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ABSTRACGT "

It is investigated how far one can go in the formulation of
the fundaments of quantum theory by using the axioms of linear algebra
alone, i.e. without the help of the concept of the scalar product. In
treating linear spaces of finite order, one can formulate the eigenvalue
problem for a linear operator and reach the concepts of matrix represen-
tation, eigenexpansions, and transformation to diagonal and classical
canonical form. One can further define the concepts of projection opera-
tors, the resolution of the identity, and the spectral resolution of an

operator.

In treating infinite spaces, the interest is confined to operators
having all their eigenvalues situated in a finite number of points in the
complex plane, each of which may be infinitely degenerate. Assuming
that the operator under consideration satisfies a reduced Cayley-Hamilton
equation of finite order, one shows that there exists a set of projection
operators forming a resolution of the identity by means of which one can
carry out a unique "component analysis” of an arbitrary element of the
space. Even the spectral resolution of the operator exists. These
theorems are in quantum theory of particular importance in treating con-

stants of rnotion.

In the last section, the scalar product is introduced, and the

connection with the conventional approach is studied. ww ¢




t. INTRODUCTION

When modern quantum theory was introduced in 1925, there
were three independent and competing forms, namely the wave
mechanics developed by Schrc’jdingerl), the matrix mechanics intro-
duced by Heisenberg, Born, and Jordan, and the ¢g-number theory

3).

was shown by Schrédinger

developed by Dirac The equivalence between the three approaches

4).

linear operators, linear spaces, and vector spaces play a fundamental

In these connections, the concepts of

role. The physical interpretations of quantum theory are based on the

1

concept of the "expectation value"” which is essentially the scalar pro-

duct of two vectors. The most thorough discussions of the foundations

5) 6)

the concepts of the theory of Hilbert space in which the scalar product

of quantum theory given by von Neumann and by Dirac are using

plays a basic role.

"constants

Of fundamental importance in quantum theory are the
of motion", i.e. physical quantities which are associated with linear
operataors N commuting with the Harniltonian H, so that HA = AH.

They have eigenvalue problems of the type

AB, = A D,

JURE T T . 1 -
ana e elgeuvalues AR

AAAAA

k
also certain properties of time-dependent phenomena. In atomic theory,

typical constants of motion are represented by the total spin g, the
orbital angular momentum © , and the total angular momentum
T-=C+% in various coupling schemes. In a study of certain classes
of constants of motion, the author has developed a technique based on the
use of product-type projection operators—{), which has turned out to be

9)

. . . + ;
for normal constants of motion A, satisfying the relation A 'A = AA F

e 8 .
rather useful in practical applications ) In a survey of this method

it has been shown that eigenfunctions i_!>k and &, associated with different
eigenvalues )‘k and \,, respectively, are not only orthogonal but also

non-interacting with respect to H, so that

R B, =0, (B 001, 5=0 2, +2,




Some fundamental theorems as "the resolution of the identity" and
the "spectral resolution of A" were also demonstrated in an elementary

way, but the entire formalism was based on the use of scalar products
<>,

The purpose of this paper is to generalize these results and to
show that essentially the same type of projection-operator formalism
may be derived in a theory of linear space alone, i.e. without the use
of the concept of scalar products. The resolution of the identity

corresponds now to a '

'component analysis" which, under certain con-
ditions, is valid also for an infinite linear space. It is interesting to
see how many fundamental quantum-mechanical theorems may be f{cund
and illustrated in this way. Of course, quantum theory will not be
complete without the concept of the scalar product and the convergence
properties of the Hilbert space, but our approach shows how far one

can actually proceed without these important ingredients.




2. LINEAR SPACES AND LINEAR OPERATORS

Linear Spaces

Definitions. - Let us consider a set of elements A, B, C, D,

which may be subject to two operations called "addition" and "multiplica-
tion by a complex constant & " leading to new elements of the form
A+B and %A , respectively. The operations are assumed to satisfy

the following rules:

H + B =B+ p\ Commutative law of addition.
(H+.B> +C = R+ k.B“’((/) ’ Associative law of addition.
(0(1-/5) F\ = H + /AH , First distributive law of multiplication.
X /\R +,B) = R+ B Second distributive law of multiplication.
(o(/};) R = o (/6 R) , Associative law of multiplication.

again to an element of the same set. Some simple examples of linear

spaces are provided by the following list:

Set of all vectors of a given dimension.
Set of all polynomials of degree equal to
or less than n.

Set of all continuous functions.

Set of all integrable functions.

Some elementary rules. -~ For X = () , one has particularly 0-A = 9,

where 0 is called the "zero-element" of the set, which is an independent
concept clearly distinct from the complex number 0. For X= 1 s

one has further the rule 1:-A = A, which gives an important property of
the multiplication. By using these rules, one can now prove the elemen-

tary theorem



(2)

since onehas A+0=1-A+0-A=(140)-A = 1-A = A according

to (1). Another simple theorem says that, if & R - /5 B and XF(,
then R = (B YB . The proof follows from the fact that H=1-H =
= (04’1-«) = " (xf) = g (/sZM = (&'B)B = (YD

and it is a good illustration how the rules in (1) are applied one by one.

As a corollary follows that, if XA =0 for o+ 0 , then A = 0. The

operation of "subtraction" is defined by the rule
A-%= R+(0B (3)

One gets immediately the theorem A - A = 0 , since one has
A-A=1-A+(-1)-A = {t+(-1)} A = 0.

way, one can then proceed to derive a series of elementary arithmetical

A = 0. In the same

rules for the linear set of a well-known character.

Linear independence. - Let us now introduce a fundamental concept in

the theory of linear spaces by the following definition:

A finite subset of non-zero elements Ai’ AZ" R AN is said

to be linearly independent, if and only if the relation

Ri()(\—% HLD(L + -+ H”()(” = O (4>

necessarily implies that & =&, = . =Xy = 0.

This concept provides a tool for going from an arithmetical
statement about elements of the linear space to a corresponding statement
about complex numbers, and it will, in the following, frequently be used
for this purpose. Any subset of elements which is not linearly indepen-
dent is said to be linearly dependent, and there exists then a linear re-
lation (4) between the elements in which at least two of the coefficients

Q(% are different from zero.




The next definition deals with the concept of a "basis" of a

linear space:

A set of linearly independent elements Xi’ Xz, ... Xn is
said to form a basis of the linear space, if and only if the
subset A, Xl, XZ’ . Xn is linearly dependent for every
non-zero element A of the linear space; the number n is

called the order of the basis.
This definition leads directly to the following "expansion theorem®:

If a linear space has a basis, any element A of the space can

be written as a sum

A=Xa+X,a + Xl (5)

The theorem is trivially true for the zero-element which corresponds
to the coefficients ay=a, ... =a, = 0. For A# 6, we will consider

the relation

X N - e “+ D (6)
F\b(ﬁ-X‘OM*')LL 2 XMD(N\ O)
where now at least two coefficients X, are different from zero. One
has = () , since otherwise the elements of the basis would be \
linearly dependent, and, multiplying by & and putting Q=X X ,

1

one obtains expansion (5). Next one has the "uniqueness theorem":

The coefficients a, in the expansion of a given element A in

k
terms of a basis Xi’ Xoy e Xn are unique.

To prove the theorem, let us assume that there are two different ex-

pansions of an element A in terms of a given basis, so that
R=X a5~ Loy +0t + Xl

/
R =X, ¢ P X o+ X,

By subtraction, we obtain

L —m

X (o) X L) vt Xy (ammal )= 0 D



and, since the subset X . X was assumed to be linearly

R SYEE
. s s 1 —
independent, this gives (ak - a}\) =0 or

0 = Oy (8)

for all k, which proves the uniqueness theorem.

In the following, it will often be convenient to use "matrix nota-
tions" in which bold- face symbols will denote rectangular or quadratic
arrangements of elements or comnlex numbhers, so that K i‘/(m,‘k
A rectangular matrix which consists of a singel row or column will be
called a row-vector or column-vector, respectively. A matrix product
will further be defined as a new matrix in which the elements are the
"inner products" of the rows of the first matrix times the columns of the

second matrix:

(KLY, - ¥ Ul o

The concept is, of course, subject to the compatibility condition that the

first matrix should have as many columns as the second has rows. We
~

will further let K denote the "transpose" of the matrix K, i.e. the

~

matrix having the rows and columns interchanged, so that ch = K!;k'

Introducing the row vector X = (X1; X . Xn) of the basic

27 e
elements and the column vector a of the coefficients a
Y
q,
Q = |% (10)
: )
Qe

one can hence, instead of (5), simply use the short-hand notation
A-Xa (41)

Since the coefficients a, according to (8) are uniquely defined, we will

k
further introduce the notation

{ X, X | A} (12)




where the right-hand member irplies that we consider the expansion
of the element A in terms of the hasis ¥ and selects the coefficient

associated with Xk' Of course, the symbol does not contain any recipe

for the evaluation of the coefficient By s aud we will return te this

Lu

question later.

Transformations of basis. - Let a linear space have a basis
X = (Xi’ Koo onn Xn)’ and let us consider an arbitrary subset
Y = (Yi’ YZ’ Yn) of linearly independent elements. We will now

show that also the set ¥ may be used as a basis. For this purpose,
we will expand each one of the elements Y

to {5), so that

Kk in terms of X according

Y{% - }L: X, % (13)

The coefficients in these expansions for k=1, 2, ... n form together
a matrix & = ib(u@} , so that one can condense the equations

(13) into the form
Y = X (14)

In the following, it is often convenient to use the theory of deferminants.
Let D = ddt X = !ij be the determinant of the matrix ™ s
and let 7—;1/ be the cofactor of the element /16!, . The expansion

theorem for determinants gives then

7 ™
E___s @:Lﬁa /UpU = ,D .
V‘; ’ (15)
X ¥ =
é-—‘z—‘- L, ]}{@ U Gfb#l 'y
If ¥ is the matrix of the elements 7“'(/ , one can hence write the

two relations (15) in the condersed form

Pr—

&« -7 =D 1 (1

a~
et




—

Multiplying (14) to the right by £~ , one obtains

er“’ ‘X_Nﬁ = XD . It is clear that D # 0, since
otherwise the set ¥ would be linearly dependent, and we note that

D# 0 is a recessary and sufficient condition for the linear independence
cf the subset ¥. Introducing the new matrix /3 = J)_’IF - e’ )

we obtain
' =V (17)
.«X ,f-:‘l {

Substitution of this expression into (11) gives R = g Q= ":{/% &L,
which indicates that the subset ¥ may be uced as a basis. One gets

hence-the following transformation formula

under a change of the basis,

, b - pa (18)

It is now clear that every linearly independent subset of order
n may be used as a basis. This shows also that it is impossible to

find a basis of another order m, say the linearly independent subset

Zi’ ZZ’ Zm, where m > n. The elements Zl’ ZZ" Zn would
again form a basus? in which the remaining elements Zn+1, Zn+2, R Zm
could be expressed, and the subset Zl’ ZZ’ R Zm could then not be -

linearly independent. In the same way, one proves that the assumption
n > m leads to a contradiction, and one has consequently m = n. The

number of 2 basis is hence unique and, since it is characteristic for the

linear space concerned, it ig called the order of the space.

The set of all three-dimensional vectors has, of course, the order
three, whereas the sbace of all polynomials in the variable x of degree
less than or equal to n has the order (n+1). As a basis for a descrip-

: . n
tion of this space one may checose e¢.g. the powers {, x, xx, ... %X .

In the first part of our treatment, we will confine our interest to
linear spaces of a finite order n, whereas later certain theorems will

be generalized also to spaces of an infinite order.



Linear manifolds , - In our study of the linear spaces, it is often

convenient to use the concept of the linear manifold introduced by the

following definition:

i £ = (fl’ fz, o fk) is a linearly independent set of elements
of the linear space, then the collection of all elements

j,b(1 +j_10(2‘ + ..-jke(% for arbitrary values of the complex
parameters O, ¥, .. &, forms a subspace of order k,
which is called the linear manifold spanned by the elements

fi’ fz, fk'

One has always k £ n, but it is usually convenient to reserve the

terms given above to the case k { n.

From the geometrical point of view, one could speak of a single
element fi as a "point" in the linear space, whereas the linear mani-
folds \ﬁu, and j1°(1+ 12Xz, form a "line" and a "plane", respective-
ly.

Linear Operators

An operator T is a rule by means of which one maps the elements
A of a linear space onto the elements B of another linear space, so
that B = TA. The operator concept is apparently a generalization of the
idea of a "function" y = f(x) , by means of which an independent variable
x is mapped onto a dependent variable y. There is one particularly

important class of operators characterized by the following definition:

An operator T is said to be a linear operator, if it satisfies the

following two conditions:
{ » s
T (A+f,) = TH = Th

ol TH

T(=A)

}

i

]

The elements A for which the operator T is defined are said to form

the domain of T, whereas the elements B = TA are said to form the




range of T.

In this section, we will consider only operators mapping a
linear space onto itself or onto a subspace of itself, but later we will

also study more general mappings.

There are two elementary operators of particular interest,

namely the identity operator I and the zero-operator 0 defined by

op

IR=RH, (20)

—

OTR =0 (21)

)

the relations

for every element A in the linear space. The concept of the "zero-
operator" is, of course, different from the concept of the "zero-element",
and we note that the zero-operator is identical with the multiplication

by the complex number 0. Important examples of linear operators are
given by the differentiation d/dx, the integration J , and the
multiplication by a complex constant & . It is clear that the domains
of the first two operations may not coincide with the entire linear space

under consideration.

Let us now consider two linear operators F and G. Their sum

and product are defined by the relations:

(F’—rG‘)H
(FG)YR = F(GR) .

By using the commutative law of addition in (1), it is easily shown that

i

TR+ GA (22)

(23)

the addition of two operators is commutative, so that ¥ + G = G + F.
On the other hand, operator multiplication is in general non-commutative,

so that

FG # 6T (24)

and, in the exceptional cases when FG = GF, we will say that the two

operators ¥ and G commute.




i

Powers of a linear operator F are defined by a series of
repeated multiplications according to (23):

F =TV F=7Fr* F™FF" g

)y

and they may then be used to define palynomials of an operator:

P(F)=a+0,F+a,F + . +q F" (26)

where a, a2 a are complex constants. It is easy to prove

23 v
that any polynomial operator P(F) is a linear operator, if F is a

linear operator.

Inverse operators. - Let us now introduce a new concept connected

with the inverse of the mapping A —> B, i.e. the mépping B — A
If T is a linear operator such that there exists a unique element A

in the domain of T corresponding to any given element B in the range
of T according to the relation B = TA, then there exists a unique
mapping of B on A, and the associated operator is called the inverse

of T and is denoted by T !:

A-T'R “

It ia easily shown that, if T is a linear operator, then the inverse T'1
is also a linear operator.

According to the definition, one has to show that every element
B has a unique "image element" A to see that T°! exists. A consider-
able simplification is hence rendered by the fact that it is actually
sufficient to check that this happens for the single element B = 0,
according to the following theorem:

The operator 'I"1 . exists, .if and only if the relation (28)
TA = 0 implies A = 0.



- 42 .

Before making the proof, we observe that every linear operator maps
the zerc-element of its domain on the zero-element of its range, since
TO = T{0-A)=0-TA = 0. Letus first assume that T = exists.
Since the mapping is novw unique, the image element B = 0 corresponds
to A=0,1i.e. TA=0 implies A = 0, which proves the first part
of the theorem.
in order to prove the sectnd part, one gtarts from the assumption
that TA =0 implies A = 0. It is eary to sece that the inverse meping
must Le unique for, if there would be two elzments A' and A" cofresponding

to one and the game image elernent B, cne would have

TH = 2
f / -
T (R -0 ) =0,
A =0
- ' (29) .
i.e. one would obtain a contradiction. Hence, the inverse mapping is

unique, and 17! extats.

Matrix representationg of operators, - Let us now congider a finite
space of order n which has a basis X = (Xi’ XZ’ oo Xn)' According

to (5), every element A may be expressed in the form

H:Xa’ z: Xkak' (BO)V

kst

where the coefficients a, are unique and denoted by the symbol

a, = X, X|A . A linear operator T is assumed to map the
elements of the linear cpace onto itself or onto a subspace of itself, and
TA is hence an element of the space which may be expressed in terms
of the basis X. In order to treat this problem, we will introduce the
image elements of the elements )Cl of the basis through the relati-.s

TZ, = %-?: X The (31)




where the complex nuinbhers Tk(" are the uniquely determined

expansion coefficients given by the symbol:

AN v ‘ : 2
ey % Ly, X ' TX, | G2)

Using the properties of linear operators, one obtains from (30) the

formula

TR - % X, T 0, o

de, b=

which shows that a linear operator T is fully characterized by the nZ

complex numbers TkL' It is convenient to arrange these numbers for

k,Lb=1,2,3,...n into a square matrix ¥
v s
!
it [ VR K SN r‘r‘m
[ d 7 T 7
a T},m PR

r-r:m Tmz r"—r;s T’ﬂ"]
: ’ (34)

which will be called the matrix representation of the linear opcrator T

We note that the symbol (32} does not give us any recipe for the
evaluation of the matrix elements, and that this finally depends on the
realization of the elements of the space. The matrix TX is here
solely defined through the relations (31}, which may be condensed into

the matrix formula
- t
TX =X T, (35)
The expansion theorem A = Xa gives then directly

TH = X TX& (36)

which is the matrix form for the general formula (33).



The sum and product for two operators F and G were defined

by the relations (22) and (23}, respectively. For the matrix representa-

tion of the sum, one has the rule

[ 17 N (37)
(F+ &y = F * Gy

The proof follows from the fact that

(F+G)YX = FX +GX =
= (38)
= XFX;+XC‘1 = XQFX* QX> |

For the product, one obtains similarly

(FG) X

{i

F(6X) - FXGy)-

/

= (FX)Gy = (XK, =
X (¥;Gy)

which shows that the matrix of an operator product is the matrix pro-

(39)

]

'

duct of the matrices of the individual factors. According to (9), one

has for each element
-
LFG‘ML - E;f F:‘WG% ‘ (0

Using these rules, one can now prove that every algebraic relation
between operators corresponds to a similar algebraic relation between
the matrix representations. We note particularly that, if the operator

. -1 . s
T has an inverse T ~, the latter operator has a matrix representation

. . . -1
given by the inverse matrix Tx .
Similarity transformations. - Let us finally consider the transformation
of a matrix representation under a change of basis. If X = (Xi" D G .'}{'n}
is one basis and Y = (Yl" LOYIRRS Yn) is another, one has according

to (14) and (17) the connections




<
il
>
2
b
B
»

/ (41)

-1
where ﬂ= & . The matrix representations Ty and Ty of

a linear operator T are further defined by the relations
TX-XTy  TY=-YT, (2
respectively. This gives immediately
YTy = TY - TXx - XT« -
- YB3, > - Y {aT )
Y(Ty ~aTet) =0
Ty-AT e =0,

{43)

since Y is a linearly independent subset. Under a change of basis

(41), one obtains hence the following transformation formulas

r - 44)
TI B /6 rX_O( 3 Tx = CXF]Y'/@ (#4)

I3

with /Q = °<—1 , which are called similarity transformations.

Projection Operators. - Starting from the expansion theorem (30) in

the form H = 37 Xkak , we will now consider the operators Ol\
®

defined by the relation

O% ﬂ = ;\Z,‘k' CLL& ; (45)

for k=1,2,3, ... n. This implies that the cperator Ok maps an




th

element A onto its component X a5 OF that it selects the k

k
component out of the expansion. Using the definitions, it is easily

shown that

@k,/\ﬂﬁ 92)‘ ®,&pt1+ @%H&. ) Q@@&’H)w@ﬂ,("‘(’)

Wthh means that O is a linear operator. Since the repeated use of
Ok’ i.e. the selectmn of the k th component out of the k th component,

still leads to the same result, one has Okz = Ok' One says that the

operator O, is "idempotent" and, for geometrical reasons, one

k
speaks also of a projection operator. This concept is defined in various

ways in different parts of the literature, but here we will use the terms
idempotent operators and projection operators as synonymous. Since
the selection of the kth component out of the_fjth component for k #4
necessarily gives a zero-element, one has further the operator relaticn

"

OkOL = 0 and says that the operators O, and Oy are "mutually exclusive

k
In summary, we have hence’

2

0., = O, ; 00,=0, e+g )

)

Using the expansion theorern {5} and {22), one can further see that

F‘.=:ﬁ@ﬂ (Z0,)A,

™M —

=\ }

for every element A, which shows that the operator ( I- % @w)

must be a zero-operator. Hence one has the relation

L (49)
L = 0,

The operators O 02, Co On form afamily of mutually exclusive

1.’
projection operators, which together adds up to the identity operators.
One says also that relation (49) is a "resolution of the identity" in terms

of projection operators.




Let us now consider the operators Qn which are defined by

the relation

Qf - 0, | (50)

A=

Using the two relations (47), one finds immediately that sz = Qp,

i.e. Qp‘ is also idempotent. One gets particularly

' ¢
Qf R = Z XRQ,&’ (51}

>

which is an element belonging to the linear manifold spanned by the sub-
set Xi’ XZ’ cen Xp. Cne says that the element Q'pA is the "projection”

of A with respect to this manifold out of the basis X = (X,, ¥, ... X_},

4 z n

and Qp is the associated projection operator.

By using the notation (12}, one finds that OkA = Xkak = Xké X

for every element A, and it is hence suggestive to try to write the

,X[A}

k

projection operator symbolically in the form

0, =X 1%, X|

o~
N
oo

~

For the projection on a subspace of crder p, this gives
o {
. (53)
Q - L X% i Xk) X

and, for the resolution of the identity, one obtains particularly
I= 22 X X X . These notations are here of a purely
le, AR, {C)

formal nature, but they will later turn out to be quite forceful.

In conclusion, we will study the matrix representations of the

operators O, according to (31). Using (45), we obtain

k

Op o= Xy OwXy =0, et st (54)

)



showing that the matrix representation of Ok has a single non-zerc
element, which equals { and is placed in the kt position of the

diagonal so that

(100 ... (ooo._.‘
000.. . | . leto
0, = | o0 o 0.- 000, ! (55)

It is easily checked that these matrices satisiy the fundamental algebraic

relations (47) and (49).

Trace of an operator. - The'trace" of a quadratic matrix is defined as

the sum of the diagonal elements:
T (M> = 2{3 Mage, (56)

If M = K - L, where K and L are two quadratic or compatible

rectangular matrices, one has the theorem
T (K- L) = (LK) (57)

even if the two matrices in general do not commute. This depends on the

fact that
T (KoL) = 52 (KL, - S5 Kb -
= ;(E; LM&KRNB = gQLK\do(:K(LK\’

L

(58)

Using (57), one can immediately prove that the trace of quadratic matrix
which is a product of a finite number of quadratic or compatible
rectangular matrices is invariant under a cyclic permutation of the

factors.




(
The trace of an operator T is defined as the trace of one of

its matrix representations:

TL(T) ‘T’L(Tx> , (59)

and we note that this quantity is independent of the choice of the

representation. According to (44) and (58), one has
TlTy) = R (AT,&) - R(Tyea)-
_ = Ty LTX > |

(60)

which proves our statement. Simple examples are provided by the

' projection operators. From (55) follows directly

’T;li (@,u»z 1 (61)

whereas one has Tr(Qp) = p according to (50).



3. EIGENVALUE PROBLEM

Let us consider a linear mapping of a given linear space
represented by the operator T. The problem is whether there are
any non-zero elements C forming "points" or "lines" which are

invariant under the transformation

TC =2xC (62)

This is an eigenvalue problem, and the non-trivial sclutions C are

called eigenelements and the constant A the associated eigenvalue.

Geometrically the eigenvalue problem is connected with the question

"rotation axis" of the transformation, and it is sometimes

of finding the
also called the "pole problem". Egquation (62) is of fundamental importance
not only for quantum theory but for large parts of mathematics and

physics in general.

The eigenvalue problem may be given an alternative formulation.
From (62) follows that (rr~ L > C-= 6 for C %6 , and, according
to (28), this.implies that the operator { T 2-I ) has no inverse, i.e.
that the operator (T—* 2 ~I>-1 becomes singular for the eigenvalues.
In many connections, it is convenient to introduce the "resolvent” of T,
which is the inverse operator ('T"- Z - 1)4 , Where 2z is a complex
variable. We note that the resolvent exists for all values of z, except
the eigenvalues A . Itis possible to develop the entire eigenvalue

theory on this basis.

Here we will instead proceed in another way based on the use of
the matrix representations. Considering a linear space of order n, we
1’ XZ"
tion T _ of T defined by (35). Expansion of the eigenelement C gives

C, = %: X, Cp=XeC | (63)

will introduce a basis X = (X Xn) and the matrix representa-

where the coefficients ck form a column vector . The eigenvalue




problem (62) may be written in the form ('T- A I> C =0 , and

this leads to the matrix relation

(=2 D) C=(T-12L)Xe -
= X(Tz-x»1)e =0

(64)
However, since the set X is assumed to be linearly independent, every
relation Xa = 0 implies a = 0, where @ is a column vector with the

elements 0, and hence we obtain

(Tx—f r4)le = Q| (65)

This is the matrix form of the eigenvalue problem (62), and it is

equivalent with a homogeneous system of linear equations:

™M
T .S - (66)
,; & g — A O%b>c{, = (0 ,
for k=1,2, ... n. Such a system has a non-trivial solution, if and
only if

At { Thy= X040 } = 0 (67)

)

. - £l . "
‘hich is the well-known "secular equation”.

The equations (63), (66), and (67) form the basis for a large
part of quantum chemistry, and good examples are provided by the MO-
LCAO-method and the method using "superposition of configurations".
However, since there is no scalar product introduced here, there cannot
be any non-orthogonality problem connected with {66), and this indicates

that the matrix elements defined by (3 1} may have a somewhat

T

k¢
different meaning than usual; this problem will be studied in greater
detail in a later section.

¥

We note that the matrix equation {65) is "covariant" under a change

of basis, say X = X®™ . According to (44) and (18), one has




TY__‘/QTXO() Cy_zﬁcx’

(68)
where /Q- ot and hence, we obtain
(Ty-24)ey = 2 (T2 1)ex-0,

which proves our statement.

Characteristic polynomial. - Let us now define a function of the

complex variable 2z by the relation:

P(2) = &d’{rrkg“ 2Oy

(69)

It is easily seen that P(z) is a polynomial of degree n:
= Q,+ 2+ N o+ Qe Q% ’

where a = (-1)%, and P(z) is called the "characteristic polynomial”

associated with the linear operator T. The coefficients are independent

of the choice of representation, since one has




b { Ty -2y - M{/A(k%-l)u}:
- A W{ T, -2} e -

(71)
= dit | T2 1} ,

where the last simplification is obtained by using the fact that &2}/3 ded ot =

| = du(@e) = du (4) = 1.

The characteristic polynomial has exactly n roots in the complex
plane l,) 'XL ) ')'m which are the eigenvalues of the problem. The

“factorial theorem gives immediately

Pla) = fr (M- 2) (72

There may be multiple roots llk, , and the degree of multiplicity
gy is also called the "order of degeneracy" of the eigenvalue. An
eigenvalue is "non-degenerate" if ithas g = 1, i.e. if the root is
distinct. In the following, we will first consider the case of all roots

distinct, and later we will study the general case.

Case of all roots distinct. - In this case, all the roots xk are single

roots, and one has n distinct eigenvalues A4 s 7\':.) AN lm in the
complex plane. The eigenvalue problem (62) takes the form r-rcht A%C&g

or



—

(Tv... lh-l>c4&= 0 (73)

for ' k=14,2, ... n. We see that the eigenelement Ck is eliminated
by the operator ( T— 7»@ I ), which in this connection will be called
an "eliminator". The following theorem is of fundamental importance:
If all roots 7"1 s 1,, PR 2.-“ of the secular
equation are distinct, the associated set of eigen- (74)
elements Cl, CZ’ ce Cn are linearly independent.

The proof is simple. Let us consider a linear relation of the type

é Cho(k,: O )

=1

and let us operate on this equation with the product of the "eliminators"
for k=2,3,... n, i.e. with

T (T—2,1) (75)

L=2,
L] —
which gives ZQ (11' 2:) C| X, = 0 , and hence ;= 0 . In
a similar way, one shows that ™, =0,=... =yu=0 by using eliminator-

products which will let only the term for k = 2,3, ... n, respectively,

survive. The theorem is thus proven,
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Since one has now a set of n linearly independent elements
C = (C Cyy .. € ) in a space of the same order, one knows
accordmg to (13) that this set forms a ‘basis of the space. This gives

the theorem about expansions in eigenelements:

If all the roots of the secular equation are distinct, one may

expand an arbitrary element A -eof the linear space in terms of

the eigenelements Cl’ CZ’ Cn of the operator T:
A = % Cn Qye (76)
Let us now choose the get € = (Ci’ CZ’ ... C ) as the basis for the

matrix representation of T. The eigenvalue relation TC C:,L Ay,

may, according to (31), be interpreted so that Tc has the specxal form:

' o -]
0 ! '
0 _-—-%
A

. - (77)

o/

O
olﬂNC}O

O O O ¥
OO

\

which is cailed a "diagonal matrix". Using (44), we can then say that
there exists a similarity transformation which brings the matrix ’!‘x

to diagonal form. According to (63), one has Cy = X«€, and, arranging
the column vectors €, in a row, one obtains a quadratic matrix:

Cyp CuCia... Cim |
Ca; Cla, C'Q.x Ca'r\
X = (t‘h‘z,csw--cm) = | Cay Goo C.n . Cam

C,.," C.‘,_ Qm; C"\'ﬂ

and the transformation C -X X This gives
-4 . '
= , 7
¥ | % X » (79)

showing that, in the distinct case, the matrix T can always be brought

to diagonal form.



Cayley - Hamilton theorem. - A polynomial of an cperator T is

defined by the expression (26). For the characteristic polynomial

P(z) defined by (70}, one has the Cayley-Hamilton theorem:

P(T)- 0 & (50)

i.e. P(T) is identictl to the zerc-uperator. In the distinct case, the
proof is simple. According to {76), an arbitrary element A of the

space may be expanded in the form

m
- T
1o G, ()
=y
~y
- - I-T
However, relation (72) shk.'va that one has also (T )= ;I (R >)

i.e. P(T) is a product of zli eliminators, so that

P(TYR= TN, =0 (82)

AR

Since this happens for every A. «ne has P(T) = 0.

In the general case of roots of various multiplicities, we will start

with the matrix relation (16) applicd to the operator M = T - z8.
Letting N be the matrix of the cofactors Nyp to the element My,
in M, we note that each element Ny, is a polyncmial of degree (n-1)

in the variable z, and that M hence may be written in the form:

-4

N- Wzl s+ SN2 (83)

2>

where Np is the matrix of the voefficients for zP. Application of (16)

gives immediately:
M N = aiel 1t (84)

(T-2 ) (s Tz W) =PR 1




Multiplying together and separating after powers of z, one obtains

T, =0,1
TN1 - ‘\’0 = Q11 N
{ TNL e ‘\’1 = az“ i , (86)
T Nm-‘ - N"\'L = am"‘ ’ 1 )
. L - Nm—1 = a’d\ ' 1
By multiplying these equations successively by &1, T, TZ, ... T and

by summing all of them together, one gets finally

2 ™M
0 -a 4+0, Tea T + . +qa 7T (87)
b 2 ™M )
which proves the Cayley-Hamilton theorem P(YX) = @ in matrix form in
the general case. This gives immediately P(T) = 0 by means of the

equivalence theorem previously discussed.



4. PROJECTION OPERATORS AS EIGENOPERATORS:;
RESOLUTION OF IDENTITY IN THE CASE
OF DISTINCT EIGENVALUES

Eigenprojectors. - Let us again consider a linear space of finite

order n. In a previous section, it has been shown that, with every
basis X = (Xi’ XZ’ e Xn), there is associated a family of projection

operators 01, O On which are idempotent, mutually exclusive

PYIREE
and form a resolution of the identity according to (47) and (49). Let us

now particularly study those projection operators Ol’ 02, - On as
are associated with the eigenbasis € = (Cl’ CZ’ .o Cn) to a linear
operator T having only distinct eigenvalues R‘k, . One may write the

expansion theorem (81) in the form

- £ A

R=

where Ak o Ckak’ and one may consider (88) as an "analysis" of an

element A in terms of eigenelements to T, satisfying the relation

THm - A,toﬂk e

According to (45), the projection operator Ok is defined through the
selection property:

O = A, (90)

)

and one says that the term or "component" A, 1is the projection of the

k
element A on the eigenspace of T associated with the eigenvalue lk
Since one has ( T(DM, —_ )\% ®k, YA = 0 for an arbitrary element A,
the operator ( T(Dk,— Au{@w ) is necessarily a zero-operator, which

gives

T@% = At&®k (91)

The projection operator Ok satisfies hence the fundamental eigenvalue




relation (62), and O, may be characterized as an "eigenoperator"
or "eigenprojector” to T. According to (47) and (49), the projection

operators satisfy further the basic formulas

\ 2
O, = ®vc ', Q«,Q,’ 0, t+t ©2)

e
I -5
1= O (93)
o=y *
Letting the operator T work on both sides of (93) and using (91), one
obtains
T .
=1

which is called the "gpectral resolution" of the operator T. If f(z) is

an arbjtrary polynomial in the complex variable z, one gets further
faa)
- \
$(T3 = Z; {0) 0, | (95)
=

and, from the polynomial, one can then proceed to define an arbitrary

algebraic function of T.

It is clear that we are here treating an almost trivial case, but
the important thing is that all the concepts introduced are of fundamental

character and may be generalized.

Matrix representation of the eigenprojectors. - In the €-basis the

eigenprojectors O, have matrix representations of the form (55), i.e.

K
Opc - AN (96)

i.e. there is a single non-zero element, which equals 1 and is placed
in the kth position of the diagonal. It is now possible to derive the

matrix representations in the X-basis by means of the general trans-
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-1
formation formulas (44). One has C -X x and X=C 8 )
where X = L(—,,(‘,2 y - €4) is specified in (78). It is convenient
to write out the matrix 5"‘1 explicitly in the form:

. . \ {
&“ J«Q'.-- 'iirm. ] l di

N

{
]
-4 .
x ! . %t d.g_\ C[;_'Jh &.‘l“\ =7 1& di’l (9?)
- o b
ld“m Ay ... dmm S &
L /
where d 1 dz, dn stand for a set of row vectors. Transforming

the matrix (96) to the X-basis. one obtains

0. 4
0, = X { .«0}3 = ¢, d, (98)
{

One has further 545 = 6 574‘ = 14 . which gives
o~

b,w;_/ i = Z c%d% (99}
SN "

o ™

We note that the second =zlation is nothing but the "resolution of the
identity" (93), and that the "spectral resolution" of the matrix T in

analogy to {94} takes the form

L] N
7 _ -l : <7 Y . (300
1 7 = o M 0, - 2 % ¢ d,. )
le=y de=1

This formula gives a simple recipe for constructing a matrix with

. T . f . v e
given distinct eigenvalues lk and eigenvectors €, - Cne should first
combine the vectors €, to agquadratic matrix x according to {78),

. . -1 : .

and, after evaluation of the inverse X , one obtains the row vectors
dk' Multiplication of the column vector <, and the row vector dk gives
the matrix Ok, which may then be combined with an arbitrarily chosen
eigenvalue A, . Summation of the various contributions according to

(100) gives finally the matrix desired.




Product form for the eigenprojectors. - In this section, we will arrive

to the concept of the eigenprojectors in a completely different way,
which has certain advantages in the generalizations to be carried out
later. Again we will consider a linear space of finite order n and a
linear operator T having only distinct eigenvalues 11) A,_, ;{A , e )Lm
with the eigenelements Cl, CZ’ C3, . Cn' In the proof for the linear
independence of this set, we used operators of the type (75) which are

products of "eliminators" according to (73). One has particularly

$U(T-2 1)1 C, - {;L (A2} G,

§# e (101)

which shows that the right-hand side will vanish except for fe =4

This gives further

.
a T- AT |
VI =V =¢, 8 (102)
}*k, 7\("" /\8 L
The product operator in the left-hand member has hence exactly the same
characteristic property (54) as the projection operator Ok previously

introduced, and one obtains the alternative form

P o T 2. T
U = | I S (103)
Using the Cayley-Hamilton theorem in the product form
-P(T’> = TL (l{g - > , one can now easily give alternative

proofs for the fundamental relations (91)-(94), and we will return to this
approach in a later section in connection with the generalization to linear

spaces of an infinite order
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5. CLASSICAL CANONICAL FORM OF A MATRIX
OF FINITE ORDER

Nilpotent operators. - DBefore starting the general treatment, we will

consider a special class of operators called "nil-potent operators” with

certain fundamental properties:

An operator N is said to be nilpotent of order p, if

Nf -~ 0 (104)
and Np-1 £ 0.

In order to study such an operator, we will introduce a certain basis.

Since NP1 # 0, there exists at least one clement Dp # 0, such that
-1 = . . - .

INGS DP # 0 . Starting from this element, one can now define a series of

D 'DZ’DI successively through the relations

elements D ,
p-1

p-2'""

Do, = D,

Vp-a = Mb(?" B S . (105)
D«)\; = N)f—z—:l\] _b,‘ :N ‘Do.,)

NDy = = NP - NED 2D

n

D,

They are all different from the zero-element, and they fulfill the relations
ND, = N&D2 = N'jD3 = ... = Np_ll')p_1 = 0. It is now easily seen that the

elements Dl"D"” D3, SN Dp are linearly independent. Starting from the

linear relation

Do+ Dol + +]>¢,_,0(0>-\ +>d’u6’ =0 (106)

and multiplying to the left by Np—i} one obtains :D, O‘f = 0 , 1.e.
0(6_, = () . Substitution into (106) gives the simplified relation

DX+ Dy, o+ )@,ldq,_‘ -0 (107)
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and multiplication to the left by Np-—Z gives further .:b1 u@'—l =0 ,i.e.
NG-‘( =0 . Proceeding in the same way, one obtains finally

M=y = == 0  , which shows that the set D,, D D

20 Dy
is linearly independent.

Let us now first consider the case p = n, where n is the order
of the space. One can now choose the set D = (Dl’ D,, ... Dn) as a
basis. From (105) follows that

N
ND,
1 VD,

i

}

i

)

0
D,
>

2 )

n

(108)
JV)NH = bm"“ )
L N)M = )m-p

Interpreting these equations according to (31), one obtains the following

matrix representation of N in the I»-basis:

0
0
0

0
1

— O O

1
0
0

S O O

N =

0 (109)

0000 ....1
(0000 ... 0

Ve

This matrix has zeros everywhere, except in the first diagonal above
the main diagonal. A matrix of this type is called a "Jordan block",
and it represents the classical canonical form of a nilpotent matrix. The

Jordan blocks of order 1,2,3,4, ... take the special form

0] , o4 010 0100
00| ' |oo1|, |0010] o
000 0001 (110)

0000




and we note that such a matrix can never be brought to diagonal form
by a similarity transformation. Nilpotent matrices are of fundamental
importance in physics in connection with so-called shift-operators, for
instance, the sfep-up and step-down operators M, and M_ in the

theory of angular momenta.

In the case

p <

order n which consists of a diagonal series of Jordan blocks is necessarily

n, we observe first that every matrix of

nilpotent of an order which equals the order of the largest Jordan block.

For the case n

f:H
01
01
0

€

1
0

N

= 4 one has, for instance, the following possibilities

f::s
01

0 1
0

(3,1

0

i 0

N

P2
.

0

01
0

(2,2)

£ 2

01
0.

0
0

(2,1, 1)

pe1

0
0
0

<1J1)1)1\

1

(111)

Below the matrices, the orders of the Jordan blocks entering the entire
matrix are indicated, and these numbers are called the "Segré character-
istics" of the matrix. The number of types occurring corresponds to the

number of partitionings of the integer n.

In order to prove that every nilpotent matrix having p < n may
be written in this special form, we will consider the subspace V_ of the
original space V which is such that, for every element A in Vp’ one
has Np—iA # 0. Let the order of the subspace Vp be q, and let us

span this space by means of a linearly independent set of elements

D', D" D(q) For every set of complex numbers g oo L X &
p’ p’ " p Yy : ple Py ) £
which are not all identically to zero, one has consequently
- : ) -
F 1 /0(/ . b//O(// 4o D(‘})O((% > + 5
- : - 112
NT - (Dptpt Dty e % op (112)
and this means also that the relation
-+ p-l / v (%\ () ~ 113
| 63 <T\ N/ 1) J L / ( : )
) . oL, A 193¢ =
N (hpetp Dty Ppp) =0,
. . . I//-’/ < (%3 -
necessarily implies S 0 To each

¢ {
, one can now also construct the associated elements

i)

clement D(
P




(i) () (1) (i) - _
Dp-i s Dp-Z’ ... D,, D, ( #0) according to the scheme (105), or

1]

@ OIS o BN
‘Dﬁ; = ")\]‘Di‘ﬂ =N J)Q’ , (114)

i
It can now easily be shown that the pq elements Dj s, for i=1,2,.. g
and j=1,2, ... p, form a linearly independent set. For the proof, we
will consider the linear relation

I SO -
E_AZ__\ :bgo(a ~_-.O. (115)

=) 2‘{=|

Multiplication to the left by Np~1 will annihilate all terms except those

for j = p and gives

- / , (9 —~
P /0( +blld// 1(4\@( \ L
N (D? o T e )d" p ) = 0. (116)
’_ @
According to (113), one has then NP =L e = = ¢ 0 » and
relation (115) may be simplified to the form
% —“ D (a) —
TZJ D N(S = 0 (117)
=1 }:‘._ I} '

Multiplication to the left by Np"2 will annihilate all terms except those

for j = p-1 and, using (114), one obtains

P [y / r ® @, =
Sy + DA 4 DX = (118)
.._N ¢ ¢! 0> G’ { Gb £ > O
Yy @)
i.e. Q(/r-! = 0(6,_, = .- A 63“‘ = . Proceeding in this way,
one finds finally that all the coefficients u? are necessarily vanishing,
which proves the theorem.

Since the number of independent elements cannot exceed the order

of the space, one has the condition pq £ n., Ifit happens that pq = n,



i
one chooses the elements Dj as a basis, and, according to {(114) or

the corresponding relation

(4) () _
N_ba = % 3’1 ) for j = 1,2,...p (119)

one finds that N has a matrix representation which consists of q Jordan

blocks of order p.

If pgq < n, we will consider the subspace Vp—l of the total

space which is such that, for every element A in Vp~1" one has

Np-ZA # 0. Let the order of this subspace be r. One has already q

independent elements D'p Dr.'; NEREE qu_1 , belonging to this space,
which means that r = q. If r = q, one proceeds to consider the space
Vp-Z' If, on the ot(};elc'l)hand r > q, one selects r's(r-q) elements
Elp-l" E'P') RE ( })Ep , such that together with the elements

Di? x D"-l" D(1 they form a linearly 1ndepfndent 1s{et which sllzans 8:(
subspace Vp-l' Introducmg the elements E;-)Z s E}() )3 s e E(2 ), E1 )

through the relations

m N E(u) . p-i-1 ( =120 (120)
e 0>~1 ) A=1j2.. e
. f @ (k) .
one obtains a set of pq + (p-1)r elements D. , E which are easily

shown to be linearly independent. If n = pq + (p-1) r/, one can choose

this set as a basis and obtains a matrix representation of N which con-
sists of q Jordan blocks of order p, and r/ Jordan blocks of order (p-1).
On the other hand, if n > pq + (p-1) r: one proceeds by considering the
subspace Vp-Z’ etc. In this way, one proves that there exists a special
basis in which every nilpotent matrix N of order p has a representation
which consists of a diagonal series of Jordan blocks characterized by their

orders or Segré characteristics.

In conclusion, we observe that a nilpotent matrix N has only the
eigenvalue 0 which has the multiplicity n, and that the associated Cayley-

Hamilton equation is hence

_J_\fm = 0 . (121)




However, if the largest Jordan block has the order m < n, the nil-

potent matrix satisfies actually also the relation
\] i
i = O : (122)

which for m < n has a lower degree than (121), and one says that
(122) is a "reduced" Cayley-Hamilton equation. This concept will be

of fundamental importance in the following.

Classical canonical form of a matrix in the general case. - In the two

previous sections, we have particularly considered the case of a linear
operator T which has only distinct eigenvalues l,) A 2y - Am s
and we have shown that the matrix Tx in an arbitrary representation

X may be brought to diagonal form by a suitable similarity transforma-

tion (79).

In this section, we will consider the general case in which one or
more eigenvalues may be‘degenerate corresponding to multiple roots to
the characteristic polynomial (70). In such a case, it is usually not
possible to bring the matrix to diagonal form,. but other simplifications

may instead be carried out by feasible similarity transformations.

In order to study the effect of a degeneracy, we will first con-
sider the case of a single eigenvalue A having the multiplicity n.
According to the general Cayley-Hamilton theorem (80), the operator T

satisfies the algebraic equation

(T-21)" =0 (123)
This implies that the operator N = T— %I is anilpotent operator

of an order p % n. Since the operator N may be represented by a
set of Jordan blocks, there exists apparently a basis in which the operator
T may be represented by a set of blocks having the eigenvalue A in the
diagonal and the number { in the diagonal above.“) According to (111), we

obtain for n = 4 the simple examples:




=3 £=2 qw.z P

f
b X1 BEX | [ \ l{ﬁ }
) y X A X
1 N e renE ERE ]
Y A 2 L 5 A (124)
(”3 (31) (Q;Q»X (2,1,1) (1,4, 1)

which may be sufficient as an illustration. Again we note that the order
p is determined by the number m, which is the order of the largest

Jordan block, i.e. the largest Segré characteristic, so that
&T* ll>‘o= 0 (125)

For p < n, one obtains hence a reduced Cayley-Hamilton equation.

Next, we will consider the general case when the linear operator
T has eigenvalues l,) ,)'-2) 13) ... of the multiplicity gy) 8pr &35 -
respectively, with g4 + g, + ggt.. =n In this case, the Cayley-

Hamilton theorem. (80) may be written in the form

(T2, D (p-a, Ty (e, n)- 00 0

The characteristic polynomial in the complex variable z may be written

in the form

Py = T(y-2)% (12
g

and, using the technique for developing into partial fractions, oune obtains

oo _fel®)

P (2) (M)l (128)




where pk(z) is a polynomial of degree less than gy This gives
directly the identity

- 7 ’ V4 5
= Y T (-2 (129
e jrk ’
which is valid even if one substitutes the linear operator T instead of

z and the identity operator 1 instead of 1:
o

L= 2 pelm) T -3 (139

\ (NI
(ke

This implies that one can subdivide the original space V of order n into

subspaces Wl’ WZ" Wk associated with the individual eigenvalues

,1,1) ll Lo lk by the formulas

1 (131)

i1.e. every element A of V

using the Caylcy Hamilton thecrem (126),

can be uniquely decomposed in this way. By

(132)

)

i.e. the operator 4\]% = |- }%‘l is nilpotent of an order not exceeding

gy within the subspace W’k. By choosing a convenient basis within Wk

one can now represent the operator Nk in the classical canonical form

previously discussed. The order of the subspace Wk must be exactly

equal to the multiplicity 8y If the order would be higher,

construct a secular determinant for T in which the eigenvalue f{% would

, one could

have a higher multiplicity than gy which would be a contradiction. On

the other hand,. if the order would be lower than GO the sum of the orders




of the subspaces Wk would be lower than n, which is another con-

tradiction.

By using the operators in (129), it is easily shown that elements

associated with different subspaces W, are linearly independent. The

bases used to span the subspaces Wk r1:1ay hence be put together to form
a basis for the complete space V. In this basis, the matrix for T will
hence consist of a series of diagonal blocks of the type (124). Each
block is conveniently characterized by the eigenvalue lk, and the
associated Segré characteristics describing the form of the diagonal

immediately above the main diagonal.

Reduced Cayley-Hamilton equation. - Let us consider an eigenvalue g'k/

having the degeneracy 8y and the largest Segré characteristic m, . The
Cayley-Hamilton theorem has the product form

P“J (A'X'I"“ T)S} = O
8

(133)

However, since the largest Jordan block associated with the eigenvalue
ka, has the order m, , it is directly seen that the matrix T, and
hence also the operator T, satisfies a reduced Cayley-Hamilton equation

of the form

T — TV - (134)
lr(xa_ T) 0

o -
The associated polynomial F (%)= 1\— Ll'x" 2) is often called

the minimal-polynomial associated with the operator T.

This concept is of particular importance in treating infinite
linear spaces. Even if the degeneracies- 81 become infinite and the
Cayley-Hamilton theorem (133) loses its meaning, it may happen that the
numbers m,_ stay finite and that the reduced equation (134) exists. We

will return to this problem in a later section.




Triangularization of a matrix. - Since the problem of the simplest

possible form of a matrix representation for a linear operator T is of
fundamental importance, we will here briefly reconsider it from

another point of view.

Let us again start from the eigenvalue problem, T(C = A( . The
theory of systems of linear equations tells us that, for each root :Lk,
to the secular equation (67), there exists at least one eigenelement
Ck. Using the same technique as in (74), one can easily show that eigen-
elements associated with different eigenvalues are necessarily linearly

independent.

Starting from the eigenvalue X1 and the associated eigen-
element, we will now choose a set of linearly independent elements
Ci’ 'YZ" Y3, .- Yn as a basis. The operator T gets then a matrix
representation of the type

(135)

\

where the form of the first column depends on the relation rT'C,l = C‘ .>L1
and its interpretation in matrix form according to (31). This implies
that, by a similarity transformation, one can bring any quadratic matrix
T_ to the special form {i35) with only zeros in the first column below
the diagonal. Let us now partition the matrix (135) and consider particu-
larly the quadratic matrix of order (n-1) associated with the elements

Y Y Y :
n

27 Y35 oo

m

Cy Y, Y, .Y,

% \\\\\\.\Q\\ . Q\\\
T - __0_1\ AANANNAN (135
0
0
|

By a similarity transformation, this matrix may now be brought to the

form (135) and, repeating the procedure, we are finally led to the matrix:



o
[y
(NS
o

which is characterized by the fact that it has only zerc's below the entire

diagonal. Since the associated secular determinant takes the form
” 4

(11_3’)“/1_ 23(11_ 23 =0 and has the roots 1,)/LUZL

one can conclude that these numbers must be equal to the original eigen-~

V4
by~ -

values.

This simple procedure is called a triangularization of a matrix,

and it shows that any matrix may be brought to a triangular form of the
type (136) with the eigenvalues in the main diagonal and only zeros

below it by means of a suitable similarity transformation.

Let us now consider a degenerate eigenvalue Q1 and arrange
the triangularization, so that this eigenvalue is repeated consecutively
along the diagonal as many times as its multiplicity. The corresponding
basic elements will be denoted by C', C'i', C'i', ... , and the matrix
representation (136) takes the form

/ 4 VA4 Vil
/C/1 C1 C1 C/1 y
Ay X Na Xox (137)
T = O ).1 Q(_gg N&H . ‘
O -0 )l.“ 0(3&4.. . ‘
0 0 0 2.

where the elements ™, are notyet determined and may be vanishing

or non-vanighing depending on the character of the operator T.

Let us first consider the case that all the elements &, are

non-vanishing. According to (31), one has

TC, = Cy Ay
) TC/? = C/; Xy, T C/:/ Ly,

Vi ’ s




or

(138)

This gives further the relations

. 2., - _
(T——L'I)C1 =0, (T_*}H'Jj C1= 0, CT"A{I)QC///; 0, ...

1

1

(T —~ 11- I), the higher basic elements C.'l'j C‘i"j ... are apparentl! -

annihilated by the powers of this operator. Within the subspace spanned

by C', C'i, C'i", ... the operator ( T'— A, I ) is hence nilpotent of

an order which does not exceed the multiplicity gy

showing that, if the eigeneiement C! is annihilated by the operator

The next step is to consider the case that not all the elements
Q(m, are non-vanishing, and one is led in this way to the concepts of
block formation, the Segré characteristics, and the reduced Cayley-
Hamilton equation. The question of the transformation to the "classical

11)

canonical form" is treated in an excellent way in many textbooks™ "/, in

which one may find the pertinent literature references and further details.

Y

N



6. COMPONENT ANALYSIS IN A LINEAR SPACE
OF INFINITE ORDER

In the previous sections, we have explicitly confined our
interest to linear spaces of finite order n, and all the conclusions have
been based on the concepts of linear independence and the existence of
a basis. In order to generalize these considerations to linear spaces of
an infinite order, one has to deal with complicated convergence problems
which are the subject of e.g. the theory of Hilbert space. In this
situation, it seems rather remarkable that there still exists a series of
theorems about infinite spaces which are non-trivial and of fundamental
importance in quantum theory. This depends on the fact that, even if the
operators involved have an infinite number of eigenvalues, these are
situated only in a finite number of points in the complex plane each of
which may have an infinite degeneracy. To illustrate the problem, we will

start with a simple example.

Exchange operator P12'— - Let us consider the linear space formed

by all functions qb = P (4,2) of two coordinates; Xy and X, Such a

space cannot be spanned by a finite number of elements, and it has hence

an infinite order. We will further consider a linear operator P = P12

which interchanges the two coordinates, so that
Pk (12) = P (140)

This is a permutation operator identical with the simplest "exchange
operator" in quantum theory. Using (23), one finds that two interchanges

give back the original element, i.e.

P o T (141)

The eigenvalue problem has the form FC = % ( , and one obtains




2 2 2
PC=2C= C , showing that A= 1 . The eigenvalues are
hence 7 = =1

In order to proceed, we will use an identity which is easily

found by inspection:

P(12) = 1 [P +PEN] + g [P(12) — P2

(142}

It appears that the first term in the right-hand member is an eigenele-
ment to P associated with the eigenvalue +1i, whereas the second term
is an eigenelement associated with the eigenvalue -1. There are

apparently only two eigenvalues, but both of them are infinitely degenerate.

The symmetric and antisymmetric element in (142) may be ob-

tained from the original element by means of the operators:

O, ~L(1+7P R (145)
= e Vo, = e - > \ 2
+4 2, ) . ®~3 KN > .
and, by using (141), it is easily shown that they satisfy the algsbraic
identities: |
p@ﬂ = ®+4 ) P®_1 = = @,1 ’ " {144)
+ ) -1 -1 +4 M~ ;

1=0, +0, (146)

i.e. they are mutually exclusive projection cperators, which are eigen-
operators and form a resolution of the identity. By means of these
operators, one can split the entire space V into two subspaces O+1V

and O_1V, gach of an infinite order, which are directly associated with
the eigenvalues O, = +1 and A=-1 ; respectively. The relations
(144)-(146) are completely analogous to the relations (91)-(93) and
represent some form of generalization to a space of an infinite order. %n

the following, we will try to systematize this approach.




Projection operators and resolution of the identity based on the use

of the reduced Cayley-Hamilton equation. - Let us consider an infinite

linear space and a linear operator T . such that it has all its B
eigenvalues situated in a finite number of points 'X,, 2,_, ln in the
complex plane. Each one of these eigenvalues 9% may hence be in-
finitely degenerate ( 8.% = &0 ), but we will assume that the largest
Segré characteristic m, is always finite, and we will start by con-
sidering the case m, =m, =... =m_ = 1. This implies that the operator
T satisfies a reduced Cayley-Hamilton equation of the type (134), in’
which each eigenvalue factor occurs .only once. The associated minimal

polynomial is hence

F(2) = "11 (3-2) (147)
3-=1

and the basic assumption may be written in the form

F(T) = T (lé'l"'—r’) = () (148)
™

Our treatment will be based solely on this operator relation. Equation
(141) is of this type, and we will later see that many other fundamental

operators in quantum theory fulfil similar relations.

In analogy with (103), we will now define a set of operators

0,,0 On by means of the product formula

W T I (149)

12 Opr + -

17k . 2
Since Ok consists of all the factors which occur in F(T) except for the
single factor ( T — Xre L ), one obtains immediately L'T'-— e I) @w" 0.,
or

T0, - 2C, (150)




showing that Ok is an eigenoperator to T. One may also write (149)

in the form,

(151)

©%=T ilwr T e L }

‘k-#kl ’X%" ka )

and, using (T—- lw' I)(O% = 6 , one finds directly

2

0, - 0, ; 00, =0, e+l (152)

The operators Ok are hence idempotent and mutually exclusive.

It is now easily shown that the projection operators Ok defined
by (149) also form a "resolution of the identity". Since one has no
expansion theorem to rely on, it is necessary to proceed in a completely
different way. In addition to the minimal polynomial F(z), we will now

consider also the polynomials Ok(z) defined by the relations

F(z) T Z- A

@w("z) (Z_X“B?/(Aus - '3*1& "\'k—.}”}

(153)

These are polynomials of degree (n-1) which have the value 1 for
L= %y and the value 0 for %= 7&} (%9‘-4&) , and they are thus
Legendre "interpolation polynomials". Let us further consider the

auxiliary function

i

{ — 57 0,(z) (154)

le=1

G (%)
Since this is a polynomial of degree (n-1) having the value zero in the
n points Z< i, A,,... A en, , one obtains G(z) = 0. This identity
is valid in terms of the complex variable z, but it remains valid even if

one replaces z by the operator T and the number 1 by the identity

operator I. Hence one has

(155)

I= 3 0,.T)

le=1 )



which is the "resolution of the identity" desired.

Let us now investigate how the operator relations (150},
(152), and (155) may be utilized for a treatment of the infinite linear
space. If A is an arbitrary element of the space, one obtains by

using (155) the following decomposition of the element:

R=1R - QE‘COWBP\ ="§2‘_’J®%g - i R (i50)

i i

where A, = O, A. Using (150}, one gets

k k
1 fyomm,
Hkr = X(@R% , (57

which shows that (156) is a resolution of A into eigenelements of T.

According to (107), one has further OkAk = Ak" whereas Ok‘A"b =0

for k£ . Using this property, -one can easily show that the de-

composition of A into eigenelements is unique, for, if there would be
i

two relations R = % H:& = % R having components satisfying

(157), multiplication by O, would give A = Aj

Even if the resolution (156) contains a sum, it should not be con-
fused with an expansion theorem of the type (5) or (76) derived by means
of the concept of a basis. Instead, it is more appropriate to describe

(156) as a component analysis of an element A in terms of eigenele-

ments to T, and the component Ak = OkA is said to be the projection of

the element A on the eigenspace of T associated with the eigenvalue

Ly

By means of the projection operators 01, 02, Cee On , it is
further possible to split the given space V into subspaces Vi’ VZ’ e Vn
associated with the various eigenvalues:

V-5,

bex ® o

Vm = ®%V, TV&@ = lmvbc (139)

and we will describe this procedure as a "splitting of V after eigen-

values to T'".




In conclusion, we note that, applying T to (155) and using

(150), one obtains

T = gﬁ A, 0, (159)

}

which is a "spectral resolution” of the operator T corresponding to (94}.
If £(z) is an afbitrary polynomial in the complex variable z, one gets

further

‘%(T) = ZMZ 490%) O% ) (160}

b=y

and, from the polynomial, one can then proceed to consider algel:=rie
functions.
As an illustration of the projection technique, we will now derive

a simple theorem. Let A be an arbitrary element of the infinite snace,

and let us consider the linear manifold spanned by the elements

ACTA TR Ty (161)

Taking the projection Ok of an arbitrary element out of this manifeld

and using the relation TO, = O, T = '),xb@% , one cbtains

W

®k<q’oﬂ+ a, TR+ QLTZQ 4 o+ QNH'T"“" F{)
= @m(aoﬂ‘*c{;;lhﬂ*‘ a,zléﬂ-{— + am—' ),:_' H\
= (q'0+ a! 2“ ~+ az li -+ + am—| 2::\-! \) @L%R

1t

{162)

Hence the projection of an arbitrary element of the manifold is proportion-
al to the projection of the element A itself. In quantum theory, this

theorem is often quitc useful in different connections.

The minimal polynomial (147) is a special casc of the integer
functions, and it is an interesting problem to investigate whether our
approach may be generalized also to the case of an infinite number of
eigenvalues )“k, by using the theory of infinite products with and without

converging factors.




Cyclic operators. - As an example of the method described, we will

consider the eigenvalue problem of the cyclic operators which are

characterized by the relation

TG -1 (163)

}

wnere G is an integer. From the relation TC=2C follows directly

TG0 = ¢ = ¢ or 2=1 , which gives the eigenvalues

Q.'WU&/G\ (164)
X,«l = e
for k=0,1,2, ... G-1. For the interpolation polynomials (153), one
obtains
G -6 .6
@ (Z)' - 2 1 1”%,&2“ )
e O N
G- 1 )
1
-~ L by
G f:o e : (165)

For the eigenprojectors, this gives

@ ; v(\:;j — XM del/ L |
W ST i T (166)

By r.eais of these operators, it is now possible to split the infinite
lilear space V into G subspaces Vo s Vl yo s 'VG-l of infinite order

a so:iated with the eigenvalues r/\\o , 11) XGH , respectively.
The eigenvalue relation {{50) gives directly

AMike /g

10, = e 0, (167)

|

which is equivalent to the "Bloch condition" in quantum theory. According

to (152) and (155), one has further




0.0, =0, 4+t (168)

ALY

1-20, (169)

which relations may now be checked explicitly. For G = 2. one obtains
the special case of the exchange operator P = P,, defined by (140) and
(141).

Translations. - Let us start by considering a linear space consisting of

all functions <>{%) of a single variable x, and let T be a translational

operator connected with the length a defined by the relation:

T (x) = bleray (7o)

In order to proceed, we will assume that all the functions 4> under con-

sideration fulfil the Born- von Kirman boundary condition:

P(rrGa) = P (171)

where G is a very large integer. Using {(170), one can write this condi-
tion in the form (T’G‘-—- I) + = 5 . which means that T is a cyclic
operator of order G for all functions satisfying the periodicity condi-
tion. The eigenvalues and eigenprojectors are hence given by the relations
(164) and (166), respectively. By using the projection technique, an
arbitrary element P may now be resolved into eigenfunctions to T, so

that

~

G-

Cb = Z Cfb,( , (1'7’))

>
K= (&4

<

<
1
-

¢a( = ©)(4: = —é— = t ('%*'})Q-'>

(173)

¥

The components C,b,‘ are identical with the well-known Bloch functions.

)
/

S



Projection splitting in the case of a general reduced Cayley-Hamilton
equation. - Again we will consider an infinité linear space V and an
operator T having all its eigenvalues situated in a finite number of
points 11) 'XL yoro. )'m . Let us consider a more general case

than before and assume that the minimal polynomial has the form
Flg) =T urz) b (148)
3—1

and that T satisfies the reduced Cayley-Hamilton equation
o Mé
X‘

In order to derive a "resolution of the identity", we will now, in analogy
2

to (128), study the algebraic identity

= v _H®
Flzy ; (a -2 (150)
or *
P o= e s
= o hY -2y (151}

where q.(z) is a polynomial of de ree less -than m:.,. Introducing the
qJ yn g j :

operator
0,(T) = q.,m m LR Ty (152)
one gets immediately, according to (149) and (151), the relations
(T—21)™0, - (153)

I =X .©4o (154)

L




Since further 0,0, =0 for k L according to (149), one obtains

O = 0,30, - 5 0,0,- O (1s5)

showing that Ok is idempotent anu hence a projection operator. This
leads to a unigque component-analysis

R - E;, Rie | A= OB (156)

(T-‘-J\%. I)Mn Hk’ = 0

(157)

Introducing the aubspace Vk = OkV, we haye thus found that the operator
(T — %, L ) is nilpotent of order m, with respect to this subspace.

For m,=m_=

4 S ere Sm = 1, we obtain the formulas previously derived.



in
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7. SIMULTANEOUSZ SPLITTING OF FINITE AND INFINITE
LINEAR SPACES WITH RESPECT TO A SET OF
COMMUTING .LINEAR OPERATORS

Let us start from the concept of "stability": a linear subspacc
W is said to be stable under the operation T, if the subspace TW
belongs entirely to W. Since TC =20 , an eigenelement C represeuts

always a stable subspace of the first order.

Let further R be another linear operator which comrautes with
T, so that

RT = TR (158)

It is now easily seen that, if ‘Jk is an eigengpace to T associated with
tae eigenvalue 'X% , then RV’k belongs also to Vk, ive. the eigenspace

V) is stable under the operation R. Since ‘TV&%= lkV , ore has

T(RW) = (TR)V, ~ (RTYV, = R(TV)= 05
= R(MWV) = Ao (RVee ) ,

which completes the proof. However, since the subspace Vk is stable
under the operation R, it is now possible to consider the eigenvalue problem
of R within this subspace. The procedure will lead to eigenelements th s

which are simultaneous eigenelements to the operators T and R:

T cl«eb = 1»’.@ Ckb ) —R.Ck(, =/““L ckb : (160)

The circumstances will be particularly simple, if both T and R have

only a finite number of eigenvalues, whick may be even infinitely degenerais
but all have the largest Segré characteristic m = 1, so that they satisfy
reduced Cayley-Hamilton equations of the type (148). According to (149),

one may then introduce the projection operators associated with T and
R, respectively:




O™ =T T=X{L (161)
}*k, lk"' Xa

= R -y X (162)
O (R) = H , ,
L( ) LY, Moo= M

which both satisfy resolutions of the identity (155). One obtains directly

I -120Mi{so®]}-
= 25 O UT)0O(R)

where the terms in the double sum '

©4cl, = 0,(T) 0, (R) (164)

(163)

are again projection operators which are idempotent, mutually exclusive,

and satisfy the relations

T@m - )‘u©m | R©m, _ /“L@%) (165)

according to (158). This implies that the operators O,, are simultane-

ous eigenoperators to T and R.

o

Through the double sum in (163),
one ottiins a simultaneous splitting
of the space V into subspaces

ka which are simultaneous

eigenspaces to the operators T
and R:

”e v Y (166}

Sorhe of these spaces may be empty, i.e. contain only the element 0, but,




tor an infinite space V, the subspaces V g are usually of an infinite

order.

Ore can generalize this idea still further for, if there oxists
a set of linear operators T, R, S, ... which are mutually commuting,
one can carry out a splitting of V into simultaneous eigenspaces to these

operators by means of projection operators of the type

Oum. = 0,ITIO, RO, (2).. (167)

tem .

which form a resolution of the identity.

Case of m £ 1. - Let us also cousider the case when T and R are

linear operators which do not necesezrily have m = 1. The reduced
Cayley-Hamilton equation takes now the form (149). Introducing the
projection operatars O. “‘“) and O (R} wecording to (i52), one ottesins
again a resolution of the identity of the type (163), where the product
cperators O, = Ok(T) C, (R} are now silisfying the relations

m’\ e,

(T=2,0) " (R-p1) O =0 (16%)

Even in this case, it is hence pocsibie to obtain a splitting of V into
eigenspaces Vkﬂ =0 EV which are acsociated with the pair ( 2,&’ My )
of characteristic numbcers.

Translations in threc dimensicas, - As an application of rthis splitting

technique, we will cecrgider the :inear space of ¢1l functions P = d=>("n)
of a threc-dinsensionz! variable 1 subjoct to the three fundamental trans-

lations T,, TZ" and T3 dafined by:

{(16%)




- 57 -

Here a {r 2y a5 are the primitive translations, which form a
parallellepiped of volume v, o=a, - (az x a3). It is easily shown that
the three operators Ti’ TZ’ T3 mutually commute. The vector

.= LO+ py By + (0, 18 cailed a general translation and, for
the associated operator T{mm), one has the connection formula

T(m) = "V1’u‘ 'TZL" 'T'_;“’ . The treatment is simplified by the
assumption, that all functions ¢ under consideration satisfy the Born-

von Kdrméan boundary condition:

p(n+G,) = Pn) V=122 (170)

where (Gi’ G, G3) is a triple of large integers. This leads to the con-

ditions

T 21 T™=1

i

Iq_., I (171)

b=— N

!

and the eigenvalues and the associated projection operators are hence

given by (164) and (166), respectively. Introducing the simultaneous

exgenoperators to Ti’ TZ’ T3 according to (167), we obtain

O, %, %) = O [ T) 0, [T,) O, (Ta) =

3

-4 Gv-1 _awix / S
= ]I{G,)Eu e/“ ”q”T ,}

Qo1 _L 2 o aMs .
1 R A “?;L %— 1 172
- (QGLGQ : ) 'T'/‘ 'T'/“’- T/"z (172)
/u'/ln J"!o .
where ( Ky, Ra, Xs ) is a triplet of integers with the values X,=0,1,2..G,-1.

In total, there are hence (31('32G3 guch triplets to be considered.

For many purposes, 1t is now convenient to introduce the

pr1m1t1ve translations of the rec1proca1 lattice, bi’ bZ’ b3, satisfying

the relations @, 6& = 04y, - To the triplet (%, X,, X35 ), we will
now associate the following vector k in the reciprocal lattice -
R = ‘(‘b+’(tg,+_"_§_.&. (173)
C\1 GL C(;_:, 3




For the inner product with ™ =/le G, +/LLL Q, + /1._30,3

cne obtains

‘ X4 Yo, \,(3
GO == _ A3 174
k &M TR u
and one can now write (172) in the form
-1 —~QJM4Q-W
Olk) = (6,6:8.) 2 e T () (175)

™)

According to the general t'ﬁeory, this operator fulfils the following basic

relations:

fot) 1 - Otk) ORYO(L) =0, %2+8  (176)

am R-om

T(m) O(k) = ¢, ©%) (177)
1 =5 0Ol&) (178)
)
Every element < of our linear space satisfying (170) may hence be re-

solved into G1G2G3 components

P(n) = 3 OF)Bm = T S&n), (179)
% D)

where <P(R®) may be characterized as the "Bloch components" of <&

This approach may be used as a starting point for crystal theory

and, for further details, we will refer elsewhere 13




8. LINEAR MAPPING OF ONE LINEAR SPACE ON ANOTHER;
MIRROR THEOREM

In this section, we will return to the study of finite linear
spaces, and we will now consider two spaces U and V of order m
and n, respectively, having the elements A and B. We will further
consider two linear mappings, S and T, of which the first maps U
on V and the second V on U. They correspond hence to linear opera-
tors which transform one linear space into another. Previously we have
only considered operators which map a linear space on itself orona

subspace of itself,

U v

Let us span the space U by a basis X = (Xl’ b SPIREE Xm)

Yy, .. Xn). Since SX is an
element of V and TY! an element of U, one obtains the unique ex-

and the space V by a basis Y = (Yi’

pansions

1= ! (180)
om
T Y/b = 7, X»VTM : L=t2,. m
fe=1
where the coefficients S K and Tk! form rectangular matrices:
1
~m - m

5 NN -




which are said to be the matrix representations of S and T with respect
to the bases involved. For arbitrary elements A = Xa and B=Yb,

one obtains directly

SA-YS,a TB-XT. b (182)

Let us now consider also the double mappings

Q-——TS\ R*‘ST (183)

?

which are illustrated by the figures below.

This implies that Q maps A on itself (or on a subspace of itself),
whereas R maps B on itself. The operator Q may be represented
by a quadratic matrix of order m in the basis X, whereas R is re-
presented by a quadratic matrix of order n in the basis Y. From (180),

one obtains directly

T S-0 ST-=-R
NN\
9- A T -

Since the two operators R and Q are of different orders, it does not

(184)

seem likely that they should be dosdy related. However, one has the

fundamental theorem:

The non-vanishing eigenvalues of ST and TS are iden-

tical, even with respect to their multiplicity. (185)

The theorem implies that, if m > n, there are at least (m-n) eigen-
values of R which are vanishing. The proof can be based on the concept

of the trace since according to (57), one has




N

T (R) ,
T (-Rz.> (186)

T (@) = To(TR) = TR (sST)
T (Q*) = To(TETE) = H($TST)

which easily proves the conclusion. However, here we will also pro-

ceed in another way which gives us some other aspects on the problem.

Let us denote the eigenelements and eigenvalues of Q by Uy

and 2y respectively, and the corresponding quantities for R by vy, and
b, , so that '

(187)

Q My, = Ay ALy, R"){, = &’b Uy,

The operation S maps further w, on the element ;’k’ which
in turn is mapped on ﬁk by the operation T. Similarly T maps vy

on {1} ; which is then mapped on F’w?z by S. Hence we have

SMy = N LRy = Al (188)
lwd — o~ L~

Using (183) and (187), we obtain u = Tvk = TSuk = Quk =au, which

ot
=

shows that, if ap £ 0, one has Uy # 0 and consequently also ?/k # 0.
Similarly, one has 51 = Saz = STV2 = sz = blvl which implies that, if

b, # 0, one has \71 #0 and also El #0. For eigenelements associated
with non-vanishing eigenvalues, the two image elements considered are

hence different from the zero-element.

~

Let us now consider the properties of Vi in greater detail for

a}( # 0. One obtains directly

R %, = ST By = STS 4, = S Qu, = (189)
= SR te) = Oy D

’-J —
which shows that ay is also an eigenvalue to R, since vy £0. For

bl ;( 0, one obtains in the same way




- Tl = b, (190

¥

S~ -—
which shows that b‘2 is also an eigenvalue to Q, since u, £ 0. The
non-vanishing eigenvalues to Q = TS and R = ST are hence necessarily

the same.

This completes the proof for the non-degenerate case. In the

case of a {inite degeneracy and m = 1, one simply spans the eigenspace

ou' o, uM, ..., and

k," k E k
consideration of the associated image elements according to (188) shows

by a linearly independent set of eigenelements u

the validity of the theorem (185). The case of m # 1 rcquires somewhat

more care, and it will be left out of our present discussion.

Conjugation of elements. - Let us consider the non-vanishing eigenvalues
ap = b _# 0, and let us arrange the cigenelements to Q and R in pairs,
+Ya, ~ "‘73,
so that v_=a v and u_=a u_, or
p p P P P p
-\/L
b= S

[ (191)

i
N

_'3
&

M‘QB Q¢ £

We note that each one of the relation (191) follows from the other, and
we sav that the elements u_ and v_ form a conjugated pair. It is also

essential that the relation (191) contains a "phase convention".

Adding also the eigenelements associated with a; = 0, one obtains

a linearly independent set T which may be used as a basis

tor the space U, and similarly the set Vis Vs, +.. vV may be used as a

basis for V. A comparison between (180) and (191) in the form
73

Su_ = a v, Tv =a ‘2 u_, shows that S and T may be given the matrix
p P % p p P
representation
\ ” ]
’ a -
Y. '’ {
’Q‘lay" ‘ 0 \ ,' Q. ‘
)S = | 2o : T= | L (192)
| @] J | G |
{ 1 ‘ ] |
L




and these rectangular matrices are hence brought to a kind of "diagonal

form™".

Using the symbols introduced in (11} and (12), one can now

express an arbitrary element A or B in the form

R= 2] ‘Z%{XK)XlR} )

k (193)
= 7
B DY (Y, Y |B}
Choosing X =u and Y = v, this gives the "eigenexpansions"
= > M N, WIHR .
A P i ) 1 } (194)

R - Z:,: 0, {UL,UU?’} ,
Letting Q work on the expressim for A, one obtains Q p\ =

= % A M,!&{ML;' AL tF\ } , where only the eigenelements having

ap # 0 will contribute. In this way, one obtains the symbolic relations
¥
@, Vo § Vg, &

Ro= 20 %% 1 9,

Letting S work on the expression for A in {194) and using the “conju-

gation" relations (191), one obtains \SF\ = 3 QZ"L 'Uk{;,&% 2| H} ,
/

|

P Qf’“f}(”hf}u’l )

i

or symbdically w
/2
r* ST o Su al
= ? \A‘f .\l‘@’ L'vvf’ - ‘ ) (196)
rr Z b3

These relations may be considered as some form of "spectral resolution”
for the operators § and T which map one linear space on another. Since
such a mapping is quite common in quantum theory, the "mirror theorem"”
(185) and the associated relations are of fundamental importance in this

connection. Of particular importance are the applications to density

. 14 . 15
matrices ) and to spin pairings J).




7. INTRODUCTION OF A SCALAR PRODUCT;
FROM LINEAR ALGEBRA TO VECTOR ALGEBRA.

Definitions. - Letf us start by considering a linear space V of finite

order n having a basis X = (XI’X e X ) According to (5), one

Z}
has an expansioun theorem in which the coefficients arc uniquely deter-

mined and, using the symbol (12), one can write

H: %é X:&{XQ,KM} , (197)

Here the notation inglX ( A } simply means the coefficients
for Xk in an expansion in terms of the basis & of the specific ele-

ment A . Considering the expansions for (A1+A and O(H , one

5)
obtains the relations

{Xk)x 1 H1+ Hz}z %Xw)xlmk Al {'XR)X!HL} )
{Ze X [«A}={X, X|R}

(198)

showing the linear character of the symbol { } . The definitions give

further

(X, X1X,)-56,, (199)

del

Let us now introduce the concept of the scalar product . To

every pair of elements, A and B, of the linear space we will associate
a complex number called the scalar product and denoted by the symbol

<AIB> » which satisfies the following axioms :

() R BB, > = <A|R, D+ <AIBD
(RI«BYS = «<A|BY |




2)  (RIBY = <mlay"
(3)  <AIAY 20  ana (200)

{A|RYy =0, ifandonlyif A=)

The axiom (1) is essentially of the same type as (198), whereas (2)
and (3) contain new properties which we have not used before in our
treatment. The quantity (A]A >VL is often called the "length" of

A and is denoted by HA” . We note that, even if the scalar product
is given more properties than the symbol §{ } , the axioms in (200)
do not contain any recipe for the evaluation of this quantity, and there
may actually exist many "realizations" of the scalar product. The
vector algebra obtained from the linear algebra by adding the concept
of the scalar product has hence an abstract but also very general

character.

In connection with the notations, we observe that the bracket
< A]B> is a physicist's symbol and that the mathematicians denote
the same quantity by (B,A). According'to (200), one obtains particular-
ly (xR \ B> = x* <R |®B> showing the conjugate complex character
associated with the first position. Two elements A and B are finally
said to be orthogonal, if <A]B> = 0 .From the axioms (200), one can
derive some important inequalities. If A is a real parameter, one

has

{R+AB|A+ABRD> 20,

GAIRY+ A {<AlB>+<BIA> } + X*<BIB> 20 (o)

This implies that the discriminant can never be positive, i.e.

‘Rc{(ﬂb)}\z—— {rin><Bia> £ 0, (202)

where Re i(NB)} = ’i L(ﬁ |y +{2{RA >1 is the real part of




the scalar product (AJB > . This relation is true even if B is

o
replaced by ej' B and, by a convenient choice of ® , one obtains

| <AIB>|* = <AlR><BIR) (203)

This is the famous Schwarz's inequality. Using this inequality for the
cross-terms in £ A+BIA+B> » one gets further the "triangular

inequality"

|WE-1sl| £ JR+B | £ JAT+ 1B (204)

Such relations are, of course, of essential importance in studying

upper and lower bounds, questions of convergence etc.

Expansion coefficients as scalar products. - Let us now return to the

expansion theorem (197). From the elements of the basis

X = (Xl’XZ’ - .Xn) , one can construct a total of n2 scalar products
Am,=<xk ] Xb> ) (205)

which together form a matrix A called the "metric" matrix. It is
easily shown that the set X is linearly indeperdent, if and only if

dt {A}# 0 . For a basis, the inverse matrix A~1 will hence
exist. From the expansion theorem A= }? XL a, = Xao , one

. . 7
obtains directly

(XA = L% £ X,0,)- 2B 0
= 2’; A Oy

or, in matrix form, <X ‘ A > = A Q » which gives

o - &1<XIH>, (207)




This formula gives the exparsion coefficients expressed in terms
of scalar products, but it deces not give any recipe for the evaluation
of these coefficients, unless one has a "realization of the scalar

product. For the components of (207), one obtains

-1 ; a8
Gy = 23 AL <X, (R o)

The { } - symbol in {197) may then be expressed in the form
- -1
= 209)
{ L, X | Z@“‘AMKXL‘ ) (0%

and, for the projection operator O, in (52) , one has

1

O = LAZL X - BUX A, <X, | (210

L

For the resolution of the identity (49), this gives particularly
-4 X 2
L= X,4,<%] (211)
%,

Of special importance is the case of an orthonormal basis

satisfying the relations

PR ¢ . m
<X%1Xb> = BM (212)

)

or A=1 . By means of Schmidt's successive orthogonalization
procedure, it is easily seen that, by a convenient linear transformation,
every basis may be brought to orthonormal form. In this case, the

previous formulas may be simplified to the form

Q, = <X, |R> ; (213)

Op = X<z, 1.5 x,<%,1 @9
e ’




Let us now return to the case of a general metric matrix A

and consider the matrix representation of a linear operator T

defined by (31) or (32). According to (209), one obtains immediately

T&az - {X‘MX lTXL}:

(215)
= O AL <X T

By denoting the matrix formed by the scalar products
< Xk]TXL> = <Xk]TIXL> by <F , one gets hence

T - AT (216)

In quantum theory, Cr is very often described as the matrix of T

with respect to the basis X , whereas, in linear algebra, this name

refers to the matrix T . Note particularly that, for an operator product
FG, one has, according to (39) and (216) :

(FG)y - AF A'g @11)

where X 2 and are the matrices formed by the elements

<XkIF]XL> and < X [G]X,> . respectively.

It is now also easy to understand the connection between the
simple form (65) of the eigenvalue problem in matrix representation in

linear algebra and the conventional form in quantum mechanics.

From
(65) and (216) follows
(T-a1)e-o,
(A‘\ 3’_ - 1)( - O (218)

I}
(-

(F- X A)e

or




LA <K ITIXD - A<Z X, > Yo = 0. @19)

The last form is well-known from the applications to e.g. quantum

chemistry.

Projection on a linear manifold. - In connection with the general

expansion theorem, it is convenient to study also the concept of the
projection of an arbitrary element A onto a linear manifold imbedded
in the space. Let the linear manifold be spanned by the elements

f= (fl’fZ’ .. .fm), and let us determine the coefficients a, in the

expansion
H m
= E a, «+ (220)
=1 jk’ k’ R g

so that the length of the remainder element R becomes as small as

possible, so that
ﬂ’RI\L = <H"jQ[H—jQ> = minimum - (221)

For this purpose, we will introduce the metrix matrix A = <f]f>
and the vector €« = 4_1 <jIn > accordin

axioms (200), one hence obtains the identity

(F\—jalﬂ—jq>= (222)
<RIR) —<fa|p)-<(Alfad> + {fafa> -

{RIR) - {fea|fe)-<{fc|fa) +{falfa) -

Rip> —<felfer + {flc-a)| f(e-a)> 2

Jt

h

Only the last term contains the coefficients a , and we note that it can

never be negative and has its minimum for @ =g = A_1<j 'R >




For a= €, one obtains particularly

(RA-fe | R-Fe> = SRIRY = <felfed> 20 4y

w® ok s
If c-r denotes the row vector of the elements (c1 1Cps e ) » one has

hence { fc|fe D> = <! E[fED> € = c*A € and the inequality

= x
(ARY 2 k;,‘ Chro Dae Co (224)

which is a generalization of Bessel's inequality to the case of an

arbitrary metric .

According to (220), one can now write

A=fc+ R | (225)

where the term fe is called the "projection" of A on the linear

manifold spanned by £ = (fl’ £y .fm). One obtains

Je - JA<HIR> - OR @26)

where

0 - JA'<S|

is said to be the projection operator associated with the manifold £

One gets directly 02.-. O . Since further

(RIfed = <A-fcffec)-
Glfey - el fer- G
{Jelted - <felfe> = 0,

the remainder element R 1is orthogonal. to the projection fe .

1]

it

t




Let us now consider an infinite space and let us assume that

any finite subset of the set (fl’ £5000, .- .) is linearly independent.
For every value of m , one has, according to (224),

ME

(R[RD =2 Cro P €, , (229)

k,

P
*
-

where it is easily proven that the right-hand sum for m= 1,2, 3...
forms a series of never decreasing positive numbers. Since all the

partial sums have an upper bound, the limit for m —» oo exists, and

one has
Lim, Z"“ *
Mmoyeo 4 “i A‘&E’C" < <HIH>, (230)

If the equality sign is valid, one says that the infinite set (fl’ £, f,000)

2' 73
is complete, and one has obtained a generalization of Parseval's
relation. For the case of an orthonormal basis, A =1 , one obtains

the conventional form :

<R~\H> - 5l (231)
k=1

Returning to an arbitrary metric, we note that, according to (227) , one

can also write (230) in the form

b KALI=0,R>=0. @

oM = oo

The expansion theorem, on the other hand, takes the form

and we note that, in general, there is a considerable difference in
convergence properties between (232) and (233), and that one relation
does not necessarily follow from the other. The property (232) is called

"convergence in mean" .



Hilbert space.- In order to be able to discuss convergence properties in
general, one has often introduced an additional axiom which leads to the

concept of the "Hilbert space” . Such a space is an infinite vector space

which contains also its limiting elements :

If AI’AZ’AS’ ... is a set of elements in the space
having the property

HA. - RApem U <& (234)

as soonas ™M > M (&) , then there exists an
element A in the space such that ” e~ A H < & )
and one writes

Ym g <R

™M~ oo

In addition, one introduces also a "separability axiom" stating that
every element A may be reached by a denumerably infinite set of
elements A ,A,, Ay ... such that I H«\" Rl <& ., as soonas

mMm > m(&) . For a detailed treatment of the properties of tllze)

Hilbert space, we will refer to the excellent books available It
should be observed that the terminology introduced in connection with
the linear algebra and particularly the concepts of projection operators,
resolution of the identity, and spectral resolution of an operator play an

important role also in this connection.

Pair of adjoint operators; normal and self -adjoint operators.- In

conclusion, we will briefly survey some of the fundamental concepts as
to linear operators which are introduced on the basis of the scalar product.

Let T be an arbitrary operator having the domain D_, . Two operators

T
T and T* are said to form a pair of adjoint operators, if they have

the same domains and further

<‘MTTIH>=<F\,W!H>* ) (235)




for every element A in the domain. From the definition follows the

theorem :

<'T’;B]F\>=,<B}T7LH>) (236)

provided A and B belong to DT . In order to prove this "turn-over

rule", one uses the following identity :
<BITIAY = £{<3+A|THIB+A> - <2-R|TT|2-R)-
~ LB R T B+iRp+idBiA| Tt | B-iA> ] -
= 7 {<B+R|T|2+A> — <B-R| T|B-A)>+

. *
£ (BT | BiR> i KB-oR[TIB-4RD] =

= {AITIBY* - (Tr([R),

which completes the proof. Using (236) , one obtains the well-known
-
rules (F+G)T= el , (FG)+= GTF'./An operator /|  is said to be

normal , if it commutes with its adjoint operator AT , so that

AAT _ AJFA. | (238)

If the operator A has the eigenelement éle associated with the
eigenvalue )“k. » the operator _A.T has the same eigenelement

associated with the eigenvalue l: , so that
A&, =20B,, ANz -8 @9
The proof follows from the fact that
* 2
A=y, 17 = (a2 ]) 3, [ (at-a}) 2, ) -

= <F | (a-n)aaf) 2, > -

= <&, | (A*‘){:)(A"%\) Pr ) = (240)

= (A2 2, | (4-2) 21D
= (A= 2) B I °

]

]
O

(237)



The normal operators are characterized by the fact that eigenelements
@k and @(/ associated with different eigenvalues, Q“k,‘# Ay,

are necessarily orthogcnal .
/ L4 .- =
CBNED =0, Ap*dy (241)

One has 9”4«, <§§’3&’§>&>= <)\: éu‘§b> = <A‘*‘§k' §L>=

= LB AB Y = LB AT = AL B 1E,> | ie.

(?%— X{/) <<§% | €, > = 0 , which proves the theorem.

For a finite space, a normal operator may, of course, be
brought to classical canonical form and, using (238), one can show that
this {orm must necessarily be diagonal. For the largest Segré
characteristic . to each eigenvalue, one obtains m, = 1, and the
reduced Cayley-Hamilton equation is then of the type (148). The proper-
ty of normality is hence of essential importance in the projection opera-

tor approach.
Using the eigenvalue relation (239), one easily obtains
LEy [ A B

5\% ) {Ee | Ee > e

The corresponding quantity for an arbitrary element A :

_ {AIARD
CAD,, = I ) (243)

is called the "expectation value' of A with respectto A . For
elements close to the eigenelements, there is an important "variation
principle” . Putting A = _@,&-t- Sék and using the relation

(A- A%'I) §k, = 5 to the left and to the right, one gets

CLRIARRIRD | (5 AR S
LA, v GIEY; {RlR)




(8B, | A2 |S30 )
<q“:{> (244)

<A>ﬁv - lk) "

For a normal operator, a first-order variation in ék_ leads hence to
a second-order variation in <A>w , i.e. S(A_>w =0

This property is of fundamental importance in the quantum-mechanical
applications.

A special class of normal operators are the unitary operators
U characterized by the relations

vtv =vvt-1 (245)

*
Their eigenvalues satisfy the relation kh )‘k.' ! and are thus situated

on the unit circle in the complex plane.

Of particular importance are finally the self -adjoint or

. . . . T .
hermitean operators F which satisfy the relation F'= F, i.e.

< R \ r\ R > ’ = real quantity (.246)

According to (242), the eigenvalues are then real numbers. The self~
adjoint operators are hence normal operators having their eigenvalues
on the real axis. In quantum theory, all physical quantities are repre-
sented by operators having real expectation values, i.e. by self-

adjoint operators, and they are hence of fundamental importance in the

applications.
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Width of an operator; uncertain t relations.- Let ' be an arbitrary

linear operator having the domain DT . If A is an e’ :ment within this
domain normalized to unity so that |A| = 1, one def ‘es in accordance
with (243) the expectation«alue T of the operator T rith respectto A
by the formula

T=4T) , =<A[T|AY (246a)
which is in general a complex number. The "width” A T of the operator

T with respect to A is further defined by the relatiia

AT=[(T-T)A| (246b)

From the third axiom in (200) for the scalar product follows that the
width AT vanishes, if and only if A is an eigenelcnent of T . This
implies also that the width A T in a certain sense must be a measure of
the deviation of A from an eigenelement. Using the definition, one

obtains immediately the following transformation

(A T)2 = {(T-TYA|(T - T)A ) =
= <TA|TAY - |[{AlT[A> |22 0. (246¢)

If, in addition to A, the element TA is also situated within the domain

Dy , one may apply the turn-over rule (237) which gives

(Am)% = {ajT'T]ad - | CalT]a)> |? =
- 1. |T)? (2464)

We note that this formula is valid only for elements A within the domain
of the operator TTT , which means that it is much more restricted than
(246¢) .

Let us now consgider a second linear operator R with the domain
DR » and let further A be a normalized element within the intersection of

Dy and Dy, . According to (246Db) one has the definitions
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= (T -DA|; ArR=] ®R-R)A] . (246¢)

Using Schwarz's inequality (203) , one obtains the following transforma-
tion

AT. AR = || (T - DBA]. |R-R)A |

| (T - TA] R-R)A>| =

|1 {K(T-TA|RTR)A>}] =

£ 1T -DA] ®R-R)A) - (T-DA|(R- R)A> |
L | (T- TA| (R-R)A> - {(R-R)A|(T-T)A > |
4| TA|RAD -{RA|TA> - T 'R+R T |.

v

"
il

fl

(246f)

which is the uncertainty relation for a general pair of linear operators.

By using the turn-over rule (237), one gets the much more restricted .

formula
i — E J—
AT.AR ?_11-’ ]<A]TTR - R*T]A> - (T R-R T). (246g)

For a self-adjoint operator F , one has AF = |[(F - F)A] ,
whereas the special form (246d) gives the relation

i

(AF)Z = <A|(F-F)2 | AD> =

Fe . F°

(246h)

3

In using the statistical interpretation of quantum mechanics, the width
A F is often described as the "quadratic deviation” of F from the
average value F. Fora pair of self-adjoint operators F and G, the

uncertainty relations (246f) takes the form

l

AF. AG 24| (Fajca) - GA[FAS | | (2463)

for all elements A within the intersection of D and D .. Using (246g),

one obtains the special form

AF. AG a-‘)ﬂ {A|FG-GF|AD ]| . (246))

restricted to the elements within the domain of the operator (FG - GF) .

This is the form of the uncertaizfty relations most well-known




in the applications to guantum mechanics, and we note that it depends
essentially only on Schwarz's inequality (203}, i.e. on the axioms (200)
for the scalar produet, It is interesting to cbserve that the uncertainty
relations are hence completely independent of any particular "realization”

of the scalar produgt,

For the pair of self-adjoint operators F =z p = E’&;— %t and
_ By,
G = x , one has the commutation reldtion
' M
X - Xp T 246k

and application of (246j) leads to the special formula

M
A = —— (246
which 1s Heisenberg's uncertainty relation for the position » and the

momentum p . The more general form (246j) is due to Born,




8. DISCUSSION

The purpose of our study is to show that one can develop an
appreciable part of the terminology and the conceptual framework
associated with the fundaments of quantum theory by using only the
axioms of the theory of linear spaces. The eigenvalue problem, the
projection operators, the resolution of the identity, and the spectral
resolution of an operator are concepts which may be reached and dis-
cussed in this way. The theorems for finite spaces are illustrative
but are, of course, of an elementary nature. However, some of the

theorems may be generalized also to infinite spaces.

In treating infinite spaces, we are considering only operators
having all their eigenvalues situated in a finite number of points in the
complex plane, each one of which has an infinite multiplicity. From
the existence of a finite-order reduced Cayley-Hamilton equation, we
have derived a set of projection operators which form a resolution of
the identity and lead to a splitting of the space into a set of infinite
subspaces associated with the eigenvalues. Every element A may then
be uniquely resolved into components A, which are eigenelements to
the operator concerned. If there are several commuting operators, the

procedure leads to a splitting of the space into simultaneous eigenspaces.

In quantum theory, this process is of particular importance in
r

treating constants of motion. The Schrédinger equation is

(8]
e

problem of the form

g{é - E§ | (247)

)

and T 1is a constant of motion, if it commutes with H , so that

TH =T (248)

Let T have the eigenvalues A, ,}, ... Am and the projection
operators 0,,0,,...0_ defined by (153), so that I1=20 ('T')
n Py e :



One has immediately

ZIS. = % §4¢ , ?54@ - @Lc?ig (249)

}

which gives

1§, -8, TE-2¥, @0

showing that the wave functions associated with a specific energy level
E may be classified by means of the eigenvalues R'k, . Of still greater
importance is this " component analysis" of an approximate eigen-

17)

function .

Constants of motion which have been treated in this way include

the spin 18), the various angular momenta in atomic theory 19), the

20)

. 2 . . . .
trandations 2 ) In all these cases, one is considering a single opera-

general angular momenta » the exchange operators 21), and the

tor A or a set of commuting operators A‘) A 2, 29+++ Itis evident
that, if one would have group of operators as constants of motion, one
could utilize the well-known projection operators from the group
algebra in exactly the same way for a splitting of the entire space. The
theory of point groups would lead to new results, whereas the theory of

continuous groups for translations and angular momenta would give

essentially the results already obtained.

The component analysis is a tool which is of importance also
in discussing the correlation problem associated with the one-particle
model in physics and chemistry. In the Hartree-Fock scheme, the
total wave function is approximated by a single determinant D , where-
as, in the extended Hartree~Fock scheme, one has carried out a compo-

nent analysis with respect to the constants of motion, so that

35‘ = 0D ) (251)

where O is an appropriate projection operator selecting the component

desired. In practical applications, this simple approach has given

surprizingly good results 23).




A previous discussion of the constants of motion and their
projection operators was based on the concept of the scalar product,
but it is here shown that all the essential results can be obtained

solely in the framework of linear algebra.

The introduction of the scalar product renders some further
simplifications, for instance, in connection with the calculation of the

expectation value of H with respect to the wave function (251) :

{odis|od> _ IR0 (252)
oplod) I

<g{'\°>nv =

where we have used the formula OTHO = OHO = HO2 = HO . The
component analysis is of particular importance in connection with the

variation principle.

For a finite space, the eigenvalue p.robleni of the type
TC = A C is usually well-defined, but, for an infinite space, it may

happen that some auxiliary boundary conditions are needed to deter-

mine the eigenvalue spectrum. The scalar product plays an importantv
role in this connection, and, for the Schrddinger equation (247), one
usually required that the solution Z& should belong to the Hilbert
space (closed states) or have a scalar product with the functions out

of this space (scattering states).

The physical interpretations of quantum theory are finally based

ILAEY e

Introducing the eigenfunctions to F as a basis, this leads to the well-
known probability interpretation of quantum theory. It has sometimes
been said, that this interpretation depends on the existence of an
expansion theorem, but it is, of course, sufficient that Parseval's
relation (232) is fulfilled, i.e. that the system of eigenfunctions is

complete.




A characteristic feature of the theory of linear algebra,
vector algebra, and Hilbert space is that it can be developed in a very
general form based solely on a system of axioms. This means that
the theory itself does not give any explicit recipe for the evaluation of
the quantities involved, and that there may exist many "realizations "
of the abstract theory. Quantum theory is based on a specific recipe

for evaluating the scalar product of e.g. the type

CRIBY = /A B () (&) (254)

but the conceptual framework is independent of this particular real-

ization.

The scalar product as a concept is certainly a very essential
part of quantum theory which is usually introduced at the beginning in
every theory. Here we have tried to see how far one could reach
without this fundamental tool, and it turns out that a surprizingly large

part of the conceptual framework is based on linear algebra alone.
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