On The Eigenvalues of a Singular Nonself-Adjoint Differential Operator of Second Order

gPo price

by

CFSTI PRICES)

\qquad
Hard copy (HC) \qquad

Microfiche (MF)

管 853 duly 06

Allan M. Kraal*
4

> The nonself-adjoint operator $\ell y=y^{\prime \prime}+q(x) y$, where $q(x)=q_{1}(x)+i q_{2}(x), q_{1}(x)$ and $q_{2}(x)$ are real valued, $\underset{x \rightarrow a}{\operatorname{limit}} q_{2}(x)=\delta, \operatorname{limit}_{x \rightarrow b} q_{2}(x)=\gamma$, was considered over an interval (a, b) in [1]. From ℓ a nonself-adjoint operator L was defined in $I^{2}(a, b)$. The spectrum and adjoint of L were found, and a "spectral resolution" was derived.

If r is an arbitrary point in (a, b), it was shown that when $\lambda=\mu+i v, v \neq \gamma, \ell y=\lambda y$ has a solution $\phi(x, \lambda)$ in $L^{2}(r, b)$, and when $\nu \neq 0, l_{y}=\lambda y$ has a solution $n(x, \lambda)$ in $L^{2}(a, r) . \lambda$ is an eigenvalue of L if and only if the Wronskian of (x, λ) and $n(x, \lambda)$ is zero. Treprotolem This paper wishes to enssidervasjut characterize these eigenvalues, the zeros of $W[\psi, n]$.

* McAllister Building, The Pennsylvania State University, University Park, Pennsylvania.
This work was supported in part by NASA Grant No. $1 / G-39-130-04$

In what follows every expression is a function of the complex variable λ. In the interest of notational clarity, it has been suppressed.

Let $\theta(x)$ and $\phi(x)$ be the solutions of $\ell_{y}=\lambda y$ satisfying $\theta(r)=1, \theta^{\prime}(r)=0, \phi(r)=0, \phi^{\prime}(r)=-1$. We choose s in $[r, b)$ such that $\left|q_{2}(x)-\gamma\right|<|\nu-\gamma| / 2$ for all x in $[s, b]$ when γ is finite, or such that $\left|q_{2}(x)-\nu\right|>\epsilon$ for all x in $[s, b]$ for some $\epsilon>0$ when γ is infinite.

We then define $y_{l b}(x)=$
$\theta^{\prime}(s) \phi(x)-\phi^{\prime}(s) \theta(x)$ and $y_{2 b}=$
$\theta(s) \phi(x)-\phi(s) \theta(x)$.
In $[s, b)$ a sequence of nested circles $C(\beta)$ is found all containing a limit circle or limit point given by

$$
\left.M=\operatorname{limit}_{\beta \rightarrow b}-\frac{y_{1 b}(\beta) z_{b}+y_{1 b}^{\prime}(\beta)}{y_{2 b}(\beta) z_{b}+y_{2 b}^{\prime}(\beta)}\right)
$$

where z_{b} is any real number. $\forall(x)$ is then given by

$$
\psi(x)=\theta(x)\left[-\phi^{\prime}(s)+M \phi(s)\right]+\phi(x)\left[\theta^{\prime}(s)+M \theta(s)\right]
$$

(See [1] and [2].)
Similarly we choose t in (a, r) such that $\left|q_{2}(x)-\delta\right|<|v-\delta| / 2$ for all x in $(a, t]$ when δ is finite, or such that $\left|q_{2}(x)-\nu\right|>\epsilon$ for $a l l x$ in (a, t] for some $\epsilon>0$ when δ is infinite.

We define $y_{1 a}(x)=$
$\theta^{\prime}(t) \phi(x)-\phi^{\prime}(t) \theta(x)$ and $y_{2 a}(x)=$ $-\theta(t) \phi(x)+\phi(t) \theta(x)$.

In (att] a sequence of nested circles $C(\alpha)$ is found,
all containing a limit circle or limit point given' by

$$
-m=\operatorname{limit}_{\alpha \rightarrow a}-\frac{y_{1 a}(\alpha) z_{a}+y_{1 a}{ }^{\prime}(\alpha)}{y_{2 a}(\alpha) z_{a}+y_{2 a}{ }^{\prime}(\alpha)},
$$

where z_{a} is any real number. $n(x)$ is then given by $n(x)=-\theta(x)\left[\phi^{\prime}(t)+m \phi(t)\right]+\phi(x)\left[\theta^{\prime}(t)+m \theta(t)\right]$.
(Again see [1] and [2].)
Lemma. Let $D_{b}(\beta)=y_{2 b}(\beta) z_{b}+y_{2 b}{ }^{\prime}(\beta)$,
$D_{a}(\alpha)=y_{2 a}(\alpha) z_{a}+y_{2 a}{ }^{\prime}(\alpha)$. Then $w[\phi, n]=$
$\operatorname{limit}_{\alpha \rightarrow a}\left[\left[\phi(\beta) z_{b}+\phi^{\prime}(\beta)\right]\left[\theta(\alpha) z_{a}+\theta^{\prime}(\alpha)\right]\right.$ $\underset{\beta \rightarrow b}{a \rightarrow a}$

$$
\left.-\left[\theta(\beta) z_{b}+\theta^{\prime}(\beta)\right]\left[\phi(\alpha) z_{a}+\phi^{\prime}(\alpha)\right]\right\} / D_{a}(\alpha) D_{b}(\beta)
$$

Proof. We observe that $W[\psi, h]$ is independent of x. Computing $W[\psi, n]$ at $x=r$ we see $W[\phi, n]=\left[\phi^{\prime}(s)+M \phi(s)\right]\left[\theta^{\prime}(t)+m \theta(t)\right]-$

$$
-\left[\theta^{\prime}(s)+M \theta(s)\right]\left[\phi^{\prime}(t)+m \phi(t)\right] .
$$

Inserting the expressions for m and M and taking limits completes the proof.
Theorem 1. If $D_{a}(\alpha)$ and $D_{b}(\beta)$ approach finite limits as
$\alpha \rightarrow a$ and $\beta \rightarrow b$, then $W[\psi, n]=0$ if and only if

$$
\begin{aligned}
\underset{\substack{\alpha \rightarrow a \\
\beta \rightarrow b}}{\operatorname{limit}^{\alpha}} & \left\{\left[\phi(\beta) z_{b}+\phi^{\prime}(\beta)\right]\left[\theta(\alpha) z_{a}+\theta^{\prime}(\alpha)\right]\right. \\
& \left.-\left[\theta(\beta) z_{b}+\theta^{\prime}(\beta)\right]\left[\phi(\alpha) z_{a}+\phi^{\prime}(\alpha)\right]\right\}=0 .
\end{aligned}
$$

Note that this last equation in no way depends upon the points $x=s$ or $s=t$.

In the limit point cases the value of M (or m) is independent of the choice of z_{b} (or z_{a}). Only in the limit circle cases does M (or m) vary with the choice of z_{b} (or z_{a}).
Theorem 2. If the limit point case holds at a and b, then under the conditions of theorem 1
$W[\dagger, n]=0$ if and only if
$\operatorname{limit}[\phi(\beta) \theta(\alpha)-\varphi(\beta) \phi(\alpha)]=0$, $\alpha \rightarrow a$
$\beta \rightarrow b$
$\operatorname{limit}\left[\phi(\beta) \theta^{\prime}(\alpha)-\theta(\beta) \phi^{\prime}(\alpha)\right]=0$,
$a \rightarrow a$
$\beta \rightarrow b$

```
\(\operatorname{limit}\left[\phi^{\prime}(\beta) \theta(\alpha)-\theta^{\prime}(\beta) \phi(\alpha)\right]=0\),
    \(a \rightarrow a\)
    \(\beta \rightarrow b\)
\(\operatorname{limit}\left[\phi^{\prime}(\beta) \theta^{\prime}(\alpha)-\theta^{\prime}(\beta) \phi^{\prime}(\alpha)\right]=0\).
    \(\alpha \rightarrow a\)
    \(\beta \rightarrow b\)
```

Proof. Multiply the expression in theorem one out and collect the coefficients of $z_{a} z_{b}, z_{a}$ and z_{b} together. Since z_{a} and z_{b} are arbitrary the result follows. Theorem 3. If the limit point case holds at b, and the limit circle case holds at a, then under the conditions of theorem 1, $W[\psi, n]=0$ if and only if

$$
\begin{aligned}
& \underset{\substack{\alpha \rightarrow a \\
\beta \rightarrow b}}{\operatorname{limit}_{\substack{ }}\left\{\mathrm{z}_{\mathrm{a}}[\phi(\beta) \theta(\alpha)-\theta(\beta) \phi(\alpha)]+\left[\phi(\beta) \theta^{\prime}(\alpha)-\theta\left(\beta^{\prime}\right) \phi^{\prime}(\alpha)\right]\right\}=0,} \\
& \operatorname{limit}_{\substack{\alpha \rightarrow a \\
\beta \rightarrow \mathrm{~b}}}\left\{\mathrm{z}_{\mathrm{a}}\left[\phi^{\prime}(\beta) \theta(\alpha)-\theta^{\prime}(\beta) \phi(\alpha)\right]+\left[\phi^{\prime}(\beta) \theta^{\prime}(\alpha)-\theta^{\prime}(\beta) \phi^{\prime}(\alpha)\right]\right\}=0 .
\end{aligned}
$$

A similar statement is valid if the limit circle case holds at b, and the limit point cast holds at a.

These results are valid only in nonself-adjoint problems.
They are not applicable in the self-adjoint case, since, in that instance, all eigenvalues lie on the real axis. Where the existence of and n cannot be established in general.

References

[I] Allan M. Krall, "On the expansion problem for nonselfadjoint ordinary differential operators of second order," submitted for publication.
[2] , "On nonself-adjoint ordinary differential operators of second order," Doklady Akademii Nauk, to appear.

