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ON THE EXISTENCE OF LIAPUNOV FUNCTIONS

FOR THE FROELEM OF LURIE

INTRODUCTION This paper is an extension of the work of Ydcubovich and

Kalman on the existence of Liapunov functions for the problem of Lurie.
The primary result of this paper is the removal of the unnecessary hypothesis

of complete controllability and complete observability from the theorem of

Kalman, Th hypoth ave been used either explicitly or implicitly
by many authors working in this field. Indeed, the change of coordinates
introduced by Lurie, the so called Lurie transformations, can be made only
if the system is completely controllable.

The first section contains a collection of elementary results from the
theory of linear algebra and control theory. None of these results are new,
but since one cannot give a single reference or even a short list of references
where the proofs can be found, théy have peen included. The papers [1], [2],

[3] contain most of the results. Several of the lemmas and proofs have been

taken directly from the forthcoming monograph by S. Lefschetz on Stability of

Nonlinear Control Systems [4].

The éecond sections contains the extensions of the lemma of Kalman-
Yacubovich. The proof of the first lemma follows very closely the proof as
given by Kalman in [2].

The third section contains a few applications of the lemmas developed in
the second section.

Since section 1 contains a series of preliminary results that are used
to prove the main result, lemma 2, it is recommended that the reader first

read section 2 and refer back when necessary.

1. FPRELIMINARIES Ilet A beareal nxn matrix and b, ¢ two real n-

vectors (column). Let E° be Euclidean n-space. Denote by A(z) the charac-

teristic matrix of A, that is A(z) = zI - A where I is the identity
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matrix and z 1is a scalar complex variable and let A(z)'l = [A(z)}‘l.

Let ' denote the transpose, * the conjugate transpose and | | the de-
terminate. Thus |A(z)] is the characteristic polynomial of A. The

subspaces of E" generated by the vectors b, Ab, ..., is called the cyclic

subspace generated by b relative to A and will be denoted by [A, b].

The orthogonal complement of [A, b] in E' will be denoted by [A b]o.
i b4

Let the dimension bl e

n
re

By definition [A, b]° = (xeE% x'A% =0, k=0, 1, ...,) and so if
o0 o0
xe[A, b]° then x'(exp At)b = x{ £ (k!)"1a%5b = ¥ (k) Tx a¥utk = 0.
k=0 ¥%=0

If y 1is such that y'(exp At)b = O for all t then by differentiating
k times and setting t = O one obtains x'A®™ =0. Thus, [A, b]° =
{xeE": x'(exp At)b = 0, for all t.} Since the Laplace transform of
x' (exp At)b is x'A(z)"1b it follows that [A, b]° = (xeE% x'A(z)™1b = 0
for any set of z having a finite limit point.}

Now assume that all the characteristic roots of A have negative real
parts. In this case the rational function x'A(z)-lb is either zero or
has at least one pole in the left hand plane since the degree of the denomi-
nator is at least one greater than the degree of the numerator. If x'A(iw)-lb
is pure imaginary for all real w then the poles and zeroes of x'A(iw)_lb
must be symmetric about the imaginary axis. Thus Rex'A(ﬂm)'lb =0 for
all real w implies x'A(z)'Jb = 0 for all z. Thus:

In general

(4, b]° = (xeE™: x'Akb =0, k=0, 1, 2, ...}

{xeE™; x' (exp At)Db

{xeE": x'A(z)—lb

1]
it

0 for all te(-w=, «)}

i
(@]

]

for any set of 2z having a

finite limit point}
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and if all the characteristic roots of A have negative real parts then

[A, b]° = {xeE™: Re X'A(iw)'lb =0 for all real w}

One says the pair (A, b) is completely controllable provided [A, b] = E"

and the pair (A, c¢') is completely observable if (A', ¢) is completely con-

trollable.
Since b €{A, b] and A maps [A, b] into itself, it follows that if
n
we choose a basis €y ceey € for E such that e, ...,
n 1

ceey € is a basis for [A, b]O then the matrix A and

ep is a basis for

[A, b] and o+ 1’

the vector b have the following form

1 2 1\
A = : > b = /
0 A 0o
5 /
where A, A, A3 are pxp, px(n - p), (n - p)x(n - p) matrices, b, isa

p vector and (Al’ b is completely controllable.

)

Now let us assume that (A, b) 1is completely controllable. The
characteristic polynomial |A(z)| = z" + a Z 4 ...+ ay is the minimal
polynomial because if g(z) 1is the minimal polynomial and it is of degree
lower than |A(z)| then g(A)b = O is a nontrivial linear combination of
b, Ab, ..., A" 1% and thus contradicts the fact that (A, b) is completely
controllable,

The following vectors form a basis for o

e =Db

e 1= (A + a I)b



-
and if we choose €5 +--y € as a basis for E° the matrix A and the

vectors b, A(z)“lb have the following simple form

0 ese 0] 0 0 1

O 0 1 cee 0] 0] \ 0 =1 1 z

e Vb= . /s ARY =T

. --a1 -a.2 -a3 -an-l -an} 1 z
AN /

Thus, if %(z) = B * BpZ t .. gnzn-l is any real polynomial of degree less

than n, then g'A(z)-lb = B(z)({A(=)] }-l, where g 1is the real n-vector

with components g,. The vector g is chosen so that g' = (gl, Boy oo gn)
The last preliminary result is the followings Let (A, b) be completely

controllable and k any real n-vector. Let k’A(z)'lb = p(z){IA(z)l}'l.

Then the degree of the greatest common devisor of p(z) and | A(2)] is

egqual to the dimension of [a', k]o.

We can choose a basis for E° such that A = diag(Cx, Cy s =ees Cy ),
: 1

2 n

_ 1 1 | 1 1 1 :
= (K}, kyy «eey K1), b' = (D], b, ..., br) where C)‘i is the n, x n,

matrix
1 0
. A 1
i
%, = .
i
0 0 A,
1
r
and b and ki are ni-vectors and X n; = n. It is easy to see that
1 1

the general result follows at once if it is true for any such block matrix.

n-1l
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Consider then the n x n matrix CX and the two n-vectors b and c.

There exists a change of coordinates that leaves C

b to the simple form b' = (0, 0, ..., 1).

¥y ay a,
. = 0 al ese
|+, o
0 O

X unchabged and reduces

The transformation of coordinates

o x)
an-l .
X
n
&

is nonsingular provided al # O and it preserves the form of CX' One can

easily verify that if (Cx, b) is completely controllable

then bn # 0. Thus the following éystem of equations has a solution for

Oy +0or @ With @ = b;l # O since the determinant is bﬁ £ 0

1

albl + oz2b2 + ... + anbn

alb2 + ... + C

n-lbn =

In this coordinate system, if k' = (kl, ceey kn) then

(-l)n+lkl

(z-M"

k'C,(2)7'b =

+ ...

. —p(z)
(z - »)°

If the degree of the greatest common devisor of (p(z), (z - X)n) is s, then

=0 and k. #0.

and b' = (bl, ceey bn)



s

6.

Now also in this coordinate system k'(exp C7\t)x =

kltn_l ' a
(kl, klt+k2, ceey (—n——-l—)—'—+ eee +kn)(xl, eeey Xn) e
If again kl =Ky = ... = ks = 0 and k€+l = 0 then the number of linearly

independent x such that k! (expC)\t)x =0 1is equal to s.

2. THE MAIN LEMMAS. The extension of the Kalman-Yacubovich lemma will require

several steps. The first lemma is a slight extension of the lemma as given by
Kalman [2] and the proof of this lemma follows very closely his proof. It will
give enough information to remove the complete observability assumption required
by Kalman. We obtain the additional information that B 1is positive definite

and that (A, q') is completely observable.

Lemma 1. Let A _13_(3 an nxn real matrix all gi‘ whose characteristic

—

roots have negative real parts, let T be a nonnegative real number and let

b, k be two real n-vectors. Assume (A, b) is completely controllable. IZ

(1.1) T4+ 2 Re k'A(im)‘lbz 0]

for all real ® then there exist two n x n real symmetric matrices B and

and a real n-vector q such that

a) A'B+ BA = -qq' -D
b) Bb - k =v1q

c) (A, q') 1is completely observable.

d) B is positive definite and D is positive semi definite.
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e) if iw, w real is a root of -q'A(z)-lb +v1 then it is a root

of b'A(-z) 'DA(z) Tb.

£f)  all the roots of —q‘A(z)-lb +vV1 are in the closed left hand plane

Proof: Let m(z) =A(Z)—lb and ¥(z) = |A(2)]. Then (1.1) can be written

N{iw)
Eﬁ iwhﬂ-iwi

(1.2) 0<71+m (iwk + k'm(iw)

Clearly 1.7) 4is an even polynomial with real coefficients and hence its
zeroes are symmetric about both the real and imaginary axis and its zeroes on
the imaginary axis are of even multiplicity. Thus we can write N(iw) = 0(iw)@(-iw)

where #{(z) 1is a real polynomial with all roots in the closed left hand plane.

We can factor #(z) = :;‘l( z) 02(2) such that all the zeroes of 01(2)
are in the open left hand plane and all the zeroes of 62(2) are on the
imaginary axis. Let the degree of 01 and 82 be ny and n, respectively.
At this point we wish to add to 5oth sides of (1.2) a term that does
not destroy the inequality and at the same time makes the rational function
on the right hand side irreducible. If n; = 0 we have nothing to do. If
ny £ 0 then ny <n- 1. We now define a polynomial g(z) sc¢ thit
i) E(z) has real coefficients and is of degree less than or equal ton - 1
ii)  IPliw) = &io) &-iw) - F(iw)g(-iw) >0 for all real w
iii) The greatest common divisor of I'(z) and YWz)¥-z) is one.
Let gg(z) be any real polynomial of degree n - n, - 1  with
zeroes different from those of ¥(z) and Gl(z). Then clearly g{(z) can

be chosen as g(z) = aé'g(z)gg(z) wvhere « is sufficiently small and positive.

We then define the vector g so that E(z){|A(z)| ]'l = g'A(z)'lb.
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Since 6(iw) 6(-iw) - g(iw)g(-iw) > 0 ~we can by the same reasoning as
in the above write 6(iw) 6(-iw) - g(iw)g(-iw) = v(iw) v(-iw) where v{(z)
is a real polynomial all of whose roots are in the left half plane.

Thus

v(io) v(-iw)

(1.3) 0 < 1+ m(iw)*k + k¥'m(ivw) - m*(iw)geg'm(iw) = o) 7 i)

In general the formal degree of Vv(z) is n and the leading coefficient is

J} SO we can write

where p© is real and of degree n - 1. The vector q is then defined

by |.J.(z)[?lr(z)}_l = q'm(z). Since thé greatest common division of
and ¢ is 1, (A, q') is completely observable, The property

(f) then holds. Define D = gg' and since by construction the zerces on
the imaginary axis of g'm(z) and -q'm(z) +v1 are the same property (e)
holds.

Now define B by
2 At
B=[ ¢ {aq' + D}e dt
(o]

and so A'B + BA = -qq' - D. Since (A, q') is completely observable, B

is positive definite. From (1.3) it follows that

m*(iw)k + k'm(iow) = m*(io)Dm(io) + (-q'm(iw) + V1) (-m*(iw) + V1) - T

m*(iw){qq' + D}m(ﬂn)-J}'(q‘m(iw) + m*(iw)q)

b'Bm(iw) + m*(iw)Bb - V1 (q'm(iw) + m*(iw)q)

[
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and hence Re(Bb - k -J’tq)'m(ia.)) =0 and so Bb - k =~[Tq.
The next step is the removal of the assumption that (A, b) be

completely controllable. This is done with the following lemma.

Lemma 2. Let A be a real n x n matrix all of whose charac-

teristic roots have negative real parts; let T be a real nonnegative

number and let b, k be two real n-vectors. If

T+ 2Re KA(iw) b 2 0

for all real w then there exists two n x n real symmetric matrices

B, D and a real n-vector g such that

(a) A'B+ BA=-qq' - D
(b) Bb - k =~ 1q

(c) D 1is positive semi definite and B is positive definite

(d) {xeE™: x'Dx = 0} (} [A', q1° = {0}

(e) Q&[A: b]O

£f) if iw, o real, is a root of -q'A(z) Tb +~T then it is

a root of b'A(-z)']DA(z)‘lb.

Choose a coordinate system for E® such that

1 A by Ky
A= , b = , K =
0] A3 0 k2
where A, A, A3 are pxp, px(n-p), (n-p) x (n-p) matrices
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respectively; bl’ k. are p vectors; k2 is an (n - p) vector and such that

1

is completely controllable. Clearly if A has all characteristic

rcots with negative real parts then so do Al and A3. If we partition B, D

and q in the same way, ie

we find that we must solve the following set of matrix equations

T
1) AB, + B

|
1By + BiAy = -9,9; - Dy

)
2) A2Bl + AéBé + B;Al = _qeqi

3)  ALB, + ALB. + BA, + BoA = -qp0) - Dy
%) B, -k =V1q,
5) Bip, - k, =~f1q2

By hypothesis 1T + 2 Re ki Al(ﬂg)—lbllz 0 for all real w and so by lemma 1

of lemma 1

there exists a solution to the eguations

1l and % and by (c)

the condition (e) of lemma 2 is satisfied. Also by (e) of lemma 1 the condition

(f) of lemma 2 is satisfied. Now let us consider the equations 2) and D).

Since Bl

A, as unknowns. We can solve 2) for Bé in terms of a5 by the formula

and q, are known by lemma 1 these two equations have only Bé and

= ALt At
= _ 1
B!, = £ e ” {gyq, - AlBJe ~ dt
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and then substitute this into (4) to obtain

© A't A.t ' © A't At
qu = {£ e 3 qe 1 bdt -’J}I} 9, = k + é e 5 AéBle 1 dt .

Since the right hand side of the above is known, we can solve for g, pro-

vided the matrix in the bracket, R, is non singular. There is no loss in
ALt

generality in assuming that A' is in triangular form and so e é is in

3

. A typical term from the diagonal of R 1is then
At At - -
Je"itq, e b at -V = a,(-\T - A)) lbJL -Vt = qla (-A) lbl -

But this term is not zero since -Ki is in the open right hand plane and by
condition (f) of lemma 1, we know that the zeroes of qlAl(z)'lbl_- V1 are in
the closed left hand plane. Thus R 1is non singular and a4 and 32 are
determined.

Now choose D3 to be any positive definite matrix. It is clear then

then equation 5) has a solution and that (d) is satisfied.

Since B satisfies A'B + BA = -qq' - D it must be of the form

- had ] oo A
B- J OeA taqreftat + f oeA tpehtat.
. Alt
If x_ is such that x Bx =0 then xe 'g=0 and xDx_ = 0 and thus
o o o o) o ©

by (4), x = 0. Hence B is positive definite.

In some critical cases the following lemma is useful. This lemma is in

essence due to Yacubovich [5] and was implicitly used by Meyer in [6].

Lemma 3., et A bean n xn real matrix all 2{ whose characteristic

roots have zero real parts and are simple. If the residues of k'A(z)'lb are

all positive then there exist a positive definite matrix B such that

A'B+BA=0 and Bb- k=0.

Proof: This lemma follows at once by making a change of coordinates so that

A is diagonal. In this coordinate system B is chosen to be diagonal also.
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3. APPLICATIONS. The lemmas developed in Section 2 can be applied to many

different systems that have been considered in the literature. Let us con-

sider the so-called direct control system. The equations are

(3.1) ¥ = Ax - be(o)

o=1c0C0'Xx

where A is areal n xn matrix; b, x and ¢ are real n-vectors and

¢(0) is a continuous scalar function of the scalar ¢ such that o¢(o) >0
for all o # 0. The vector x and the scalar o0 are functions of the real
variable t, time, and X 1is the derivative of x with respect to t. Let
us assume also that through each point in E" there exists a unique trajectory
of (3.1). We wish to prove

If all the characteristic roots of A have negative real parts and if

there exist +two nonnegative constants « and P such that

(3.2) a+ £ >0 and Re(a + iuﬁ)c'A(iw)'lb 20

for all real w, then all solutions of (3.1) are bounded, the trivial solution

X = 0 is stable and moreover if « # O the trivial solution is asymptotically

stable in the large.

If the trivial solution, x = 0, _of the linear system X = {A - ube'}x

is asymptotically stable for all 4 >0 when a =0 then all solutions of

(3.1) are asymptotically stable in the large also.

Proof: Using the relation iwI = A(iw) + A in (3.2) we obtain
1 1
Be'b + 2Re (EE—%—Eé—E) A(iw)'lb z0 for all real

and thus by lemma 2 there exists a real n-vector gq and two positive sym-

metric matrices B and D such that
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A'B+ BA = -qq' - D

s

and moreover B 1is definite. Thus

o
(3.3) V=x'Bx+ BJ ¢(o)do
o
is a positive definite function and tends to © as |x] — . The derivative

V of V along the trajectories of (3.1) is given by

V= -x'"(A'B + BA)x + Z(Bb - é;-c +-%— A'c)'x0(o) + Be'be(o) + aod(o)
(3.4)
= x'Dx + W1 ¢ (0) + q'x)2 + ao®(o)
Note that @®(0) has been added and subtracted from %.
Clearly -% is also positive and hence, by the well known theorems of
Liapunov Theory all solutions are bounded and the origin is stable. In order
to prove asymptotically stable, we must show that no solution remains in the
set where -V = 0. Let a £ 0 and assume there exists a solution x(t) of
(3.1) such that x(0) = x and x(t) remains in the set where -V = 0. But

if V=0 then o0 =0, and thus, such a solution is a solution of X = Ax.

Hence x(t) = (exp At)x . From the second term we obtain gq'(exp At)xoss 0.

Also, xDx =0 and so by part (d) of lemma 2, x_ = O.
In general we cannot conclude more than stability in the use when
a =0, but if the linear system %X = {A - ube'}x is asymptotically stable

for all u > 0O then the system (3.1) is asymptotically stable in the large also.
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In order to rule out solutions that remain in the set where -V = 0, we must
be sure that there is no solution such that Jw(c(t)) = -q'x(t).
If 7 # 0 then a solution of (3.1) remains in the set where -V = O

1
must satisfy the linear equation % ={A + 172 bglx. By condition (e) of

lemma 2 there exists a nonnegative integer m such that q'b = g'Ab = ... =

-1
= q'Am =0 and q'Amb # 0. Hence if T = 0 there exists an m such that
a solution of (3.1) that remains in the set where -V = 0 must satisfy
x = {A - (q'Amb)-]bq'AMI} X.

As we have seen, a solution-that remains in the set where -V =0 is a
solution of a linear constant coefficient differential equation., Let us assume
that there exists a non trivial solution =x(t) of (3.1) that remains in the
set where -{l = 0. We can assume o(t) # 0 since if o0 =0 we could repeat
the previous argument. Since x(t) is a solution of a linear equation and is

bounded for all t then x(t) must be of the form

N
x(t) = 2 vy {exp iw_ t)
j=-N J

where the \r:.J are n-vectors such that v 3 = Vj and a)j are real scalars

such that 5= 05 Clearly ¢(o(t)) must be of the form

N
¢(o(t)) = X a., expim.t
jo-N J

.« By substituting these forms

1]
1
)

where the aj are scalars such that aj

into (3.1) one obtains

- - $ 7T
vy = ajA(le’ lb



-15-

Thus, by the well known formula from the theory of almost periodic functions

T N
lim %:f o(t)e(o(t))at = - 2 Iaj|2c'A(iu> )‘lb >0
oo 0 J=-N

We shall have a contradiction once we prove

Lemma /. Let the system % = {A - vbc'}x be asymptotically stable for

B!
all v >0. If iwj is a characteristic root of A + T % bg' if 1 £0 or

if A - (q'Amb)'lbq‘Am+l if 1=0qb=...= q'Am'lb=O and q'A"b # O then

Im c'A(ia)J.)"lb = 0 and c'A(in.)'lb > 0.
We shall consider only the case when 1 7 0, since the other case is very

similar. Since G =0 we may take £ = 1. Then
qq' + D= - (A'B + BA) = A*(iwj)B + BA(iaﬁ)
| g A(iu)j)'lb|2 + b'A*(imj)'lDA(mj)'lb - 2Reb'BA(iwj)‘lb

3

Now the characteristic polynomial of A + 17 bg'  is [a(z)| {1 - *c"éq' A(z)lb}

and so
T = T-%)‘-q'A(i(.Dj)-lb = b'BA(iw)-lb - ‘:2]; c'AA(iwj)-lb

Since ~T + q'A(ian.)-lb = 0 by lemma 2 part (f) b'A(ia)j)_lDA(iwj)—lb = 0.
Thus
T + 2Re c'AA(iwj)’lb = Re imjc'A(iwj)‘lb =0
or

Im c'A(iu)J.)'lb = 0.



-16-
Since the linear system X = {A - vbe'}x 1is asymptotically stable for
all v >0 the theorem of Nyquist gives c'A(iuﬁ)b z 0.

The above theorem can be modified several ways.

(1) if the matrix A has some characteristic roots on the imaginary axis
then the lemmas 2 and 3 can be used to prove asymptotic stability in a
manner similar to that found in [5) and [6]. 1In particular if A has 2s

simple, distinct, nonzero pure imaginary characteristic roots, the characteristic

root zero of multiplicity p where p=0, 1, 2 all the other characteristic

roots have negative real parts then (3.1) is asymptotically stable in the

large, provided

1) there exist two nonnegative constants « and B, a+ B >0 such

that Re(a + iwB)c'A(iw) b 2 0 for all real o and if i, ® real, is a

characteristic root of A then the residue of (a + XB)c'A(k)'lb at io is

positive
2) when « = O the linear equation X% = {A - ube'}x is asymptotically

stable for all u >0

3) If A is singular and a = 0 then /° ¢(1)dt »» as |o| - =,
22 18 =2e8 Jy as

In order to prove this theorem one first changes coordinates such that

the system (3.1) takes the form

il= Ale - bl¢(0)
k= Ayx, - by¢(0)
X3= A3X3 - b3¢(0')

. ot
g = clxl + 02}(2 + C3X3
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b

where x are r-vectors; Xos b2, c, are 2s vectors and Al’ A2

1? %10 &

are r xr, 2s x 2s matrices respectively. The vectors x3 and b3 are

p-vectors and A, is a p x p matrix where p =0, 1, 2. The characteristic

3
roots of Al all have negative real parts, the characteristic roots of A2
are all simple nonzero pure imaginary numbers and the characteristic root of
A, 1is zero. The matrix A_ = (0) if p=1 and A, = 0 0 if p=2.
3 3 37 1 o

Let
o
V= x;B.x+ x,Bx, + x3B3x3 + Bfo¢(’r)d't

where Bl is given by lemma 2 as in the above and B2 is given by lemma 3 and

3 37 35 1o o

Thus, Bl’ B2 and 133 are rxr, 2s x2s and pxp symmetric matrices

B, =0 if j):O,B—a if p:l,B:(l O) if i)=2’

respectively and V is positive definite. One can proceed as before with
only very minor changes in the argument.

(11)1r o(o) is restricted so that 0 < o¢(o) < k02 for 0.4 0 then
instead of adding and subtracting ao ¢(c) from -V one ca..n subtract
ato)(o - k.l‘b(cr)). The proof carries over and the theorem remains the same

except that .c'A(iw) 1o is replaced by c'A(iw) b + kL.

(iii) Let us make the change of variables y(t) = e"‘tx(t) where x(t) is
a solution of (3.1) and A is any real number such that A > Re Ay i=1, ...,n
and Xi, i=1, ...y, n a.re.the characteristic roots of A, Note that A may
be positive or negative and the characteristic roots of A may have positive

or negative real parts. Then y(t) satisfies the equation

(3.5) y=(A- )y - be‘)‘%(e)‘tc'y)
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Let V = y'By and then the derivative of V along the trajectories of
(3.9) is
V= -y ((A - M)'B + B(A - M)}y + 2(Bb - 3 c}'ye Fo(eMery)
+ c'ye')"tw(e)"tc' y).

As before there exists a B guch that V 1is positive definite and J=zo

for all y provided
Re c¢'(A - xI)(iw)‘lb = Re c'A(io + A.)'lb z0
for all real w. Thus y(t) is bounded and the bound depends only on

i yo". Therefore there exists a positive scalar function K such that

0 or |Ix(t)] s e*K(||x(o))-

v

ly(t)|= K(ly(o)|) for a1l t

(iv) Lefschetz [4] proves that if you replace 2 0 by >0 in (1.1)

you can replace D in lemma 1 part a) by €D' where € is sufficiently
small and D' is positive definite., Using the same method of proof as used
in lemms 2 one obtains the following lemma

ILet A _b_g a real n x n matrix all 2‘ whose characteristic roots have

negative real parts; let 1 be a real nonnegative number and b, k be any

two real n-vectors. _I_f

T + 2Re k'A‘l(im)b >0

for all real o then there exists two real positive definite matrices B and

D and a real n-vector q such that
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(a) A'B+ BA=-qq" -D
(b) Bb - kx=v1q .
In general D can be taken as €D' where D' is an arbitrary positive

definite matrix., This lemma is almost the same as the lemma given by

Yacubovich [7].
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