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On some inequalities and their application to the Cauchy problem 50 4
by C/p) _ /

Avner Friedman M 4 ,
L 4D

Let A be a bounded operator in a complex Banach space X, and denote {W/ '

l. Two inegualities

by 0(A) the spectrum of A and by R(A;A) its resolvent (AI- A)—l. If £
is analytic on G(4), i.e., in some neighborhood W of G(A), then £(A) is

defined by [1;5p.568]
(1.1) £(a) = rTAR(;A) A

where T is a contour lying in W\o(4A). If f(z) has a Taylor series ex-

pansion Z amzm which converges in W then f(4) =2 amAm. We denote by

HAN the norm of A. If A is an NXN matrix then we consider it as an op-

erator in the complex N~dimensional euclidean space. i

First inequality. Let A be an Nx N matrix and let £ be an analytic

function on d(A) having a Taylor series expansion about z = O which con-

verges in a neighborhood W of G{A). Then

(1.2) el < 21 Al 1owb. 1D )],
=0 A€ H\A)

where H(A) is the convex huil of the eigenvalues of A.

This result is due to Gelfand and Shilov [3].

We shall now derive, by a different method, an inequality of the
same nature as (1.2), namely: there is a constant C depending only on N R

such thaty for any 8 sufficiently small,

7(1+ ||A||) la.b. )2

(1.3) e ()l <3
A€ 66( )

where dﬁ(A) = {A;dist.()»_,d(A) < 5}; 6 is restricted only by the reguire- ;
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ments that 0g(A) C W and that & ¢ 1.

Proof of (1.3). We employ (1.1) and shrink T to a contour B which,
after cancelling out integrals on the same arcs but in reverse orienta-
tions, has length < C'6 (C! depending only on N) and is such that
|A-Aj| .= 0 for any eigenvalue A, of A and for all A in the uncancelled
part B! of B. Then |det(AI-a)| = l(A—Al)al...(A-)Lk)akl > & on BY,
Noting that JAl < NAll + 8 < JIAll + 1 on B, we get IIR(A;4) 1l
cr(1+ ||A")N—15-N on B! (C" depending only on N), and (1.3) follows.

Second inequality. Consider a polynomial equation

(1.4) A+ E e+ L+ B(s) = 0

where Pj(s) are polynomials of degree pj in the n-dimensional complex

po
variable s = (sl,...,sn), and set p,= max =1, Denote by

1<jgN
(s) = Re{A . ( = A
A(s) ln;ajst { 3 s)}, Xr) lléllalstr S),
M(s) = max |A,(s)], M(r) = max M(s).
1<jgN - d sl <r
Then, i
Ar) =ar 0+ 0(z%) (@>0,q<0p),
(105) . p . . -
M(r) = pr ° + 0(rh) (p > 0).

A slightly weaker result, namsly, MMr) = O(rpo), I‘(rm) 2> YTIfO for some
Yy >0, T —> o and I’ =AM was proved by Gelfand and Shilov (3], but
there is some gap in their proof; this is fixed up in [2], where also
the more general version (1.5) is given.

2, The Cauchy problem

Consider the problem of finding a function u satisfying

—~ 8
(2.1) -gl}; =P/l gu (0<t<T, xeRY,

(2.2) u(x,0) = u (x) (x ¢ RP)



3
(u is to be continuocus for 0 < t < T, x € R") where R® is the real n-
dimensional euclidean space, u = (ul,...,uN), u, = (uol,...,uoN), P(s)
is an NxN matrix whose elements are polynomials of degree { p in s =
3 9 9 R .
(sl,...,sn), and ox - (5;1,.0.,5; ). For simplicity we take P to be in-
n
dependent of t, but all the results of this work extend to the case where
~ 9
P = P(t /-1 5;). The system (2,1),(2.2) is called a Cauchy system. To

solve it we first take, formally, the Fourier transform, and get

(203) g-% = P(G)’V‘,
(2.4) v(0,0) = v (a),
tP(0)

whose formal solution is given by e vo(d) (o e Rn), and then we have
to analyze the inverse transform, which should yield a solution of (2.1),
(2,2). Actually, this procedure is too crude and a more sophisticated
procedure is needed, which employs certain topological spaces and their

conjugate spaces;j for details the reader is referred to [2],[3].

One concludes that uniqueness holds under the assumption that

(2.5) lulx,t)| < B exp(B|x]?) for 0t T,

where B,B are positive constants, % + I = 1 and p_ is defived ae in 81,
)

where (1.4) is the characteristic equation for P(s).

In proving this result one has to show that etP*(d)

v (@) 18 & solu-
o
tion of (2.3),(2.4) with P replaced by P* (P* = transpose of P) in some

"W space" of entire functions. This proof is based upon the bound

(2.6) ||etP(S)H <c(1+ Isl)(N—l)p exp(ctlslpo)

where C,c are positive constents. Thus the uniqueness proof employs iu &
substantial manner the inequality (2.6), which in turn follows from the
two inequalities of 81.

To prove existence one first reduces the problem (up to some routine
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estimates of integrals) to the problem of studying the inverse Fourier

transform of etP(d) (1

€., Green's function); see [2]. Next, a better
inequality than (2.6) is needed, but only for s = O real. One assumes
that

(247) A©G) < yio\" + 8

tP(c) and on its

and, depending on y,h one obtains different bounds on e
derivatives, and thus different structures for Green's function. If ¥<O,
0<h( P, then one can prove that there exists a classical solution of
(2.1),(2.2), and that it satisfies (2.5), provided u, and some of its
derivatives have at most an exponential growth; if h = P, it suffices to
assume that uo(x) is continuous and is O[exp(ﬁlx\q):’ where 0<5<BOT—1/ &)0-1),
ﬁo depending only on P. 1If v 2 O, then more restrictive assumptions are
made on u (see [2],[3]).

The Goursat problem

—u_ _p 2y
"Piaxu,

a’t’lc..atv
(208) ) \
u(x,t),t'___.o =1 (Kybyyeeests abiaqrecerty) (15 1,000,9)
i R
can be handled along the same lines (see [2]). Instead of o8I e now

have to deal with mg()) (P(s))™/(mi ", Uniqueness holds under the assump-
tion (2.5) where %+ 3-1‘5 = 1. Existence theorems can also be derived, but
there is a remarkable ?iifference between the case ¥ = 2 where solutions
exist under "reasonable" conditions on u (i.e., a finite number of deriv-
atives of u, are assumed to exist and to be bounded by O(leY) for sonme *{)
and on the eigenvalues of P(0), and the case ¥ > 2 where very restriziire

assumptions on u, are required.

3. Additional inequalities

We shall consider some generalizations of the first inequality of 81
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to general bounded operators A. The last result of this section will be
substantially used in 84.
Proposition 1. If |Al| < r and £ is analytic in |A| < r, then

(3.1) He)) < ——h H b le(A) |,

This follows from (1.1) upon using Neumann's series for R(Aj4). A

better result holds in Hilbert spaces (but is false in Banach spaces!):

Proposition 2. Let A be a bounded operator in a Hilbert space X

and let f be an analytic function in |A| < Al Then
(3.2) el < Tou.baJ£(A)) .
Al Al

This result is due to von Neumann [5]; a simpler proof was given by
E. Heinz [4] (see also [6]). It is also proved in [5] (and in [4]) that
if
(3.3) Re(Apyp) >0 for all g € X
then (A-I)(A*'I)“l exists and has a norm 1. Employing Proposition 2,
one gets:

Proposition 3. Let A be a bounded operator in a Hilbert space X

and assume that it satisfies (3.3). If f is an entire function then

(344) he(adl| € Touabal£(A)] .
ReA20

4o« The Cauchy problem for infinite systems

g
-

We shall extend the results of 82 to an infinite system of equations,

lecay

Ou. ®

—_— s =
(401) 3t le 1j(l/ =1 ax)uj (l - 1,2,00.)3
(4—.2) U.i(x,o) = uoi(X) (i = l’z,ool)o

At this point we have to introduce the space Wg’: which oceurs in
’

the case of finite systems. Wp’b is a Fréchet space whose elements are
Dya



those entire functions f(z) (z = (zl,...,zn)) satisfying
1 1
|£(2)} < C* exp[~ %-\x\p * %'lylp] (z = x+iy)

for all a' < a, b' > b where C' is a constant depending on a',b',f. The

metric is given by a sequence of norms l£ll, = sup Mj(z)|¢(z)| (3 = 1,240.)

where Mj(Z) =a(l - %:)-%L - b(1 + -)LYlP ; l.e.,

o) |f - gl
alt,g) = = -1-——————-'1—+ )
1 23 1 ”f'g“j
In the case of 82 the component 'uj is considered as a functional over
Wj, where Wj = Wg:: for all j. In the present case we introduce the

direct product ;ﬂ; W, and the metric

1 e = ¥il4 ®
4 -
(403) d(CP,‘P) l jl"’”q) IH, where "(P“j ng“q)j"j’

here 9 = ((Pl,(Pz,--o),\P: (\bl,¢2)ooo)o The elements P with “(P"j < ® for
A
j=1,2y.c. form a Fréchet space Wg’:.
’
Assume now that
p ®

(4ed) \pij(S)l < ﬂij(14-|s\ )y w;; constants, sup j§1 hiSY<o.

In order to prove uniqueness for (4.1),(4.2), we proceed as in the

case of finite systems and thus reduce the problem to showing that

’, . *
Ylo,t) = etP (d)¢ (c) (b Wp’ P* = transpose of P)
) ) P,b
is a solution in Wp’b ¢ (for some ¢ < a) of
pya~
0
(405) 2 o= pod, 90,0 =9
(It is actually enough to consider ¥ with all but one component equal
)
to zero.)
Since

2 1B (ehp(s,8) ) < (1 1817 z § miahby ()] < a1l b LAOI



A
it follows that P* is a bounded operator in wg’:. Next,

> | (L (s 0) |

L 1 TP*(s)
J.LE:LKe s ¢(s,t))i| Elm—g

mme. . m

and we thus find that $(s,t) is in Wg’b for some ¢ < a (depending on
*{,T) The proof that $(c ,'b) satisfies (4.5) follows without difficulty
(compare [2]). We thus obtain the following uniqueness theorem:

tion of (4.1),(4.2) satisfying
4 1.1
(46) o, (xy0)] < © ePl™! (2+1=2)

for some € >0, p>0andxe R, 0t T, i=1,2,....
As in [2],[3] the condition (4.6) can be replaced by

q
(4e7) jRnlui(x,t)le-ﬁlxl dx < C.

Consider now the question of existence. As in the case of a finite
system, a "generalized solution" always exists, and we wish to prove that
it is also a solution in the classical sense. For this we need to make
some differentiability and boundedness assumptions on u (x) and also put
some conditions on P(¢). In the finite case we impose conditions on the
eigenvalues Ai(d) of P(6). In the present infinite case we give a dif-
ferent kind of condition on P(g) which will turn out to have the same
effect as in the finite case. |

We wish to consider etP(d) as a bounded operator in lg. We thus
need to know that P(g) is a bounded operator in 2. For this it suffices
to assume that

[0 0]
(4.8) izl j.-%j_'Pij(d)lz < m®m.



We now impose the following condition: For any o ¢ Rn,
(49)  Re(P(o)v,v) < (Clot™ + 0))(v,v) (¢ >0, 0<hgp)

where (v,w) =X vi;;i. If h=p, 0 =0 and P is equal to its principal
part, then this condition is known as the girong ellipticity copdition
for P,

Using (4.9) and applying Proposition 3, we deduce:
(410) "etP(O)" < Coe-‘c.Cld\h (Co - eTIC;LI )
tP(0)

where e 'is considered as an operator in 12. Thus, in particular,

(4+11) jguJ“@%ﬁzg%;www.

Using this bound one can now analyze Green's function G(x,t) (i.e.,
the inverse Fourier transform of etP(d)) and then the abstract convolution
G(x,t)*uo(x). This is done along the same lines as for finite systems,
and we obtain analogous existence theorems. The cases where C =0, C <O
can be treated in a similar manner. We list below just two results which
are thus obtained (one could easily write down all the other existence
theorems, by following the arguments for finite systems):

Theorem 2. IL h = p in (4.9) then for any continuous function u (x)
whose components satisfy
il P g2

z C,
719

1/(p-1)

T/ N
(4.12) |uoj(x)| < Cge <o, 0<y<y,tT

(v, depending only on P), there exists a classical solution of (4.1),
(4e2) satisfying (4.6) for some copstants C,B.

Theorem 3. If C = O in (4.9) and if for some ¥ 2 0, ¥ > O the first
p+¥+n derivatives of uo(x) are continuous functions satisfying

al

(4.13) LI
g;uoj(x)\ < Cj(1+ 1x)7, j§1 Cj <w (0€1i<ptn+y)



where y+n+1 ¥/ (p > O depending only on P) then there exists a
classical solution of (4.1),(4.2) satisfying

i
(414) |55 0,0 <oegxDT (0 <1<

axt J

If p=1and C =0 in (4«9) then we have the same situation as in
the finite hyperbolic case, where Green's function has a compact support.

The norms and metric in (4.3) were chosen quite arbitrarily; other
definitions can be made and we then obtain variants of the previous
results, Thus if we modify the definition (4.3) by setting ||cp||j =

suplkpillj and then modify (4.4) by replacing the last condition by
i

<
sup £ n,..< ¥y
=1 W=7

then Theorem 1 remains true if in (4.6) C is replaced by C, and Z C, < .
We finally wish to observe that our results do not yield anything
new in the case of finite systems. In fact, the condition (449) implies

the condition (2,7) with vy = =C, This follows from the obvious in-

equality
(415) o ¥M9) < e t2(9)
(as emi(d) are the eigenvalues of etP(d)) and (4.10). From (4°10)’

Corollary. If P is strongly elliptic ithen Ou/dt = Pu is parabolic in
the sense of Petrowski (i.e., h = Py = pj see L2D).
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