

GPO PRICE \qquad
CFSTI PRICE(S) S \qquad

fi 653 July 85

A SUBSIDIARY OF WESTINGHOUSE AIR BRAKE COMPANY 3000 ARLINGTON BOULEVARD, FALLS CHURCH, VIRGINIA

Human Performance Control Monitoring Systems
Interim Report No. 2
Contract No. NASN-1085
15 January 1966
Prepared for
NASA Headquarters
Washington, D.C.
Prepared by
J. H. Gervinski and R. E. Mirabelli
Melpar, Inc.
3000 Arlington Boulevard
Falls Church, Vircrinia

TABLE OF CONTENTS
Page

1. INTRODUCTION 3
2. PROBLEM FORMULATION 4
2.1 Review of Problem Motivation 4
2.2 Plant 4
2.3 Performance 6
2.4 Control Policy 7
3. DIGITAL IMPLEMENTATION 9
4. CONCLUSIONS 16
APPENDIX A -- LIST OF SYMBOLS 17
APPENDIX B -- PROGRAM LISTINGS FOR APPENDIX A 19
LIST OF ILLUSTRATIONS
Figure Page
2-1 Basic Feedback Control Loop 5
2-2 Control Policy Change with Adaptive Logic 8
3-1 Flow Diagram of Digital Program 10
3-2 Main Loop of Digital Program 11

INTRODUCTION
This Interim Report describes the basic features of the computer program developed under Contract No. NASW-1085.

During the first phase of the Human Performance Control and Monitoring System contract, theoretical studies were performed, and a mathematical model of a performance control and monitoring system was developed. To illustrate the use of adaptive logic in such a system, three possible problems were posed for simulation on a digital computer. The program selected by NASA for simulation was the following:
"Given that failures and/or changes in plant characteristics have occurred in an automatic control system, can trainable logic be designed to take over the control function by monitoring of human performance?"

In this, the second phase of the contract, a computer program has been written which simulates a second-order servo plant and a controller has been made from adaptive logic elements. This program provides the option of being in the automatic or manual control mode at any time. Preliminary results indicate the system dynamics are working correctly and the controller is trainable.

2. PROBLEM FORMULATION

2.1 Review of Problem Motivation

Space flights to date indicate that man is one of the most reliable components in the complex man-machine system during space flights. In the future it is logical to expect that his capability to monitor space vehicle systems, perform control functions, and troubleshoot will make him a utility backup for many existing subsystems in the spacecraft. With this in mind, it seems reasonable to assume that his workload will vary greatly, depending upon equipment performance. Further, we may assume that man's performo ance on tasks deteriorates if he becomes overloaded with work. It is possible for trainable logic to relieve some of the burden.

Let us suppose that one of the many automatic control or regulator systems fails and must be controlled manually. It is possible that, while the system is being controlled manually, trainable logic monitors both the astronaut's control and the data upon which the astronaut is basing his control decisions. In this way, automatic control can be re-established by the trainable logic reorganization.

2.2 Plant

The plant chosen for simulation is a servomotor that is adjusting to command inputs, which are step functions. The differential equation governing its motion is:

$$
\ddot{y}+a \dot{y}=K u .
$$

It is desired to control the plant so that $y(t)$ approaches a desired sequence of values. The desired output is $y_{\text {in }}$ and the actual output is $y_{\text {out }}$. The difference is, of course, the error. See figure 2-1.

Figure 2-1. Basic Feedback Control Loop

The control variable, u, is constrained to take on one of three possible values:

$$
u=(1,0,-1)
$$

2.3 Performance

Thinking of u as a torque-producing parameter and $|u|$ as a rate of fuel consumption, we consider a system which attempts to null its error while minimizing a combination of fuel and time. For a single step input the functional

$$
P(u, t)=\int_{t^{\prime}=t_{0}}^{t^{\prime}=t_{f}}(c|u|+1) d t^{\prime}
$$

is minimized. Where $t_{f}-t_{o}$ is the time required to bring the system to the desired output value. By letting the time intervals between step changes be much greater than the system time constant, the steps can be considered independent in time. This being the case, performance may be judged on nulling the error for individual steps. To accomplish this, the function P is treated as a cost function and its value is compared with an expected value, $E(P)$. The expected value is:
$E(P)=$ min cost + tolerance
$=\min \int_{t_{0}}^{t_{f}}(C|u|+1) d \tau+\gamma$
where the minimization is over control policy $u(e, \dot{e})$.

A warning of performance deterioration is given to the human when

$$
E(P)=P \geq 0
$$

2.4 Control Policy

A control policy, $u(e, 8)$, is a specification of control values ($1,0,1$) for all points in the error, error rate plane. A convenient method is dividing the phase plane into regions and specifying control values for each of the regions. The proper choice of regions is arrived at by laborious computation of switching boundaries for the control variable u, which minimizes the performance criterion. These boundaries are dependent on both plant parameters and the choice of performance criterion.

A change in the control policy may be brought about either by a change of switching boundaries or by a change of the control values used within the regions defined by the boundaries. It was decided to take the latter approach. The phase plane has been divided into more regions than an optimal control policy demands. In addition, the boundaries can be adjusted by input data. The extra regions permit a selection from a larger class of control policies, while the adjustable boundaries permit experiments to be conducted with various values of plant parameters.

When the performance of the automatic control system is judged to be inadequate, the control may be transferred to manual mode.

In the manual mode, adaptive logic monitors the manual control and adapts to an available control policy which most closely resembles that of the human. A block diagram indicating the flow of information is shown in figure 2-2. Section 3 explains the computer implementation of the problem.

Figure 2-2. Control Policy Change with Adaptive Logic
3. DIGITAL IMPLEMENTATION

The digital program for the Human Performance Control and Monitoring System was written for the SDS 910 computer. The main program is in FORTRAN, and the random number subroutine is in Meta Symbol. A flow diagram of the program is presented in figure 3-1. A complete list of symbols and the program listings are presented in appendixes A and B .

The program begins by reading in the data for the experiment and setting the system parameters equal to their initial values. The expected performance is computed for the value of $y_{\text {in }}$ (desired output) corresponding to $T M M E=O_{\text {, }}$ as explained in section 2.

The main loop of the program (figure 3-2) is then completed for each increment of time. The state variables are evaluated as to their position in the phase space, which is presently divided by four straight lines with variable slopes and intercepts and one curve through the origin. This quantizes the space into 32 possible regions. Associated with each region is a control value and a counter that is used when monitoring manual operation. The training takes place by rewarding the counter when the manual control and the control value associated with the region agree, and punishing the counter otherwise. The maximum number of steps in the counter is a variable and is input at the beginning of the experiment. If the counter is decreased to zero, a new random control is generated and is now associated with that region. A specific example of the above procedure is given below where the number of steps needed for training is set at 3 .

Figure 3-1. Flow Diagram of Digital Program

Figure 3-2. Main Loop of Digital Program

Time	Manual Control	Trained Control	Counter
t_{k}	1	1	2
t_{k+1}	1	1	3
t_{k+2}	1	1	3
t_{k+3}	-1	1	2
t_{k+4}	-1	1	1
t_{k+5}	-1	(Random) 0	0
t_{k+6}	-1	(Random) -1	0
t_{k+7}	-1	-1	1
t_{k+8}	-1	-1	2
t_{k+9}	-1	-1	3
t_{k+10}	-1		3

A fairly simple method of generating pseudo random numbers in a binary digital machine was found; ${ }^{*}$ for our purpose, the series appears to be generated by random processes. While adequate random numbers were available on punched cards or magnetic tape, they were impractical for our use because of insufficient quantity and slow access. The deterministic method employed is given by the equation

$$
R_{n+1}=K R_{n} \bmod 2^{N}
$$

[^0]where
R_{n} is the nth random number
R_{n+1} is the ($n+1$) st random number
K is a constant multiplier - the largest odd power of 5 that a 24 -bit word will hold
N is the number of binary digits per word $=24$ 。
The mod 2^{N} operation is done by simply taking K times R_{n} and then setting R_{n+1} equal to the least significant half of the result. It can be shown that starting with an odd R_{o}, one will run through $2^{\mathrm{N}-2}$ numbers before repeating a number. Since our random decisions could only take on three values, $-1,1$, and 0 , only 2 bits of the generated 24 random bits were used per decision, according to the following tabulation.

Random Bits	Decision	
	0	0
0	1	
1	1	
1	0	1
-1		
	Not used	

This then increases our repeatability factor by 6.
Since four sense switches are available on the SDS 910 computer, it was decided to have SS 4 determine the mode of operation and a combination of SS 1 and SS 2 the control value when in the manual mode. When in the automatic mode, the trained control is used.

	SS 4<	Set Manual mode
Reset - Automatic mode		
SS 1	SS 2	Manual Control
Set	Set	1
Set	Reset	0
Reset	Set	0
Reset	Reset	-1

This control value is then altered by the system gain constant, which is input with the initial data.

Straightforward computations follow which evaluate the plant equations and the error equations.

$$
\begin{aligned}
& y\left(t_{k+1}\right)=\frac{u}{a}\left\{\tau-\frac{1}{a}\right\}+\frac{\dot{y}\left(t_{k}\right)+a \cdot y\left(t_{k}\right)}{a}+\left\{\frac{u}{a^{2}}-\frac{\dot{y}\left(t_{k}\right)}{a}\right\} e^{-a \tau} \\
& \dot{y}\left(t_{k+1}\right)=\frac{u}{a}-\left\{\frac{u}{a}-\dot{y}\left(t_{k}\right)\right\} e^{-a \tau} \\
& e\left(t_{k+1}\right)=y_{i n}-\bar{y}\left(t_{k+1}\right) \\
& \dot{e}\left(t_{k+1}\right)=\dot{y}_{i n}-\dot{y}\left(t_{k+1}\right)
\end{aligned}
$$

where

$$
\tau=\text { time increment }
$$

$a=$ input constant
$u=$ control value.
The actual performance is then evaluated where $P=\int_{t_{0}}^{t_{k}}(C p|u|+1) d t$ and checked against the expected performance. Time is incremented, and the data for this loop is output if sense switch 3 is reset. Before repeating
the main loop, a check is made to see if the value of $y_{\text {in }}$ has changed. If it has, a new value for expected performance is computed. This process continues until the upper limit of the performance integral is found, which occurs when

$$
\dot{e}^{2}+e^{2} \leq C_{e} \text { where } C_{e} \text { is a specified constant. }
$$

4. CONCLUSIONS

During the second phase of this contract, a computer program was written which simulates the dynamics of a second-order servosystem under both automatic and manual control. The operating mode of the system is determined by an external sense switch on the computer. External sense switches also control the torque value when in the manual mode. The monitoring of this manual mode results in the training of the adaptive logic. Preliminary results indicate that the system is performing as expected and that the controller is trainable.

Experimental plans for next period include determining how the human operator responds to:
a. Changes in plant parameters.
b. Changes in control objectives related to performance criteria. These experiments will provide a basis for investigating the organization of adaptive logic controllers.

APPENDIX A IIST OF SYMBOLS

FORTRAN Name

A
ALPH (J)
BETA(J)
CE
CP
ER
ERDAB
ERDOT
EXPR
ICTR (M)
IFLAG
IRU (M)
L
NUMST
OFIAG
PERF
PFLAG
RAND
SIER
STP
TAU
TTME
$\operatorname{TYIN}(J), \mathrm{J}=1, \mathrm{~L}$
$\operatorname{YINP}(J), \mathrm{J}=1, \mathrm{I}$
TOL
UU
V (J)
Y
YDOT
YIN
ZK

Constant used in y , $\dot{\mathrm{y}}$, and performance equations Slope of line J
Intercept of line J
Tolerance for desired output region
Constant used in performance evaluation
e = error
Absolute value of \dot{e}
e
Expected performance
Counter for region M
Flag to denote change in $y_{\text {in }}$
Monitored control for region M
Number of steps in time function for $y_{\text {in }}$ Number of steps needed for training
Flag to denote actual output within tolerance region Performance evaluation
Flag to denote poor performance
Random number subroutine
Sign function of $e=\frac{|e|}{e}$
Distance from desired output
Increment of time
Time
TIME for values of $y_{\text {in }}$
Values of $y_{\text {in }}$ as a function of time
Performance tolerance
Control value before incorporating gain
Value of regional function J at some point
$\mathrm{y}=$ actual output
\dot{y}
Value of $y_{\text {in }}$ (desired output)
System gain constant

APPENDIX B
PROGRAM LISTINGS FOR APPENDIX A

38888	13818385	1 SRAND	P2E	
08881	143185136	2	BRM	211SYS
10892	18180184	3	XSD	TEM
18183	14318858	4	8RIM	2125YS
93084	- 71 -18333	6	LDX	N12
15835	141181816	7 A	BRX	88
13036	171180834	8	LDX	N121
03587	- 76181836	9 AA	LDA	RANDM
S0815	17211826	11	SKA	M1
18911	101081813	11	BRU	St2
19812	176013635	12	LDA	RH1
1813	14118037	13	XMP	K
38914	13518036	14	STA	RAMDM
1815	135 13043	15	STA	R281T
10116	- 7511843	1688	LOB	R2B1T
11817	- 76181823	17	LDA	zERO
19821	-671 112	18	LSH	2
10521	- 36118043	19	STB	R281T
15122	- 73 -13024	23	SKG	ONE
10323	- 61518036	21	BRU	OUT
11024	175 18040	22	LOB	THRE
18125	- 75 18948	23	SKM	THRE
11126	181818505	24	BRU	A
10127	- 76 ¢ 1026	25	LDA	N1
01835	- 35141541	26 OUT	STA	- TEM
31831	- 37 1 15333	27	STX	N12
19332	- 51 \| 18085	28	BRR	RAMD
		29 -		
11333	77777777	31 N12	OATA	-1
1834	77177764	31 N121	DATA	-12
11935	37145213	32 RN1	DATA	037145213
41336	37145213	33 RANDM	data	13745913
19337	.7346545	34 K	Data	173465*5
getug	[fegesos	35 ThRE	DATA	3
0641		36 TEM	RES	2
19043	13138988	37 R2819	P2E	
	15198626	38 NT	EqU	126
	01981823	39 2ERO	EQU	123
	0 efese824	41 ONE	EQ	124
		41 XMP	OPD	-14818890
		42×50	OPD	cresterse
		43	END	
18081		201SYS		
05183		202SYS		

```
= 1
= 2
= 3
= 4
= 5
= 6
= }
= 8
= 9
= 10
= 11
= 12
= 13
= 14
C 15 C
= 16 C
= 17
= 18
= 19
= 2%
= 21
= 22
= 23
= 24
= 25
= 26 C
= 27
= 28
= 29
=
= 31
= 32
= 33
= 34
= 35
=
=
- 38
38
- 39
40
= 41
=
=
=
=
=
- 
=
1%
=
\(=\)
-52
= 53
= 54
= 55
C
C
C
C
C
125 READ 126,L
126 FORMAT [I3]
    13% READ 131,[TYIN[J],YINP{J],J=1,L]
    131 FORMA T[ 2F19.2]
    TYPE 134
    134 FORMAT[ //,7X,4HTIME,7X, 3HYIN]
    135 TYPE 136,[J,TYIN[J],YINP[J],J=1,L]
    136 FORMAT [I3,2F 11.2]
C
C READ SLOPES AND INTERCEPTS OF LINES DETERMINING REGIONS
14ः READ 131,[ALPH[J], EETA[J],J=1,4]
    TYPE 141
    141 FORMAT[///,7X,4HALPH,7X,4HBETA]
    145 TYPE 136,[J,ALPH[J], BETA[J],J=1,4]
C
C READ NO. OF STEPS NEEOED FOR TRAINING
    READ 126, NUMST
    146 TYPE 147,NLMST
    147 FORMATT //,5X,GHNLMST=,13]
C
C IRU[M]=INITIAL CONTROL FOR REGION M
C
READ 126, [IDU&M},M=5,311
TYPE }12
    127 FORMATI //,2X,$REGION CONTROL$]
    148 TYPE 149,[M,IRU[M],M=1,31]
    149 FORMAT{5X,I3,7X,I3]
C
C
    15) TIME=1.0
    151 DO 154 M=f,31
        ICTR[M]=:
    154 CONTINUE
        Y=0.f
        YDOT=B. 
        PERF=1.
        IFLAG=S
        I=1
```

$=56$
$=57$
$=58$
$=59$
$=61$
$=61$
$=62$
$=63$
$=64$
$=65$
$=66$
$=67$
$=68$
$=69$
$=74$
$=71$
$=72$
$=73$
$=74$
$=75$
$=76$
$=77$
$=78$
$=79$
$=80$
$=81$
$=82$
$=83$
$=84$
$=85$
$=86$
$=87$
$=88$
$=89$
=. 95
$=91$
$=92$
$=\quad 93$
$=94$
$=95$
$=96$
$=97$
$=98$
$=99$
$=11$
$=181$
$=12$
$=113$
$=114$
$=115$
$=116$
$=117$
$=119$
$=11{ }^{C}$

```
    155 YIN=YINP[I]
```

 155 YIN=YINP[I]
 ER= YIN-Y
 ER= YIN-Y
 ERDOT = 0.0
 ERDOT = 0.0
 C
C
10. READ 111,A
10. READ 111,A
READ 110,2K
READ 110,2K
READ 110,CP
READ 110,CP
READ 111,TAU
READ 111,TAU
REAO 111,CE
REAO 111,CE
REAO 111, TOL
REAO 111, TOL
TYPE 115, A,ZK,CP,TAU,CE,TOL
TYPE 115, A,ZK,CP,TAU,CE,TOL
TYPE 12!
TYPE 12!
11. FORMAT[F13.3]
11. FORMAT[F13.3]
115 FORMAT[/,2HA=,F7,3,6H---2K=,F7.3,6H---CP=,F7.3,7H---TAU=,F7.3,
115 FORMAT[/,2HA=,F7,3,6H---2K=,F7.3,6H---CP=,F7.3,7H---TAU=,F7.3,
16H---CE =,F7,3,7H---TOL=,F7.3]
16H---CE =,F7,3,7H---TOL=,F7.3]
12% FORMATL//, 3X, 4HTIME,8X, 1HU,9X, 1HY,7X, 5HY DOT,6X, 1HE,8X,5HE DOT,
12% FORMATL//, 3X, 4HTIME,8X, 1HU,9X, 1HY,7X, 5HY DOT,6X, 1HE,8X,5HE DOT,
16X, 1HP,8X,4HY IN]
16X, 1HP,8X,4HY IN]
C
C COMPUTE 1ST EXPECTED PERFORMANCE
C COMPUTE 1ST EXPECTED PERFORMANCE
EXPR=E XP[YIN]
EXPR=E XP[YIN]
EXPR=ELOG[CP*{1.0-CP/{ 1.0+CP]} EXPR]
EXPR=ELOG[CP*{1.0-CP/{ 1.0+CP]} EXPR]
1+[CP+1]*[2.0*ELOG[1.1+1.|/CP]+YIN]
1+[CP+1]*[2.0*ELOG[1.1+1.|/CP]+YIN]
PFLAG=0
PFLAG=0
TYPE 16E, EXPR
TYPE 16E, EXPR
16) FORMATI///. SEXPECTED PERFORMANCE=$,F7.31
 16) FORMATI///. SEXPECTED PERFORMANCE=$,F7.31
C
C
499 IF[ERDOT] 580,505,511
499 IF[ERDOT] 580,505,511
51 SIER = -1
51 SIER = -1
GOTO 521
GOTO 521
505 SIER =
505 SIER =
GOTO 520
GOTO 520
51) SIER = }
51) SIER = }
52% ERDAB = ABS[ERDOT]
52% ERDAB = ABS[ERDOT]
C
C DE TERMINE REGION M
C DE TERMINE REGION M
C

```


```

 D0 62\ J=1,5
    ```
        D0 62\ J=1,5
        IF[J-5] 602,601,602
        IF[J-5] 602,601,602
    6!1 V[J]=A** 2*ER - SIER *ELOG[1.S+A*ERDA B]+A *ERDOT
    6!1 V[J]=A** 2*ER - SIER *ELOG[1.S+A*ERDA B]+A *ERDOT
        G0 T0 613
        G0 T0 613
    6!2 V[J]=EROOT-ALPH[J]*ER-BETA[J]
    6!2 V[J]=EROOT-ALPH[J]*ER-BETA[J]
    6:3 IF[V[J]] 605,615,61%
    6:3 IF[V[J]] 605,615,61%
    65 V[J]=%
    65 V[J]=%
        GO TO 615
        GO TO 615
    61) V{J]=1
    61) V{J]=1
    615 M=M+2**[J-1]*V[J]
    615 M=M+2**[J-1]*V[J]
    6 2 : ~ C O N T I N U E ~
    6 2 : ~ C O N T I N U E ~
C
C
C
        dE TERMINE AUTO OR MANUAL CONTROL
```

 dE TERMINE AUTO OR MANUAL CONTROL
    ```
```

= 111 C
= 112
= 113 C
=114 C
= 115
= 116
= 117
= 118
= 119
= 120
= 121
= 122
= 123
= 124
= 125
= }12
= }12
= 128
= 129
= 138
= 131
= 132
= 133
= 134
= 135
= 136
= 137
= 138
= 139
= 14!
= 141
= 142
=143
=144
=145
= 146
= 147
= 148
= 149
=15%
= 151
= 152
= 153
= 154
= 155
= 156
= 157
= 158
= 159
= 161
= 161
= 162
= 163
= 164
= 165
C
17! IF[SENSE SWITCH 4] 201,250
UNDER MANUAL CONTROL
201 IF[SENSE SWITCH 1] 285,215
205 IF[SENSE SWITCH 2] 211,22!
210 UU=1. :
60 T0 700
215 IFISENSE SWITCH 21 221,23!
22! UU=0.0
GOTO 76:
23% UU= -1.0
C MONITOR MANUAL CONTROL
C
7!6 IF[UU-IRU[M]] 731,710,73!
710 IF[ICTR[M]-NUMST] 721,301,391
721 ICTR[M]=ICTR[M]+1
GO TO 3%1
73! IF[ICTR(M)] 761,741,76!
74% CALL RAND[NEWU]
IRUIM] =NEWU
IF[UU-NEWU] 310,75!,310
75! ICTR[M]=2
76| ICTR[M]=ICTR[M]-1
G0 T0 308
C
C
C
251 IF[OFLAG] 27I,27!,26!
268U=6.0
GO TO 315
27! UU=1RUIM]
301 U=UU"ZK
C
C
C COMPUTE Y AND YDOT
310 Y=U/A*[TAU-1.D/A)+[YOOT+A*Y)/A+[U/A** 2-YDOT/A]*EXP[-A"TAU]
YUOT= U/A-IU/A-YDOT/AJ*EXP[=A*TAU]
C
351 ER=YIN-Y
ERDOT=-YDOT
C
IF[OFLAG] 355,355,375
355 IF[IFLAG] 364,360,37!
36% PERF=PERF+{ CP*ABS[U]+1.D]*TAU
G0 T0 375
37! PERF=[CP*ABS[U]+1.0]*TAU
C
C OUTPUT OATA FOR THIS LOOP
C
375 TIME =TIME +TAU
IFISENSE SWITCH 31 401,400
4NO TYPE 38I, TIME,U,Y,YDOT,ER,ERDOT,PERF,YIN
38! FORMAT[8F 1%.4]
41 IF[TIME-TYIN[I+1]] 428,41%,410

```
```

= 166
= 167
= 168
= 169
= 17%
= 171

- }17
= 173
= 174
= 175
= 176
= 177
= 178
= 179
= 185
-181
= 182
|}18
184
-185
-186
187
-188
< }18
- 19%
- }19
= 192

```
```

 41 YIN=YINP[I+1]
    ```
    41 YIN=YINP[I+1]
        I=I+1
        I=I+1
        IFLAG=1
        IFLAG=1
C
C
C COMPUTE EXPECTED PERFORMANCE
C COMPUTE EXPECTED PERFORMANCE
    EXPR=EXP[YIN]
    EXPR=EXP[YIN]
    EXPR=ELOG[CP*[1.E-CP/{ 1.4+CP ]}*EXPR }
    EXPR=ELOG[CP*[1.E-CP/{ 1.4+CP ]}*EXPR }
    1+[CP+1]*[2.0#ELDG[1.0+1.0/CP]+YIN]
    1+[CP+1]*[2.0#ELDG[1.0+1.0/CP]+YIN]
    PFLAG=夏
    PFLAG=夏
    TYPE 161, EXPR
    TYPE 161, EXPR
C
C
    G0T0430
    G0T0430
    42) IFLAG=0
    42) IFLAG=0
    43* STP=ERDOT**2+ER**2
    43* STP=ERDOT**2+ER**2
        IF[STP-CE] 451,455,455
        IF[STP-CE] 451,455,455
    45% OFLAG=1
    45% OFLAG=1
    60 T0 464
    60 T0 464
    455 OFLAG=0
    455 OFLAG=0
    46% IF[{PERF-EXPR]-TOL] 499,47!,470
    46% IF[{PERF-EXPR]-TOL] 499,47!,470
    47 PFLAG=PFLAG+1
    47 PFLAG=PFLAG+1
    IF[PFLAG-1] 499,48E,499
    IF[PFLAG-1] 499,48E,499
    48! TYPE 485
    48! TYPE 485
    485 FORMAT[ //,$-PERFORMANCE IS LOUSY$]
    485 FORMAT[ //,$-PERFORMANCE IS LOUSY$]
        GO TO 499
        GO TO 499
        STOP
        STOP
END
```

END

```

COMMON ALLOCATION
\begin{tabular}{lllll}
77552 TYIN & 77324 & YINP & 77312 & ALPH \\
77266 V & 77226 & IRU & 77166 & ICTR
\end{tabular}

PROGRAM ALLOCATION
\begin{tabular}{|c|c|c|c|}
\hline 00822 L & 10123 J & 60824 NUMST & 08825 \\
\hline ¢f826 Iflag & 18627 I & 08036 NEW & 18031 TIME \\
\hline 61633 Y & 00635 Y 0 OT & 01837 PERF & 18841 YIN \\
\hline 06043 ER & 61045 ERDOT & 18847 A & 18051 2K \\
\hline 00053 CP & 00055 TAU & 10857 CE & 18161 TOL \\
\hline 08063 EXPR & 03665 PFLAG & 01867 SIER & 13871 ERDAB \\
\hline 68073 UU & 10875 OFLAG & 081877 U & 16101 STP \\
\hline
\end{tabular}

SUBPROGRAMS REQUIRED
EXP ELOG ABS RAND```


[^0]:    * Ralston, Anthony and Wilf, Herbert S., Mathematical Methods for Digital Computers, John Wiley \& Sons, 1964, p. 253.

