{I \leq j \leq N} \operatorname{Re}\left\{\lambda_{j}(s)\right\}, & \Lambda(r)=\max _{|s| \leq r} \Lambda(s), \\
M(s)=\max _{I \leq j \leq N}\left|\lambda_{j}(s)\right|, & M(r)=\max _{|s| \leq r} M(s)
\end{array}
$$

Then,

$$
\begin{array}{ll}
\Lambda(r)=\alpha r_{0}+O\left(r^{q}\right) & \left(\alpha>0, q<p_{0}\right), \\
M(r)=\beta r^{p_{0}}+0\left(r^{q}\right) & (\beta>0) . \tag{1.5}
\end{array}
$$

A slightly weaker resuit, namely, $\Gamma(r)=0\left(r^{p_{0}}\right), \Gamma\left(r_{m}\right) \geq r_{m}^{p_{0}}$ for some $\gamma>0, r_{\text {m }} \rightarrow \infty$ and $\Gamma=\Lambda_{g} M$ wãs prored by Gelfand and Shilov [3], but there is some gap in their proof; this is fixed up in [2], where also the more general version (1.5) is given.

2. The Cauchy problem

Consider the problem of finding a function u satisfying

$$
\begin{array}{cc}
\frac{\partial u}{\partial t}=P\left(\sqrt{-1} \frac{\partial}{\partial x}\right) u & \left(0<t \leq T, x \in R^{n}\right) \tag{2.1}\\
u(x, 0)=u_{o}(x) & \left(x \in R^{n}\right)
\end{array}
$$

(u is to be continuous for $0 \leq t \leq T, x \in R^{n}$) where R^{n} is the real $n-$ dimensional euclidean space, $u=\left(u_{1}, \ldots, u_{N}\right), u_{o}=\left(u_{o l}, \ldots, u_{o N}\right), P(s)$ is an $N \times N$ matrix whose elements are polynomials of degree $\leq p$ in $s=$ $\left(s_{1}, \ldots, s_{n}\right)$, and $\frac{\partial}{\partial x}=\left(\frac{\partial}{\partial_{x_{1}}}, \ldots, \frac{\partial}{\partial_{x}}\right)$. For simplicity we take P to be independent of t, but all the results of this work extend to the case where $P=P\left(t, \sqrt{-1} \frac{\partial}{\partial x}\right)$. The system (2.1), (2.2) is called a Cauchy system. To solve it we first take, formally, the Fourier transform, and get

$$
(2.4)
$$

$$
\begin{align*}
\frac{\partial v}{\partial t} & =P(\sigma)_{v} \tag{2.3}\\
v(\sigma, 0) & =v_{0}(\sigma)
\end{align*}
$$

whose formal solution is given by $\mathrm{e}^{\mathrm{tP}(\sigma)} \mathrm{v}_{0}(\sigma) \quad\left(\sigma \varepsilon \mathrm{R}^{\mathrm{n}}\right)$, and then we have to analyze the inverse transform, which should yield a solution of (2.1), (2.2). Actually, this procedure is too crude and a more sophisticated procedure is needed, which employs certain topological spaces and their conjugate spaces; for details the reader is referred to [2],[3].

One concludes that uniqueness holds under the assumption that (2.5)

$$
|u(x, t)| \leq B \exp \left(\beta|x|^{q}\right) \quad \text { for } 0 \leq t \leq T
$$

where B, β are positive constants, $\frac{1}{q}+\frac{1}{p_{0}}=1$ and p_{0} is defined as in $B 1$, where (1.4) is the characteristic equation for $P(s)$.

In proving this result one has to show that $e^{t P *(\sigma)} V_{0}(\sigma)$ ia a sointion of (2.3),(2.4) with P replaced by $P^{*}\left(P^{*}=\right.$ transpose of P) in some "W space" of entire functions. This proof is based upon the bound

$$
\begin{equation*}
\left\|e^{t P(s)}\right\| \leq C(1+|s|)^{(N-I) p} \exp \left(c t|s|^{p_{o}}\right) \tag{2.6}
\end{equation*}
$$

where C, c are positive constants. Thus the uniqueness proof employs in a substantial manner the inequality (2.6), which in turn follows from the two inequalities of $\$ 1$.

To prove existence one first reduces the problem (up to some routine
estimates of integrals) to the problem of studying the inverse Fourier transform of $e^{t P(\sigma)}$ (i.e., Green's function); see [2]. Next, a better inequality than (2.6) is needed, but only for $s=\sigma$ real. One assumes that

$$
\begin{equation*}
\Lambda(\sigma) \leq \gamma|\sigma|^{h}+\delta \tag{2.7}
\end{equation*}
$$

and, depending on γ, h one obtains different bounds on $e^{t P(\sigma)}$ and on its derivatives, and thus different structures for Green's function. If $\gamma<0$, $0<h \leq p_{0}$ then one can prove that there exists a classical solution of (2.1), (2.2), and that it satisfies (2.5), provided u_{0} and some of its derivatives have at most an exponential growth; if $h=p_{o}$ it suffices to assume that $u_{0}(x)$ is continuous and is $0\left[\exp \left(\beta|x|^{q}\right)\right]$ where $0<\beta<\beta_{0} T^{-1 /\left(p_{0}-1\right)}$, β_{0} depending only on P. If $\gamma \geq 0$, then more restrictive assumptions are made on $u_{o}($ see $[2],[3])$.

The Goursat problem

$$
\begin{gather*}
\frac{\partial^{\nu} u}{\partial t_{1} \ldots \partial t_{\nu}}=P\left(i \frac{\partial}{\partial x}\right) u, \\
\left.u(x, t)\right|_{t_{i}=0}=u_{o i}\left(x, t_{1}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{\nu}\right) \quad(i=I, \ldots, \nu) \tag{2.8}
\end{gather*}
$$ can be handled along the same lines (see [2]). Instead of $e^{t P(s)}$ we now have to deal with $\sum_{m^{=}}^{\infty}(P(s))^{m} /\left(m^{g}\right)^{\nu}$. Uniqueness holds under the assumption (2.5) where $\frac{1}{q}+\frac{\nu}{p_{0}}=1$. Existence theorems can also be derived, but there is a remarkable difference between the case $\nu=2$ where solutions exist under "reasonable" conditions on u_{0} (i.e., a finite number of derivatives of u_{0} are assumed to exist and to be bounded by $O\left(|x|^{\gamma}\right)$ for some $\left.\gamma\right)$ and on the eigenvalues of $\mathrm{P}(\sigma)$, and the case $\boldsymbol{\nu}>2$ where very restriotice assumptions on u_{0} are required.

3. Additional inequalities

We shall consider some generalizations of the first inequality of $\$$ I
to general bounded operators A. The last result of this section will be substantially used in $\$ 4$.

Proposition 1. If $\|A\|<r$ and f is analytic in $|\lambda| \leq r$, then (3.1)

$$
\|f(A)\| \leq \frac{r}{r-\|A\|} \underset{|\lambda| \leq x}{\left|u_{0} b_{0}\right| f(\lambda) \mid}
$$

This follows from (1.1) upon using Neumann's series for $R(\lambda ; A)$. A better result holds in Hilbert spaces (but is false in Banach spaces!):

Proposition 2. Let A be a bounded operator in a Hilbert space X and let f be an analytic function in $|\lambda| \leq\|A\|$. Then

$$
\begin{equation*}
\|f(A)\| \leq \underset{|\lambda| \leq\|A\|}{I_{0} u_{0} b_{0}|f(\lambda)|} \tag{3.2}
\end{equation*}
$$

This result is due to von Neumann [5]; a simpler proof was given by E. Heinz [4] (see also [6]). It is also proved in [5] (and in [4]) that if

$$
\begin{equation*}
\operatorname{Re}(A \varphi, \varphi) \geq 0 \quad \text { for all } \varphi \varepsilon X \tag{3.3}
\end{equation*}
$$

then $(A-I)(A+I)^{-1}$ exists and has a norm ≤ 1. Employing Proposition 2, one gets:

Proposition 3. Let A be a bounded operator in a Hilbert space X and assume that it satisfies (3.3). If f is an entire function then (3.4)

$$
\|f(A)\| \leq \underset{\operatorname{Re} \lambda \geq 0}{\operatorname{l.q}_{\bullet} b_{0}|f(\lambda)| .}
$$

4. The Cauchy problem for infinite systems

We shall extend the results of s 2 to an infinite system of equations, i.e.,

$$
\begin{array}{cc}
\frac{\partial u_{i}}{\partial t}=\sum_{j=1}^{\infty} p_{i j}\left(\sqrt{-1} \frac{\partial}{\partial x}\right) u_{j} & (i=1,2, \ldots), \\
u_{i}(x, 0)=u_{o i}(x) & (i=1,2, \ldots)
\end{array}
$$

At this point we have to introduce the space $W_{p, a}^{p, b}$ which oceurs in the case of finite systems. $W_{p, a}^{p, b}$ is a Frechet space whose elements are
those entire functions $f(z) \quad\left(z=\left(z_{1}, \ldots, z_{n}\right)\right)$ satisfying

$$
|f(z)| \leq c^{\prime} \exp \left[-\frac{a^{1}}{p}|x|^{p}+\frac{b^{\prime}}{p}|y|^{p}\right] \quad(z=x+i y)
$$

for $a l l a^{\prime}<a, b^{\prime}>b$ where C^{\prime} is a constant depending on $a^{\prime}, b^{\prime}, f$. The metric is given by a sequence of norms $\|f\|_{j}=\sup M_{j}(z)|\varphi(z)| \quad(j=1,2, \ldots)$ where $M_{j}(z)=a\left(I-\frac{I}{j}\right) \frac{|x|^{p}}{p}-b\left(I+\frac{I}{j}\right)^{\frac{\left.d y\right|^{p}}{p}}$;ie.,

$$
d(f, g)=\sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{\|f-g\|_{j}}{1+\|f-g\|_{j}} .
$$

In the case of $\mathbf{s} 2$ the component u_{j} is considered as a functional over W_{j}, where $W_{j}=W_{p, a}^{p, b}$ for all j. In the present case we introduce the direct product $\prod_{j=1}^{\infty} \mathrm{W}_{\mathrm{j}}$, and the metric

$$
\begin{equation*}
\hat{d}(\varphi, \psi)=\sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{\|\varphi-\psi\|_{j}}{1+\|\varphi-\psi\|_{j}} \text { where }\|\varphi\|_{j}=\sum_{j=1}^{\infty}\left\|\varphi_{j}\right\|_{j} ; \tag{4.3}
\end{equation*}
$$

here $\varphi=\left(\varphi_{1}, \varphi_{2}, \ldots\right), \psi=\left(\psi_{1}, \psi_{2}, \ldots\right)$. The elements φ with $\|\varphi\|_{j}<\infty$ for $j=1,2, \ldots$ form a Freshet space $\hat{W}_{p, a}^{p}, \mathrm{~b}$.

Assume now that
(4.4) $\left|p_{i j}(s)\right| \leq \pi_{i j}\left(I+|s|^{p}\right), \pi_{i j}$ constants, $\sup _{i} \sum_{j=1}^{\infty} \pi_{i j} \leq r<\infty$. In order to prove uniqueness for (4.1), (4.2), we proceed as in the case of finite systems and thus reduce the problem to showing that

$$
\psi(\sigma, t)=e^{t P^{*}(\sigma)_{\psi_{0}}(\sigma)} \quad\left(\psi_{0} \varepsilon \hat{W}_{p, b}^{p, a}, P^{*}=\text { transpose of } P\right)
$$

is a solution in $\hat{W}_{p, a-c}^{p}, b+c$ (for some $c<a$) of

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}=P *(\sigma) \psi, \quad \psi(\sigma, 0)=\psi_{0} . \tag{4.5}
\end{equation*}
$$

(It is actually enough to consider ψ_{0} with all but one component equal to zero.)

Since

$$
\sum_{i=1}^{\infty}\left|(P *(s) \psi(s, t))_{i}\right| \leq\left(1+|s|^{p}\right) \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \pi_{j i}\left|\psi_{j}(s)\right| \leq r\left(1+|s|^{p}\right) \sum_{j=1}^{\infty}\left|\psi_{j}(s)\right|
$$

it follows that P^{*} is a bounded operator in $\hat{W_{p, a}^{p}, b}$. Next,

$$
\begin{aligned}
& \sum_{i=1}^{\infty}\left|\left(e^{t P^{*}(s)} \psi(s, t)\right)_{i}\right| \leq \sum_{i=1}^{\infty} \sum_{m=0}^{\infty}\left|\left(\frac{t^{m}(p *(s))^{m}}{m!} \psi(s, t)\right)_{i}\right| \\
& \quad \leq \sum_{m=0}^{\infty} \frac{r^{m} t^{m}(1+|s|)^{p m}}{m!} \sum_{i=1}^{\infty}\left|\psi_{i}(s)\right|=e^{r t(1+|s|)^{p} \sum_{i=1}^{\infty}\left|\psi_{i}(s)\right|,}
\end{aligned}
$$

and we thas find that $\psi(s, t)$ is in $\hat{W}_{p, a-c}^{p, b+c}$ for some $c<a$ (depending on $\gamma, T)$. The proof that $\psi(\sigma, t)$ satisfies (4.5) follows without difficulty (compare [2]). We thus obtain the following uniqueness theorem:

Theorem l. If (4.4) holds then there exists at most one classical solution of (4.1), (4.2) satisfying

$$
\begin{equation*}
\left|u_{i}(x, t)\right| \leq C e^{\beta|x|^{q}} \quad\left(\frac{1}{q}+\frac{1}{p}=1\right) \tag{4.6}
\end{equation*}
$$

for some $C>0, \beta>0$ and $x \in R^{n}, 0 \leq t \leq T, i=1,2, \ldots$ As in $[2],[3]$ the condition (406) can be replaced by

$$
\begin{equation*}
\int_{R^{n}}\left|u_{i}(x, t)\right| e^{-\beta|x|^{q}} d x \leq c \tag{4.7}
\end{equation*}
$$

Consider now the question of existence. As in the case of a finite system, a "generalized solution" always exists, and we wish to prove that it is also a solution in the classical sense. For this we need to make some differentiability and boundedness assumptions on $u_{0}(x)$ and also put some conditions on $P(\sigma)$. In the finite case we impose conditions on the eigenvalues $\lambda_{i}(\sigma)$ of $P(\sigma)$. In the present infinite case we give a different kind of condition on $\mathrm{P}(\sigma)$ which will turn out to have the same effect as in the finite case.

We wish to consider $e^{\operatorname{tP}(\sigma)}$ as a bounded operator in z^{2}. We thus need to know that $P(\sigma)$ is a bounded operator in Z^{2}. For this it suffices to assume that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left|p_{i j}(\sigma)\right|^{2}<\infty . \tag{4.8}
\end{equation*}
$$

We now impose the following condition: For any $\sigma \varepsilon \mathrm{R}^{\mathrm{n}}$,
(4.9) $\operatorname{Re}\left(P(\sigma)_{v, v}\right) \leq\left(-C|\sigma|^{h}+C_{1}\right)(v, v)$
($\mathrm{C}>0, \mathrm{O}<\mathrm{h} \leq \mathrm{p}$)
where $(v, w)=\Sigma v_{i} \bar{w}_{i}$. If $h=p, C_{1}=0$ and P is equal to its principal part, then this condition is known as the strong ellipticity condition for P.

Using (4.9) and applying Proposition 3, we deduce:

$$
\begin{equation*}
\left\|e^{t P(\sigma)}\right\| \leq c_{0} e^{-t c|\sigma|^{h}} \tag{4.10}
\end{equation*}
$$

$$
\left(C_{0}=e^{T\left|C_{1}\right|}\right)
$$

where $e^{t P(\sigma)}$ is considered as an operator in Z^{2}. Thus, in particular, (4.11)

$$
\sum_{j=1}^{\infty}\left|\left(e^{t P(\sigma)}\right)_{i j}\right|^{2} \leq c_{o} e^{-t c|\sigma|^{h}}
$$

Using this bound one can now analyze Green's function $G(x, t)$ (i.e., the inverse Fourier transform of $e^{t P(\sigma)}$) and then the abstract convolution $G(x, t) * u_{0}(x)$. This is done along the same lines as for finite systems, and we obtain analogous existence theorems. The cases where $C=0, C<0$ can be treated in a similar manner. We list below just two results which are thus obtained (one could easily write down all the other existence theorems, by following the arguments for finite systems):

Theorem 2. If $h=p$ in (409) then for any continuous function $u_{0}(x)$ whose components satisfy

$$
\begin{equation*}
\left|u_{o j}(x)\right| \leq c_{j} e^{\gamma|x|^{\tilde{q}}}, \quad \sum_{j=1}^{\infty} c_{j}^{2}<\infty, \quad 0<\gamma \leq Y_{0}^{T^{-1 / /(p-1)}} \tag{4.12}
\end{equation*}
$$

(γ_{0} depending only on P), there exists a classical solution of (4.1), (4.2) satisfying (4.6) for some constants C, β.

Theorem 3. If $C=0$ in (4.9) and if for some $\nu \geq 0, \gamma>0$ the first $p+\nu+n$ derivatives of $u_{o}(x)$ are continuous functions satisfying

$$
\begin{equation*}
\left|\frac{\partial^{i}}{\partial x^{i}} u_{o j}(x)\right| \leq c_{j}(1+|x|)^{\gamma}, \sum_{j=1}^{\infty} c_{j}^{2}<\infty(0 \leq i \leq p+n+\nu) \tag{4.13}
\end{equation*}
$$

where $\gamma^{+} n+1 \leq \nu / \mu \quad(\mu>0$ depending only on P) then there exists a classical solution of (4.1), (4.2) satisfying

$$
\begin{equation*}
\left|\frac{\partial^{i}}{\partial x^{i}} u_{j}(x, t)\right| \leq c(I+|x|)^{\gamma} \quad(0 \leq i \leq p) \tag{4.14}
\end{equation*}
$$

If $p=1$ and $C=0$ in (4.9) then we have the same situation as in the finite hyperbolic case, where Green's function has a compact support.

The norms and metric in (4.3) were chosen quite arbitrarily; other definitions can be made and we then obtain variants of the previous results. Thus if we modify the definition (4.3) by setting $\|\varphi\|_{j}=$ $\sup _{i}\left\|\varphi_{i}\right\|_{j}$ and then modify (4.4) by replacing the last condition by

$$
\sup _{j} \sum_{i=1}^{\infty} \pi_{i j} \leq r,
$$

then Theorem 1 remains true if in (4.6) C is replaced by C_{i} and $\Sigma C_{i}<\infty$.
We finally wish to observe that our results do not yield anything new in the case of finite systems. In fact, the condition (4.9) implies the condition (2.7) with $\gamma=-C$. This follows from the obvious inequality

$$
\begin{equation*}
e^{t \Lambda(\sigma)} \leq\left\|e^{\mathrm{tP}(\sigma)}\right\| \tag{4.15}
\end{equation*}
$$

(as $e^{t \lambda_{i}(\sigma)}$ are the eigenvalues of $e^{t P(\sigma)}$) and (4.10). From (4.10), (4.15) we also get:

Corollary. If P is strongly elliptic then $\partial u / \partial t=R u$ is parabolic in the sense of Petrowski (i.e., $h=p_{o}=p$ see [2]).

References

[I] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience Publishers, 1958.
[2] A. Friedman, Generalized Functions and Partial Differential Equations, Prentice-Hall, 1963.
[3] I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 3: Some Questions in the Theory of Differential Equations, Moscow, 1958.
[4] E. Heinz, Ein v. Neumannscher Satz ther beschrankte Operatoren im Hilbertschen Raum, GBttinger Nachr., (1952), 5-6.
[5] J. von Neumann, Eine Spektraltheorie fttr allgemeine Operatoren eine unityren Raumes, Math. Nachr., vol. 4 (1950-51), 258-281.
[6] F. Riesz and B. Sz.-Nagy, Leçons D'Analyse Fonctionelle, Acad. Sci. Hongrie, 1953.

