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ABSTRACT 

It is  investigated how fa r  one can go  in the formulation of 

the fundaments of quantum theory by us ing  the axioms of lipear algebra 

alone, i .  e 

treating l inear spaces of finite o r d e r ,  one can formulate the eigenvalue 

problem for  a l inear operator and reach the concepts of mat r ix  represcn-  

tation, eigenexpansions , and transformation to diagonal and classical  

canonical fo rm.  

to r s ,  the resolution of the identity, and the spectral  resolution of an 

operator .  

without the help of the concept of the scalar  product .  In 

One can further define the concepts of projection opera-  

In treating infinite spaces,  the interest  is confined to operators  

having all their  eigenvalues situated in a finite number of points in the 

complex plane, each of which may be infinitely degenerate.  Assuming 

that the operator under consideration sat isf ies  a reduced Cayley-Hamilton 

equation of finite o r d e r ,  one shows that there  exis ts  a se t  of projection 

operators  forming a resolution of the identity by means of which one can 

c a r r y  out a unique "component analysis" of an a rb i t r a ry  element of the 

space.  Even the spectral  resolution o f  the operator  exists.  These 

theorerns a r e  in quanturn theory of particular importance in treating con- 

stants of motion. 

In the l a s t  section, the scalar  product is introduced, and the 

connection with the conventional approach is studied 
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I .  INTRODUCTION 

When modern quantum theory was  introduced in 1925,  there  

were  three independent and competing forms ,  narriely t h e  wave 

mechanics developed by Schrodinger I ) ,  the ma t r ix  mechanics intro- 

duced by Heisenberg, Born,  and Jordan, and the g-number theory 

developed by Dirar3) .  

was shown by Schrodinger4’. In these connections, the concepts of 

l inear  operators ,  l inear spaces ,  and vector spaces  play a fundarnental 

role.  The physical interpretations of quantum theory are  based on the 

The equivalence between the three approaches 

concept of the “expectation value’’ which is essentially the scalar  pro-  

duct of two vectors .  The most  thorough discussions of the foundations 

of quantum theory given by von Neurnann5) and by Djrac‘) a r e  using 

the concepts of the theory of Hilbert space in which the sca la r  product 

plays a basic  ro le .  

Of fundamental importance in quantum theory a r e  the ” constants 

of motion”, i. e. physical quantities which a r e  associated with l inear 
nper2tnrc: A i-nmmiiting with the Hamiltonian H .  so that HA = A H .  

They have eigenvalue problems of the type 

and iiie eigerivdiues X 

also certain properties of time-dependent phenomena. 

typical constants of motion a r e  represented by the total spin S , 
orbital  angular momentum L’ , and the total angular momentum 

J = L t S in various coupling schemes.  In ii study of certain c lasses  

of constants of motion, the author has  developed a technique based an the 

use of product-type projection operators7’, which has turned out to he  

ra ther  useful in practical  applications 8’ 

f o r  normal  constants of motion A ,  sa t i s fy ing  the relation A ‘h = A h  . 

i t  h a s  been shown that eigenfunctions 

eigenvalues X 

non-interacting with respect  to H,  so that 

a re  used io c l a s s i f y  tile siaiioriary stdies d r ~ d  k 
In atomic theory,  

--+. 
the 

+ 4 +  

9 In a survey of this method 
t ? 

+k and  < i s soz ia t ed  w i t h  diift-rep1 

and XI, respectively, a re  not only orthogonal b.;~ a lso 
k 
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Some fundamental theorems a s  'I the resolution of the identity" and 

the "spectral  resolution of A "  were  also demonstrated in an elementary 

way, but the entire formal i sm was based on the use of s ca l a r  products 

< 1>. 

The purpose of this paper is to generalize these resu l t s  and to 

show that essentially the same type of projection-operator formalism 

may be derived in a theory of l inear  space alone, i. e .  without the use 

of the concept of sca la r  products. 

corresponds now to a "component analysis" which, under certain con- 

ditions, is valid also for  an infinite l inear  space.  

see how many fundamental quantum-mechanical theorems may be i c  und 

and ilIustrated in this way. 

complete without the concept of the scalar  product and the convergence 

properties of the Hilbert space,  but our approach shows how far one 

can actually proceed without these important ingredients. 

The resolution of the identity 

It i s  interestinp to 

Of course,  quantum theory will not be 



2 .  LINEAR SPACES AND LINEAR OPERATORS 

Linear Spaces 

Definitions. - Let us  consider a s e t  of elements A ,  B C ,  D ,  . . . . 
which may be subject to two operations called "addition" and ' ' rnd t jp i ica . .  

tion by a complex constant W 'I leading to new elements of  the form 

A t B and N-41 , respectively. The  operations a r e  assumed to satisfy 

the following rules:  

9 + . B = B 4  , commutative law of addition. 

(il+B)+ c = R+(B+C), Associative law of addition. 

@ + p s  = N U  tgR; Firs t  d i s t r ibu t ive  law ,,f m-ultiplication 

a(R+B) = ocU+.(B ) 
Second distributive law of multiplication. 

Associative law of multiplication. 

i o  

Set of all vec tors  of a given dimension. 

Set of a l l  polynomials of degree equal to 

or l e s s  than n. 

Set of all continuous functions. 

Set of al l  integrable functions. 

I 

Some elementary rules. .- For o( = 0 , one has  particularly 0 .  A 2 .  

where 'ii is called.the "zero-element" of the se t ,  which is a n  independenl 

concept clearly distinct f rom the complex number 0 .  

one has fur ther  the rule 

the multiplication. 

t a r y  theor em 

For  a=- 1 
1 . A  = A, which gives an important property of 

By using these r u l e s ,  one can ROW prove the elernen - 
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- 
since one has  A t 0 = 1 - A  -+ 0 . A  = (1 t 0) . A  = 1 - A  = k according 

to (1). = P B  
then R = (/"/" 

and it is a good illustration how the rules  in (1) a r e  applied one by one. 
As a corollary follows that, i f  W R = 0 €or 0 , then A = 0. The 

operation of " subtraction" is defined by the rule 

Another simple theorem says that, if Q R and Q # o ,  
. The proof fallows from the fact that fl = f * I= 

- 

One gets immediately the theorem A - A = 'Ei 
A - A =  l - A t ( - l ) - A  = { l+(-l)] A = 0 . A  = 5. I n t h e s a m e  

way, one can then proceed to derive a s e r i e s  of elementary ari thmetical  

rules for the linear se t  of a well-known charac te r .  

since one has  

Linear independence. 

the theory of linear spaces  by the following definition: 

- Let us  now introduce a fundainent.al concept in 

A finite subset of non-zero elements A , ,  A z j  . . . AN is s a i d  

to be l inearly independent, if and only if  the relation 

necessar i ly  implies that W ,  2 *. .& = . = o c , - o  

This concept paqovides i~ tool fo r  going f rom an arithn-hetical 

statement about elements oi the l inear space to '1 corresponding staterr icnt  

about complex numbers ,  and it will .  in the following, frequently be used 

for this purpose. Any subset of elements whia h is riot l inearly indepen- 

dent is said to be l inearly dependenl, and tlierc exists then a l inear  re- 

lation (4) between the elements in which at leas t  - two oi the coelficievts 

o(k are different f rom ze ro .  
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The next definition deals with the concept of a "basis" of a 

l inear space: 

A se t  of l inearly independent elements X i ,  X2, . . .  X 
said to  fo rm a basis  of the l inear space,  if and only if the 

subset A, Xi, X2, . . . X is l inearly dependent for every 

non-zero element A of the l inear  space; the number n is 

called the order  of the basis.  

is n 

n 

This definition leads directly to the following "expansion theorem" : 

If a linear space has a basis,  any element A of the space can 

be written as a sum 

The theorem is trivially t rue for  the zero-element which corresponds 
to the coefficients ai = a2 = . . . = a 
the relation 

= 0. For A 0, we will consider 
11 

where now a t  leas t  two coefficients Q5(& a r e  different f rom zero.  One 

has W #  0 , since otherwise the elements of the basis would be 
- 4  - 1  

2nd p1JttiE.r (i = --a( Cxk l inear ly  dependent: and, multiplying by Q & --& I 

one obtains expansion ( 5 ) .  Next one has the "uniqueness theorem": 

The coefficients a in the expansion of a given element A in 

t e r m s  of a basis  Xi, X2, . . . X 
k 

a r e  unique. n 

To prove the theorem, let  us assume that there  a r e  two different ex- 

pansions of an element A in t e r m s  of a given basis ,  so that 

By subtraction, we obtain 

i 
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and, since the subset X i ,  X2,  . . . X 

independent, this gives 

was assumed to be linearly n 
(ak - q-) = 0 o r  

for all k, which proves the uniqueness theorem, 

In the following, it will often be convenient to use "mat r ix  nota- 

tions" in which bold-face symbols will denote rectangular o r  quadratic 

arrangements of elements o r  c o m d e x  numbers ,  so that 

A rectangular mat r ix  which consists of a singe1 row o r  column will be 

called a row-vector o r  column-vector, respectively.  

will further be defined as a new mat r ix  in which the elements a r e  the 

"inner products'' of the rows of the f i r s t  ma t r ix  t imes the columns of the 

second matrix: 

.I \ L ( ~ L ) ,  

A matr ix  product 

The concept is, of course,  subject to the compatibility condition that the 

first matr ix  should have a s  many columns as the second has  rows. W e  

will further let K denote the " t ranspose" of the mat r ix  E .t i. e .  the 

mat r ix  having the rows and columns interchanged, so that K ke = Ktk' 

N 

ru 

Introducing the row vector lg = (XI: X2, . . . Xn) of the bas i c '  

elements and the column vector a of the coefficients ak: 

one can hence, instead of (5), simply use  the short-hand notation 

R - X a  
Since the coefficients a 
further introduce the notation 

according to (8) are uniquely defined, we will k 
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where the right-hand member implies that we consider the expansion 

of the element A in terms of the basis Z and selects  the coeiiirierit 

associated with Xk. 
for the evcluation of the coefficier;t a arid we will  return to t h l s  

question la ter .  

! 
Of CQUTSC, the s~yn!l:ol. doits not contain av.y recl;>e 

k '  

Transformations of basis .  - 
x = (XI, x2, . . .  Xn), and let  us consider an s rb i t r a ry  subset 

Y = ( Y i J  Yz, . . . Y ) of linearly independent elements.  

show that a lso the se t  X? may be used  as a basis .  For this purpose, 

we will expand each one of the elements Y in terms of X according 

to ( 5 ) ,  so that 

Let a linear space h a v e  a basis 

We will now n 

k 

The coefficients in these expansions for k = 1: 2,  . . n form together 

a matr ix  0 4  = { q ~ h  ) 
(13) into the form 

, so that one can condense the equations 

In the following, it is often convenient to use the theory of determinants. 

Let 3 = $s a = ! o ( ~ L  \ be the determinant of the matrix Q , 
and Pet qb be the cofactor of thc element Wk, . The expansion 

theorem for determinants g i v e s  then 

7- If r i s  the mat r ix  of the  e1eme~t.s 'kt . one c a n  hence w r i t e  the 

two relations (15) in the conc:e?>$ed form 
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MuItipl.ying (14) to the sight by , cIne obtains 

yf+ sxo(F = xe > 
otherwise the se t  Y would be llncarly dependent. and we note that 

D $ 0 is a Pecessary axid sufficient condition for the linear independence 
c f  the subset Y. Introducing t h e  new mat r ix  

wc obtain 

. It is clear that  D # 0 ,  sjnce 

) 
L= Jj-fF z e-’ /Q 

Substitution of this expression icto (11) gives fl x. @- y b % C i  , 
which indicates that the subset T may be ueed as a bas is .  One gets 

hence .the following transformation formula 

/ 

R = Y % ,  
u n d e r  a chmge of the basis .  

It is ROW clear  that every  linearly independent subset of o rde r  

n may be used as a basis .  

find a basis  of another o rde r  m, say the l inearly independent subset 

This shows also that it is impossible to 

Z l ,  Z2‘ . . .  Z where m > n. The elements Zi, ZZ‘ . . . zn would m’ 
. . .  z 

E + i ’  %+23 m again form a bas is ,  in which the remaining elements Z 
Z2, . . . Z 

1 3  m could then not be . could be expressed, and the subset Z 

l inearly independent. 

n > rn leads to a contradiction, and one has  consequently m- = E. 
number of a basis is hence unique and, since i t  is character is t ic  for the 

l inear  space concerned, i t  i i  called the o rde r  of the space.  

In the same way, one proves that the assumption 

The 

--. 

The se t  of all three-dirnensionzl vectors has ,  of course?  the order  

three,  whereas the space of all polynomials in the variable x of degree 

l e s s  than o r  equal to n has the order (n+.l). A s  a basis for a &scrip-  
2 n 

tion of this space one may chcose ” - 8 .  the powers  1, x, x , . . . x . 
In the first part of our treatment, we will confine our interest  to 

l inear  spaces of a finite order  n, whereas la te r  certain theorems will 

be generalized also to s , ~ a c e s  oi r7n infinite o rde r .  
-I-- 
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Linear manifolds,  

convenient to use the concept of the l inear  manifold introduced by the  

following definition: 

- In our study of the l inear spaces, it is often I 
If f = ( f i ,  f2 ,  . . . fk) is a linearly independent se t  of elements 

of the l inear space, then the collection of 2.11 elements 

J f W ,  +JaQz + * 

parameters  01 1 )  q z  . . . W k  forms a subspace of order ic, 

which is called the l inear  manifold 

fhwk for a rb i t r a ry  values of the comp!-ex 
4. 

spanned by the elem-ents 

f i '  f 2 ,  . . . fk. 

One has always k 4 n, but it is usually convenient to xeserve the 

terms given above to the case k < n. 

F r o m  the geometrical  point of view, one could speak o€ a single 

as a "point" in the linear space, whereas the l inear mani- element f 

folds fiat and if lq\+J$W& form a "line" and a "plane",  respective- 
i 

l Y  * 

Linear Operators 

An operator T is a rule  by means of which one maps  the elements 

A of a l inear space onto the elements B of another l inear  space,  so  

that B = TA. 

idea of a "function" y = f(x) , by means of which a n  independent variable 

x is mapped onto a dependent variable y.  There is one particularJy 

important c lass  of operators  characterized by the following definition: 

The operator concept is apparently a generalization of the 

. An operator 'I' is s a i d  to  be a l inear  operator, if it satisfies the 

. following two conditions : 

The elements A for which the operator  T is definer! a r e  said ~ C J  f o r m  

the domain of T, whereas the elements €3 = TR are  said to f o r m  the 
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range of T. 

In this section, we wi l l  consider only operators  mapping a 

l inear space onto itself o r  onto a subspace of itself, but la ter  we will 

also study more  general  mappings. 

There a r e  two elementary operators  of particular interest ,  

namely tlie identity operator I and tlie zero-operator 0 defined by 

the relations 
OP 

for  every element A in the l inear space.  The concept of the "ze ro -  

operator" is, of course,  different f rom the concept of the t tzero-element"  : 

and we note that the zero-operator i s  identical with the multiplication 

by the complex number 0.  

given by the differentiation d/dx, the integration Jy& 
multiplication by a complex constant & . It is c lear  that the domains 

of the first two operations may not coincide with the entire l inear space 

under cons ideration. 

Important examples of l inear operators  are 

, and the 

Let us now consider two linear operatore F and G.  Their SLIRI 

and product a r e  defined by the relations: 

By using the commutative law of addition in ( i)  
the addition of two operators  is commutative, so that  F -+ G = G + F. 

On the other hand, operator multiplication is in general  non-commutative, 

so that 

i t  is easily shown that 

(24) 

and, in the exceptional c a g e s  when F G  = GF, we will say that the two 

operators F and G commute. 



- 11 - 

Powers  of a l inear  operator F are 
repeated multiplications according to (23) : 

defined by a series of 

and they may then be used to define pdynominla of an operator:  

a are complex constants. .It is easy to prove ai' a2, * ' *  n where ao, 

that any polynomial operator P(F) is a linear operator, if F ie a 
linear opsr ator. 

lnveree operatore. - Let us now introduce a new concept connected 

with the inverse of the mapping A B, i .e.  the mapping B A. 

If T is a linear operator such that there exists a unique element A 

in the domain of T corresponding to any given element B in the range 

of T accorcting to the relation B = TA, then there exists a unique 

mapping of B on A, and the associated operator is called the inverse 
of T and is denoted by T l i :  

It is easily shown that, if T is a linear operator, then the inveree T-' 
io  also a linear operator.  

According to the definition, one hae to show that every element 

B ha8 a unique "image element" A to see that T-' exists. A coneider- 

able simplification i s  hence rendered by the fact that it is actually 

eufficient to check that this happene for the single element B = 0, 

according to the following theorem: 

c 

(28) The operator T-' .. exists, ;if and only if the relation 
TA = 'ii implee A = 0. 

- 



3efore making the proof, w e  obaervs that every l inear operator maps 

the zero-element of its don-ain on the zero-element of i t s  range, since 

TO = T(O. A) = o - TR 3 5.  et tin first aeeume that T - ~  exists. 
- 

- 
Since “c~o mapphg if3 now unique, the image element B = 0 correewnds  

to A = 0 ,  i. e. 

of the tliesruni. 

- - 
TA E ‘si impliee A = 0, which prove8 the f i r s t  par t  

In orcq.er to prcvc :he wsctnd part, one atarts from the assumption 
L” 

that TA = z  implisa h = 0 .  

must be unique fop, if *b’cre would be two d-arnents A‘ and A‘’ c o r r e s ~ m < . i ~ ~ g  

tu one and the same i m x g e  e.?ler::ent E ,  onc wod.d have 

It i s  e a ~ y  t2 see that thc inverse rnmping 

i. e.  one worrld obtain a contradiction. 

un:que, and T exiatn. 
Hence, the inveroe mapping is 

- i  

.Matrix reFrensntation6 of operators .  - Let us now conaidar a finite 

space of order n which ha0 a baeis X = ( X i ,  Xz, . . . Xn). 
to (5),  every element A may be expresaed in  the form 

According 

K 

where the coefficients % are unique and denoted by the symbol 

% = $, X I A  
elemente of the l inear rcpace onto i t o d f  or  onto a subspace of itself, and 
TA is hence an element of the epace which may he expressed in te rme 

of the baaie X. In o rde r  to treat this  problem, we will introduce the 

image elemente of the elementar 5 of the basis through the re la t j -  .AB 

. A l inear  crprator T is aesumed to map the 
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r7 

12, Tb 7 ; s . .  . TQl T =  , . . , , ,  . . . . . .  

x1 T,lz T l 3  . .  ' xq 

x 

where the complex numl?ers T a r e  the imiquely determined 

expansion coefficients given by  the symbol: 
k6 

\ 

U s i n g  the properties of 1inea.r operators, one obtaics from (30) the 

formula 

which will b6 called rhe mat r ix  representation of the l inear  optrator  T 
with 'Pespec!: to the bas is  E. 

We note that the symbol (32) 
evaluation of the mat r ix  elements,  and that this finally depends CSE the 

realization of the elements of the space. The matrix Tx is here 

solely defined through the relations (3 11, which may he condensed into 

the ma t r ix  formula 

does not give us any recipe for  the 

The expansion theorem A = X a  gives then directly 

( 3  52 

which is the matr ix  form for the ,general formula (33) .  
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The sum and product fo r  two operators F and G were  defined 

b y  the relations (22) and (23),  respectively. For the ma t r ix  represerita- 

tion of the sum, one has the rule 

The proof follows from the f ac t  that 

F o r  the product, one obtains s imilar ly  

(3 9) 

which shows that the matr ix  o f  an operator product is the matrix p ro -  

duct of the mat r ices  of the individual fac tors .  According to ( 9 ) :  one 

has for  each element 

Using these ru les ,  one can now prove that  every algebraic relation 

between operators corresponds to a similar algebraic  relation between 

the matr ix  representations.  W e  note particularly that, i f  the u p e r a t o r  

T has  a11 inverse T , the la t te r  operator has a matrix representation 

given by the inverse matrix T . 

- 1  

- 1  
X 

Similarity t ransformations.  - Let u s  finally consider the  tralisfur?n,tt 1 0 x 1  

of a matr ix  representation under a change of bas is  
is one basis and Y = (Yl, Yz, . . . Yn) 

to  (14) and (17) the connoctions 

I f  X 

i e  another ,  o n e  has :>('( r:rdifig 

( X i .  X , .  . . . X l i l  
L 
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where p 
a linear operator T a r e  fur ther  defined by the relations 

O(-‘ , The matrix representations Tg and Ty of 

respectively. This gives immediately 

(43) 

since I is a linearly independent subset.  

(4 I )  ., one obtains hence the following transforrndtion Sormulas 

Under a chznge of basis 

i with p = a- , which a r e  called similarity transformations.  - 

- Projection Operators .  

the farm A = 

defined by the relation 

- Starting from the expansion theorem ( 3 0 )  in 

xkak , we will now consider the operators  Ok 
ce 

(45) 

for k = 1 ,  2, 3 ,  . . . n. This implies that the cperator Ok maps an 
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th element A onto i ts  component Xkak, ox that it se lects  the k 
component out of the expansion. 

shown that 

Using the definitions, it is easily 

which means that Ok is a l inear operator .  

Ok, i. e .  the selection of the kth component out of the kth coinpcinent, 
2 st i l l  leads to  the same resul t ,  one has 0 One says thzt the 

operator  0 is "idempotent" and, for geometrical  reasons ,  one 

speaks also of a projection operator.  This concept is defined in various 

ways in different par t s  of the l i terature ,  but here  we will use the t e r m s  

idempotent operators  and projection operators  as synonymous. Since 

the selection of the kth component out of the bt" component for k #,b 
necessarily gives a zero-clement 

OkOb = 0 and says that the opera tors  0 

In summary,  we have hence '  

Since the repeated use of 

= Ok. k 
k 

one  ha5 iu r ther  the operator  relatiel: 

and O b  a r e  "mutually exclusive". I< 

Using the expansion theorerr! (5) an3 ( L i ? ) ,  one can furfhcr  see  t h a t  

(4 e! 

fo r  every element A, which shows that the operator  ( 1- 2 0%) 
must  be a zero-operator .  Hence one has the relation 

:=20,* lo= I 

The operators  Oi' 02,  . . . 0 
n 

projection operators  

One says also that relation (49 )  is a ' 'resolution of the identity" in terms 

form afami ly  of mutually exclusive 

which together adds up to the identity opera tors .  

of projection operators.  



Let us now consider the operators  Q which a r e  defized by 
F 

the relation 

2 
Using the two relations (47), one finds immediately that Qp 2 Q>. 

i . e .  Qp is a l so  idempotent. One g e t s  particularly 

P 

which is an element belonging to the l inear manifold spanned by thc sxh- 

X z ,  . . . X One says that the element Q A is  the ' ' p r ? ; ~ r t i c ~ l '  set XI, 
of A with respect  to this rnmifold out of the basis  X = (XA ~ X,, . , I S i 

and Q 

P P' 
L. n' ' 

is the associated projection operator .  

By using the notation (12), one finds that OkA = X a 

P 
= X { X I / A  IC k k . k' 

fo r  every element A ,  and it i s  hence suggestive to t r y  to w:.ite the 

projection operator symholically in the form 

F o r  the projection on a subspace of order p, this gives 

(5 2 )  

and, f o r  the resolution of the identity, oile obtains particularly 

1 = c, xk { X k I  1 . These notations a re  here of a purely 

fo rma l  nature,  but they will l a te r  turn out to be quite forceful. 

In conclusion, we will study the mat r ix  representations of the 

opera tors  0 according to (31). Using (45), we obtain k 
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. 

showing that the mat r ix  representation of 0 has a single non-zero 
th element, which equals I and is placed in the k position oi the 

diagonal so that 

It is easily checked that these matr ices  satisfy the fundamental a lgebraic  

relations (47) and (49). 

Trace of an operatoz. - 
the sum of the diagonal elements:  

Thefttrace” of a quadratic matrix is  defined a5 

If M = BK 
rectangular mat r ices ,  one has the theorem 

I, where II; and L a r e  two quadratic o r  compatible 

even if the two matrices in general do not commute, 

fact that 

This depends on the 

Using (57), one can immediately prove that the t r ace  of quadratic mat r ix  

which is a product of a finite number of quadratic ox compatible 

rectangular matr ices  is. invariant under a cyclic permutation of the 

fac tors .  



I 
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I 
The trace of an operator T i s  defined a s  the trace of one of 

its matrix representations: 

and we note that this quantity is independent of the choice of the 

representation. According to (44) and ( 5 8 ) ,  one has 

which proves our statement. 

projection operators. From (55) follows directly 

Simple examples are provided by the 

rn(O,)= I 

whereas one has Tr(Q ) = p according to (50) .  
P 



. 

3 EIGENVALUE PRORLEM 

Let us consider a linc,;r mapping  of a given l i r r e a y  space  

represented by the operator T. 
any non-zero elements C forming "points" o r  ''lines'' whjzh a r e  

invariant under the transformation 

The problem is whether there a re  

7'c =xc 
This is an eivenvalue problem, and the non-trivial solutions C a r e  

called eigenelements and the constant 2 the associated eigenvalue, 

Geometrically the eigenvalue problem is connected with the ques t ion  

of finding the "rotation axis" of the transformation,, and it is sometimes 

also called the "pole problem". 

not only for quantum theory but for large parts of mathematics and  

physics in general. 

Equation (62) is of fundamental importance 

The eigenvalue pro?~lern may be given a n  alternative formxrtacio?r, 
/ = -  

F r o m  ( 6 2 )  follows that (1' A ,  ) L 0 Lor C # 6 ,  and, according 

to (28), this.implies that tlie operator ( T1-lv 1 has no i n v e r s e ,  i . e .  

that the operator (T- h * I)-' becomes singular for the eigenvalues. 

In many connections, i t  is convenient to introduce the ' f r e ~ ~ l v e n t l '  of T ,  

which i s  the inverse operator 

variable.  W e  note that the resolvent exis ts  for all values of z ,  excep? 

the eigenvalues . It is possiblc to  develop the ent i re  eigenvalue 

theory on this basis .  

- 1  [T9- 2 1) , where z is a coxnplex 

Here we wi l l  instead proceed in another way based on the use ol 

Considering a l inear  space of order  n ,  we the matr ix  representations.  

will introduce a basis X = (Xi, X 2 ,  . . . X 1 and the mat r ix  represent ;? -  

tion Tx of T defined by (35). Expansion of the eigenclernent (; givc fi 
XI 

where the coefficients c f o r m  a column vector e. The eigenvalue k 
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problem (62) may be written in the form 

this leads to the mat r ix  relation 
(r- A .  1) = 8 , and 

However, since the se t  X is assumed to be l inearly independent, every 

relation X a  = 'zi implies a = 0 ,  where 0 is a column vector with the 

elements 0, and hence we obtain 

This is the mat r ix  form of the eigenvalue problem (621, and it is 

equivalent with a homogeneous system of l inear  equations : 

m 

fo r  k = 1, 2, . . . n. 

only i f  

Such a system has  a non-trivial solution, if and 

.-.l.:..I. A.7- - ---. - 7  
w I I L L l l  is LLlt :  well-known "secular equation". 

The equations (63), ( 6 6 ) ,  and (67) form the basis  for  a la rge  

par t  of quantum chemistry,  and good examples a r e  provided by the MO- 

LCAO-method and the method using If superposition of configurations'!. 

However, since there  is no sca la r  product introduced here ,  there  cannot 

be any non-orthogonality problem connected with (66) and this indicates 

that the mat r ix  elements T defined by (31) may have a somewhat 

different meaning than usual; this problem will he studied in greater  

detail in a la te r  section. 

kb 

We note that the mat r ix  equation (65) is "covariant" under a change 

of basis ,  say y = ga ,. According to (44) and (la), one has 
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where p z a-’ , and hence, we obtain 

which proves our statement.  

Characterist ic polynomial. 

complex variable z by the relation: 

- Let  us now define a function of the 

It is easily seen that P(z) is a polynomial of degree n:: 

where an = ( - l )n ,  and P(z)  is  called the “charac te r i s t ic  polynomial” 

associated wsth the l inear operator  T. The coefficients a r e  independent 

of the choice of representation, since one has  
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where the las t  simplification is  obtained by using the fact that &Q..& 
. P 

= &lpq = Ck.4 (1) = 1 ,  
The character is t ic  polynomial has exactly n roots in the complex 

plane h,, I h t  ~. . . '2, which a re  the eigenvalues of the problem. The 

factor ia l  theorem gives immediately 

There may be multiple roots 

gk i s  also called the "order  of degeneracy" of the eigenvalue. 

eigenvalue is "non-degenerate" i f  it has g = i , i. e .  if the root is 

distinct. 
dist inct ,  and la te r  we wi l l  study the general  case.  

, and the degree of multiplicity 

An 

In the following, we wi l l  f i rs t  consider the case of all roots 

Case of all roots distinct. - In this case ,  all the roots 1% a r e  single 

complex plan;. The eigenvalue problem (62) takes the fo rm TLkx 
o r  

roots ,  and one has n distinct eigenvalues 34 , 12) . . . . 1- in the 
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f o r  'k = 1, 2, . . . n. 

by the operator ( T- 
an "eliminator" . 

We see that the eigenelement Ck is eliminated 

hk 1 ), which in this connection will be called 

The following theorem is of fundamental importance: 

If all roots 24 9 L , ... 2m of the secular 

equation a r e  distinct, the associated se t  of eigen- (74) 

elements Ci, C2, . . . C n are linearly independent. 

The proof is simple. Let us consider a l inear  relation of the type 

and let us operate on this equation with the product of the "eliminators" 

for k = 2, 3 ,  . . . n, i .e .  with 

which gives Cr2 ? ( 4 f c x & ) c ~  a i  

a eimilar way, one shows that 

products which will le t  only the t e r m  fo r  k = 2,  3 ,  . , . n, respectively,  
survive.  

0 , andhence  o(,= 0 . In 
W2 = W2 = . . . =ar = 0 by using eliminator - 

The theorem is thus proven. 
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Since one h a s  now a set  of n l inearly independent elements 

c = (cl, c2, ... Cn) in a space of the same order, one knows 
according to (13) that this se t  forms a bitsis of the space. Thla give? 

the theorem about expansions in eigenelements: 

k 

If all the roots of the secular equation are distinct, one m a y  

expand an arb i t ra ry  element A -Ff the linear apace iu t e r m s  of 

the eigenelements CI, C2, . . . C 
* 

of the operator T: n 

(76 )  

Let us now choose the set C = (GI, C2, . . . Cn) as the basis for the 

mat r ix  representation of T. The eigenvalue relation T c, Ab;, 

may, according to (311, be interpreted so that T 

I 

has the special form: 
d 

which is called a "diagonal matrix". Using (44), we can then say that 

there exis ts  a similari ty transformation which brings the inatris T 
to diagonal form. According to ( 6 3 ) ,  one has Ck = X e k  and, arranging 
the column vectors ck in a row, one obtqins a quadratic matrix: 

X 

and the transformation d 1 This gives 

showing that, in the distinct case,  the matr ix  Tx can always be brought 

to diagonal form. 



Cayley - Hamilton theo rcE .  - A polynomial of an operator T is 

defined by the expression ( 2 6 ) .  

P ( z )  defined by (701, one has thr Cayley-Harnilton theorem: 

b 'or  the character is t ic  polynomial 

I------- - -- --- I 

i. e. P(T) is identicr:l to tlie ere>- A ~ > e r ~ i ~ ' l r .  Jr i  the distinct case, the 

proof is simple. According tu <'2b), r i ~  n c b i t r s r y  element A of the 

space rllay be expanded in the f c r m  

Since this happens  f o r  every A .  ( : I E  h a s  PfT) :: 0 .  

In the general  case_ of routs of  v a r i o ~ s  multiplicit ies,  we will s t a r t  

with the matr ix  relation (16) zyp l i cd  to  the operator  BI# = Tx - 
Letting N be the matrix of the cclfactors N k h  

in N, we note that each elemciit 7442 is a polynumia l  of degree (n-1) 

in the variable z, and that xgl kicncc, ma.): he wri t t en  in the  form: 

z d l .  
to the element Mkb 

where N 
P 

gives immediately: 

is the mat r ix  of thc i*a?effic-ie-ts for zp. Application of (16) 

o r  
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~ 

Multiplying together and separating af ter  powers of z ,  one obtains 
/ 

) 
T - q  = a,4 
c 

TG, - = a , . j  ~ 

. . . . . . . . .  . 
c. 

T i P m - ,  -4YM-z = am-1. 1 ) - 
--Nfl-, = a,. a . 

By multiplying these equations successively by 1, T, T 2 , . . . Tn and 

by summing all of them together,  one gets finally 

which proves the Cayley-Hamilton theorem P(T) = 0 

the general  case.  This gives immediately P(T) = 0 by means of the 

equivalence theorem previously discussed. 

in ma t r ix  fo rm in 
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4 .  PROJECTION OPERATORS AS EIGENOPERATORS; 

RESOLUTION OF: IDENTITY IN THE CASE 

O F  DISTINCT EIGENVALUES 

Eigenprojectors. 

o rde r  n. 
basis  X = (XI, X2, . . . X,), there  is associated a family of projection 

operators  0 

and fo rm a resolution of the identity according to (47) and (49). 
now particularly study those projection opera tors  O i ,  O Z j  . . .  0 as 

a r e  associated with the eigenbasis C = ( C l j  CZj  . . . Cn) to a l inear 

operator T having only distinct eigenvalues 2 ,  . One may wri te  the 

expansion theorem (81) in the form 

- Let u s  again consider a l inear space of finite 

In a previous section, i t  has  been shown that, with every 

02, . . . 0 which a r e  idempotent, mutually exclusive n 
Let us 

n 

R =  2 fl,, 
2Q= I 

where A C a and one may consider (88) as an "analysis" of an 

element A in t e r m s  of eigenelements to T, satisfying the relation 
k k k' 

n, = h,fl,, 

According to (45), the projection operator  Ok i s  defined through the 

selection property: 

and one says  that the t e r m  o r  "component" Ak is the projection of the 

element A on the eigenspace of T associated with the eigenvalue 

Since one has ( T@& - h, ok ) A = 0 
the operator ( TO,- hkOh ) i s  necessar i ly  a zero-operator , ,  which 

gives 

& 
for an a rb i t r a ry  element A ,  

The projection operator Ok satisfies hence the fundamental eigenvalue 
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relation (62),, and Ok may be characterized a s  an "eigenoperator" 

o r  'leigenprojector" to T. 

operators satisfy fur ther  the basic formulas 

According to (47) and (49), the projection 

Letting the operator T work on both s ides  of (93) and using [31),, one 

obtains 

m 

which is called the "spectral  resolution" of the operator T. If f(z) i s  

an a rb j t r a ry  polynomial in the complex variable z ,  one gets fur ther  

M 

and, f rom the polynomial, one can then proceed to define an a rb i t ra ry  

algebraic function of T. 

It is clear  that we a r e  here  treating an almost tr ivial  case,  but 

the important thing is that all  the concepts introduced a r e  of fundamental 

character  and may be generalized. 

Matr ix  representation of the eipenprojectors. - In the C-bas i s  the 

eigenprojectors 0 have mat r ix  representations of the form (55) ,  i .  e .  k 

i .  e .  there  is a single non-zero element, which equals 1 and is  placed 

in the kth position of the diagonal. I t  is now possible to derive the 

m a t r i x  representations in  the X-basis  by means of the general trans-  
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formation formulas (44). One has x 8 and 

where 8 = (c , ,c ,  .. e,) is specified in ( i s ) .  It is convenient 
to w r i t e  out the: matr ix  g-' explicit ly in the form:  

w h e r e  d n 
the matrix (96) tu  the X - h a s i t . .  one o b t a i n s  

d Z J  , . . d s tand  Pot. a set  of rc:w v t - c t o r s .  TrcLnisforming 

One has further , which g ives  

(9  9) 
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Product form for the eipenprojectors. - In this section, we will a r r ive  

to the concept of the eigenprojectors in a completely different w a y ,  

which has certain advantages in the generalizations to  be ca r r i ed  out 

la te r .  Again we will consider a linear space of finite o rde r  11 and a 

linear operator T having only distinct eigenvalues 

with the eigenelements C i  , C2,  Cj, . C . In the proof for  the l inear n 
independence of this  set ,  we used operators of the type 

products of "eliminators" according to (73 ) .  

14 I 
23 .. . 

(75) which a r e  

One has  particularly 

which shows that the right-hand side will vanish except for 

This gives further 

&2 = ,!, 

(102) 

The product operator in the left-hand member has hence exactly the same 

character is t ic  property (54) 
introduced, and one obtains the alternative form 

as the projection operator  Ok previously 

Using the Cayley-Hamilton theorem in the product form 

pp)= 'ii: ( A , , i -  I- ) , one can now easily give alternative 
-k 

proofs for the fundamental relations (91)-(94),  and we will re turn to this 

approach in a l a t e r  section in connection with the generalization to l inear 

spaces  of an infinite o rde r  



3 2  

5. CLASSICAL CANONICAL FORM O F  A MATRIX 

OF FINITE ORDER 

Nilpotent o p e r a t o r s .  - B e f o r e  s t a r t i n g  the  R e n e r d  t r c a t r n e n t ,  we  wil l  

c o n s i d e r  a s p e c i a l  class of o p e r a t o r s  ca l l ed  "n i l -poten t  o p e r a t o r s "  with 

c e r t a i n  fundamenta l  p r o p e r t i e s  : 

An o p e r a t o r  N is said to be n i lpo ten t  of order p ,  if 

N P = -  0 ,  
and NP- '  f 0 .  

In o r d e r  to s tudy  such  a n  o p e r a t o r ,  w e  wil l  i n t roduce  a c e r t a i n  b a s i s .  

S ince  N '-' # 0 ,  t h e r e  e x i s t s  a t  l e a s t  o n e  e l e m e n t  D # 
N P - '  Dp # 0 . Sta r t ing  f r o m  t h i s  e l e m e n t ,  une can now def ine  a ser ies  o f  

e l e m e n t s  D 

, s u c h  tha t  
1' 

. . . D2,  D ,  s u c c e s s i v e l y  through the  rclations 1' - 1 ' D,3 - 2 

T h e y  arc> a l l  d i f fe ren t  frorn the  z e r o - e l e m e n t ,  a n d  they fu l f i l l  the  r e l a t i o n s  

= N P - ' n  2 -  3 ND = N U  - N D j = . . .  

e l e m e n t s  D 1 > D L ,  D j ,  . . . D 

l i n e a r  re la t ion  

- 
= 0 .  It is now e a s i l y  s e e n  tha t  t he  

1 L P- 1 
are  l i n e a r l y  independent .  S t a r t i n g  f r o m  the  

P 

- 
and mult iplying to  t h e  l e f t  by N P - l ,  one o b t a i n s  3, g = 0 , i .  e .  

w g =  0 . Subs t i tu t ion  into (106) g i v e s  t h e  s i m p l i f i e d  r e l a t i o n  
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- 
and multiplication to the left by N '-' gives fur ther  4, Qt-1 = 0 , i .  e .  

at-( ,= 0 . Proceedfng in the same way, one obtains finally 

c Y , = q z  . * . = w t =  0 , which shows that the se t  D l ,  T I z ,  . . . D 
P 

is linearly independent. 

Let us now f i r s t  consider the case  p = n, where n is  the o rde r  

of the space. 

basis.  F r o m  (105) follows that 

One can now choose the se t  D = (D1, D2, . . . Dn) as a 

Interpreting these equations according to (3 1) , one obtains the following 

mat r ix  representation of N in the 

This mat r ix  has  zeros  everywhere, 

D-bas is :  

except in the f i r s t  diagonal above 

the main diagonal. A matr ix  of this type is called a "Jordan block", 

and it represents the classical  canonical fo rm of a nilpotent matr ix .  

Jordan blocks of order  1 ,  2 ,  3 , 4 ,  . . . take the special  form 

The 
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I 

0 
0 ’  

0 

\ 

and we note that such a mat r ix  can never be brought to diagonal form 

by a similari ty transformation. Nilpotent mat r ices  a r e  of fundamental 

importance in physics in connection with so-called shift-operators,  for 

instance, the step-up and step-down operators  M, and M in the 

theory of angular mornenta. 

In the case p ( n ,  we observe f i r s t  that every mat r ix  of 

o rde r  n 

nilpotent of an o rde r  which equals the order  of the largest  Jordan block. 

For the case  n = 4 one has ,  for  instance,  the following possibilities 

which consists of a diagonal s e r i e s  of Jordan blocks i s  necessarily 

$: 3 

0 1  
0 

01 

0 

g =  z 

0 ’( 
0 

01 
0 

Below the mat r ices ,  the o rde r s  of the Jordan blocks entering the entire 

matr ix  a r e  indicated, and these numbers  a r e  called the “Seg1-G character-  

is t ics”  of the matr ix .  

number of partitionings of the integer n.  

The number of types occurring corresponds to the 

In o rde r  to prove thnt every nilpotent mat r ix  having p < n may 

be written in this spec.ial f o r m ,  w e  will consider the subspace 

original space V which is such tha t ,  for every element A in V one 

has NP-’A # 0 .  Let  the order  of the subspace 

span this space by means  of n linearly indcpendent set  of e lements  

D I ,  Db, . . . ~ ( 9 )  

which a r e  not all  identically to z e r o ,  one has  conscquc>ntly 

V of the 
P 

I] ’ 
V be q ,  and le t  U S  

P 

(+’ a / ’1 
F o r  every s e t  of complex numbers  ~ p ,  . r P P 

and this means also that t h c  re1 a t ’  1011 
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(i) (i) (i) (i) 
D l  ( # 0) according to the scheme (105), o r  D , . . .  D2, p - 1 '  p-2 D 

I t  can now easily be shown that the pq elements D (i) , fo r  i = 1 ,  2 ,  . . g 
j 

and j = 1,  2, . . . p ,  fo rm a linearly independent se t .  

will consider the l inear relation 

F o r  the proof,, we 

Multiplication to the left by NP" will annihilate all t e r m s  except those 

for j p and gives 

.? and 
/ // - = w $  ( T )  = 0 

According to (1 13) , one has then a( = d - . . 

relation (115) may be simplified to the form 

Multiplication to the left by NP-' will annihilate all t e r m s  except those 

fo r  j = p-1 and, using (114), one obtains 

. Proceeding in this way, / Q - .  s 0 
Q ti) 

ii 

e-' i . e .  d r-1 = o'gl - . . . . 

a r e  necessarily vanishing, one finds finally that all the coefficients 

which proves the theorem. 

Since the number of independent elements cannot exceed the o rde r  

of the space, one has the condition p q  n. If it happens that p q  = n ,  
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(i> 
j 

one chooses the elements D 

the cor responding relation 

as a bas i s ,  and, according to (114) o r  

(1  10) 

one finds that N has  a matrix representation which consists of q Jordan 

blocks of o rder  p. 

If p q  < n ,  we will consider the subspace V of the total 
P-1 

space which is such that ,  for every element A in V one has 

NPe2A # 0. 

independent elements DL- 

which means that r 2 q. If r = q ,  one proceeds to consider the space 

Vp-2 .  

p-1 '  
Le t  the o rde r  of this subspace be r .  One has  already q 

D "  , . . . D(') , belonging to this space ,  
P- 1 P- 1 

I f ,  on the other hand r q,  one selects  r '= ( r -q )  elements 
E I' . . . 
D 'I 

such that together with the elements 
Ep- l *  p-1' P- 1 

P- 1 (k) (k) (k) $4 Db-19 p- f"  

subspace V p - 1 '  Introducing the elements Ep-2 ' E p - 3 '  - * -  ' 1 

..dq) they form a l inearly independent se t  which spans the 

through the relations 

I (i) (k) 

j 1 
one obtains a se t  of p q  -t (p-1) r elements D , E which a r e  easily 

shown to be l inearly irdependent. If n = p q  + (p- 1) r , one can choose 

this se t  as a basis  and obtains a ma t r ix  representation of N which con- 

sists of q Jordan blocks of o rde r  p ,  and r 

On the other hand, if n 7 p q  t (p- 1) r ,  one proceeds by considering thc 

subspace V ~, etc .  In this way, one proves that there  exis ts  a spec-iijl 

basis in which every nilpotent matr ix  N of o r d e r  p has  a representatiorl 

which consists of a diagonal s e r i e s  of Jordan blocks character ized by their  

o rde r s  or Segr i  character is t ics .  

I Jordan blocks of o rde r  (1)- 1 ) .  
1 

P- 2 

In conclusion, we observe that a nilpotent m a t r i x  N has  only tlle 

eigenvalue 0 which has  the multiplicity n ,  and that the associated C a y l c y -  

Hamilton equation is hence 

A i "  0 ,  
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However, if the la rges t  Jordan block has  the o rde r  m L n: the nil-  

potent mat r ix  satisfies actually also the relation 

which for  m 4 n has  a lower degree than (12i), and one says that 

(122) is a "reduced" Cayley-Hamilton equation. This concept will be 

of fundamental importance in the following, 

Classical canonical form of a mat r ix  in the general case.  

previous sections, we have particularly considered the case of a l inear 

- In the two 

operator T which has only distinct eigenvalues 2,)  1 ~ , , . A m  
and we have shown that the matrix Tx in an a rb i t ra ry  representation 

X may be brought to diagonal f o r m  by a suitable s imilar i ty  t ransforma- 

tion (79). 

In this section, we will consider the general  case in which one o r  

more  eigenvalues may be degenerate corresponding to multiple roots to 

the character is t ic  polynomial (70).  

possible to bring the mat r ix  to diagonal form,  but other simplifications 

may instead be car r ied  out by feasible similari ty transformations.  

In such a case,  it is usually not 

In order  to study the effect of a degeneracy, we will f i r s t  con- 

s ider  the case of a single eigenvalue 

According to the general  Gayley-Hamilton theorem (80), the operator T 

sat isf ies  the algebraic equation 

having the multiplicity n. 

(T-  = 0 ,  
This implies that the operator 

of an o r d e r  p L n.  Since the operator N may be represented by a 

se t  of Jordan blocks, there  exists apparently a basis in which the operator 

T may be represented by a set  of blocks having the eigenvalue 

diagonal and the number 1 in the diagonal above!")According to (1 l i ) ,  we 

obtain for  n = 4 the simple examples: 

_r\l = T- x. 1 is a nilpotent operator 

1 in the 
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f =  3 

which may be sufficient as an illustration. 

p is determined by the number m, which is the o rde r  of the largest  

Jordan block, i. e .  the la rges t  Segr i  character is t ic ,  so that 

Again we note that the order  

(125) 

F o r  p 4 n,  one obtains hence a reduced Cayley-Hamilton equation. 

Next, we will consider the general  case when the l inear operator 

T has eigenvalues 

respectively, with g l  t g2 t g3 t . . 
Hamilton theorem. (80) may be written in the fo rm 

h,, .Il, A 3 )  . .  . of the multiplicity g l ,  gz,, g 3 ,  . . 
= n. In this case ,  the Cayley- 

, 

The characterist ic polynomial in the complex variable 

in the form 

z may be written 

and, using the technique for developing into partial  fractic.)iis, orie obtains 



w h e r e  q ( z )  I S  ;i polynorninl of  t1c~grc.e less than  g k .  

c1irc.c t ly tho i d e n t i t y  

This g i v e s  

(1 2'3) 

which is val id  even  i f  one substitutths thc l i n e a r  o p e r a t o r  

z a n d  the ident i ty  o p e r a t o r  I i n s t ead  of 1: 

T ins toad  of 

This  i m p l i e s  that one  can  siil)divide the o r ig ina l  space V of o rder  n into 

s ub s pa c e s W 1 ,  W2! . . . W k  a s s o c i a t e d  with the  individual  e igenva lues  

by  the f o r m u l a s  
> 12 I L 

n 

(1.32) 

7 
- 

i .  e .  t h e  o p c r a t o r  A, = 7 - I., i is  ni lpotent  of <in orcler no t  c.xccAc.ciing 

gk n ] thin thc, siibspacc W-k. IZy {hoos ing  a convcnic ln t  I jas is  wi th in  

on(\ < a i  i1oxv rc,prcAst.nt the  o p e r a t o r  

prc\ i iously d i s c u s s c d .  The. o r d e r  of the, s r lbspacc  W k  must b e  t'x;t( t l y  

v q u d  t o  the  m u l t i p l i c i t y  gL. 

wk ' 

Nk 
i n  the  classic.cil canonic.tl f o rm 

I f  thc .  o r t lc r  would l)c h i g h e r ,  one c.ould 

c o n s t r u c t  s r . c u l ; i r  d c ~ t c ~ r m i n n n t  for 'r in  which the cigc.nvalucb Xk would  

h a v e  a h ighe r  rnul t ipl ic i ty  than 

the  o t h e r  hand .  if  the o r d e r  wou ld  O c  l o w e r  than  

gk , which would bc a c.ontradjc.tion. On 

gk: the sum of the o r d e r s  
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of the subspaces W would be lower than n, which is another con- 

tr adi c tion. 
k 

By using the operators  in ( I Z S ) ,  it is easily shown that elements 

associated with different subspaces W are linearly independent. The 

bases  used to span the subspaces Wk may hence be put together to form 

a basis  for the complete space V. In this basis ,  the mat r ix  for T will 

hence consist of a se r i e s  of diagonal blocks of the type (124). 

block is conveniently characterized by the eigenvalue A h  and the 

associated Segr6 character is t ics  describing the form of the diagonal 

immediately above the main diagonal. 

k 

Each 

Reduced Cayley-Hamilton equation. - Let us consider an eigenvalue 

having the degeneracy gk and the la rges t  Segr6 character is t ic  m 
Cayley-Hamilton theorem has the product form 

The k' 

(1  33) 

0 
However, since the la rges t  Jordan block associated with the eigenvalue 

axcc, has the order  m it is directly seen that the mat r ix  T, and k' 
hence also the operator T, satisfies a reduced Cayley-Hamilton equation 

of the form 

7-----1 

The associated polynomial F ( Z )  ? (. 1 j -  3 "a is often called 

the minimal-polynomial associated with the operator  T. 
1 

This concept is of particular importance in treating infinite 

become infinite and the l inear spaces.  

Cayley-Hamilton theorem (133)  loses  its meaning, it may  happen that the 

numbers m stay finite and that the reduced equation (134) exists.  We 

will return to this problem in a la te r  section. 

Even if the degeneracies- g k 

. j  



Triangularization of a matr ix .  

possible form of a matr ix  representation for  a l inear  operator T i s  of 

fundamental importance,  we will here  briefly reconsider it f rom 

another point of view. 

- Since the problem of the simplest  

Let us again s t a r t  from the eigenvalue problem, TC = A c  . The 
theory of systems of l inear equations tells us that, fo r  each root 

to the secular equation (67), there exists a t  l ea s t  one eigenelement 

Ck. 
elements associated with different eigenvalues a r e  necessar i ly  l inearly 

independent. 

Xk 

Using the same technique a s  in (74), one can easily show that eigen- 

Starting f rom the eigenvalue 2, and the associated eigen- 

element,  we will now choose a se t  of l inearly independent elements 

Ci’ Y2: Y- . . - Y as a basis.  The operator T gets the2 a matrix 

r epr  e s entation of the type 
5 ;  n 

where the form of the f i r s t  column depends on the relation TC, = c, 1, 
and its interpretation in mat r ix  form according to (3 1). 

that, by a s imilar i ty  transformation, one can bring any quadratic matr ix  

T 
the diagonal. 

l a r ly  the quadratic mat r ix  of order  (n-1) associated with the elements 

This implies 

to the speciai  form j i 3 5 j  with oniy zeros  in the f i r s t  column beiow 
X 

Let us now partition the mat r ix  (135) and consider particu- 

Y2, Yj, ... Y : n 

(135‘) 

By a s imilar i ty  transformation, this mat r ix  may now be brought to the 

f o r m  (135) and, repeating the procedure, we a r e  finally led to the matrix:  
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which is characterized by the fact  that it has only zero's belcvi tkic entire 

diagonal. 

( x , - q 2 < - 2 ) ( x ; - E )  * .  . - 0  and has the roots I , ,  ":! 1';) , ~ 

one can conclude that these numbers must  be equal to the original e i g m -  

values . 

Since the associated secular determinant takes tli:, lo rm 

This simple procedure is called a triangularization of a mat r ix ,  

and it shows that any ma t r ix  may be brought to a triangular form of the 

type (136) with the eigenvalues in the main diagonal and only zeros  
below i t  by means of a suitable similari ty transformation. 

Let us now consider a degenerate eigenvalue 2, and a r r anze  

the triangularization, so that this eigenvalue is repeated consecutively 

along the diagonal as many t imes as i t s  multiplicity. 

basic elements will be denoted by C' 

representation (136) takes the form 

The correspondin[; 

C',' , C y ,  . . . , and the mat r ix  1' 

0 0 5 ,  . . .  i" . . . . . . . . 

(137) 
, 

where the elements 

o r  non-vanishing depending on the character  of the operator  

Let us f i r s t  consider the case that a l l  the elements 

W&,,, a r e  not yet determined and may be vanishing 

T. 

bhtL arc 

non-vanishing. According to (3  I), one has  

. .  . .  . . -  . .  . .  I 
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or 

. .  . . .  

This gives fur ther  the relations 

showing that, if the eigeneiement C'  1 
( T - 1; I ), the higher b a ~ i c  elemezlts C" 

annihilated by the powers of this operator.  

by C ; ,  C';, C y ,  . . . 
I' an o rde r  which does not exceed t h e  multiplicity g 

is annihilated by the operator 

C"lj . . ;ITC apparent! . I '  1 

the operator ( T- 2,. I ) is hence nilpotent of 

Within the subspace spanned 

The next s tep is to consider the case that not all the d e m e n t s  

wkL a r e  non-vanishing, and one is led in this way to the concepts of 

block formation, the Segr6 character is t ics ,  and the reduced Cayley- 

Hamilton equation. 

canonical form" is t reated in an excellent way in many textbooks' I), in 

which one may find the pertinent l i terature  references and further details .  

The question of the transformation to the "classical  
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6. COMPONENT ANALYSIS IN A LINEAR SPACE 

O F  INFINITE ORDER 

In the previous sections, we have explicitly confined our 

interest  to l inear spaces of finite order  n, and all the conclusions have 

been based on the concepts of linear independence and the existence of 

a bas i s .  

an infinite order ,  one has to deal with complicated convergence problems 

which a r e  the subject of e .  g .  the theory of Hilbert space.  

situation, it seems ra ther  remarkable  that there  s t i l l  exists a s e r i e s  of 

theorems about infinite spaces which a r e  non-trivial and of fundamental 

importance in quantum theory. 

operators involved have an infinite number of eigenvalues, these a r e  

situated only in a finite number of points in the complex plane each of 

which may have an infinite degeneracy. 

s t a r t  with a simple example. 

In order  to generalize these considerations to l inear spaces of 

In this 

This depends on the fact  that, even if the 

To il lustrate the problem, we will 

Exchange operator P 12L - Let us consider the l inear space 

by all functions of two coordinates; x i  and x 

space cannot be spanned by a finite number of e lements ,  and i t  has  hence 

an infinite o rde r .  

which interchanges the two coordinates, so that 

formed 

C/3 c- & (4)2 ) Such a 2 '  

W e  will further consider a l inear  operator  P = Pi2  

This is a permutation operator identical with the s implest  I' exchange 

operator" in quantum theory. 

give back the original element,  i. e .  

Using (23) ,  one finds that two interchanges 

The eigenvalue problem has the f o r m  Pc = 1 c , and one obtains 
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In order  to proceed, we will use an identity which i s  easily 

found by inspection: 

I t  appears that the first t e r m  in the right-hand member is hi i  aigenele- 

ment to P associated with the eigenvalue +1,  whereas the second terra 

is an eigenelement associated with the eigenvalue -1. There a r e  

apparently only two eigenvalues, but both of them are infiriirely- degene r a t e .  

The symmetr ic  and antisymmetric element in (142) mzy be ob- 

tained from the original element by means of the operators:  

and, by using (141), it is easily shown thzd they satisfy thc LtlgoLralc 

identities ': 

I = o,, + 0-4 

f 144) 

i. e. they a r e  mutually exclusive projection operators ,  which a re  eigcn- 

operators  and form a resolution of the identity. By means of these 

opera tors ,  one can split the entire space V into two subspaces O + i V  

and O - i V ,  each of an infinite order ,  which a r e  directly associated with 

the eigenvalues 'Jx. = + I and 1 -- 1: , respectively. The relations 

(144) - (146) are completely analogous to  the relations (9 1) - (93) and 

represent  some form of generalization to a space of an infixite order .  In 
the following, we will t r y  to systematize. this approach. 
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Projection operators  and resolution of the identity based on the use 

of the reduced Cayley-Hamilton equation. - Let us consider an infinite 

l inear space and a l inear  operator T such that it has all its 

eigenvalues situated in a finite number of points %,) xz, . , . I,,,, in the 

complex prlbtt. Each one of these eigenvalues ak may hence be in- 

finitely degenerate ( 
Segr6 characterist ic m is always finite, and we will s t a r t  by con- 

sidering the case mi - - in2 - . , . = m 
T sat isf ies  a reduced Cayley-Hamilton equation of the type (134), in' 

), but we will  assume that the la rges t  b= 60 
- k 

= 1. This implies that the operator n 

which each 

polynomial 

eigenvalue factor  occurs only once. The associated minimal 

is hence 

and the basic assumption may be written in the form 

I------- - -i 

Our treatment wil l  be based solely on this operator relation. 

(141) is of this type, and we will l a te r  see  that many other fundamental 
operators  in quantum theory f u l f i l  s imi la r  relations.  

Equation 

In analogy with (103), w e  will  now define a se t  of operators  

Oi, 02, . . . 0 by means of the product formula n 

Since Ok consists of all  the fac tors  which occur  in F(T) except f o r  the 

single factor ( T - 
o r  

;t, ), one obtains immediately (T- 1~ 1) ohe 0 ., 

t 
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showing that Ok is an eigenoperator to T. 

in the fo rm,  
One may also write (149) 

and, using (T- It, 1) = 6 , one finds directly 

The operators  Ok are hence idempotent and mutually exclusive. 

It is now easily shown that the projection operators  0 
by (149) also fo rm a "resolution of the identity". 
expansion theorem to rely on, it is necessary to proceed in a completely 

different way. 

consider also the polynomials Ok(z) defined by the relations 

defined k 
Since one has no 

In addition to the minimal polynomial F(z) ,  we will now 

These a r e  polynomials of degree (n-1) which have the value 1 for  

2 = 'x, and the value 0 for  = ( j  4 k )  , and they a r e  thus 

Legendre "interpolation polynomials". Let  us fur ther  consider the 

a - ~ i l i a r y  function 

Since this is a polynomial of degree (n-1) having the value zero  in the 

n points Z = X,, 2 % , ,  . . , one obtains C ( z )  = 0. This identity 
is valid in t e r m s  of the complex variable z ,  but it remains valid even if 
one replaces  z by the operator T and the number 1 by the identity 

operator  I. Hence one has  
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which is the"'reso1ution of the identity" desired.  

Let  us now investigate how the operator relat.ions (150), 
(152), and (155) may be utilized for a t reatment  of the infinite l inear 

space. If A is an a rb i t r a ry  element of the space,  one obtains by 

using (155) the following decomposition of 

n\ m 

the element: 

where Ak = OkA. Using (150), one gets 

m n  

which shows that (156) is a resolution of A into eigenelernents of T. 
According to (107), one has  fur ther  OkAk = Ak,, whereas OkiZ,, = 0 

for k $ L . Using this property,  one can easily show tFat the de-  

composition of A into eigenelements is unique, fo r ,  if there  would hc 

two relations fi = fl, - f i ;  having components satisfying 
ct k d  

(157), multiplication by OL would give A; = A; . 

-- 

/ 

Even if  the resolution (156) contains a sum,  i t  should imt  be COT-- 

fused with an expansion theorem of the type ( 5 )  or (76) derived b y  rnezns  

of the concept of a bas i s .  

(156) a s  a component analysis of an element A in t e r m s  of eigenele- 

ments to T,  and the component Ak = 0 A is said to be the projection of 

the element A on the eigenspace of T associated with the eigenvalue 

Instead, i t  is m o r e  appropriate to descr ibe 

k 

L - 
By means of the projection operators  0 02, . . I On it i s  

further possible to split the given space V into subspaces TJi, V 2 ,  . . . 'v' 11 

associated with the various eigenvalues: 

and we will describe this procedure a s  a "splitting of V a.ftcr c igen-  

values to T " .  

_ -  
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In conclusion, we note that, appl.ying T to (155) and using 

(150), one obtains 

which is a "spec t ra l  resolution'' of the operator 

If f(z) is an a rb i t r a ry  polynomial in the complex variable z ,  one g e t s  

fur  the r 

T correspuncling i 3  (94'.  

(160) 

and, from the polynomial, 3ne can then proceed to consider e!gc;:-  : .G.r 

functions. 

As an illustration of the projection technique, we wi!l now derivc 

a simple theorem. Let  A be an a rb i t ra ry  elernent of the i.?finite s?zce, 

and l e t  us consider the l inear  manifold spanned by tile elements 

A ,  TR, T':! T"-' P, ( ? 6  1) 

Taking the projection 0 

and using the relation TOk = OkT = ?.tbok 
of an arb i t ra ry  element out of this manifrld k 

, one obtains 

Hence the projection of an a rb i t r a ry  dement of the mmnifold is p r o p s i i o n -  

a1 to the projection of the element A i tself .  In quzintum theory, this 

theorem is often quitc useful in different connections. 

The minimal polynomial (147) is a special  casc of t%e i i i i n t ~ e ~  L I  

functions, and it is an interesting problem to  investigate Ii-hether GCI 

approach may be generalized also to the case  of an infinite nvmber of 

eigenvalues 

converging factors .  
>.-k by using the theory of infinite products wit;) an4 withox: 
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Cyclic operators .  

consider the eigenvalue problem of the cyclic operators  which a r e  

characterized by the relation 

- As an example of the method described, we will 

T G = ~ ,  
wnere G is an integer. F r o m  the relation hC follows directly 

TC" c = 16 (', = 6 o r  1' = f , which gives the eigenvalues 

fo r  k = 0,  1, 2 ,  . . . G-1.  F o r  the interpolation polynomials (153), one 

obtains 

-6 c, j - a w - z  -- __ = 

F o r  the eigenprojectors, this gives 

3 y  r ,ea is of these operators ,  it  is now possible to split the infinite 

l i  l ea?  space 

a so-iated with thc eigenvalues , X I )  X G ; f  , respectively.  

V into G subspaces Vo , VI .. . VG-s of infinite order  

The eigenvalue relation ( i  50) gives directly 

M h'ich is equivalent to the "Bloch condition" in quantum theory. 

ta (152) and (155), one has further 

According 
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2 0% = o,,, 
I = C O ,  

k 

{ 168) 

which relations may now be checked explicitly. 

the special case of the exchange operator P = P 

(141). 

F o r  G = 2 ,  one obtains 

defined by (140) and 12 

Translations. 

all functions +(K) of a single variable x, and le t  T be a translational 

operator  connected with the length a defined by the relation: 

- Let  us start by considering a l inear  space consisting of 

In o rde r  to proceed, we will assume that a l l  the functions 

sideration fulfil the Born- von KBrm6n boundary condition: 
.ti under con- 

where C is a ve ry  l a rge  integer.  

tion in the f o r m  (TG- I )  0 . which means that T is a cyclic 

operator  of o rde r  G for all functions satisfying the periodicity condi- 

tion. 

(164) and (166), respectively. 

a r b i t r a r y  element may now be  resolved into eigcnfunctions to T ,  so 

that 

Using (i70), one can wri te  this condi- 
c 

The eigenvalues and eigenprojectors a r e  hence given by the relations 

By using the projection technique, an 

(1 7 2 )  

12) 
The components +y are identical with the well-known Bloch functions. 
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Projection splitting in the case of a general  reduced Cayley-Hamilton 

equation. - Again we will consider an infinite l inear space V and an 

operator T having all i t s  eigenvalues situated in a finite number of 
points 

than before 

and that T 

In o rde r  to 

la  ," '  xm b Let  us consider a more  general  case 

derive a "resolution of the identity", we will now, in analogy 

and assume that the minimal polynomial has the form 

satisfiee the reduced Cayley-Hamilton equation 

to (128), study the algebraic identity 

o r  

(15 1) 

where q.(z) i s  a polynomial of degree l e se  than m.. 
operator 

Introducing the 
J J 

one gets immediately, according to (149) and (151), the relations 



t 

- 53 - 

Since further OkOL = 0 for k # b  according to (149), one obtains 

Rhowing that Ok is idempotent &nu hence a projection operator. 
leads to a unique component-analyaie 

This 

Introducing the subspace Vk = OkV, we haye thus found that the operator 

( T - 1 ) is nilpotent of order % with respect to this subspace. 
. . . = rn =. 1, we obtain the formulae previously derived. For mi = m2 = n 



Let US start from the concept of "sta.bility" : il lincar subsjpa- :~ 

W is said to be stable under the Operation T, i f  the subspace TU' 
belongs entirely to W. Since T CI G ,  an oigenelernent C represei-.;: 

always a stable eubspace of the f i r s t  order. 

Let fur ther  R be another l inear  operator which cDmrriutes witb 

T, so that 

T R  (158) 

It is now easily Been that ,  i f  V is an eigenspace to T asc:acisted with 

the eigenvalue 'x, , lhsii RV belongs also to V i . ~ .  thc Gigenspace 

Vk is stable wider the operation IC. 

k 

k' 
r? 

k 
Sirice I vk = lkvk , m e  has 

( i 5 9 )  

which completes the proof. 
u d e r  the operation R, it is now possible to consider the eigenvalue problem 

of R within this subspace. 

which are simultaneous eigcneleme* to the opera tors  T and R: 

However, since the subspace Vk is strtble 

The procedure will lead to eigenelements Ckb 

The circumstances will  %e particularly sirr.ple, i f  both T arid li have 
only a finite number of eigenvalues, which may be even infinitely degencrz".c 

but all have the l a rges t  Segr6 character ie t ic  m = 1, so that they sat isfy 

reduced Caylcy-Hamilton cqtiatione o f  tho type (148). According to (149), 
one m a y  then introduce the projection operators associated with T and 
R, reepectivelv: 
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1 
(162) Ti -,p;. 1 

L#& pc-/% o,(w = 

which both satisfy resolutions of the identity (155). One obtains directly 

I -  
= 

where the t e rms  in the double sum 

a r e  again projection operators  which a r e  idempotent, mutually exclusive, 

and aatisfy the relations 

according to (158). 

ous eigenoperators to T and R .  
This implies that the operators  0 a r e  simultane- kb 

Through the double s u m  in (163), 

one o t  t \ins a simultaneous splitting 

of the space V into subspaces 

Vkl, which a r e  simultaneous 

eigenspaces to the operators  T 

and R: 

Some of these spaces  may be empty, i. e. contai? only the element 6 ,  but, 
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are usup.IEy of ;;I1 infinite vk P for an infinite space V, the sutspacea 

order .  

Ore c a n  gcnerallzc this idza stili. f;lrtfit:r fo r ,  i€ tE>e~e i'xlzts 

a set of h e a r  operators  T,, P.., S,  . . . whic?~ are mutually commuting, 

onc can carry out: a splitting of V into sirnwltaneaxe eisenspaccs to thesr: 

operztors by means of p r o j e  -,tion oyePators of the type 

(167) 

which f o r m  a resolution of the i2znt:ty.  

Even in this case,  it is hence porsibit: to  obtain .z splittinz of V into 

e ig  en s pa c e 13 vkp = o 
of char a c:e r i E t i c  numb c : t; . 

v which a r e  acsociate6 wit?> ~e pair  ( 2,k ,  /u. ) 
IC e 
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Here a 1, a2, a 
parpllellepiped of volume Va = a1 * (az x a3). 
the three operators  Ti, TZ, T mutually commute. The vector 3 
fm - p1 a, * pa a, + p3 a, 

the associated operator Th), one has the connection formula 

Th)-‘T1 /u, T/LZ T 3 /(lS . 
assumption, that all functions 

von KQrmgn boundary conditiop: 

a r e  the primitive translations,  which fo rm a 
3 

It is easily shown that 

is called a general  translation and, for  

The t reatment  is simplified by the 

under consideration satisfy the Born- 

where (GI, G2, Gs) is a tr iple of large integers.  

ditions 

This leads to the con- 

and the eigenvalues and the associated projection operators  a r e  hence 

given by (164) and (166) , respectively. Inti*oducing the simultaneous 

eigenoperators to T1, TZ, T3 according to (167), we obtain 

pfl,p= 0 

where ( <, , X Z ,  ys ) is a tr iplet  of integers with the values Y,= 0,1,2.. & 
In total, there  a r e  hence GlG2G3 such t r iplets  to be considered. 

Fo r  many purposes, it is’now convenient to introduce the 
primitive translations of the reciprocal latt ice,  b 1, b2, b3, satisfying 

the relations 

now associate  the following vectoi k in the reciprocal  latt ice - 
a,. bb = skb . To the t r iplet  ( Nq, q2, x3 ), we will 
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F o r  the inner product with 

cne obtains 
=,PI a, + ,P2 &t, + p.3 

According to the general t;.eory, this operator fulfils the following basic 

relations: 

* 
Every element 

solved into G G G components 1 2 3  

of our linear space satisfying (170) may hence be r e -  

vrtiere +(b,h) may be characterized as the "Bloch components" of e 
This approach may be used as a start ing point for  crystal  theory 

13)  and, f o r  further details, we will  re fer  elsewhere . 
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8. LINEAR MAPPING O F  ONE LINEAR SPACE ON ANOTHER; 

MIRROR THEOREM 

In this section, we will return to the study of finite l inear 

spaces ,  and we will now consider two spaces U and V of o rde r  m 

and n ,  respectively,  having the elements A and B.  We will further 

consider two linear mappings, S and T, of which the f i r s t  maps U 

on V and the second V on U.  They correspond hence to l inear  opera-  

tors which t ransform one linear space into another. 

only considered operators  which map a linear space 

subspace of itself, 

Previously we have 

on itself o ron  a 

Let us  span the space U by a basis X = (X I’ X2’ - - * xm) 
#--  -- -- , rn). Since SX is  an r 2, . . . k and the space V by a basis  I = ( r  

element of V and T Y  an element of U,  one obtains the unique ex- 
1 

pansions 

I.e = 1,2, . . .  ml 

-t=4,2, . . .  m 

where the coefficients S and TkL form rectangular mat r ices :  
1k 



- 6 0  - 

whichare said to be the mat r ix  representations of S and T with respect  

to the bases involved. F o r  a rb i t ra ry  elements A = X a  and B = Y b ,  

one obtains directly 

Let us now consider also the double mappings 

Q = T X  

which a r e  illustrated by the 

This implies that Q maps 

> 
Ti --- ST 

figures below. 

A on itself (or on a subspace of itself), 

whereas R maps B on itself. The operator  Q may be represented 

by a quadratic mat r ix  of order  m in the bas i s  X, whereas R is r e -  

presented by a quadratic matrix of order  n in the basis I. From (180), 

one obtains directly 

T * S =  Q 

Since the two operators  R and Q a r e  of different orders , ,  it does not 

seem likely that they should be closdy related. 

fundamental theorem: 

However, one has  the 

The non-vanishing eigenvalues of ST and TS a re  iden- 

tical, even with respect  to their  multiplicity. (185) 

The theorem implies that, if m 7 n ,  t he re  a r e  at leas t  (m-n)  eigen-  

values of R which a r e  vanishing. The proof can be based on the concept 

of the t r ace  since,according to (5?), one has 



* . . . . _ ,  . . . -  . - - .  

which easily proves the conclusion. 

ceed in another way which gives us  some other aspects on the problem. 

However, he re  we will also pro-  

k Let  us denote the eigenelements and eigenvalues of Q by u 

and ak, respectively, and the corresponding quantities for R by vI and 

bI , s o  that 

uk on the element 7 The operation S maps further which k' 
c;r in turn i s  mapped on \ by the operation T. 

on u 

Similarly T maps vp 
rrr 

which is then mapped on ?! by S. Hence we have I '  

z N 

Using (183) and (187): we obtain u = T v k  = TS% = Q u k  = a k u k  which k 
shows that, i f  a # 0, one has  uk # 5 and consequently also Yk # 6. 
Similarly,  one has  ? = Su = STV = Rv = b v which implies that, if I I I I I 1  
bI f 0, one has v f and also uI # 0 .  F o r  eigenelements associated 

with non-vanishing eigenvalues, the two image elements considered a r e  

hence different f rom the zero-element. 

3 

4 
k 

- I -  s 
- 1  - 

Let us  now consider the properties of c in grea te r  detail for k 
f 0 .  One obtains directly 

- 
aF 

which shows that ak is also an eigenvalue to R ,  since ck # 5. F o r  

bp # 0,  one obtains in the same  way 
- 
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(190) 

which shows that bm is also an eigenvalue to Q ,  since I? # -6. The 

non-vanishing eigenvaliies t o  Q = TS and R = ST are hence necessarily 

the s a m e .  

P 

This cwrnpletek the proof for the non-degenerate case .  In the 

t -ase  of a finite degeneracy and m = 1, one fiimpiy spans the eigenspace 

by a liricarly independent s e t  o f  eigenelemcnts u' u" , ul" . . . , and 

consideration of the assoc iated image elements according to (188) show s 

the valldity of the theorem (185) .  The  case of m # 1 requires somewhat 

mor(> (-?re,  and it will b e  left out of o u r  present  discussion. 

k '  k k' 

Gonjugation of elernen& - Let u s  consider the non-vanishing eigenvalues 

a 1: tj # 0, and le t  us  a r range  the eigenelements to Q and R in pa i r s ,  

s o  that v = a v and u = a 11 or 
p p ,  .t %. t-' 4- Y2. 

P P P  P P P' 

I I 

W c  note Chat each one of the relation (191) follows from the other ,  and 

we s q r  that the elements u and v form a conjugated pa i r .  It is also 
P P 

e s sen t i a l  that the relation (191) contains a "phase convention". 

Adding a l s o  the eigenelenients associated with ak = 0 ,  one obtains 

a lincnrly independcnt se t  u i ,  u2 ,  . . . 11 

for  the s p a c e  U , a n d  s imi la r ly  the se t  v i ,  v z ,  . . . v 

basis f o r  V .  A comparisc,n between (180) and (191) in the form 

Su = a ii v 

r c p r c s en t a t i on 

which may be used as a basis  

may be used as a 
m 

n 

Tv = a 'a, u , shows that S and T m a y  be given the mat r ix  
P P P ' P P P  

f 

I 

t J 
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and these rectangular ma t r i ces  a r e  hence brought to  a kind of "diagonal 

form". 

Using the symbols introduced in  (11 )  and (12),  one  can now 

express  an a rb i t r a ry  element A ai- 13 in the form 

Choosing X = u and Y = v, this gives the neigenexpansionsn 

Letting Q w o r k  on the express im for A ,  one obtains Q cl 
= y Q,fi,,i-%€,U I R  1 
ak f G w i l l  contribute. 

, where only the eigenelements haqing 

In this way, one obtains the symbolic relations 

Letting S work on the expression f o r  A i n  (194) and us ing  the "conjiz- 

gat ion" relations (191) ,  one obtziris Gfi =I 

o r  symbdically 
a,% Ok{ XLk ,& 1 fl ] , L i k 

These relations may be considered a s  some form of "spectral  resolution" 

f o r  the opera tors  S and T which rnap one linear space on another.  Since 

such a mapping i s  quite common in quantum theory, the " m i r r o r  theorem" 

(185) and the associated relations a re  of fundamental importance in thir  

connection. 

m a t r i c e s  14' and to spin pairings 

Of par t icular  importance a r e  the applichtions to  density 
15)  . 
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7. INTRODUCTION OF A SCALAR PRODUCT; 
FROM LINEAR ALGE5RA TO VECTOR ALGEI3,KA. 

Definitions. - Let u s  s t a r t  by considering a l inear space V of finite 

o rde r  n having a bas is  X 2 , .  . . X n  ). According to  ( 5 ) ,  one 

has  an expansion theorem in which the coefficients 3 r e  uniquely de t e r  - 

mined a n d ,  using the symbol (12), one can w r i t e  

X = (X 

Here  the notation 

fo r  Xk in a n  expansion in  t e r m s  of the bas i s  X 
ment A . Considering the expansions for  (A + A  ) and o( 4 , one 

obtains the relations 

t xk,x I fl 1 simply means the coefficients 

of the specific e le-  

1 2  

showing the lincar character  of the symbol { ] 
fur ther  

. The definitions gi\re 

Let u s  now introduce the concept of the sca la r  product . To - 
every pair of elements, A and B,  of the l inear  space w e  w i l l  associate  

a complex number called the sca la r  product and denoted by the symhol  

( A I D >  , which satisfies the following axioms : 
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The axiom (1)  i s  essentially of the same type as (198),  whereas ( 2 )  

and (3) contain new propert ies  which we have not used before in our 

treatment.  The quantity <A]A>yz  is  often called the "Length" of 

A and i s  denoted by nA][ . W e  note that, even i f  the scalar  product 

is given more  propert ies  than the symbol 

do not contain any recipe for  the evaluation of this  quantity, and there  

may actually exist many "realizations" of the scalar product. The 

vector algebra obtained f rom the linear algebra by adding the concept 

of the scalar  product has  hence an abstract  but a l so  very general  

character .  

, the axioms in (200) 

In connection with the notations, w e  observe that the bracket 

< A I B  > 
the same quantity by (B,  A) .  

ly 
associated with the f i r s t  position. Two elements A and B a r e  finally 

said to  be orthogonal, i f  < A l a >  = 0 . F r o m  the axioms ( Z O O ) ,  one can 

der ive some important inequalities. If 1 is  a r ea l  parameter ,  one 

has  

is  a physicis t ' s  symbol and that the mathematicians denote 

According ' to  ( Z O O ) ,  one obtains par t icular  - 
showing the conjugate complex charac te r  <Q( A I ;B > = @(* (9 \ B) 

(q+xBls+hB> 2 0 ,  

This implies that the discriminant can never  be positive, i . e .  
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the scalar product < AIB > . 
i .c 

replaced by 6 ;B and, by a convenient choice of o( , one obtains 

This relation i s  t rue  even i f  B i s  

This is  the famous Schwarz's  inequality. 

c ros s - t e rms  in < AiBIAtB) , one gets fur ther  the "triangular 

inequality " 

Using this inequality for the 

Such relations a r e ,  of course,  of essential  importance i n  studying 

upper and lower bounds, questions of convergence etc.  

Expansion coefficients as  sca la r  products. - 
expansion theorem (197). 

x = ( X , , X 2 '  . . .Xn)  , one can construct a total of n 

Let u s  now return to the 

F r o m  the elements of the bas i s  
2 sca la r  products 

which together form a mat r ix  A called the '"metr ic"  m a t r i x .  It i s  

easily shown that the set  X 

exist .  F r o m  the expansion theorem A =  x, ($, = Xa , one 

obtains directly 

is  linearly indepei dent, i f  and only i f  

d d  (63 .f 0 . F o r  a basis ,  the inverse mz\trix A-i wi l l  hence 

kl 

o r ,  in matrix fo rm,  <X I R > =  A d , which gives 

r I 



This  formula gives the expapsion coefficients expres:ic!d i : 1  t e r m s  

of scalar proclucts, but i t  does not give aiiy r ~ c i p e  f u r  t h c .  t ' .aTu~?t ior i  

G f  these coefficients, uriless one has a 

prodact. For the components of (202), one obtains 

"realization" of the s c - J a r  

The { ] .- rjymb0'2 in (197) may then be expressed i n  the forni 

and, for the projection operator  Ok in  (52) , one has 

F o r  the resolution of the identity (491, this gives particularly 

Of special importance is  the case  of an ort.honorma1 basis  - 
satisfying the relations 

or A = 3 . By means of Schmidt's successive orthogonalization 

procedure, it is  easily seen that, by a convenient l inear  t ransformation.  

every bas i s  may be brought to orthonormal form. 

previous formulas may be simplified to the form 

In this  case,  the 
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Let us  now re turn  to the case of a general  met r ic  mat r ix  A 
and consider the mat r ix  representation of a l inear  operator  T 
defined by (31) o r  ( 3 2 ) .  According to (209), one obtains immediately 

By denoting the matr ix  formed by the sca la r  products 

< Xk]TXL) s < x , ~ T ~ x ,  > by (J , one gets  hence 

1 =&‘a. 

In quantum theory, T, 
with respect to the basis X , whereas ,  in  l inear  algebra,  this name 

re fe r s  to the matr ix  T . Note particularly that, for  an operator product 

FG , one has ,  according to  (39)  and (216) : 

is very often described as the mat r ix  of T 

where and 9 a r e  the mat r ices  formed by the elements 

( X k l F I X L >  and < X,IGiXc} , respectively. 

It i s  now a lso  easy to understand the connection between the 

simple fo rm (65) of the eigenvalue problem in mat r ix  representation in 

l inear algebra and the conventional form in quantum mechanics. F r o m  

(65) and (216) follows 

(T-  2 . 1 ) ~  = 0 ,  
(2 18) 

o r  



. 

The las t  f o r m  is well-known from the applications to e.g. quantum 

chemistry.  

Projection on a l inear  manifold. - 
expansion theorem, it is convenient to study also the concept of the 

projection of an a rb i t r a ry  element A onto a l inear  manifold imbedded 

in the space. 

f = ( f l , f 2 , .  . .fm), and le t  u s  determine the coefficients a 

expansion 

In connection with the general  

Let the l inear manifold be spanned by the elements 

in the k 

so that the length of the remainder element R becomes as  small  as 

possible, so that 

For this  purpose, w e  wi l l  introduce the met r ix  matr ix  

and the vector c 
<f]A)  A c = <f/fc> and (AIS)  = (fclf) Using the 

axioms ( Z O O ) ,  one hence obtains the identity 

A = <fif) 
A‘ 4 j! P. .? acccyding to (ZW), i?ihich gives 

Only the last term contains the coefficients a , and we note that it can 

never be negative and has  its minimum for a = C = d’<f Q >  
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For  a = c , one obtains particularly 

>* >k :x 
If ct denotes the row vector of the elements ( c l  , c 2 ,  . . . c 

hence 

) one has  m t 
( f c l f c )  = ct < f I d )  c = (L A c and the inequality 

( 2 2 4 )  

which i s  a generalization of Besse l ' s  inecpality to the case  of an 

arbi t rary met r ic  . 
According to  (220), one can now write 

( 2 2 5 )  R = f c  + R 1 

where the t e r m  fc is called the "projection" of A on the linear 

manifold spanned by f = ( f l ,  f 2 ,  . . . fm). One obtains 

j c  = j A ' c j I R )  = O R ,  

where 

is  said to be the projection operator associated with the manifold f 

One gets directly 

. 
02= 0 . Since fur ther  

(228)  

the remainder element R is  orthogonal to  the projection fc . 
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Let u s  now consider an infinite space and let  us assume  that 

any finite subset of the se t  

For every value of m , one has ,  according to (224) , 
( f l ,  f2 , f3 ,  . . .) is  l inearly independent. 

where it i s  easily proven that the right-hand sum for  m = 1,2, 3 . .  . 
f o r m s  a se r i e s  of never decreasing positive numbers.  

par t ia l  sums have an upper bound, the limit fo r  m 9 00 exists,  and 

one has  

Since a l l  the 

(230) 

If the equality sign is  valid, one says  that the infinite set  (f f 2 ,  f3 . .  . ) 
i s  complete, and one has  obtained a generalization of Pa r seva l ' s  

relation. F o r  the case  of an orthonormal basis ,  A = d , one obtains 

the conventional form : 

Returning to an a rb i t r a ry  

can a l so  write (230) in the 

k= I 

metric ,  we note that, according to (227)  ,one 

fo rm 

The expan'sion theorem, on the other hand, takes  the form 

and we note that, in general ,  there is a considerable difference in 

convergence propert ies  between (232) and (233), and that one relation 

does not necessarily fol low f rom the other.  

"convergence in mean" . 
The property (232) is called 
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Hilbert space. - 
general, one has  often introduced an additional axiom which leads to the 

concept of the 

which contains also its limiting elements : 

In o rde r  to  be able to discuss  convergence propert ies  i n  

"Hilbert space" . Such a space is an infinite vector space 

If AI,A2 ,A3 ,  * . .  i s  a set  of elements in the space 

having the property 

as soon as 

element A in the space such that 

and one wri tes  

M > rr\ (&) , then there  exists an 

11 R, - R 11 < & , 

In addition, one introduces a l so  a "separabili ty axiom" stating that 

every element A may be reached by a denumerably infinite set  of 

elements A l , A Z , A g , .  . . such that 11 4, - R I\ < & , a s  soon a s  

nl > W(&) . F o r  a detailed treatment of the propert ies  of the 
Hilbert space, we w i l l  refer  to the excellent books available 16) .  It 

should be observed that the terminology introduced in connection with 

the l inear  algebra and particularly the concepts of projection operators ,  

resolution of the identity, and spectral  resolution of an operator  play an 

important role a lso in this  connection. 

Pair of adjoint operators ;  normal  and self -adjoint operators .  - 
conclusion, w e  wi l l  briefly survey some of the fundamental concepts a s  

to l inear operators which a r e  introduced on the bas i s  of the sca la r  product. 
Let T be an a rb i t ra ry  operator  having the domain DT . 
T and Tt a r e  said to  form a pair  of adjoint operators ,  i f  they have 

the same domains and fur ther  

In 

Two operators  
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for every element A in the domain. F r o m  the definition follows the 

theorem : 

provided A and B belong to D In o rde r  to  prove this  "turn-over 

rule" ,  one u s e s  the following identity : 
T 

which completes the proof. Using ( 2 3 6 )  , one obtains the well-known 

is said to be rules  (FtG)*= F t t G t  , (FG) t = G t "  F'./An operator fl 
normal if  it commutes with its adjoint operator A t  so that 

If the operator  A has the eigenelement &, associatedwith the 

eigenvalue Jk , the operator  At has  the same eigenelement 

associated with the eigenvalue 2; , so that 

The proof follows from the fact that 
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The normal operators  are charactcr i  zed by the fact that eigenelements 

gk a n d  Gb assoc i? ted  \vith different eigenvalues, %,e a& , 
a r e  ne< essarily orthogcnal ; 

F o r  a iiriite space,  a normal operator may, of course,  be 

brought to cia-ssical canonical form and, using (238), one can show that 

this Corm must necessarily be  I diagonal. 

c ha r a c t c r i s t i c 

reduced Cayley-Hamilton equation i s  then of the type (148). 

ty of normality is  hence of essential  importance in the projection opera-  

to r  approach. 

F o r  the largest  Segr6 

mk to e a c h  c~igenvaluc~, one obtains m = 1 , and the k 
The proper -  

U s i n g  the eigenvalue relatioil (2391, one easily obtains 

The corresp0ndin.g quantity for an a rb i t ra ry  element A : 

is  called the "expectation value" of A with respect  to  A . For 
elements c lose  to the eigenelernents, there  is  an important "variation 

principle" . Putting A = &'&+%&k and using the relation 

(A-lLlt*I) *k= 5 to the left and to  the right, one gets 

(R\A-2,\A> <SS,IA-AQ,IX+~> 
1 --PI___ 

- - 
(QP> < N R )  </!--Ak> 94 

1. e .  
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F o r  a normal operator, a f i r s t -order  variation in  
a second-order variation in (A), , i .e.  s<R)4J = 0 . 
This property is of fundamental importance in the quantum-mechanical 

applications 

gk leads hence to  

A special  class of normal operators  are the uni tary operators  

U characterized by the relations 

Their  eigenvalues satisfy the relation @krn f 
on the unit c i rc le  in the complex plane. 

and a r e  thus situated 

Of part icular  importance a r e  finally the self -adjoint or 

hermitean operators  F which satisfy the relation F'= F, i.e. 

According to  (242), the eigenvalues a r e  then r ea l  numbers. The self- 

adjoint operators  a r e  hence normal operators  having their  eigenvalues 

on the r ea l  axis.  

sented by operators  having real  

adjoint operators,  and they a r e  hence of fundamental importance in  the 

applications. 

In quantum theory, a l l  physical quantities a r e  r e p r e -  

expectation values, i. e. by se l f -  - 
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Additional pages to rN 125 "Linear  

Algebra and the ;'uniaments of Quantum 

Theory" by P e r  31f v Ldwdin 

Width of an operator ;  uncertain t relations. - Let ' be an a rb i t r a ry  

If A is an e' ament within this l inear operator having the domain D 

domain normalized to unity so that IIA [I = I ,  one def 

with (243) the expectationwalue 

by the formula 

T '  
e s  in accordance 

T of the operator  T -rith respect  to A 

I 

T = <T>hv = < A P I A )  (246a) 

which is in general  a complex number.  

T with respect to A is fur ther  defined by the relati: :i 

The "width" ,I T of the operator  

F r o m  the third axiom in (200) for the sca la r  product follows that the 

width a T vanishes if and only if A i s  an eigenelc aen t  of T . This 

implies also that the width A T in a certain sense wus t  be a measu re  of 
the deviation of A f rom an eigenelement. Using tne definition, one 

obtains immediately the following transformation 

If, in addition to A ,  the element TA is a l so  situated within the domain 

DT one may apply the turn-over ru le  (237) which gives 

7 

- 2  = T ~ T  -  IT^ (246d) 

We note that this formula is valid only for  e lements  A within the domain 

of the operator  T T ? which means that it is much m o r e  r e s t r i c t ed  than t 

(246c) . 
Let us  now consider a second l inear  opera tor  R with the domain 

DR ? and let fur ther  A be a normalized element  within the intersect ion of 

D and D- According to (246b) one has the definitions R T '  



Using Schwarz's inequality (203) , on6 obtains the following t ransforma- 

tion 

which is the uncertainty relation for a general  pair of l inear operators .  

By using the turn-over rule (237) ,  one gets the much more  res t r ic ted  

formula 

For a self-adjoint operator F , one has AF = il(F - F)AII , 
whereas  the special  fo rm (246d) gives the relation 

(246h) 

In using the s ta t is t ical  interpretation of quantum mechanics,  the width 

A F is often described as the "quadratic deviation" of F from the 

average value F. 
uncertainty relations (246f) takes the form 

For a pair of self-adjoint operators  r" an2 G, the 

AF. A c  -2, I (FA~GA) - (GA~FA) I ) (2460 

f o r  all elements A within the intersection of DF and DG . . Using (246g), 

one obtains the special  form 

A F . A G ~ ' } < A ~ F G - G F ( A > ~  . W j )  -Ti; 
res t r ic ted  to the elements within the domain of the operator (FG - GF) . 
This is the form of the uncestair;'ty relations most  well-known 



in the applications to pt:atrm mechanics, an2 w.o, note that it Jepcfnds 

essentially only on SChWakbtZ'8 inequality (203), i. tt. On the axioms (200)  

f D r  the sca1a.r pyodrzct, It is interesting to observe that the uncertainty 

relations ,are E-enco CQnpleteIy independent of! 

of t he  scalar  prodtzct, 

particular " redizc-tion" 

arid kzc3, 
.mi. k For  the pair of ohf-ad jo in t  operators l" = p = - - 

c = x , one has the commutation r e l a ion  

and application af (2463) Ieads t o  the special E0rmu.h 

which is Heisenberg's uncertainty relation for the palrition x and the 

momentum p . The more general  form (246j) is due to Born. 



~ 
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8 * DISCUSSION 

The purpose of our study is to  show that one can develop an 

appreciable pa r t  of the terminology and the conceptual f ramework 

associated wi th  the fundaments of quantum theory by using only the 

axioms of the theory of l inear  spaces. The eigenvalue problem, the 

projection operators,  the resolution of the identity, and the spectral  

resolution of an operator  a r e  concepts which may be reached and d i s -  

cussed in this  way. The theorems f o r  finite spaces a r e  i l lustrative 

but are, of course,  of an  elementary nature. However, some of the 

theorems may be generalized a l so  to infinite spaces.  

In treating infinite spaces, we are considering only operators  

having all their  eigenvalues situated in a finite number of points in the 

complex plane, each one of which has an infinite multiplicity. F r o m  

the existence of a finite -order  reduced Cayley -Hamilton equation, we 

have derived a set  of projection operators which f o r m  a resolution of 

the identity and lead to a splitting of the space into a se t  of infinite 

subspaces associated with the eigenvalues. Every element A may then 

be uniquely resolved into components Ak which a r e  eigenelements to 

the operator  concerned. If there  a r e  several  commuting operators ,  the 

procedure leads to a splitting of the space into simultaneous eigenspaces. 

In quantum theory, this  process  is of par t icular  importance in 

treating constants of motion. 

problem of the form 

The. Schradinger enllatinn -l--"---- 4 --  E -*A 3n eigenvap4e 

and T is a constant of motion, i f  it commutes with H , so that 

Let T have the eigenvalues 

opera tors  01, 02, . . .O 
~ l L  , . . . 2, and the projection 

defined by (153) , SO that 1 = 5 0, (T) n 
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One has  immediately 

which gives 

showing that the wave functions associated with a specific energy level 

E may be classified by means of the eigenvalues 

importance is  this " component analysis" of an approximate eigen- 

2% . Of sti l l  g rea t e r  

function 17). 

Constants of motion which have beentreated in this  wav include 

the spin 18) ,  the various angular momenta in a tomic theory 1 9 ) ,  the 

general  angular momenta 'O), the exchange opera tors  2 i ) ,  and the 
' 

translations z2). In all these cases ,  one i s  considering a single opera-  

t o r  A o r  a set  of commuting operators  A,,  A ;L , . . . It is evident 

that, if one would have group of opera tors  as constants of motion, one 

could utilize the well-known projection opera tors  f rom the group 

algebra in  exactly the same way for  a splitting of the ent i re  space. The 

theory of point groups would lead to new resul ts ,  whereas  the theory of 

continuous groups f o r  translations and angular momenta would give 

essentially the resu l t s  already obtained. 

The component analysis is a tool which is of importance also 

in discussing the correlat ion problem associated with the one -particle 

model in  physics and chemistry.  In the Har t ree-Fock  sc.heme, the 

total wave function is approximated by a single determinant D , where-  

a s ,  in the extended Hartree-Fock scheme, one has  ca r r i ed  out a compo- 

nent analysis with respect  to  the constants of motion, so  that 

P 

where 0 i s  an appropriate projection operator  selecting the component 

desired.  In pract ical  applications, t h i s  simple approach has  given 
surprizingly good resu l t s  23). 
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A previous discussion of the constants of motion and their  

projection operators  was based on the concept of the sca la r  product, 

but i t  i s  he re  shown that all  the essential  resul ts  can be obtained 

solely in the framework of l inear algebra. 

The introduction of the scalar  product renders  s o m e  further 

simplifications, for instance, in connection with the calculation of tlic 

expectation value of H with respect to the wave function (251) : 

t 2 where we have used the formula 0 HO = OH0 = HO = HO . The 

component analysis is of particular importance in. connection with the 

variation principle. 

For a finite space, the eigenvalue problem of the type 

TC = 2. C i s  usually well-defined, but, for an infinite space, it may 

happen that some auxiliary boundary conditions are needed to de te r -  

mine the eigenvalue spectrum. The sca la r  product plays an important 

role  in  this connection, and, for  the Schrodinger equation (247), one 

usually required that the solution & 
space (closed s ta tes)  o r  have a scalar  product with the functions out 

of this space (scattering s ta tes) .  

should belong to the Hilbert 

The physical interpretations of quantum theory a r e  finally based 
c.- +h, _ _  , , , , I . . ,  41,- I t  -*La- 
"I1 IA1G a,,?,, y &  UUULt C l L b G L  &li& L U G  G*pGLtaL*" l l  va!ue I' (24 3) or 

( 2 5 3 )  

Introducing the eigenfunctions to F as  a bas is ,  this leads to the w e l l -  

known probability interpretation of quantum theory. It has sometimes 

been said, that this interpretation depends on the existence of an 

expansion theorem, but it i s ,  of course,  sufficient that Parseva l ' s  

relation (232) is fulfilled, i .e .  that the system of eigenfunctions i s  

complete. 

i 
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A character is t ic  fea ture  of the theory of l inear  algebra, 

vector algebra, and Hilbert space is  that it can be developed in a very 

general f o r m  based solely on a sys tem of axioms. 

the theory itself does not give any explicit recipe for  the evaluation of 

the quantities involved, and that there  may exist  many "realizations " 

of the abstract  theory. 

f o r  evaluating the scalar product of e. g.  the type 

This means that 

Quantum theory is based on a specific recipe 

but the conceptual framework is  independent of this particular r ea l -  

ization. 

The scalar  product as a concept is certainly a very essential  

par t  of quantum theory which is usually introduced a t  the beginning in 

every theory. 

without this fundamental tool, and it turns  out that a surprizingly la rge  

par t  of the conceptual f ramework i s  based on l inear algebra alone. 

Here w e  have t r ied  to see  how far one could reach 
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