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ABSTRACT 19

It has been suggested that a toroidal space vehicle
might be raised to a very high positive potential relative to
the surrounding space by causing a stable crossed-field elec-
tron beam to circulate around its outer surface. In this ar-
rangement the electric field exists only between the space
vehicle and the electron beam; the magnetic field is imposed
by coils within the space vehicle. It has been shown that
such a beam can be stabilized against the diocotron (slipping
stream) instability by being made sufficiently thick. The
stability against coherent radiative perturbations of such a
thick beam is studied under the following simplifying assump-
tions: 1) the geometry is taken as infinite cylindrical; 2) the
ratio of all frequencies in the problem to the electron cyclo-
tron frequency is negligible; 3) no perturbation electric fields
along the magnetic field lines; 4) on the basis of an analogy,
but without direct proof, certain continuous spectra of real
eigenvalues occurring in the problem are unimportant; 5) the
electrons are cold and 6) the outer boundary of the "space
vehicle', i.e. the cylinder, is perfectly conducting. It is
concluded that if there is a gap between the inner edge of the

beam and the cylinder, one unstable mode is present for

each azimuthal mode number { = 1.
‘ L8
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LIST OF SYMBOLS
Cylindrical coordinates. B
Time.
Electronic mass.
Absolute value of electronic charge.

Permittivity and permeability of free space.

Speed of light.
Electric field vector.
Unperturbed (radial) electric field.

Complex amplitudes of perturbation components
of the electric field.

Magnetic field vector.

Unperturbed (axial) magnetic field.

Complex amplitude of perturbation axial magnetic field.
B ()

Unperturbed electron number density.

Velocity vector.

Unperturbed (azimuthal) electron velocity.

v (b)/e

Angular velocity of unperturbed electron beam.

2 (b)

Unperturbed electrostatic potential. Vo (o) = 0.

“MKS units are used throughout this paper.
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Pl’ PZ’ P3, P4

1’72

Plasma frequency = (noez/eorn)l/2
Cyclotron frequency = eBO/m

2
w2 o

w /e

Basic frequency in this paper.
Free space wave number at frequency w -
Dimensions of electron beam. See Fig. 1.
Location of jump in w -

Azimuthal mode number.
Eigenfrequency (complex in general).
w/o

(22_1)1/2

Bessel functions.

Dummy variable.
Functions defined in Section 6.
Functions defined in Section 6.

Functions defined in (6. 24) and (6. 25); modified
definitions given in (7. 32) and (7. 33).

Function defined in (6. 26).

Functions defined in Section 7.
Functions defined in (7. 14) and (7. 15).
Discriminant of a quadratic; see (7. 8).
Two diocotron frequencies.

wD+/wo; see (7.9).

adiative correction to
R ion wD+

0 wDi/wO

Linear operator defined in (3. 12).
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1. INTRODUCTION

It has been suggestedl that a toroidal space vehicle might be raised
to a very high positive potential relative to the surrounding space by causing
a crossed-field electron beam to circulate around its outer surface. The
magnetic field would be provided by a field coil running around the torus
while the electric field would come from the separation of the negative
charge in the electron beam from a positive charge on the surface of th
space vehicle.* These two charges being equal in magnitude but opposite
in sign, the arrangement would have no net charge. The
large mobility of the electrons parallel to the magnetic field will ensure
that the magnetic field lines are equipotentials and hence that the magﬁetic
and electric fields are everywhere mutually perpendicular. This scheme
is reasonable in the sense that losses due to such causes as collisions of
the electrons with neutral gas atoms or with each other can lead to long
( ~days) containment times. ! However, certain types of instability to
which crossed-field electron beams are subject can, in appropriate cir-
cumstances, have rapid growth rates. The crucial question therefore con-
cerns the stability of the equilibrium situation as outlined above.

The most important instability of the crossed-field electron beam

is the diocotron (or slipping stream) instability. 2,3,4,5

This instability
is of great importance in the theory of the crossed-field microwave magne-

tron. It can be thought of as arising from the interaction of two surface

waves propagating one along each edge of the beam. This interaction gives

" A magnetron in roughly this geometry was proposed by Buneman. 13



no amplification for wavelengths much shorter than the beam thickness. If
now the beam travels periodically around a closed path, the longest admis-
sible wavelength will be roughly the perimeter of the path. The possibility
therefore arises that in periodic geometries, the beam may be made suffi-
ciently thick that it is stable against perturbations of all admissible wave-
lengths. In a geometry related (but not identical) to the toroidal configura-
tion discussed above, stabilization along these lines, i.e., by making the
beam thick enough, is in fact possible.

In this paper we consider a potential instability of a different kind,
one furthermore that is apparently not of much interest in magnetron work.
We refer to a mechanism whereby a bunching of the electron beam causes
the emission of electromagnetic radiation directly into space. The ques-
tion arises whether the emission of this radiation increases the bunching
and thereby causes an instability to grow. In this case, in order to supply
the radiated energy, the electron beam would have to fall in towards the
space vehicle. Alternatively, the emission of the radiation might cause
debunching, and hence lead to stability. In either case, the dynamical
reaction of the electromagnetic radiation field back on the electron beam
is critical. This type of study, which appears to be new, might be called
"flexible antenna theory'. Two considerations distinguish this problem
from problems studied in connection with the microwave magnetron. In
the first place, the radiation takes place directly into space, so that ele-
ments such as periodic slow-wave structures designed to excite instabili-
ties and external antennas are absent. In these circumstances the boundary
condition applied at large distances from the electron beam is the radiation

condition requiring only outgoing waves to be present. In the second place
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emphasis is placed on the search for configurations in which all modes are
stable (i. e. damped) rather than the search (characteristic of magnetron
studies) for instabilities exhibiting the largest possible growth rates or
propagation constants. In spite of these differences from standard magne-
tron theory, the form of analysis which we apply to this problem is entirely
classical. A perturbation procedure yields a standard boundary value pro-
blem leading to an equation for the permitted (complex) frequencies of os-
cillation. From the roots of this equation we draw conclusions as to the
possible presence of unstable modes of oscillation.

1 In this initial study of the problem, several simplifying assumptions
are introduced. These are:

1) the electron cyclotron frequency w. is much greater than all
the other frequencies in the problem; these are a) the electron plasma
frequency wp, b) the frequency € with which the electrons perform their
orbits in the drift direction and, c) the frequency w of the perturbation
studied. It follows from this assumption that all cyclotron resonance pheno-
mena are neglected, and that the electron dynamics are governed by the
simple equation

E+vxB=0 (1. 1)

except possibly in the direction of the magnetic field. It does not appear possi-

ble at this stage to make a prediction concerning the possibility of an in-

stability associated with electron cyclotron resonance. This topic is there-
fore left for study in a later paper.
2) the electron temperature is negligible. One might suppose that

a cold electron beam is more subject to coherent radiative instabilities




than a warm one. In this sense, the assumption is a pessimistic one from
the point of view of overall stability. However, the effects of this assump-
tion definitely require further study.

3) No perturbations involve components of the electric field parallel
to the magnetic field. In a geometry infinitely long in the magnetic field
direction, a proper accounting for motions of the electrons along the field
lines might possibly result in instabilities. But it is also likely that in a
geometry of finite length in this direction (or, as in the application to space
vehicles, a geometry in which the field lines curve and close on themselves)
a certain minimum length is required before such an instability could manifest
itself. The quantitative establishment of such a criterion remains to be

calculated.

Taken in conjunction with the assumption that the electrons are
cold, this assumption allows (1. 1) to be solved for the electron velocity
which is:

v:(ExB)/Bz (1.2)

This velocity can also be interpreted as the velocity of the magnetic field
lines.

4) It is assumed on the basis of an analogy but without direct proof
that a certain continuous spectrum of real eigenvalues which arises in the
analysis does not lead to instability. This assumption is discussed further
in context in Section 4.

5) The surface of the cylinder is assumed to be perfectly conducting.

7,8

A number of studies have been made of the stability of a crossed-field

electron beam moving between plane parallel resistive walls. If one wall
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is assumed perfectly conducting and one resistive, damping or growth re-
sults according as the resistance is present in the cathode or the anode.
These analyses have a doubtful application to the present case since the
space charge effect is neglected; thus a uniform velocity in the beam is
obtained. In our case, there being no cathode, the space charge effect is
vital and must always lead to a strongly sheared beam velocity profile.
Obviously, a definite answer to this question must await further analysis,
however the growth and damping rates resulting from this effect are ar-
bitrarily small for arbitrarily good conductors.

In order to study the physical problem outlined above without
undue mathematical complication it is desirable to simplify the geometry.
The simplest way of doing this would be to suppose the radius ratio of the
torus very large, and treat a segment of it as an infinite, straight, charged,
current-carrying wire. In this geometry the magnetic field would be azi-
muthal, the electric field would be radial, and the E x B drift would be
parallel to the wire. The difficulty with this scheme is as follows: we
would expect in this geometry to study waves propagating parallel to the
wire, that is, in a straight line. But in a frame moving at the phase velocity
of such a wave the motion would appear to be steady; it follows that no radia-
tion of power from such a wave is possible. The radiation we seek must
arise as a result of the acceleration of a bunch of charge around a curved
path. This condition is satisfied in the toroidal geometry, but the mathe-
matical complexity of this geometry appears formidable. For this reason

we treat a geometry which is topologically related to the torus problem, but



is nevertheless different. The chosen geometry is illustrated in Fig. 1; it
is the same arrangement as that in which the diocotron effect was studied
by Levy. 6 It consists of a perfectly conducting infinite circular cylinder
immersed in a magnetic field everywhere parallel to the axis of the cylinder.
This axis is then chosen as the z-axis of a system of cylindrical polar coor-
dinates r, ©, z. The electron beam circulates in the © -direction around
the cylinder. The surface of the cylinder carries a positive charge per unit
axial length equal in absolute magnitude to the total negative charge per unit
axial length in the electron beam. This arrangement gives a radial electric
field in the electron beam and overall electrical neutrality. The cylinder
stands at a positive potential relative to 'space!''. All quantities are assumed
uniform in the axial direction. The circulating electron beam considered as
an electric current causes a radial variation in the axial magnetic field
strength. In this geometry a charge bunch does move in an accelerated
path and will therefore radiate. It is thought that this change in geometry
can show the radiative effect we seek while greatly simplifying the mathe-
matics.

The organization of this paper is as follows: In Section 2 we con-
sider the available range of equilibrium configurations. In Section 3 a
linearized equation is derived which represents a perturbation of any of the
equilibrium configurations of Section 2. In Section 4 the analysis is much
simplified by restricting attention to a special class of equilibrium con-
figurations in which the ratio of electron number density to magnetic field
strength is piecewise constant. In Section 5 we specialize still further

and consider that the electron number density is non-vanishing only in a




Fig.

A3100

1

This is the equilibrium geometry in which the radiative stability
of a crossed-field electron beam is studied. The cylinder carries
a positive charge, equal in magnitude to the total charge in the
electron beam. The configuration is two dimensional, and the
regions a< r < b and r > c are empty. The electric field is
pure radial. The magnetic field is only axial, but the strength
varies across the beam in view of the electric current in the beam.
The beam rotates clockwise, the velocity declining to zero at the
outer edge.



single region, that is we treat a bounded beam. The range of geometrical
and physical parameters available to such a beam is exhibited. In Section 6
we derive the eigenfunctions and dispersion relation for the boundary value
problem which is now completed posed. Sections 7 and 8 are devoted to
treatment of the dispersion relation by approximate analytical and numeri-
cal techniques, respectively. Section 9 summarizes the conclusions reached,
and offers some comment of a general nature on the physical meaning of

these conclusions.

2. EQUILIBRIUM CONFIGURATIONS

In this section we derive a general relation which the field quantities
must satisfy in equilibrium. The specialization from this general class of
equilibrium to the particular case of a single bounded electron beam is post-
poned to Sections 4 and 5.

We denote quantities relevant to the unperturbed state (zeroth order)
by the subscript o. Since EO and B  are in the radial and axial direc-
tions respectively, the unperturbed velocity is in the azimuthal (© ) direction
from (1. 2) it is:

v (r) = - E_(r)/B_(r) (2. 1)

This equation is subject to an important limitation. It is clear that (2. 1) can
be made to indicate speeds in excess of the speed of light merely by reducing
Bo' It is equally clear that such a result would be absurd. However, (1.1)
was written down assuming the electron cyclotron frequency much greater
than any other frequency of interest. This condition is inevitably violated

if we increase the electron speed towards the speed of light since the cyclo-




tron frequency falls as the electron mass increases. We shall have to re-
call, as the analysis proceeds, that speeds in excess of the speed of light
are not permitted even though this will not be evident from equations derived
basically from (2. 1). From the practical point of view the decrease in the
cyclotron frequency caused by increasing the electron speed only amounts

to a factor of two when the electron speed is 87% of the speed of light; thus
speeds up to at least this value (for which the electron energy is 1 MeV)
should be attainable within the present framework of assumptions.

Other equations governing the equilibrium configurations are

1 d
+ a3 (TE,) = - ngele (2.2)
and
dB0
I - HoRo® Yo (2. 3)

Combining these relations yields:

Eo d 2 dBo
 a (B -c¢, B

o 4 =0 (2. 4)

S refers to the speed of light; the unsubscripted symbol ¢ will be used to
denote a length. We introduce a frequency wo(r) defined by

pZ o 1 d co‘2 dBo
o ® T eB.  ~ B_r dr (rEJ) = - E, dr (2. 3)

the last equality following from (2. 4). Further, let ko(r) be the vacuum

wave number of electromagnetic radiation of frequency W, Thus:
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wo/k =c (2.6)

The statement (2. 4) amounts to the statement that the divergence of
the Maxwell electromagnetic stress tensor must vanish in electromagnetic
equilibrium. For the symmetric conditions considered, (2. 4) is the only
non-vanishing component of this statement.

At the present stage the equilibrium configuration need not be defined
more precisely than has already been done. We do not discuss what methods
might be used to establish any given equilibrium configuration satisfying
(2.4), since an "inductive ejection' method of producing any desired distri-

bution has been described elsewhere.

3. DERIVATION OF THE LINEAR BOUNDARY
VALUE PROBLEM

In this section we carry out a perturbation analysis of the general
equilibrium just derived, and obtain a boundary value problem consisting
of a linear second order differential equation, and two boundary conditions.
The general equilibrium appears in the coefficients of the differential equa-
tion.

Let EI, %, n and v denote the total electric and magnetic fields,

number density and velocity, respectively. These quantities satisfy the

following equations:

0B
curl E = - = (3. 1)
- ot
1 9 E
curl]} = T Rynev + > (3.2)
<, ot

-10-




div.E = - ne/e (3. 3)

E+vxB =0 (3. 4)

(3. 4) depends on the assumption that all frequencies of interest are
lesg than the cvyclotron

L Y 1

(3.2), (3.3) and (3. 4) can be combined to yield:

9 E

. = 2 _
—§d1v§+ 3T - S curl B XE_O (3.5)

This equation together with (3. 1) are the basic equations to be discussed
henceforward. In a vacuum (n = 0) these equations represent the propaga-
tion of waves at a speed <5 but there is no way of knowing from the equa-
tions that Eo/Bo is not allowed to exceed this same number o Thus
no singularity need be anticipated in equations derived from this system as
Eo/Bo approaches S This is, of course, an artifact since, in fact, our
assumptions break down before this point is reached.

We consider only two dimensional perturbations from the basic
equilibrium; that is, only Er' Ee and BZ are considered in first order
and are assumed independent of z. This restriction is based on the idea
that the mobility of the electrons parallel to the magnetic field lines is
extremely high, so that no significant gradients need be expected in the
axial direction. We look for oscillations in which the unknown field quanti-
ties are each proportional to exp 1( 0~ wt). ¢ is the azimuthal mode
number and must be a non-negative integer. w is the complex frequency

associated with the osciliation and will eventually be found as the root of
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a dispersion relation. We are interested primarily in the sign of the
imaginary part of w. If Imw >0, we have a growing (i. e. unstable os-
cillation). If Im w < 0 we have a damped oscillation. If « is pure real
the corresponding oscillation is neutral and does not grow.

We modify our notation somewhat and suppose the perturbed radial electric
field to be given by the real part of the expression Er(r) exp i (g © —wt)
and likewise for Ee and B. (In the case of B, the subscript has been
dropped. ) Er’ Ee and B now have the meaning of complex amplitudes.
On substitution of the assumed forms for the first order variables, (3.1)

yields a significant component only in the axial direction:

1 d
+ T (*Ee) -

1l g - wB=0 (3. 6)
r r I

On linearization and substitution (3. 5) yields components in the radial and

tangential directions as follows:

i

J
= Ee + wOBJ

1 d
- E [T Ir ()4

4B \:wE N TP dB] -0 (3. 7)
O [0 2 o (o]

+ip —2 =0 (3. 8)

In deriving (3. 7) and (3. 8) use was made of the definitions (2. 5) of W

(3.6), (3.7) and (3. 8) are now three ordinary linear differential equations
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in r for the complex amplitudes Er’ EG , and B. Algebraic elimination

between (3. 6) and (3. 8) gives:

2
d T o ww
2 2 2 2, . _ o
(¢ —rw/co )1Er—g_—d (rEg) + ——— Eg (3.9)
r <,
rw d rw

2 2

2 2, . _ o
(¢ —rw/co )1COB— - ——(rEe)—ﬂq E

C dr
o

o (3. 10)

Substitution of (3. 9) and (3. 10) into (3. 7) yields after some reduction:

4 E rw E rE dw
[w+—— A]Z(EG)J’[” > 0] 2%2 s - -2 =0
r B0 J]

c B -r w /c dr
o o o)

(3.11)
where z is the following second-order differential operator:
d 2
Limoy = & | zdeme) | e
(Eg) = 2 22, 2 - Eo Z 22, 2
dr g -r"w /c 2°-r"w" /c
o o
2 gk r (rw/c)
- (3.12)

z 2 2.2
(0 %-r% /e57)

This is the single linear differential equation for Eg(r) which, together
with appropriate boundary conditions, defines our problem. At the surface
r = a of the (assumed) perfectly conducting boundary we have

Eg(a) = 0 (3.13)

13-



At infinity we require the condition that only outgoing waves be present

(the radiation condition).

4. CHOICE OF EQUILIBRIUM CONFIGURATION

In equation (3. 11) any one of EO, Bo and w, can be given arbitrarily
as a function of r, and the others then follow from the relations presented
in Section 2. The solution of (3. 11) for arbitrary equilibrium profiles is
evidently not easily found. We therefore restrict our attention to a special
class of equilibrium profiles, whose choice is primarily dictated by their
resulting convenience. This special class is still very extensive, so that
for purposes of detailed study it will be necessary (in Section 5) to specialize
still further the chosen equilibrium configuration. In this section, however,
we exhibit the simplification achieved by the first specialization, and give
some discussion of certain problems which arise in consequence.

It is immediately clear that (3. 11) will simplify enormously if W
is independent of r, for in this case the equation for Ee reduces (after
cancellation of a factor about which more later) to a form which can be
shown to be a variant of the Bessel equation. It is, however, unrealistic
to take w,  as independent of r everywhere since W is proportional to
no/BO. Where n_ = 0, i. e. outside the beam at any rate w, = 0. We
therefore assume as our first specialization that w is piecewise constant.
This assumption is only weakly restrictive, for any continuous distribution
of wo(r) can be approximated to some degree by a piecewise constant
function. It is doubtful that any important change in conclusions about
stability could be traced to this approximation. Arguing by analogy, a pro-
cedure virtually identical to that proposed here is commonly adopted in

-14-
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the mathematically related problem of the stability of plane parallel shear
flows. In that case arbitrary unperturbed distributions of vorticity are re-
placed by distributions which are stepwise constant. Goldstein9 has analyzed
a problem of this type involving no less than five such steps.

Before turning to the simplified forms of (3. 11) we consider the con-
dition to be applied across a point where w, is discontinuous. Such a point
is best treated by considering dwo/dr to have 6 -function behavior and in-

tegrating (3. 11) across a vanishing range containing the point in question.

Suppose r = T, is such a point. We observe that Ee » the tangential com-
ponent of the electric field is continuous. Eo and Bo are at least bounded
in the vicinity of r = r- We find:
. ryw Eo(rl) N
H ¢’ B(r)) T1
d (rE. ) - o o1
dr o - { Eo(r]) Ee(rl) w
T, By ' °
r 1 olr1) T1-

(4. 1)
The corresponding jump in Er is found from (3. 9) to be:
r
1'1+ iE (I‘ ) [w ] rl+
E - S o 1- (4. 2)
T g E|[(r)) '
_— = + w
- r; B(r)
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The corresponding jump in B is found from (3. 10) to be:

r
. 1
. 14 ) i E_(r)) Eglr)) [v, ] r)
o - - c 0

O
e

(4.3)
1-

Eo(rl) te w Bo(rl)

This discontinuity (4.2) in E_ indicates an accumulation of charge at the

surface r = rl;

the motion of the surface charge constitutes a surface

current which gives rise to the discontinuity (4. 3) in B. These results can
also be ob’cained4 by supposing the surface r = r, to be slightly deformed
and expressing the kinematic and electromagnetic relations in terms of the

coordinates of this (moving) surface.

For any range in which wg is constant, (3. 11) becomes:

) E
[w+ — B° ]f(Ee):o (4. 4)
O

We shall shortly divide out by the factor (w+ QEO/rBO) but this step
requires careful justification. The argument which, for the diocotron pro-
blem, allows this division is given at some length by Levyé, and depends

10, 11 .14 Dikii. 1% Inclusion of this

on an extrapolation of the work of Case,
factor leads to a class of discontinuous eigenfunctions having a continuous
spectrum of real eigenvalues. This spectrum corresponds to the range of
angular velocities present in the unperturbed beam. In the problem treated
in the references cited above a Laplace transform technique shows that the

continuous spectrum leads to the decay of perturbations like algebraic powers

of the time.
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If W, is taken as a constant ab initio, the factor presently under
discussion could be missed; this comment applies to much diocotron work.
The diocotron problem (for wp < wc) can be obtained from the present pro-
blem by letting Co™ ®© so that the quasi-static approximation is recovered.
In this approximation B, is unaffected by the circulating electron current
and can be considered constant. W, piecewise constant therefore amounts
to n piecewise constant; this is in fact the choice of most authors of pape
on the diocotron effect.

The modes corresponding to the continuous spectrum of eigenvalues
a) have been shown to decay in the fluid dynamic studies of Case and Dikii
and, b) have been ignored in much diocotron work. If, as seems likely, the
analysis used in the fluid dynamic case can be carried over to the diocotron
work without affecting the results, then the neglect of these modes in much
of the literature is of no consequence. This extension of the work of Case
and Dikii was explicitly assumed by Levy. 6 Possibly the most doubtful
point in this extension is the following: according to Dikii the introduction
of a finite fluid viscosity which is subsequently made to tend to zero does,
in fact, substantiate the results of the purely inviscid analysis. In the case
of the electron beam, some physical mechanism more involved than a simple
fluid viscosity must be invoked to remove the physically unacceptable dis-
continuity in the eigenfunctions. While it is not clear exactly what mechanism
is appropriate, it would certainly involve more detailed consideration of the
electron dynamics (finite temperature, finite Larmor radius, Landau damp-
ing) than has been given up to this point. In connection with the present pro-
blem we will simply assume that whatever the nature of the important mecha-
nism, Dikii's result holds and that we can neglect the continuous spectrum

-17-



of eigenvalues. In making this assumption we have also assumed that by
making S finite we have not introduced any important modification to
results connected with the continuous spectrum.

After division through by the factor discussed, (4.4) becomes:

L (E,) = 0 (4.5)

The complete formulation of our problem now involves the differen-
tial equation (4.5), the jump condition (4. 1) together with the continuity of
Ee at each jump, the boundary condition (3. 12) and the radiation condition

at infinity.

5. SPECIAL EQUILIBRIUM CONFIGURATION

At this stage further simplification is necessary not because the
differential equation cannot be easily solved, but merely to keep the algebraic
manipulation within reasonable bounds. This second simplification restricts
the number of points at which W, is discontinuous to two (or possibly only
one). Further, we shall suppose W, (i. e., no) to be zero except between
these points. In this section we shall exhibit the range of possibilities still
available in spite of these two successive specializations of the original
class of equilibrium configurations.

To fix the problem we suppose the electron beam to be confined to
the annular region b=r=c (see Fig. 1). Outside this region, the electron
density being zero, w, = 0. We can therefore use the symbol ®g unambigu-
ously to refer to the constant value of W in the beam. Since W is con-

stant (2. 5) amounts to two simultaneous equations for Eo and B.:
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dcoBo 1 d
Eo t+ akor =0 CoBo + kr dr

(rE_) = 0 (5. 1)

Elimination of Eo between these equations yields the modified Bessel

equation of order zero for Bo'
Trn 211 tha o~nill
didi CAad Vviano \—\1\.‘.&)--\-
feature has been the net electrical neutrality of the cylinder and beam com-

bination. In the present context this means that there is no net charge in-

side the cylinder r = c. Since there is no charge at all outside it we find

E(r) =0
o
r=c (5. 2)
Bo(r) =B_, say
In order to make Eo and Bo continuous at r = ¢ we let:
Eo(r) = coBoo koc {—Kl(koc) Il(kor) + Il(koc) Kl(kor) } (5. 3)
B (r) = B_k_c {Kl(koc) I (k,r) +1,(k_c) K (k1) } (5. 4)

These formulae are valid in the range b < r =< c. Other properties of the

electron beam are found as follows: from (2. 5):

n (r) = (woeo/e) B_(r) (5. 5)

TAll definitions and formulae in this paper involving Bessel functions are
from G. N. Watson, "A Treatise on the Theory of Bessel Functions, "
Cambridge University Press, Second Ed., 1958.
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while vo(r) is found directly from (2. 1) to be the quotient of (5. 3) and
(5.4). Now vo(r)/cO must be restricted to values less than unity in order
to satisfy the relativistic requirements discussed earlier. Since it has its

largest value when r has its smallest value, that is when r = b, we define

v (b) K, (k ) I)(k_b) +1,(k_c) K, (k_b) -
ﬁ = - = .
o K, (k_c) I_(k b) + I (kc) K_(k_b)

Figure 2 shows P as a function of kob and koc. The values of koc
available when kob is given are limited by the conditions p = 1. At this
stage it is helpful to introduce another quantity having the dimensions of a

frequency, and defined as follows:

v _(r) v _(r) w
Q (x) = — = C° _— (5.7)
(] (o]

e}

H

Q o(r) is the angular frequency of rotation of the electron beam about the
cylinder at any radius r. Since it is positive in the sense of © increas-

ing, it is negative with e We define Qo(b) =Q o and find:

_ _ (5. 8)

Figure 3 is a plot of Q o/wo as a function of kob and koc. It can be

seen that Q o/wo can take essentially any value, but that large values are
only present when kob <« koc <« 1. When QO is large, the convective
part of the term m dv/dt missing from the left hand side of (3. 4) becomes

more important than the part indicating local time rates of change. There-
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Fig. 2 This figure shows the values of 8 = - Vo(b)/co corresponding to

A3516

different choices of k b and kgc in (5.6). P is restricted by
relativistic considerations to values less than unity. For small
values of k b and k,c, alarge range of ratios c/b is avail-
able. For large k,b and kgc, the ratio c/b cannot differ by
much from unity.
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This figure shows the values of Qo/wo corresponding to different
choices of kgb and k,c. Q, is the angular velocity of the inner
edge of the electron beam. The curves are continued only so far
as P =1 since values of B larger than this are forbidden.

-22-




fore, m dv/dt will only be negligible compared to the terms in (3. 4) if the
cyclotron frequency satisfies the condition W > Max ( IQ o I, wo). We
shall suppose this condition satisfied where necessary. If kob >1,
Qo/wo is always less than unity provided g < 1.

One further quantity relating to the electron beam is of interest,

namely the electrostatic potential which we may define by:

C
v (r) :f E (r')dr' = (c_/k ) [ B (r) - B, ] (5-9)

T

The potential of the outer edge of the beam has been taken to be zero.

The potential of the inner edge of the beam is:

v, () 1 B_
BE_(6) ~ PBEPD =R )] (5. 10)

Figure 4 is a plot of the potential across the beam, Vo(b), non-
dimensionalized as in (5. 10), as a function of kob and koc. The choice
of on(b) as the reference potential seems reasonable since this quantity
is easily shown to be just a constant (e/27 eo) times the total number of
electrons in the beam per unit axial length.

In the empty space between the cylinder (r = a) and the inner edge

of the electron beam (r = b) the magnetic field has the constant value

B_(r) = B_(b) (5.11)

The electric field is given by

E (r) = -rt-’— E_(b) (5.12)
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Fig. 4 This figure shows values of the electric potential across the electron
beam, V,(b), normalized to b E (b). This quantity, b E (b), is
proportional to the total charge in the electron beam. The curves
are continued only as far as P = 1 since values of B larger than
this are forbidden.
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These formulae are valid for a <=r =b . In this region, there being no
matter, the velocity Eo/Bo may exceed c- The potential difference

between the cylinder and the inner edge of the beam is:

vV (a) = V_(b) v (a) = V_(b) b

BE,_(b) T TEE (@) =fn — (5. 13)

The total potential between the cylinder and space is found by adding (5. 1"
and (5. 13). We observe that for fixed kob and koc, this potential can be
raised to an arbitrary level by reducing a.

Figure 5 is a plot against radius of all the quantities so far discussed
for one particular set of values of kob and koc. It is thus a typical profile
of the class of equilibrium configurations to which our attention is henceforth
restricted. We choose the case kob =, 301, koc = .903 since this case is
discussed in detail numerically in a later section. In this case, c/b = 3,
p=1, Q o/ W, = -3.32 and Vo(b)/bEO(b) = .718. Choosing a case for study
for which B =1 exhibits the fact that no singularity appears at this point,
and also brings out as strongly as possible the radiative effects which vanish

with vanishing 8.

6. DERIVATION OF THE DISPERSION RELATION
In this section we derive the dispersion relation appropriate to the
class of equilibrium configurations just studied, and describe some of its

properties. We introduce the notations:

z = w/wo ; = (zz—l)l/‘Z (6. 1)
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Fig. 5 This figure shows the variation of the field quantities through the

electron beam in the special case kb = .301l, kgc =.904. The
stability of this case, for which B =1, 1is studied numerically in
the text. All the quantities are normalized to their values at r = b.
Also shown are the values taken by these quantities in the empty
regions inside and outside the beam. The inner cylinder may be
any radius a < b.
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z is thus a non-dimensional complex frequency. A solution to (4.5) is:

Eg = F| (¢k 1) (6.2)

where

F(s) = Ji(s) = (¢/zs) J () (6. 3)

If we substitute Y for J in (6. 3) we obtain a second solution to (4. 5) which
we define as Fz(s). The most general solution to (4. 5) is then a linear com-
bination of Fl(g kor) and Fz(g kor). The corresponding solutions for Er
and B are found from (3. 9) and (3. 10). The solution to the equations for
the regions outside the electron beam (a = r = b, and r = c) may be found
in various ways of which the simplest is to let w, 0 in the preceding.

k_ also— 0, z and { —, and ¢/z — 1. In the region r = ¢ we must
choose that combination of solutions that satisfies the radiation condition

at infinity. We find:

E

5 = H(Ql)' (z k_r) (6. 4)

This choice of Hankel function requires -7 < arg z <27. Thus the upper
(unstable) half of the complex frequency plane is covered once, while the
lower (stable) half is covered twice. In the region a <= r = b, in order to

satisfy the boundary condition (3.13) at r = a, we choose

E, o F; (z k_r) (6. 5)

where

FS(S) = Jﬂ(s) Yé (z koa) - Yﬁ(s) Jé (z koa) (6. 6)
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We turn next to the jump conditions given in (4. 1), (4.2) and (4. 3).
Of these three conditions, any two can be derived from the third. At
r=r = b we use (4. 3) to find:

Bkob i Eg(b)
Bo + z kob

c B(b+) - ¢ _B(b-) = (6. 7)

where (5. 8) was used. We recall that 3 is a function of kob and koc
given by (5.6). At r = Ty = ¢, Eo(c) = 0 and (4.3) shows that B is con-

tinuous. The formulae given above now permit the derivation of the disper-

sion relation. Defining:

t) :zkoa; tZ:zkob; ts :zkoc; ty = gkob; ty = gkoc (6. 8)
Fo = Fg(t,); Fi=F.(t,) (6. 9)

B k_b
Fo=Fs+ mrregp P (6. 10)

Bl+z kb 5

(6. 11)
Q3 = Fl (t4) Fz(t5) - Fz(t4) Fl (t5)
Q4 = Jﬁ(t4) FZ (t5) - Yﬁ (t4) Fl(tS)
g, = (F, Q - (¢°/2) F} Q
1 6 ™1 5 ™2 (6. 12)

8y =2 FeQy = L F5 Q
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The dispersion relation is:

M(z) = gl H(Ql)' (t3) - gz chl) (t3) =0 (6' 13)

Since ¢ is known when 2z is known, and f is known when kob and
koc are known, M(z) is a function of z, koa, kob’ koc and ¢; of these we
regard z as the variable and the others (which are all real) as parametiers.
The complexity of the relation (6. 13) renders it hopeless to attempt a solution
for general values of all the parameters. Before proceeding to treat (6. 13)
by approximate and numerical methods, however, we make certain observa-
tions of a general nature.

First, it can be shown that if z is real, g, and g, are both pure

real. It follows that M(z) can only vanish if, for real z,

I (z k. c) T (z k_c)
£ _° = L0 (6. 14)
Yg z kc Yé (z Eoci .

This equality is approximately satisfied if =z koc is small (an important case).
Otherwise, an application of the Wronskian shows that the equality (6. 14) is
impossible. We reach the important conclusion that there can be no pure real
eigenvalues in the present problem, although for small z koc some eigen-
values might appear near the real axis. This conclusion has a simple physical
interpretation as follows: the Hankel functions describe radiative transfer
of energy to infinity. Such radiation obviously cannot be stationary (as would
be implied by a real eigenvalue) without violating the conservation of energy.
Secondly, when z =+ 1, ¢ =0, the solution (6.2) breaks down in

each case and in addition, g3 and g5 become indeterminate forms. It can
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easily be shown, however, that the difficulty is purely mathematical. A
singular solution can be found in either case to replace (6.2), and limits can
be found toward which g, and g5 tend smoothly as z — + 1. Since they
have no intrinsic importance, these limits are not recorded here.

Another value of z that requires special consideration is z = — Bg/kob,
or from (5.10) w= ¢ Q o This is a resonance at a real frequency which 1is
a simple multiple of the angular frequency of rotation of the unperturbed

beam at r = b. We see from (6. 10) that F6 is infinite when =z has this

value. The difficulty can be traced back to the integration of (3. 11) across

a jump in wg when the quantity (w + QEO/rBO) vanishes. It can be seen that
in this case we must require that Eg vanish at the jump. Furthermore, the
jump in d(rEe )/dr is not given by (4.1) but is arbitrary. That is, the
point in question becomes a node of the particular mode of oscillation. (An
exception to this analysis arises if the Jquantity ( ¢+ erO/cOZBO) also vanishes
at the same point. This, however, can only happen if B =1 at that point, a
condition which cannot be satisfied.) When r = b is a node of the oscillation,
and d(rEe )/dr has an arbitrary jump at this point our problem splits into
two, since oscillations in the electron beam and the region outside it (r> b)
are uncoupled from oscillations in the vacuum region r <b. The problem for
the region a <r <b is now just a standing wave problem. The amplitude
of the oscillation in this region will be zero or arbitrary depending on whether

the parameters of the problem are such that:

] (M)Y!'Z (Ma/b)—Yé(BQ) J&(Ma/bb 0 (6. 15)

A standing wave of this type appears to be fortuitous and uninteresting; we

shall discuss this case no further.
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7. REDUCTION TO THE DIOCOTRON CASE

In this section we consider the simplification that results when the
electron speeds are everywhere small compared to the speed of light. In
the extreme limit when B is negligible we simply recover the diocotron dis-
persion rela
two real roots, or two complex conjugate roots of which one is necessarily
unstable. 6 Since we are interested in stable (or at least nearly stable) con-
figurations we shall concentrate our attention on the former case. We there-
fore seek corrections to the two real diocotron roots for the case of $ small,
but not negligible. These are the roots near (but not on) the real axis dis-
cussed as an exceptional case in connection with (6. 14). We shall find ex-
pressions for the imaginary parts of these corrections (which determine
growth or damping) and discuss the variation of these with the geometrical
parameters of the beam.

A simple way to attain the desired limit mathematically is to let
c, ™ ® keeping w, fixed. Thus ko — 0 and the arguments of the Bessel
functions all become small. Also, from (5. 6) and (5. 8)

B Q 1 c
—— = - °z_(T_1) (7. 1)

kb w 2
(o} o

Since, for small argument, YO behaves in a different manner than
YQ (¢ = 1), it will be convenient to postpone consideration of the case

g =0. For g =1, retaining only leading terms, we find:
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2

-2 1% P (2)
g (7.2)
! ﬂzkoz ab z° {sz 240 (cZ—bZ)}
-~ 26 P, (2)
8, ¥ 73 (7. 3)

T ko abc z2 {sz z+g(c2—b2)}

where Pl(z) is a quadratic expression in z and PZ is a linear expression
in z; the coefficients in both these expressions depend only on a,b,c and ¢.
Referring now to the dispersion relation (6. 13), we suppose z koc so small
that the only important contribution to H(E) comes from the term iYQ'
This amounts to satisfying the phase relationship indicated in (6. 14) (and
hence allowing real eigenvalues to exist) by letting both sides vanish. Alter-
natively, allowing c, to tend to infinity amounts to suppressing the radiation
of energy. Replacing H(é) and H(ﬂl)' by their leading terms taken in this

way, (6.13) becomes:

P3(Z) = Pl(Z) + z PZ (z) =0 (7.4)
where
J/ 2 24 29
P,(z) = —< 42+ 22 ) o (S ~1) + - 2
3 al p? pe 4 oL (7.5)
2 2 20 2
C a a b
tf (—— =1) (I - ) - (- —=) (1= —7)
b CZQ b £ C £
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As explained above, this dispersion relation, a quadratic in the unknown
frequency z = w/wo, is identical to that obtained by Levy6 treating the
same geometry as a diocotron problem (c0—> 0 ) ab initio. Since the coeffi-
cients in (7. 5) are real, the two roots are either both real or else complex
conjugate. In the latter case one of the roots (the one having positive
imaginary part) corresponds to instability. Thus the only chance of stability
is for (7. 4) to have real roots in which case the stability is of the neutral
type--perturbations neither growing nor decaying in amplitude. The condi-

tion for stability in this sense is:

2
2 20 2¢ 2¢ 2¢
2 c a a b a 2
D = —Q(—Z——1)+Z——2——-—2——] —4T(1-T) =0
[ b bﬂ cﬁ £ bﬂ
(7. 6)

We refer to the two roots of (7. 4) with the symbols =z the subscript

D+’

D indicating ‘'diocotron'. We have

2 29 2q
2 2 ] (7. 7)

1 C
z = +D -0 ( - 1) - +
D+ ] [— Bbe b2l KA1

It is easy to show that if the two roots =z are both real, they are

D+

both negative.
Having accomplished the reduction of (6. 13) to the known result (7. 4)
we now turn (as indicated earlier) to the more interesting task of calculating

small complex corrections to z for the case of 3 small but not negligible.

D+

The method used for this calculation is to separate out from (6. 13) the imagi-

nary part (which gives the diocotron dispersion relation) and a much smaller

~33-



real part. Now H(Ql) satisfies the radiation condition when its argument

lies between -7 and 27. Therefore since Zn, are both negative, we

suppose their arguments near 7. Using the relation

H(Q” (z) = - e 4™ H(ﬁz) (z e ™ (7. 8)
we rewrite (6. 13) as:
. { -T1 -7
i(-1)"1Y' (zk ce Yg, +Y (z2zk ce ) g
[ 0 o 1 0 o) 2] (7.9)
i

=(-1)¢ [J'ﬂ (2 koo e ™) g+, (2 ke e‘”i)gz]

In this form when 2z is nearly real and negative, both braces are nearly
pure real. It will be convenient to regard the ratios a:b:c as fixed and to
treat the parameters in the dispersion relation as =z and koc. Upon sup-

posing koc to be small we can expand in a power series and define:

£,(2)

(-1 [Yé (z k_c e g+ Y, (akc et g, ] ~ S
(o]

+0 (koc)’ﬂ"2

(7. 10)

. . s s
(-1)¢ [Jl; (zkce ' Tyg + Tz ke e i gz] ~ 1,(2) (ke "7+ 0 (koc)ﬁ

(7.11)
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We evaluate fl(z) using (7. 2) and (7. 3) and find:

2041 )y pe? P,(2)

773 zg‘-*—3 a{ZbZ z+f (cz-bz) }

f(z) = (7.12)

The appearance of P3(z) in (7. 12) is not unexpected, since, in calculating

the diocotron limit, H(“ was approximated by iY,6. We note that, as a

£ £

result:

£, (ZD_*_):O (7. 13)

Evaluating f2 we find:
2473 pe? P,(z)
f (z) = (7. 14)
2 2% 281 (g1 a{ZbZ 2+g(c®—b%) }
where
P4(z) = PI(Z) - zPZ(z) (7. 15)
We now seek a correction to Zh, to account for a small but finite
value of koc. | Suppose this correction is 6ZD+ .  Keeping linear terms in
0 Zh4 the dispersion relation becomes:
0z f! (z ) _
o [ T~ L N R
(k C)Q-l-3 o =
o (7.16)

Glip,) +05p, § (zp,) (koc)£'3 +0 (koc)ﬁ’2
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Now all the terms in both braces, except for 0z are pure real.

Di’

Therefore, the most important contribution to the imaginary part of

) comes from the first term on the right hand side. This situation

ZD_+.
corresponds to the physical idea that the Hankel functions are basically

responsible for radiation. We find:

29
(k c)y " f, (z,)
Im (82,,) = - —° 2 Di (7. 17)
- fi (zp,)

Using the fact that P3(ZD+) = 0 we find:

29
- < 2y Ko > P4(zDi)
gr(e-1)! 2 P (zp,)

Im (6ZDi) B (7. 18)
The denominator of (7. 18) is the derivative of a quadratic at a root. It there-

fore cannot vanish unless the roots coalesce--a limiting case with which we

shall not concern ourselves. We find:

Py (zp) =+ 2 —=— D (7. 19)

giving

Im (6z

D+ (7.20)

- 200 (g-1)!

[ 24
-7 ( Zhs ko ac ) P4(ZD_-t)

2 + D

The question of stability now can be seen to depend on the sign of

P4(ZD+)/_'t D. A certain amount of algebra, here omitted for the sake of

brevity, shows that:
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Pylzy ) Pylzp,)
_ 4D << 4DV (7.21)
-D +D
We conclude that the diocotron root =z is in general destabilized

D-

by radiation, while the diocotron root z is stabilized by the same effect.

D+

Further, the case ¢ =1 is more important than the higher modes. We
illustrate this conclusion by considering the unstable root for the case ¢ = 1.

The real frequency w obtained for ¢ =1 from (7. 7) is plotted in Fig. 6

D-
as a function of a/c and b/c; only values satisfying the condition D2 = 0
are considered interesting. We have chosen to non-dimensionalize Wy
by using o rather than w_ to bring out the fact that the mode in question
always has the real part of its frequency close to o The destabilizing

imaginary correction to z is for this case:

D-
. 82p2 52
Iméz = — ZD_ .
D- 8 (c®—b%)
1/4 1/4q °
2’ a+c®+2be 2’ al+c?-2ne
U= 5) 22— Ut oo
a“+c“-2bc a +c +2bc
(7.22)
Fig. 7 is a plot of ImGwD_ from (7. 22), that is, of the growth rate
of the destabilized diocotron root normalized to BZQ o The growth rate

is large near the boundary across which D becomes imaginary, but

vanishes when a = b, that is when the inner edge of the beam is in contact
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This figure shows the real diocotron frequency which, when a

small radiative perturbation is considered, yields a destablizing
imaginary correction. The azimuthal mode number considered is

¢ =1, since this yields the largest destablizing correction. The
calculation is only interesting when the diocotron frequency is real,
that is, below the curve marked '""Diocotron Stability Limit'. The
frequency in question is non-dimensionalized to Q,. For reference

the ratio Q,/w, (which is a function only of b/c) is shown on a
scale to the right,

-38-




'O 1 T T T T
03
9 4 41
8 15
| y i
i y
| w ]
| DIOCOTRON STABILITY // /
\ LIMIT _~ //
| .6 . -
/‘7 -1 ﬁ_o
= o

= _

30

Fig. 7

A3514

»
o
)
N
®
w0

For values of a/c and b/c within the diocotron stability limit,
this figure shows the stabilizing imaginary correction to the real
frequency plotted in Fig. 6. 0, being negative, éw%_ is positive.
bwp- is, as indicated proportional to the quantity B¢, assumed
small. For reference, the ratio Qo/wo is shown on a scale to
the right.
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with the conducting boundary. When b & a, (7.22) can be written

2 1 (1-a/b)°

Im bz~ P 5 PERFRIY: (7. 23)

D-

Since our ultimate object is to find stable configurations, the possi-
bility of letting a = b so that the growth rate indicated in (7. 22) and (7. 23),
as well as the growth rates of all the higher modes vanish, is quite attrac-
tive. Clearly, it is not reasonable to suppose that the electron beam actually
touches the conducting cylinder; but (7.23) is probably reasonable for (b-a)
on the order of the electron gyro-radius. The present analysis is not capable
of giving reliable information on scales as small as this; a fuller treatment
considering a finite electron temperature would be required. In the absence
of such a treatment, it seems worthwhile to consider the idealized case in
which b = a.

Mathematically, when b =a, F! =0 from (6.6) and (6.9). Hence,

5

from (6. 10), Fé = F5. It is therefore convenient to redefine g, and g, as:

g (a=b)= £Q
(7. 24)

gz (a:b) ZQ3

With these new definitions, the dispersion relation in the form (6. 13) is
still valid. On approximation to the diocotron case, using (7.24) we find

instead of the quadratic (7. 4) a linear equation yielding the single root

2y, = -_é ]:1_ (g)zﬂ} (7.25)

the root Z5_ being lost. This can be thought of as follows: the oscillation
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corresponding to z requires a non-vanishing E at r = b. Placing the

D~ o

wall at r = b therefore eliminates this mode. It can be shown that the radia-
tive correction to (7. 25) is always stabilizing. It follows that, insofar as it
is reasonable to set b = a, perturbations of the diocotron roots are always
stabilizing. This interesting possibility leads us to consider the case a =b
numericall? in the next section to investigate the possible existence of un-
stable roots elsewhere in the complex frequency plane.

We conclude this section by returning to the case ¢ = 0 which was
excepted from the approximations of this section. Analysis (not given here)
shows that there are in fact no azimuthally symmetric diocotron modes of
oscillation at all; there is therefore nothing to correct for small radiative
effects. The possibility remains for study, however, of unstable or stable

roots elsewhere in the complex plane.

8. NUMERICAL STUDIES OF THE DISPERSION RELATION

No better method for numerical studies of the dispersion relation
(6. 13) is known than computing and plotting graphs showing M(z), and scan-
ning them for possible zeros. This is particularly simple if the plots are
constructed to show the lines in the complex z-plane on which the phase and
the argument of M are constants; on such a graph, poles and zeros stand
out very clearly. It has been possible to draw from a few such graphs
general ideas about the behavior of M(z) in relation especially to its asympto-
tic character. These ideas in turn permit a definite statement about the loca-
tion of unstable roots in the upper half of the complex frequency plane.

We pick two cases for detailed study. One (Cas2 A) has a < b

in order to bring out the unstable root known to exist for small 8 near one
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of the real diocotron fregquencies in such a case. In order to ensure that
the diocotron frequencies are real for all § we must have a’2 + CZ—Zbc > 0.

We fix a:blc = 1:10:30 and choose different values of ko to give different

values of P . The actual values chosen for study are listed in Table A.
TABLE A

Case k a kb k c B -Q /e, Vo(a)/an(a)

Al . 001 . 01 .03 . 0400 4.000 3.039

A2 .01 .1 .3 . 3910 3.910 3.037

A3 .03014 . 3014 . 9043 1. 000 3.317 3.021

The second case has a = b. For this case only a single diocotron frequency
exists, and it is always real. The radiative perturbation to this frequency
is stabilizing. We fix a:b:c = 2:2:3 and choose different values of ko to

give different values of B. The actual values chosen are listed in Table B.

TABLE B
Case k_a=k_b k c §] -9 o/‘”o v, (Q)/QEO(Q)
Bl .02 .03 .0125 . 6250 .2296
B2 .2 .3 . 1245 . 6225 . 2296
B3 2. 603 3. 905 1.000 . 3842 . 2032

In both cases the modes studied were ¢ = 0, 1, and 2. For Case B the

real diocotron frequency =z is =, 2778 for ¢ =1 and -.4012 for ¢ = 2.

D+

The general behavior of M(z) is that it follows an inverse power
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law for very small z and, for very large z, separate exponential laws in
two regions of which the first extends from somewhat below the real axis

and includes the entire upper half plane, while the second extends over the
region for which Im z is large and negative. It is important to observe

that there is a region for moderate negative values of Im z for which no
simple asymptotic expansion is available. In this region there are an infinite
number of zeros; since they all necessarily correspond to damping, no effort
has been expended to locate them accurately. For Case A the essential fea-

tures of these expansions are given in the following formulae: for leoCI «< I:

M(z) ~ z~ (L3 (0= 1) (8. 1)

M(z) ~ 22 ¢=0 (8. 2)

> ], and Im z > 0,

Forlzka
o

5/2 2
M(z) ( 2 ) 2 2% expligka- 2+ 0r- 3m | (8.3

7k a c
o}

For zkoa > 1, and Im zkoa «< -1,
2 /2 T a3
M(z) ~ — . > (21 g+k_c) exp i[z(Zk c-k _a)
ﬁzkoa 8 bc ° ©

(8. 4)

For Case B, the general behavior of M is similar in the same regions, and

we omit the detailed formulae.
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We shall first state the results of the numerical studies, and then
illustrate them by exhibiting a very few of the many graphs produced showing
the function' M(z). The results show that the conclusions reached in the pre-
vious section for small values of B are, in fact, applicable to all values of B.
That is, when a <b, there is a single unstable root for each azimuthal mode
number ¢ = 1. This root tends, for small B, to the diocotron root ZD—'
For ¢ = 0 there are no unstable roots at all. When a = b there are no

unstable roots for any value of ¢. We list in Table C the unstable roots

calculated for the cases Al, A2, and A3, for the modes ¢ =1 and ¢ = 2.

TABLE C
" Calculated Root

Mode Zh_ Case ImézD_ Real Part Imaginary Part

0=1 ~3. 4959 Al 6.4220x10 4 3.4965  6.3904x10 %
A2 6. 4220x10 % -3.4655  5.5897x10° %
A3 . 58351 -2.9024 . 29479

=2 ~7.4996 Al 1.7824x107° -7.4983  1.7754x107°
A2 1.7824x10 % ~7.3783  1.3291x10°°
A3 1. 4714 ~6. 2836 20117

“Calculated from (7.22) for comparison with the imaginary part of the

calculated root.
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It is noteworthy that the formula (7. 22) provides an estimate of the growth
rate of the unstable mode in question which is not in error by an order of
magnitude even when (3 = 1, this in spite of the fact that it was derived on
the assumption f « 1.

In Fig. 8 we exhibit four graphs showing, in the upper half of the
complex z-plane lines on which the phase or modulus of M 1is constant.
All the graphs shown refer to the Case A3, but all the other cases examined
showed no important differences. Fig. 8a shows the mode ¢ = 0, on a scale
extending to z = 100. On this graph we see clearly the smooth way in which
M makes the transition from behavior described by (8. 2) to behavior des-
cribed by (8. 3). Figs. 8b, 8c, and 8d show the mode ¢ =1 on scales ex-
tending respectively to z = 5, 50, and 500. On the first of these we see both
the zero corresponding to the root at z = -2.9 + . 29i, as well as the pole at
z = -3. 3 expected from the discussion preceding (6. 15). It is interesting to
see how clearly zeros and poles show up on diagrams of this type. Figs. 8c
and 8d show no further structure, but just the transition to the asymptotic
form (8. 2).

Having established the result that there is a single unstable mode
of oscillation for each ¢ = 1 whenever a <b, we conclude this section by
exhibiting in some detail the exact character of this unstable mode. To do
this, we establish the ratios of the constant multipliers of the various eigen-
functions discussed in Section 6. Figs. 9a and b illustrate the amplitudes
(to an arbitrary scale) and the phases of the complex amplitudes E

: o
and ¢ B. The jumpin E_ atr=b is 65. 66 183. 05 » and the jump in

G’Er

COB at r = b has the same value since = 1. The jump in Er at r =c
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) o
is 16. 82 e121' 67 . It does not seem possible to give a simple explanation
P g P p

of the structure of this mode in terms of regions of high and low density

leading or 1agging regions of high and low velocity.

9. CONCLUSIONS
The dispersion relation (6. 13) admits exactly one unstable eigen-

value for each ¢ = 1, namely the one corresponding to one of the two real
diocotron frequencies obtained when f — 0. For small B, the growth rate
corresponding to this mode is of order Bzwo(or [32' Q O) multiplied by a geo-
metrical factor which vanishes when b = a. Insofar as it is reasonable to
suppose b = a, stability against the radiative effect considered is possible.
The reasonableness of this supposition requires examination, but would re-
quire a treatment beyond the scope of this paper.

In physical terms this instability appears gquite serious from the
point of view of raising the potential of a space vehicle to very high values.
It is not possible, however, to draw definite conclusions on this point yet,
firstly on account of the important change in the geometry between the
configuration studied and that proposed for use in space. Secondly, and
probably more importantly, it may be possible to control the instability by
appropriate selection of the admittance of the surface of the cylinder. Here
we have only treated the simplest case of a perfectly conducting boundary.
It may be useful to add a reactive component to the admittance. To illus-
trate this point we may consider yet another configuration, one discussed
by Janes et al. ! which in geometrical and magnetic configuration resembles
the stellarator concept. 15 In this geometry it may be possible to attain

potentials up to 109 volts in the laboratory. However since, in this case,
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the electron beam is entirely enclosed within conducting walls the impe-
dance of free space (i. e. the radiation condition) is hardly important. The
radiative stability of this configuration may therefore be expected to be
entirely different from that of the configuration studied in this paper.
Finally, we discuss briefly the likely possibilities when the unper-
turbed distribution differs from the highly special one considered here. The
best that can be said in this regard seems to be that our results should be
representative of the class of equilibrium configurations having a single
maximum in the electron density profile. No firmer basis for this state-
ment exists at present than the knowledge that this type of argument is
reasonably accurate in related shear flow problems. 9 It is hoped that this
problem, as well as those connected with the relaxation of the five physical
assumptions listed in Section 1 can be subjected to more quantitative analysis

in the future.
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