View metadata, citation and similar papers at core.ac.uk

On The Eig**en**values of a Singular Nonself-Adjoint Differential Operator of Second Order

a :

GPO PRICE \$_		- by
CFSTI PRICE(S) \$		
Hard copy (HC)	1.00	Allan M. Krall*
Microfiche (MF)	:50	
# 853 Lab 85		

The nonself-adjoint operator ly = y'' + q(x)y, where $q(x) = q_1(x) + iq_2(x)$, $q_1(x)$ and $q_2(x)$ are real valued, limit $q_2(x) = \delta$, limit $q_2(x) = \gamma$, was considered over $x \to a$ $x \to b$

an interval (a,b) in [1]. From l a nonself-adjoint operator L was defined in $L^2(a,b)$. The spectrum and adjoint of L were found, and a "spectral resolution" was derived.

If r is an arbitrary point in (a,b), it was shown that when $\lambda = \mu + i\nu$, $\nu \neq \gamma$, $ky = \lambda y$ has a solution $*(x,\lambda)$ in $L^2(r,b)$, and when $\nu \neq \delta$, $ky = \lambda y$ has a solution $h(x,\lambda)$ in $L^2(a,r)$. λ is an eigenvalue of L if and only if the Wronskian of $*(x,\lambda)$ and $h(x,\lambda)$ is zero. The problem this paper wishes to consider is to characterize these eigenvalues, the zeros of W[*, h].

* McAllister Building, The Pennsylvania State University, University Park, Pennsylvania. This work was supported in part by NASA Grant No. $1/6 \approx -39 - 0.09 - 0.041$

In what follows every expression is a function of the complex variable λ . In the interest of notational clarity, it has been suppressed.

Let $\theta(x)$ and $\phi(x)$ be the solutions of $ly = \lambda y$ satisfying $\theta(r) = l$, $\theta'(r) = 0$, $\phi(r) = 0$, $\phi'(r) = -l$. We choose s in [r,b) such that $|q_2(x)-\gamma| < |\nu-\gamma|/2$ for all x in [s,b] when γ is finite, or such that $|q_2(x)-\nu| > \epsilon$ for all x in [s,b] for some $\epsilon > 0$ when γ is infinite.

We then define $y_{lb}(x) = \theta'(s)\phi(x) - \phi'(s)\theta(x)$ and $y_{2b} = \theta(s)\phi(x) - \phi(s)\theta(x)$.

In [s,b] a sequence of nested circles $C(\beta)$ is found all containing a limit circle or limit point given by

$$M = \lim_{\beta \to b} - \frac{y_{1b}(\beta)z_b + y_{1b}'(\beta)}{y_{2b}(\beta)z_b + y_{2b}'(\beta)},$$

where z_b is any real number. $\psi(x)$ is then given by $\psi(x) = \theta(x)[-\phi'(s) + M\phi(s)] + \phi(x)[\theta'(s) + M\theta(s)].$ (See [1] and [2].)

Similarly we choose t in (a,r) such that $|q_2(x)-\delta| < |\nu-\delta|/2$ for all x in (a,t] when' δ is finite, or such that $|q_2(x)-\nu| > \epsilon$ for all x in (a,t] for some $\epsilon > 0$ when δ is infinite.

We define $y_{la}(x) =$

 $\theta'(t)\phi(x) - \phi'(t)\theta(x)$ and $y_{2a}(x) = -\theta(t)\phi(x) + \phi(t)\theta(x)$.

In (a,t] a sequence of nested circles $C(\alpha)$ is found,

all containing a limit circle or limit point given by

$$-m = \lim_{\alpha \to a} - \frac{y_{1a}(\alpha)z_{a} + y_{1a}'(\alpha)}{y_{2a}(\alpha)z_{a} + y_{2a}'(\alpha)}$$

where z_a is any real number. h(x) is then given by $h(x) = -\theta(x)[\phi'(t) + m\phi(t)] + \phi(x)[\theta'(t) + m\theta(t)].$

(Again see [1] and [2].)

 $\underline{\text{Lemma.}} \quad \underline{\text{Let}} \quad D_{b}(\beta) = y_{2b}(\beta)z_{b} + y_{2b}'(\beta) ,$ $D_{a}(\alpha) = y_{2a}(\alpha)z_{a} + y_{2a}'(\alpha) . \quad \underline{\text{Then}} \quad W[\texttt{*},\texttt{n}] =$ $\lim_{\alpha \to a} \left[[\phi(\beta)z_{b} + \phi'(\beta)][\theta(\alpha)z_{a} + \theta'(\alpha)] \right]_{\alpha \to b}$

-
$$[\theta(\beta)z_{b} + \theta'(\beta)][\phi(\alpha)z_{a} + \phi'(\alpha)]]/D_{a}(\alpha)D_{b}(\beta).$$

Proof. We observe that $W[\psi, n]$ is independent of x. Computing $W[\psi, n]$ at x = r we see $W[\psi, n] = [\phi'(s) + M\phi(s)][\theta'(t) + m\theta(t)] -$

- $[\theta'(s) + M\theta(s)][\phi'(t) + m\phi(t)].$

Inserting the expressions for m and M and taking limits completes the proof.

<u>Theorem 1.</u> If $D_a(\alpha)$ and $D_b(\beta)$ approach finite limits as $\alpha \rightarrow a$ and $\beta \rightarrow b$, then $W[\psi, h] = 0$ if and only if

limit {[$\phi(\beta)z_b + \phi'(\beta)$][$\theta(\alpha)z_a + \theta'(\alpha)$] $\alpha \rightarrow a$ $\beta \rightarrow b$

 $- \left[\theta(\beta)z_{b} + \theta'(\beta)\right] \left[\phi(\alpha)z_{a} + \phi'(\alpha)\right] = 0.$

Note that this last equation in no way depends upon the points x = s or s = t.

In the limit point cases the value of M (or m) is independent of the choice of z_b (or z_a). Only in the limit circle cases does M (or m) vary with the choice of z_h $(or z_a).$ Theorem 2. If the limit point case holds at a and b, then under the conditions of theorem 1 $W[\psi, n] = 0$ if and only if limit $[\phi(\beta)\theta(\alpha) - \theta(\beta)\phi(\alpha)] = 0$, α→a в→ъ limit $[\phi(\beta)\theta'(\alpha) - \theta(\beta)\phi'(\alpha)] = 0$, α→a ₿→Ъ limit $[\phi'(\beta)\theta(\alpha) - \theta'(\beta)\phi(\alpha)] = 0$, a→a β→Ъ limit $[\phi'(\beta)\theta'(\alpha) - \theta'(\beta)\phi'(\alpha)] = 0$. α→a β→Ъ

Proof. Multiply the expression in theorem one out and collect the coefficients of $z_a z_b$, z_a and z_b together. Since z_a and z_b are arbitrary the result follows. <u>Theorem 3</u>. If the limit point case holds at b, and the limit circle case holds at a, then under the conditions of theorem 1, W[*,n] = 0 if and only if $\underset{\substack{\alpha \to \alpha \\ \beta \to b}}{\text{limit}} \left\{ z_{a} \left[\phi(\beta) \theta(\alpha) - \theta(\beta) \phi(\alpha) \right] + \left[\phi(\beta) \theta'(\alpha) - \theta(\beta) \phi'(\alpha) \right] \right\} = 0,$

 $\underset{\substack{\alpha \to \alpha \\ \beta \to b}}{\text{limit}} \{ z_{a}[\phi'(\beta)\theta(\alpha) - \theta'(\beta)\phi(\alpha)] + [\phi'(\beta)\theta'(\alpha) - \theta'(\beta)\phi'(\alpha)] \} = 0.$

A similar statement is valid if the limit circle case holds at b, and the limit point cast holds at a.

These results are valid only in nonself-adjoint problems. They are not applicable in the self-adjoint case, since, in that instance, all eigenvalues lie on the real axis, where the existence of \dagger and \hbar cannot be established in general.

References

- [1] Allan M. Krall, "On the expansion problem for nonselfadjoint ordinary differential operators of second order," submitted for publication.
- [2] ______, "On nonself-adjoint ordinary differential operators of second order," Doklady Akademii Nauk, to appear.

19. F