N66-17204	https://ntrs.nasa.gov/search.jsp?R=19660007975 2020-03-16T23:03:52+00:002
(ACCESSION NUMBER)	(THRU) NASA CR-54660
(PAGES)	28 ARC TR-PL-8634-00-1
(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)
GPO PRICE \$	
Hard copy (HC))
Microfiche (MF) / OZ	<u>)</u>
F 653 July 65 EVALUATION OF	THE MARC 7G1 AUXILIARY
ROCKET MC	TOR FOR USE ON THE
ATLAS	CENTAUR VEHICLE
	LEN RENTING
÷	
	by OTTI
N. C. Jasper, A	. D. Mattox, and E. E. Elzufon
	prepared for
NATIONAL AERONAU	JTICS AND SPACE ADMINISTRATION

t

CONTRACT NAS 3-7128-H

NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- A.) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B.) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to

National Aeronautics and Space Administration Office of Scientific and Technical Information Attention: AFSS-A Washington, D. C. 20546

NASA CR-54660 ARC TR-PL-8634-00-1

FINAL REPORT

EVALUATION OF THE MARC 7G1 AUXILIARY ROCKET MOTOR FOR USE ON THE ATLAS-CENTAUR VEHICLE

by

N.C. Jasper, A.D. Mattox, and E.E. Elzufon

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

February 1966

CONTRACT NAS 3-7128-H

Technical Management NASA Lewis Research Center Cleveland, Ohio Centaur Project Office Ralph F. Schmiedlin and Henry Synor

ATLANTIC RESEARCH CORPORATION Alexandria, Virginia

FOREWORD

This report covers the work performed by Atlantic Research Corporation to evaluate the MARC 7G1 auxiliary rocket motor for use on the ATLAS-CENTAUR vehicle. The program was conducted under Contract NAS 3-7128-H with the NASA Lewis Research Center. Mr. R.F. Schmiedlin and Mr. H. Synor of the Center's Centaur Project Office served as technical monitors for NASA. Work was initiated in March 1965 and completed in October 1965.

The program was directed at Atlantic Research Corporation by the Program Management Group of the Engineering Division, Propulsion and Chemical Systems. Major contributors, in addition to the authors, were N. Sublett in program management; J. Walker, J. Leland, and M. Jones in design; K. Lai in ballistic analysis; and H. Kaehler in stress analysis.

EVALUATION OF THE MARC 7G1 AUXILIARY ROCKET MOTOR FOR USE ON THE ATLAS-CENTAUR VEHICLE

by

N.C. Jasper, A.D. Mattox, and E.E. Elzufon

ABSTRACT

The MARC 7G1, 1-KS-420 rocket motor was evaluated to determine its suitability for use as a retrograde thrust generator on the ATLAS-CENTAUR space vehicle. An igniter proof test series and a motor environmental and static firing program were conducted. The igniter was found capable of withstanding 1-ampere, 1-watt for 10 seconds without initiation. Ten motors each were fired at -30° F and 160° F, and at simulated altitudes above 100,000 feet. Measured motor ballistic data were within design objectives. Impulse reproducibility was excellent, particularly at the higher temperature. Although burning reproducibly, nine of the ten -30° F motors exhibited abnormal ballistics due to excessive strain of the propellant web during startup pressurization. Design changes eliminating this problem proved successful in two additional tests at -30° F.

TABLE OF CONTENTS

			Page
	FOR	EWORD	ii
	ABS	TRACT	iii
1.0	SUM	MARY	1
2.0	INTE	RODUCTION	4
3.0	DES	CRIPTION OF TEST UNIT	5
	3.1	MOTOR ASSEMBLY	5
	3.2	IGNITER ASSEMBLY	7
	3.3	DESIGN CONFIRMATION FIRINGS	8
4.0	МОТ	OR EVALUATION TESTS	11
	4.1	GENERAL	11
	4.2	ACCEPTANCE TESTS	11
	4.3	RADIANT HEAT AND THERMAL GRADIENT TESTS	11
	4.4	ENVIRONMENTAL TESTS	14
	4.5	STATIC FIRINGS	17
	4.6	ANALYSIS OF ABNORMAL BEHAVIOR AT -30° F .	22
	4.7	IGNITION PRESSURE REDUCTION TESTS	27
	4.8	REDESIGN OF PROPELLANT GRAIN AND RETENTION SYSTEM	30
5.0	IGNI	TER PROOF TESTS	33
	5.1	SQUIB ACCEPTANCE TESTS	33
	5.2	CLOSED BOMB FIRINGS	35
6.0	CON	CLUSIONS	38
	GLO	SSARY OF BALLISTIC DEFINITIONS	41
		ENDIX A — BALLISTIC RECORDS FOR BATCH EPTANCE FIRINGS	
		PENDIX B — TEMPERATURE-TIME PLOTS FROM SRMAL GRADIENT TESTS	
		PENDIX C — BALLISTIC RECORDS AND STATIC TEST 'A SHEETS FOR EVALUATION FIRINGS	I
	API SHE	PENDIX D — BALLISTIC RECORDS AND STATIC TEST ETS FOR MOTORS WITH RECOMMENDED DESIGN CH	DATA LANGES

LIST OF ILLUSTRATIONS

Figure No.

1	MARC 7G1 Rocket Motor Tested in Original Evaluation Program	43
2	Major Components of MARC 7G1 Rocket Motor Tested in Original Evaluation Program	44
3	Cutaway View of MARC 7G1 Rocket Motor Assembly Tested in Original Evaluation Program	45
4	Cross Section and Circuit Schematic of Igniter Model 502 Tested in Original Evaluation Program	46
5	Vacuum Test Facility at Gainesville, Virginia	47
6	Thermocoupled MARC 7G1 Grain Configuration for Radiant Heat and Temperature Gradient Study	48
7	Radiant Heat Test Arrangement	49
8	Change in Igniter Resistance During Environmental Test Sequence	50
9	Sinusoidal Vibration Frequencies and Amplitudes	51
10	Sinusoidal Sweep Rate	52
11	Instrumentation of Rocket Motor for Static Firing	53
12	Insulation of Rocket Motor into Vacuum Chamber	54
13	Schematic, Static Test Arrangement	55
14	Rocket Motors Q-1 Through Q-10 After Firing	56
15	Rocket Motors Q-11 Through Q-20 After Firing	57
16	Effect of Cracked Grain on Surface-Web Burning History	58
17	Comparison of Propellant Yield and Rupture Strains with Maximum Possible Strain Over Firing Tempera- ture Range	59
18	Igniter Bodies After Hydrostatic Burst Pressure Tests	60
19	Cracked Propellant from Firing of Motor D-36 at -30° F	61
20	MARC 7G1 Motor with Recommended Design Changes.	62
21	Pressure-Time Traces from Closed-Bomb Igniter Firings	63

LIST OF TABLES

Table No.		Page
I	Ballistic Properties of Arcite 377A Propellant	6
II	Design Confirmation Firing Results	9
III	MARC 7G1 Motor Evaluation Test Program	12
IV	Batch Acceptance Firing Data	13
V	Prefiring Squib Resistances	19
VI	Static Test Equipment List	20
VII	Statistical Comparison of Ignition Data	23
VIII	MARC 7G1 Motor Evaluation Firing Data Summary	24
IX	Bruceton Test Results	34
х	Igniter Performance in Closed Bomb Tests	37
XI	Design and Performance Ratings for the MARC 7G1 Rocket Motor	39

1.0 SUMMARY

The MARC 7 rockets comprise a family of solid-propellant motors used for auxiliary thrusting functions on large missiles and flight vehicles. The latest rocket in this family, the MARC 7G1, was modified for use on the ATLAS-CENTAUR space vehicle. This rocket weighs 5.07 pounds, measures 14.7 inches in length by 2.9 inches in diameter, and delivers approximately 400 pounds of thrust for 1 second at an altitude of 100,000 feet. Its Model 502 igniter meets the 1.0-ampere, 1-watt no-fire requirement of the Atlantic Missile Range.

Twenty motors were tested to evaluate the suitability of the MARC 7G1 for use on the ATLAS-CENTAUR. These units were subjected to an environmental test sequence consisting of temperature-humidity, altitude, operating vibration, shock, and temperature shock. Half of the motors were then fired at -30° F, and half at 160° F. All motors were fired in a reduced pressure environment simulating an altitude greater than 100,000 feet.

Ballistic results from the 20 evaluation firings were within design objectives. Standard deviations on total delivered impulse were 0.18 per cent at 160°F and 0.41 per cent -30°F. Thrust- and pressure-time records in nine of the ten low temperature firings, however, indicated that the motor was performing abnormally at -30°F. Post-test examination, corroborated by ballistic and stress analyses, showed that the grain was cracking radially through the web during ignition.

Additional tests were conducted to reduce the pressure differential occurring across the web at the head end of the motor during ignition. Changes in the igniter body rupture disc and in the amount of ignition charge were first evaluated. Although reducing the pressure contributed by the igniter, these modifications failed to prevent the grain from cracking at -30° F. The motor firing temperature was then raised to 0° F to enhance the capability of the propellant to withstand the pressure differential. The grain cracked in two of three firings at this temperature. Reducing the ignition pressure

differential at the head end of the grain was thus determined not to be a feasible means of eliminating propellant cracking.

The final solution attacked the problem through two avenues: (1) providing the grain with more circumferential support by replacing the rubber inhibitor with a nylon shell impregnated with epoxy-polyamide resin; (2) greatly reducing the magnitude of the initial pressure differential across the grain web by venting gases to the outside of the grain at both ends of the motor. (In the original design, the outside of the grain was vented only at the aft end.) These design changes were incorporated into two motors fired at -30°F and simulated altitudes above 100,000 feet. Also evaluated in these tests was the use of epoxy-fiberglass tabs as aft end spacers in place of the original spring-steel wave washer. This change was made to promote the unrestricted flow of gases to the outside of the grain at the aft end of the motor. Motor performance was satisfactory in both tests. There was no evidence that the propellant had been strained beyond its capacity. Further, there were no adverse effects from the flow of gases through the annulus between the uninsulated motor case wall and the inhibited grain. The revisions evaluated in these two firings are, therefore, recommended for future MARC 7G1 motors.

The Model 502 igniter employs a Hercules Powder Company Model S-228A2 squib and a main charge of boron-potassium-nitrate pellets. Twentyfive squibs were tested in a lot acceptance sequence consisting of the following: (1) inspection; (2) helium leak rate; (3) insulation resistance; (4) Bruceton analysis; (5) functioning time. Six complete igniters were then fired in a closed bomb to evaluate the Model 502 igniter before use in the motor evaluation program.

Functional tests of the igniter were conducted during the motor test sequence to verify its ability to withstand repeated applications of 1 ampere for 10 seconds without firing. The motors were grouped so that ten igniters were subjected to only three functional tests, while another ten

igniters were subjected to 17 tests. No igniter actuated in these tests, and motor ignition performance was unaffected by the number of functional tests prior to firing. The igniter functioned reliably with a current of 5.0 amperes applied to either of the two squib bridgewires.

.

2.0 INTRODUCTION

A solid-propellant, internal-burning motor, the MARC 7G1 (Figure 1) represents the most advanced model in Atlantic Research Corporation's family of MARC 7 auxiliary rockets. The original prototype model, the MARC 7A1, was designed and qualified for use on the ATLAS in 1958. Recently, MARC 7D and 7E models have been employed on the Air Force's TITAN ballistic missile and ATHENA re-entry test vehicle.

The current program was conducted to determine the suitability of MARC 7G1 for use as a retrograde auxiliary rocket on the ATLAS-CENTAUR space vehicle. Eight such rockets, spaced around the base of the ATLAS, are used to retard the first stage during separation from the CENTAUR stage. Significant design features introduced in the MARC 7G1 motor for this application include:

• A 1.0-ampere, 1-watt no-fire igniter which meets Atlantic Missile Range safety requirements.

• An extruded, five-point-star propellant grain that affords reproducible ballistic performance.

• A trapped grain system which provides a reliable, economical means of retention.

• An easily applied translucent rubber inhibitor which permits visual inspection of the inhibitor-to-propellant bond.

• A styrofoam plug, faced with aluminum foil and rubber to form a nozzle closure affording reproducible start-ups free of excessive pressure peaks.

Two series of tests were conducted to evaluate the performance of the MARC 7G1 motor: (1) an igniter proof test program; (2) a 20-round environmental and static firing motor evaluation program. Pertinent results from these tests are covered in this report.

3.0 DESCRIPTION OF TEST UNIT

3.1 MOTOR ASSEMBLY

Fully assembled, the MARC 7G1 motor weighs 5.07 pounds and measures 14.7 inches in over-all length by 2.9 inches in maximum diameter. With an 8.98-to-1 nozzle expansion ratio, the motor, operating at 100,000 feet and 75° F, delivers an average thrust of 400 pounds over a web burning time of 1.0 second.

Components of the MARC 7G1 motor are depicted in the exploded view photograph of Figure 2 and the cutaway schematic of Figure 3. The internal-burning, 2.13-pound grain is extruded into a five-point star configuration. Its Arcite 377A propellant is a plastisol composite having the following formulation:

*** * 1 /

Ingredient	Function	Per Cent
Ammonium Perchlorate	Oxidizer	73.89
Polyvinyl Chloride	Resin	12.31
Dioctyl Adipate	Plasticizer	12.31
Carbon Black	Ballistic Modifier	0.99
Ferro 1203	Stabilizer	0.50

Ballistic properties of the propellant are shown in Table I.

The minimum allowable web on the extruded propellant is 0.382 inch. After extrusion, the grain is cut to a length of 8.410 to 8.470 inches. The outside diameter is held within 2.525 to 2.545 inches. Nominal weight of the finished grain is 2.135 pounds.

The grain is inhibited on its outside circumferential surface with a translucent rubber sleeve, bonded to the propellant with an epoxy-polyamide resin. A laminated epoxy-fiberglass disc at the aft end and a silicone rubber cap at the head end complete the propellant inhibiting system. Epoxypolyamide resin is used as the propellant bonding agent for both end inhibitors. The aft surface of the silicone cap is also treated with a special Dow Corning adhesive prior to bonding.

Table I. Ballistic Properties of Arcite 377A Propellant.

Theoretical Performance at $\epsilon = 8.1$ and $P_c = 1000$ psia	
Ratio of Specific Heats, γ	1.247
Discharge Coefficient, C_{D} (lb/lb-sec)	0.00716
Specific Impulse, I_{sp} (lb-sec/lb)	
Frozen Equilibrium, Sea Level	218
Shifting Equilibrium, Sea Level	220
Shifting Equilibrium, Vacuum	236
Flame Temperature at 1000 psia, T_{p} (°K)	2316
Strand Burning Rate at 1000 psia	
Burning Rate, r (in/sec)	0.36
Burning Rate Exponent, n	0.44
Temperature Coefficient of Pressure at	
Constant K, $\pi_{\mathbf{K}}$ (%/°F)	0.20

Theoretical Performance at $\epsilon = 8.1$ and $P_c = 1000$ psia

Combustion Product Composition (mols/100 gm)

	Arcite	
	Chamber	Exhaust
Н	0.0022	0.0000
Cl	0.0019	0.0000
CO	0.9446	0.5867
CO ₂	0.2788	0.6354
CH ₄	0.0000	0.0013
H ₂ ⁴	0.6973	1.0497
H ₂ O	1.1483	0.7935
HC1	0.8234	0.8258
ОН	0.0007	0.0000
N ₂	0.3144	0.3144
AlCl ₃	0.0002	0.0000
Al_2O_3 (liquid)	0.0023	0.0000
Al_2O_3 (solid)	0.0000	0.0024

Both the motor case and nozzle are fabricated from AISI 4130 steel. The inhibited grain is cartridge loaded into the case from the nozzle end. A spring steel wave washer is placed on the aft end of the grain. The nozzle threads into the case so that its forward end compresses the wave washer against the grain. The grain is thereby captured between the wave washer at its aft end and the silicone cap at its forward end. American Sealants' Loctite seals and secures the threaded joint between the case and the nozzle.

Before assembly into the case, the nozzle is fitted with an ATJ graphite throat insert and a three-piece closure. A styrofoam plug and two discs — one of aluminum foil and one of rubber — comprise the closure assembly. The plug seats within the insert and the discs seat against the steel entrance cone. The three pieces are bonded together with an epoxy-polyamide adhesive. The same resin also bonds the rubber disc to the nozzle wall.

3.2 IGNITER ASSEMBLY

The motor is ignited with a Model 502 igniter, depicted in Figure 4. It consists of three major components: (1) the squib; (2) the housing; and (3) the main charge. The igniter, with O-ring seals, threads into the head end of the motor case.

The squib is a Model S-228A2 developed and manufactured by the Hercules Powder Company in Port Ewen, New York, to comply with the 1.0-ampere, 1.0-watt no-fire requirement of AMFTC-P-80-2. It contains two bridgewires, each capable of initiating the igniter. Its gold plated steel body uses ceramic-to-metal seals to insulate and mount the four connector pins. The output end has a 1/2-20 UNF mounting thread; the forward end is designed to mate with an MS-3116-8-4S connector (Bendix PT06P-8-4S).

The igniter housing is a steel body externally threaded for installation into the rocket motor. Its output end is perforated with seven 3/16inch-diameter holes through which the main charge vents onto the propellant grain ignition surface. These holes are sealed by means of a 0.002-inch-thick

brass disc brazed onto the outside surface. Moisture resistance is assured by subjecting each seal to a helium leak test requiring less than 1.0×10^{-7} cc/sec leakage at a 1.0-atmosphere pressure differential.

The housing perforations are sized empirically so that the pellets burn in the igniter chamber at approximately 1500 psi and vent into the main rocket chamber at sonic velocities. The products of combustion then impinge on the propellant grain ignition surface in a reproducible manner affording fast, reliable ignition over a wide temperature range.

The main charge consists of 17 Flare-Northern 2D pellets, weighing a total of 2.5 grams. These pellets are 1/4-inch-diameter tablets of the boron-potassium-nitrate composition used throughout the rocket industry.

3.3 DESIGN CONFIRMATION FIRINGS

Four prototype motors (DX-1 through DX-4) were fabricated and tested to confirm the MARC 7G1 design prior to evaluation testing. All motors were fired at simulated altitudes greater than 100,000 feet. Each motor ignited and burned full duration without incident. Measured ignition and ballistic data agreed closely with predicted performance values. Motor and igniter configurations were as described above, with two exceptions:

a. In Motors DX-1 and DX-2, a nylon-epoxy disc was used to inhibit the aft end of the grain pending receipt of laminated fiberglass-epoxy material.

b. An experimental polyvinyl chloride inhibitor, extruded together with the propellant, was evaluated in Motor DX-3. Although this firing was successful, the extruded inhibitor was not used for evaluation testing because of processing uncertainties.

Pertinent data from the four design confirmation firings are presented in Table II. These results verified that at ambient temperatures between 70°F and 80°F the nominal web burning time at 1000 psi is 1.0 second. The action time total impulse also fell well within the design

Table II.	Design	Confirmation	Firing	Results.
-----------	--------	--------------	--------	----------

Motor Number	DX-1	DX-2	DX-3	DX-4
Grain Number	2474- R2-10A	2474- R2-8B	2836- R4-4D	2474- R2-13B
Date Fired	6-15-65	6-28-65	6- 2 8-65	7-20-65
Propellant Weight (lb)	2.132	2.135	2.156	2.152
Web (in)	0.415	0.412	0.412	0.406
Motor Temperature (°F)	70	80	80	70
Throat Area Before (sq in)	0.2419	0.2419	0.2419	0.2419
Throat Area After (sq in)	0.2408	0.2410	0.2410	0.2417
Average Throat Area (sq in)	0.2414	0.2415	0.2415	0.2418
Action Time, t _a (sec)	1.610	1.524	1.577	1.514
Burning Time, t _h (sec)		0.967	0.969	1.069
Rise Time, t _r (sec)		0.003	0.003	0.005
Ignition Delay, $t_d (sec)$	0.005	0.005	0.005	0.005
Average Burning Rate, r (in/sec)		0.426	0.425	0.380
Maximum Pressure, P _{max} (psia)	1096	1096	1050	1076
Ignition Pressure, P _{ign} (psia)	1354	1380	1274	1336
Average Pressure, Pa (psia)	730.0	779.5	724.2	781.4
Average Pressure, $\mathbf{P}_{\mathbf{b}}^{\mathbf{a}}$ (psia)	932.3	1012	973.2	984.1
Maximum Thrust, F _{max} (lb)	45 2. 8	434.5	437.7	421.2
Average Thrust, F_{a} (lb)	298.3	318.2	304.8	322.3
Average Thrust, $\mathbf{F}_{\mathbf{b}}^{a}$ (lb)	_	410.0	402.0	390.9
Total Impulse, I_a (lb-sec)	480.3	484.9	480.6	488.0
Deliverable Total Impulse, I ₀₋₀ (lb-sec)		494.5	489.3	496.9
Propellant Specific Impulse, I_{sp} (lb-sec/lb)	_	231.6	226.9	230.9

objective range of 360 to 500 pound-seconds. Ignition characteristics were highly reproducible: rise times fell between 0.003 and 0.005 second, and the ignition delay for all firings was 0.005 second.

4.0 MOTOR EVALUATION TESTS

4.1 GENERAL

The evaluation test plan for the MARC 7G1 motor is shown in Table III. As indicated, 20 motors were subjected to environmental tests of temperature-humidity, altitude, operating vibration, shock, and temperature shock and then static fired at -30° F or 160° F. An additional motor, Serial Number Q-21, was instrumented with thermocouples to determine temperature stabilization times and the effects of radiant heating.

All static firings were conducted at Atlantic Research Corporation's Pine Ridge Facility in Gainesville, Virginia. The motors were fired in a vacuum chamber test facility (Figure 5) used to simulate high altitudes greater than 100,000 feet. Environmental testing was subcontracted to the TRW Inc. Roanoke Laboratory, Rocky Mount, Virginia.

4.2 ACCEPTANCE TESTS

Three MARC 7G1 motors were static fired at 75°F and simulated altitudes above 100,000 feet to accept Arcite 377A Batch 2474 for use in the evaluation program. Motor ballistics, summarized in Table IV, correspond closely to the data measured in the design confirmation tests. Thrust- and pressure-time curves from the three firings are presented in Appendix A.

All motor cases and squib bodies designated for use in the program were subjected to respective hydrostatic proof pressures of 3500 and 10,000 psi. Additional squib acceptance testing at the Hercules Powder Company is discussed in Section 5.1.

4.3 RADIANT HEAT AND THERMAL GRADIENT TESTS

A radiant heat test was conducted to determine the motor's "maximum non-operating temperature" (MNOT). In this test, the motor was subjected to $125^{\circ}F$ for 5 hours, with radiant heat applied to the largest surface area for the last 4 hours at a rate of 360 Btu/sq ft/hr. The MNOT point is defined as the highest temperature recorded immediately under the exposed case surface at the end of this time.

	Rocket Motor Number			er
Tests	1-5	6-10	11-15	16-20
Functional Test (Proof Cycle B ^a)	х	х	X	Х
Temperature-Humidity				
With Proof Cycle B	Х	-	Х	-
Omit Proof Cycle B	-	х	-	Х
Altitude Test				
With Proof Cycle B	х	· -	Х	-
Omit Proof Cycle B	-	X	-	Х
Visual Inspection	Х	Х	х	х
Operating Vibration (3 axes)				
-30°F With Proof Cycle B	X	-	-	-
-30°F Omit Proof Cycle B	_	X	-	-
+160°F With Proof Cycle B	-	-	х	-
+160°F Omit Proof Cycle B	-	-	-	х
Shock Tests				
With Proof Cycle B	Х	-	Х	-
Omit Proof Cycle B	-	х	-	Х
Temperature Shock Test				
With Proof Cycle B	х	-	Х	-
Omit Proof Cycle B	-	х	-	х
High Temperature Firing (160 $^{\circ}$ F)				
Standard Nozzle Closure	3	8	14,15	19,20
Vented Closure (just prior to firing)	1	6	11	16
Low Temperature Firing (-30°F)				
Standard Nozzle Closure	4,5	9,10	13	18
Vented Closure (just prior to firing)	2	7	12	17

Table III. MARC 7G1 Motor Evaluation Test Program.

a. Proof Cycle B consists of applying 1.0 ampere per bridgewire for 10 seconds.

Motor Number	BC-22	BC-23	BC-24
Grain Number	2474-	2474-	2474-
	R3-7A	R2-10A	R3-7B
Date Fired	7-9-65	7-9-65	7-9-65
Propellant Weight (lb)	2.128	2.146	2.142
Web (in)	0.407	0.417	0.410
Motor Temperature (°F)	75	75	75
Throat Area Before (sq in)	0.2419	0.2410	0.2410
Throat Area After (sq in)	0.2419	0.2410	0.2410
Average Throat Area (sq in)	0.2415	0.2410	0.2410
Action Time, t _a (sec)	1.578	1.544	1.525
Burning Time, t _h (sec)	1.067	0.963	0.963
Rise Time, t _r (sec)	0.008	0.007	0.008
Ignition Delay, t _d (sec)	0.004	0.004	0.003
Average Burning Rate, r (in/sec)	0.381	0.433	0.425
Maximum Pressure, P _{max} (psia)	1054	1108	1093
Ignition Pressure, P _{ign} (psia)	1346	1238	1232
Average Pressure, P_a (psia)	761.1	786.9	790.8
Average Pressure, P _b (psia)	973.8	1023	1031
Maximum Thrust, F _{max} (lb)	414.0	437.9	436.2
Average Thrust, F_a (lb)	304.0	314.4	315.9
Average Thrust, $\mathbf{F}_{\mathbf{b}}$ (lb)	387.6	407.1	409.8
Total Impulse, I _a (lb-sec)	479.7	485.5	481.8
Deliverable Total Impulse, I ₀₋₀ (lb-sec)	489.5	495.8	493.0
Propellant Specific Impulse, I _{sp} (lb-sec/lb)	230.0	231.0	230.2
*			

Table IV.	Batch	Acceptance	Firing	Data.
-----------	-------	------------	--------	-------

Motor Number Q-21 was instrumented with five iron-constantan thermocouples located on the grain as shown in Figure 6. The motor was then placed in a controlled temperature conditioning chamber at 125°F. After one hour, radiant heat was applied with five 300-watt, R-40 reflector, incandescent lamps mounted 38 inches from the motor. (See Figure 7.) The thermocouples were continuously monitored throughout the test.

A MNOT point of $141^{\circ}F$ was measured by Thermocouple Number 3. Since this MNOT value is less than the specified firing temperature of $160^{\circ}F$, the latter was used as the upper limit in the thermal gradient study.

After the radiant heat test, Motor Q-21 was subjected to thermal cycling to determine the stabilization times for various operating temperature environments. For this test, thermal stabilization was assumed to have occurred when all five thermocouple readings fell within 5°F of the ambient temperature of the motor. Test results were as follows:

Initial Temperature (°F)	Final Temperature (°F)	Stabilization Time (hr-min)
- 65	70	4-10
- 65	160	2-20
70	- 65	2-50
70	160	3-20
160	- 65	2-10
160	70	3-40

The thermocouple outputs were continuously recorded during the test. Temperature versus time plots for the six sets of conditions are presented in Appendix B.

4.4 ENVIRONMENTAL TESTS

Environmental test equipment, procedures, and results are detailed in the TRW report, Atlantic Research Corporation Report Number TR-PL-8634A. A brief description of each test is presented below.

4.4.1 Proof Cycle B

A functional test of the igniter circuit was performed on all motors before and after the environmental test series. In addition, ten of the twenty motors were subjected to the same test following exposure to each environment. (See Table III.) For this test, designated "Proof Cycle B," a current of 1.0 plus or minus 0.1 amperes was applied to each bridgewire circuit for 10 seconds. This test was performed at an atmospheric pressure between 28 and 32 inches of mercury, a temperature between 60°F and 95°F, and a relative humidity of less than 90 per cent. Current, voltage, squib resistance, and time of current application were recorded.

Results of the Proof Cycle B tests are summarized in Figure 8. This graph depicts the change in mean total squib resistance (sum of both bridgewire resistances) for each of the four motor test groups defined in Table III. A comparison of acceptance and final inspection results shows a net increase in resistance as a result of the environmental tests. Further, the increase for the two groups subjected to two cycles was less than that of the two groups subjected to 16 cycles (2 and 5 per cent compared with 6 and 9 per cent). This difference is insufficient to have any practical effect on either firing current sensitivity or motor ignition characteristics (Section 3.5).

The squib resistance of Motor Q-3 varied considerably and ran appreciably higher than that of the other motors in the same group. Its resistance reached a peak of 3.478 ohms after vibration in the longitudinal axis at -30° F. Before firing, however, the resistance dropped to 2.255 ohms, a value only slightly above the initial acceptance reading of 2.157 ohms. Figure 8 includes a plot of resistances for Motors Q-1, Q-2, Q-4 and Q-5 to show the general trend of squib resistances for this group excluding Motor Q-3.

The average resistance for Motors Q-11 through Q-15 also rose sharply after exposure to temperature-humidity at 160°F and again in final inspection at TRW. In both instances the rise was essentially uniform throughout the group and could not be attributed to specific units. This group also showed a drop in average resistance from 2.294 ohms in final inspection at TRW to 2.212 ohms in prefiring inspection at Atlantic Research Corporation.

4.4.2 Temperature-Humidity Test

The test unit was placed in a conditioning chamber, and the temperature was reduced to -65° F. This temperature was maintained for 8 hours. The chamber was then raised to -30° F and held at this temperature for 4 hours. The temperature was then increased to 160° F. After 6 hours at 160° F, the chamber was maintained at 141° F (the MNOT point) and a relative humidity above 95 per cent for 8 hours. The chamber temperature was then reduced to 40° F at the same relative humidity and held at this condition for 6 hours. At the end of 6 hours, the chamber was returned to standard atmospheric conditions. A temperature change rate of 0.75 to 1.25° F/min was used throughout the test.

4.4.3 Altitude Test

The test unit was placed in a pressure chamber, and the pressure was reduced to 3.44 inches of mercury for one hour. The pressure was then returned to approximately 30 inches of mercury, reduced to less than one millimeter within 10 minutes, and brought back to 30 inches.

4.4.4 Sinusoidal Vibration

Each unit was conditioned for 8 hours at the appropriate temperature shown in Table III. Each motor was then subjected to a slow scanning sweep of sinusoidal vibration along each of three mutually perpendicular axes. Frequencies and amplitude are shown in Figure 9; the sweep period is depicted in Figure 10. Output acceleration was continuously recorded at one mounting interface in the direction of input force. The input force was continuously recorded with a filtered control accelerometer.

4.4.5 Shock

The test motor was subjected to a 1-inch free fall and a 4-inch pivot drop on to a hardwood surface. Each shock was performed once in each of three mutually perpendicular axes. The unit was then packaged for shipment and dropped on a flat concrete surface from a height of 36 inches. This test was also conducted once in each of three mutually perpendicular axes.

4.4.6 Temperature Shock

The test unit was placed in a temperature chamber and conditioned to 70°F. The motor was then removed from this chamber and placed in a chamber at 160°F. After being held at 160°F for 8 hours, the motor was placed in a -65° F chamber and maintained at this temperature for 8 hours. The unit was then returned to standard atmospheric conditions. The time required to remove a motor from one chamber and place it in another was held to less than 2 minutes.

4.4.7 Inspection

Before and after each test, each motor was inspected for damage. This inspection included:

a. A visual inspection of the motor surface for damage such as peeling, flaking, or corrosion.

b. A visual inspection of the forward and aft seals and closures for evidence of leakage or damage.

c. A gentle shaking to detect evidence of loose or dislocated internal components.

No detrimental effects were observed in any inspection.

4.5 STATIC FIRINGS

4.5.1 Procedure and Equipment

Before firing, the 20 environmentally tested motors were subjected to visual examination, X-ray, and Proof Cycle B at Atlantic Research Corporation. No evidence of damage was found either visually or by X-ray. Squib resistances, measured at the motor firing temperature, ranged from

0.950 to 1.300 ohms. (See Table V.) Two circuits had resistances slightly above the maximum design tolerance of 1.20 ohms: (1) the resistance of circuit C-D in Motor Q-7 was 1.300 ohms; (2) the resistance of circuit A-B in Motor Q-12 was 1.230 ohms. Both Motors Q-7 and Q-12 had been conditioned to -30°F before being subjected to Proof Cycle B. Difficulties in obtaining a good electric contact at this temperature could have introduced spurious resistances into the measurement circuit.

Ten motors each were conditioned for at least four hours at respective temperatures of -30° F and 160° F. (See Table III.) Within 15 minutes after removal from its conditioning chamber, each motor was instrumented for test and static fired at a reduced pressure simulating an altitude in excess of 100,000 feet. A current of 5.0 to 5.5 amperes was applied to each squib bridgewire for ignition.

Static test equipment is listed in Table VI. The firing facility consists of a right circular horizontal vacuum chamber (approximately 1000 cubic feet) with a directly coupled inner diffuser tube (approximately 10 cubic feet). This system permits access to the diffuser tube without degradation of the altitude environment in the main chamber. The larger chamber is first evacuated to the desired altitude. The motor is then attached to its thrust stand and secured to the end plate of the diffuser tube (Figure 11). This assembly is inserted into the tube, which is then sealed and evacuated to the desired altitude (Figure 12). The inner access port between the diffuser tube and the main vacuum chamber is opened (Figure 13), and the motor is ignited.

4.5.2 Test Results

All motors ignited within 0.006 second after current application. The ballistic records for the ten high temperature firings exhibited the slightly regressive burning history and the long tail-off times characteristic of the star-ported grain design. Nine of the ten -30° F motors, however, exhibited abnormal ballistic behavior.

	Test	Circuit Re	sistances
Motor Number	Temperature (°F)	A-B (ohm)	C-D (ohm)
Q-1	160	1.070	1.100
Q-3	160	1.145	1.110
Q-6	160	1.000	1.000
Q- 8	160	1.190	1.140
Q-11	160	1.080	0.990
Q-14	160	1,100	1.030
Q-15	160	1,190	1.120
Q-16	160	1,160	1.120
Q -19	160	1,120	1.190
Q-20	160	1.110	1.100
Q-2	-30	1.150	1.050
Q-4	-30	1,150	1.070
Q -5	-30	1,150	1,190
Q-7	-30	0.970	1.300
Q-9	-30	1,150	1.080
Q -10	-30	1,150	0.950
Q-12	-30	1.230	1.120
Q-13	-30	1.160	1.040
Q-17	-30	1.150	0.970
Q-1 8	-30	1,130	1,130

Table V. Prefiring Squib Resistances.

Table VI. Static Test Equipment List.

Item	Manufacturer	Model No.	Serial No.	Calibration
Visicorder	Heiland Division of Minneapolis Honeywell	1508	15-279	System
Amplifier	Computer Engineering Associates	A-1233B	1472	System
Amplifier	Computer Engineering Associates	A-1233B	1466	System
Amplifier	Computer Engineering Associates	A-1233B	1763	System
Recording Oscillograph	Consolidated Electrodynamics	5-119-P4	20099	System
Firing Current Time Control	Atlantic Research Corporation	TC-1	;	System
Dual Load Cell	Allegany Instrument Company	Series 36	31228	System
Temperature Recorder	Leeds & Northrup	Speedomax	62-28946-1-1	NCR ⁴
Thrust Stand	Atlantic Research Corporation	8	1	NCR
Mercury Manometer	Welch Scientific	I I	;	NCR
Open Eng Manometer 90CM	Fischer Scientific	:	!	NCR
Variac Autotransformer	General Radio	W10MT3	:	NCR

a. No Certification Required.

£

|

-

Table VI. (continued)

R

Item	Manufacturer	Model No.	Serial No.	Calibration
Stokes Vacuum Gage (McLeod Type)	Stokes Corporation	276AC	3-87363	NCR ^a
Tod Vacuum Gage (McLeod Type)	Universal	1	316070	NCR
Microvac Vacuum Pump	Stokes Corporation	412H-10	i i	NCR
Microvac Vacuum Pump	Stokes Corporation	412H-10	;	NCR
Vacuum Chamber	Atlantic Research Corporation	;	ł	NCR
Diffuser Tube	Atlantic Research Corporation	;	;	NCR
Sling Psychrometer	Bacharach	ł	1 1	NCR
Conditioning Box	Atlantic Research Corporation	ł	1	NCR
Millivolt Potentiometer	Leeds & Northrup	8690	1610289	NCR
Vacuum Gage	Statham	PA-731-TC- 1-350	11765	System
Pressure Transducer (Motor)	Allegany Instrument Company	151-AJF-1	21890	System

a. No Certification Required.

Ignition pressures and regressivity were excessive for all low temperature motors except Q-17, which performed normally. Examination of the nine motors which performed abnormally disclosed a boiling away of the cadmium plating on one side of eight of the motor cases and on two sides of one case. The cases of Motor Q-17 and the ten units fired at 160° F were free of hot spots. (See Figures 14 and 15.)

Ballistic data for all 20 firings fell within design objectives. Impulse reproducibility was excellent. The percentage standard deviation on total deliverable impulse at 160°F was only plus or minus 0.18 per cent. Impulse reproducibility in the ten low temperature firings was somewhat degraded by variations in chamber pressure due to the abnormal ballistics discussed above. The total impulse standard deviation for these tests was 0.41 per cent.

Table VII statistically compares ignition data from motors subjected to three Proof Cycle B tests and those subjected to 17 Proof Cycle B tests. The samples studied were grouped by firing temperature to isolate the effect of this variable. As indicated, the number of Proof Cycle B tests was found to have no significant effect on motor ignition characteristics.

A summary of ballistic data from the 20 evaluation firings is presented in Table VIII. Individual static test data sheets, showing the thrust- and pressure-time curves and all pertinent motor and ballistic data for each firing, are included in Appendix C.

4.6 ANALYSIS OF ABNORMAL BEHAVIOR AT -30°F

4.6.1 Post-Firing Examination

The nine discolored motor cases were dimensionally inspected after test. No evidence of deformation was found to have resulted from overheating.

	IGNIT	IGNITION RISE TIME (milsec)	rime (mil	sec)	IGNIT	IGNITION DELAY TIME (milsec)	TIME (m	ilsec)
	160°F Firings	'irings	-30°F Firings	lirings	160°F]	160°F Firings	-30°F Firings	Tirings
	3 Proof Cycles	3 Proof 17 Proof Cycles Cycles	3 Proof Cycles	3 Proof 17 Proof Cycles Cycles	3 Proof Cycles	3 Proof 17 Proof Cycles Cycles	3 Proof Cycles	3 Proof 17 Proof Cycles Cycles
Sample Size, n	2	5	2	5	Ω	ъ	5	2
Mean, x	4.6	4.4	4.8	5.8	4.0	3.6	4.2	5.0
Variance, S ^{2a}	6.8	6.3	2.7	3.7	0.5	1.3	1.2	1.0
Standard Deviation, S	2.6	2.5	1.6	1.9	0.7	1.1	1.1	1.0
Variance Test								
1. Calculated "F" ^b	1.	1.08	1.	1.37	7	2.58	ï	1.20
2. "F" at $\alpha = 5$ per cent		6.39	.9	6.39	9	6.39	ġ	6.39
3. $F_1 > F_2 ?^c$	Ž	NO	Z	ON	Z	NO	Z	NO
<u>Mean Test</u>								
1. Calculated "t" ^d	ō	0.11	ŏ	0.79	0	0.60	1,	1.08
2. "t" at $\alpha = 5$ per cent		1.86	ï	1.86	1	1.86	1	1.86
3. $t_1 > t_2 ? c$	Ň	NO	Z	NO	4	NO	z	ON

٠.

ļ

L

a.
$$S^{2} = \frac{n\Sigma x^{2} - (\Sigma x)^{2}}{n(n - 1)}$$

b. "F" = $\hat{\sigma}_{1}^{2}/\hat{\sigma}_{2}^{2}$ where $\hat{\sigma}^{2} = \left(\frac{n}{n-1}\right)S^{2}$ at $n - 1$ d.f.
c. "NO" answers indicate no significant difference at 5 per

c. "NO" answers indicate no significant difference at 5 per cent probability level (
$$\alpha$$
).
d. "t" = $(\bar{x}_2 - \bar{x}_1)/\hat{\sigma}_w$, where $\hat{\sigma}_w = \left(\sqrt{\frac{n_1S_1^2 + n_2S_2^2}{n_1 + n_2 - 2}}\right)\left(\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$ at $n_1 + n_2 - 2$ d.f.

Summary.
Data
Firing
Evaluation
Motor
7G1
MARC 7G1 Mot
VIII.
Table

	Grain					1	"		Action	Action Impulse	1 0-0	0-0 Impulse	F	ţ	ŕ	k
-30°F Motor Temperature 0.004 0.5075 940.1 648.7 931.8 776.2 223.9 483.8 227.4 395.5 269.3 381.2 0.006 0.5435 1032 678.5 914.4 776.5 233.1 485.5 223.3 466.5 365.4 365.4 0.006 0.4696 588.5 649.5 914.4 476.6 223.1 485.4 206.8 383.8 267.3 373.3 0.006 0.4696 568.6 1002 477.5 223.1 485.4 226.8 383.8 267.3 373.3 0.004 0.5189 1025 649.7 914.4 474.5 223.1 487.4 228.7 460.1 373.3 0.004 0.511 907.9 984.0 477.4 223.7 487.4 228.3 367.6 367.4 0.004 0.501 1034 477.5 223.1 487.4 228.9 467.1 277.7 291.0 292.8	t _b t _r (sec) (sec)	se r		t _d (sec)	Ţ (in∕sec)	P (psia)	P _a (psia)	P _b (psia)	la (lb-sec)	Isp (lb-sec/lb	Io-0 (lb-sec)	Isp (lb-sec/lb)	F (lb)	Fa (Ib)	(1b)	P _t (psia)
						-30° F	Motor To	emperatu	ıre							
	0.817 0	0		0.004	0.5075	940.1	648.7	931.8	476.2	223.9	483.8	227.4	395.5	269.3	381.2	0.0468
	0.765 0	0		0.006	0.5425	1032	678.2	1004	476.4	218.9	485.5	223.1	406.3	268.5	396.9	0.0542
		o		900.0	0.4696	958.5	649.5	914.4	476.6	223.1	484.4	226.8	383.8	260.6	365.4	0.0514
		0		0.004	0.4834	981.6	669.8	939.7	477.6	223.1	485.6	226.8	388.5	267.3	373.3	0.0466
		0		0.006	0.5368	1032	688.6	1002	477.2	223.9	487.4	228.7	425.9	282.0	406.1	0.0526
	0.789 0.	0		0.004	0.5189	1025	692.0	1009	474.5	221.7	482.8	225.6	406.7	275.7	400.0	e I
		0		0.005	0.4994	1023	694.9	984.0	479.5	224.3	489.4	228.9	407.2	277.0	391.0	0.0497
		0		0.004	0.5081	1034	698.2	988.8	477.4	223.7	487.4	228.4	458.2	279.3	392.8	0.0499
	1.292 0.(6		0.004	0.3172	907.9	671.2	838.7	479.8	224.7	487.2	228.2	355.7	263.9	330.5	0.0534
$+160^{\circ}$ F Motor Temperature 0.004 0.4512 1180 839.1 1097 489.2 228.4 498.4 232.7 466.1 336.7 439.7 0.005 0.4290 1194 869.4 1111 465.1 228.1 495.9 233.1 479.8 348.0 444.2 0.004 0.4799 1221 869.4 1111 465.1 228.1 495.9 233.1 479.8 348.0 444.2 0.004 0.4799 1221 860.4 1134 466.7 228.1 496.6 233.5 491.5 344.9 455.4 0.004 0.4312 1227 857.3 1132 486.7 2229.1 497.4 233.7 469.0 343.2 445.9 0.004 0.4510 1207 880.6 1124 486.7 2229.1 497.4 233.7 461.1 343.3 451.9 0.003 0.4944 1237 497.4 233.7 492.1 343.3 451.9 0.004 0.4511 1237 496.8 233.2 497.4 233.2		0.0		0.003	0.6626	1147	711.8	1157	473.7	222.8	485.4	228.3	461.0	288.0	459.5	0.0491
						+160° F		emperat	ure							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	°.		0.004	0.4512	1180	839.1	1097	489.2	228.4	498.4	232.7	468.1	336.7	439.7	0.0571
0.004 0.4799 1221 860.4 1134 436.7 228.9 496.6 233.6 491.5 344.9 453.4 0.004 0.4312 1227 857.3 1132 488.3 228.1 498.4 232.6 491.5 344.9 453.4 0.002 0.4806 1212 856.3 1128 487.5 229.1 497.4 233.7 482.1 343.3 451.9 0.003 0.4916 1207 880.6 1124 486.4 227.6 497.8 233.7 482.1 345.7 451.9 0.003 0.4944 1235 872.6 1144 487.7 228.9 498.3 233.8 491.5 347.7 455.8 0.003 0.4944 1235 872.6 1144 487.7 228.9 498.3 233.8 491.5 347.7 455.8 0.004 0.5060 1253 895.6 1170 485.7 227.8 496.8 233.6 461.5 0.004	-	0		0.005	0.4290	1194	869.4	1111	485.1	228.1	495.9	233.1	479.8	348.0	444.2	0.0539
0.004 0.4312 1227 857.3 1132 488.3 228.1 498.4 232.8 480.0 342.2 445.9 0.002 0.4806 1212 856.3 1128 487.5 229.1 497.4 233.7 482.1 343.3 451.9 0.003 0.4914 1235 87.6 1124 486.4 227.6 497.8 233.7 482.1 349.3 451.9 0.003 0.4944 1235 872.6 1144 487.7 228.9 498.3 233.8 491.5 347.7 455.8 0.005 0.5123 1240 873.3 1155 485.7 227.8 496.8 233.0 493.8 349.7 461.5 0.004 0.5060 1253 895.6 1170 485.2 227.8 496.8 233.6 490.8 349.7 461.5 0.004 0.5060 1253 895.6 1170 485.2 227.8 496.8 233.6 468.7 468.7		0		0.004	0.4799	1221	860.4	1134	486.7	228.9	496.6	233.6	491.5	344.9	453.4	0.0580
0.002 0.4806 1212 856.3 1128 487.5 229.1 497.4 233.7 482.1 343.3 451.9 0.004 0.4510 1207 880.6 1124 486.4 227.6 497.8 232.9 479.8 352.0 449.8 0.003 0.4944 1235 872.6 1144 487.7 228.9 498.3 233.8 491.5 347.7 455.8 0.005 0.5123 1240 873.3 1155 485.7 227.8 496.8 233.0 493.8 349.7 461.5 0.004 0.5060 1253 895.6 1170 485.2 227.8 496.8 233.6 500.8 359.4 468.7 0.004 0.5060 1253 895.6 1170 485.2 227.8 496.3 233.6 468.7 468.7 0.003 0.4821 1203 850.1 1124 486.6 223.0 496.3 342.2 468.7 0.003 0.4821	_	0		0.004	0.4312	1227	857.3	1132	488.3	228.1	498.4	232.8	480.0	342.2	445.9	0.0536
0.004 0.4510 1207 880.6 1124 486.4 227.6 497.8 232.9 479.8 352.0 449.8 0.003 0.4944 1235 872.6 1144 487.7 228.9 498.3 233.8 491.5 347.7 455.8 0.005 0.5123 1240 873.3 1155 485.7 227.8 496.8 233.0 493.8 349.7 461.5 0.004 0.5060 1253 895.6 1170 485.2 227.8 497.6 233.6 500.8 359.4 468.7 0.003 0.4821 1203 850.1 1124 486.6 233.6 500.8 342.2 468.7		0		0.002	0.4806	1212	856.3	1128	487.5	229.1	497.4	233.7	482.1	343.3	451.9	0.0555
0.003 0.4944 1235 872.6 1144 487.7 228.9 498.3 233.8 491.5 347.7 455.8 0.005 0.5123 1240 873.3 1155 485.7 227.8 496.8 233.0 493.8 349.7 461.5 0.004 0.5060 1253 895.6 1170 485.2 227.8 497.6 233.6 500.8 359.4 468.7 0.003 0.4821 1203 895.6 1170 485.2 227.8 497.6 233.6 500.8 359.4 468.7 0.003 0.4821 1203 850.1 1124 486.6 229.0 496.3 233.6 486.8 342.2 451.6	0.908	-		0.004	0.4510	1207	880.6	1124	486.4	227.6	497.8	232.9	479.8	352.0	449.8	0.0589
0.005 0.5123 1240 873.3 1155 485.7 227.8 496.8 233.0 493.8 349.7 461.5 0.004 0.5060 1253 895.6 1170 485.2 227.8 497.6 233.6 500.8 359.4 468.7 0.003 0.4821 1203 850.1 1124 486.6 229.0 496.3 233.6 486.8 342.2 451.6		0		0.003	0.4944	1235	872.6	1144	487.7	228.9	498.3	233.8	491.5	347.7	455.8	0.0578
0.004 0.5060 1253 895.6 1170 485.2 227.8 497.6 233.6 500.8 359.4 468.7 0.003 0.4821 1203 850.1 1124 486.6 229.0 496.3 233.6 486.8 342.2 451.6		0		0.005	0.5123	1240	873.3	1155	485.7	227.8	496.8	233.0	493.8	349.7	461.5	0.0549
0.003 0.4821 1203 850.1 1124 486.6 229.0 496.3 233.6 486.8 342.2 451.6	0.805 0	0		0.004	0.5060	1253	895.6	1170	485.2	227.8	497.6	233.6	500.8	359.4	468.7	0.0556
		-		0.003	0.4821	1203	850.1	1124	486.6	229.0	496.3	233.6	486.8	342.2	451.6	0,0565

a. Pressure transducer failure.

.

24

Æ 6249

b. Nozzle closure vented just before firing with $1/8\mbox{-inch}$ hole.

A sectioned case with a hot spot was found to contain four full propellant slivers and one half sliver corresponding to the five port star points. The hot spot on the case was located adjacent to the partial sliver. Further, the inhibitor was intact except in the area adjacent to the hot spot, where it was charred and burnt. The interiors of the other eight motors with hot spots were visually examined through the igniter ports. The condition of the propellant slivers in these units appeared to be similar to that of the slivers in the sectioned case.

The above physical data indicate that the grain had cracked radially through the web in one star point. The failure initiated at the head end of the grain on ignition and immediately propagated longitudinally down the full length of the grain. In the motor with two hot spots (Q-2), cracking evidently started in two star points, but relaxed in one location after the other crack had propagated the full length of the grain.

4.6.2 Ballistic Analysis

To substantiate the above conclusion, the ballistic properties of a grain cracked through the web were analyzed. The maximum chamber pressure of the normal motor, Q-17, was 908 psia. The average maximum pressure for the nine abnormal motors was 1019 psia. If it is assumed that all ten motors have the same throat areas, the following equation applies:

$$\frac{\mathbf{P}_1}{\mathbf{P}_2} = \left(\frac{\mathbf{S}_1}{\mathbf{S}_2}\right)^{\frac{1}{1-n}}$$

Here, the subscript 1 applies to the normal motor and subscript 2 to the average of the abnormal motors. The parameters P and S represent the maximum chamber pressure and the propellant burning surface, respectively. The burning rate exponent, n, is 0.44. Maximum pressure is used in this analysis rather than ignition pressure since the latter is affected by the erosive burning experienced in the narrow propellant crack during

ignition. (Maximum pressure, defined as the highest pressure excluding ignition, occurs immediately after the ignition peak.)

The percentage increase in surface area required to yield a rise in pressure from 908 to 1019 psia was calculated to be 6.8 per cent. The theoretical initial surface area for a normal grain is 81 square inches. A single plane radial crack through the web, running the full length of the grain, increases the burning surface area by 6.9 square inches, or 8.5 per cent. In actual operation, a complete, full-length crack would not be experienced. Thus, percentage increase calculated from ballistic considerations is in reasonable agreement with that derived from geometric considerations.

The surface-web burning histories for both a normal and a cracked grain are presented in Figure 16. This plot indicates that a cracked grain will result in more regressive burning than a normal grain. The initial-to-final pressure ratio for a normal grain is about 1.2; for a cracked grain it is 1.7.

Both the physical observations and analytical results support the conclusion that a radial crack occurred in the grain web on ignition. The cause of the crack is attributed to a pressure differential across the web at the head end of the grain. The resulting increase in burning area and change in grain geometry caused the abnormal ballistic performance of the nine -30° F motors. The ballistic records and total impulse values for these motors, however, indicate that there was no loss of propellant.

4.6.3 Stress Analysis

The structural behavior of the grain was also examined. The critical condition for a star-ported, internal-burning grain, retained as in the MARC 7G1 motor, occurs during the ignition transient interval. The rapid pressurization of the port during ignition produces a radial pressure gradient across the web of the grain. This condition occurs before the grain-to-case annulus is fully pressurized. During this period, the propellant tube has negligible radial stiffness and is, thus, easily deformed outwards toward the case wall.

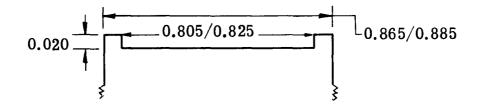
Figure 17 compares the differential pressure required to expand the grain out to the case wall with that required to strain the propellant to its yield and rupture points. At -30° F, a differential of 76 psi is required before the grain expands to meet the case, whereas only 36 psi is sufficient to strain the propellant to the limit of its capacity. Thus, excessive propellant strains may be anticipated in the low temperature region. At higher temperatures, the motor case limits the maximum propellant strain to acceptable values.

4.7 IGNITION PRESSURE REDUCTION TESTS

4.7.1 Test Objectives

A limited series of tests was conducted to determine if the pressure differential occurring across the web at ignition could be sufficiently reduced by lowering the pressure generated by the igniter. This study was divided into three stages, as follows:

- Hydrostatic pressure tests of igniter bodies with various rupture discs to reduce the internal igniter pressure required for the disc to fail.
- Bomb tests of igniters with various rupture discs and ignition charges to reduce the peak pressure generated by the igniter.
- Static firing tests of motors using modified igniters to evaluate the effect of the changes resulting from the above tests.


To assist in this program, the NASA Lewis Research Center returned four of 12 MARC 7G1 motors delivered earlier by Atlantic Research Corporation. Serial numbers of these units were D-31, D-34, D-35, and D-36.

4.7.2 Hydrostatic Pressure Tests

The first three hydrostatic pressure tests were conducted with igniter bodies similar to those used in the motor evaluation test program.

The rupture discs consisted of 2-mil-thick brass, induction soldered across the output end of the pellet chamber. Maximum rupture pressures of 400, 1000, and 1500 psi were measured in the three tests. In all three tests, failure occurred at the solder joint. The intensity of the initial break, however, varied considerably. (See Figure 18.) Examination of the units after test indicated that the wide variation in rupture pressure and intensity of failure resulted from differing degrees of solder flow across the surface of the disc.

The igniter body was then modified to afford more uniform, reproducible solder joints. A 20-mil countersink was introduced to isolate the surface over which the solder could flow. The revised aft end of the igniter body is depicted below:

Two igniter bodies of this configuration, each with a 2-mil brass disc, were hydrotested. Solder joint failures occurred at pressures of 130 and 135 psi.

Four tests were then conducted with 1-mil aluminum discs bonded over countersunk igniter body ends with EC 1838 epoxy-polyamide adhesive (a product of the Minnesota Mining and Manufacturing Company). In two units, the disc was bonded only on the outer peripheral surface of the countersink. The discs in the other two units were pressed in place to conform to the countersink and bonded over the full end surface. Reproducible rupture pressures were obtained with both configurations. Maximum pressures of 30 psi were measured in both edge bond tests. Values of 60 and 63 psi were obtained in the full-surface bond tests.

4.7.3 Igniter Bomb Tests

Five igniter bomb tests were conducted to measure peak pressures generated by igniters with bonded, 1-mil aluminum rupture discs. Free volume of the bomb was 3.75 cubic inches. Boron-potassium-nitrate 2D pellets were used as the main charge in the first three tests. Results were as follows:

Number of 2D Pellets	Disc Bond Surface	P _{max} (psi)	
12	Full	1637	
17	Full	1815	
17	Edge	1933	

Igniters with inert pellet charges were used in the last two bomb tests. One-mil aluminum discs with full-surface bonds were employed in both tests. No pressure was measured in the first test; the main objective here was to determine the effect of the squib on the pellets and the rupture disc. Post-test examination showed that the squib had caused the disc to fail and the ignition pellets to be consumed. The test was then repeated and pressure monitored. A maximum pressure of 300 psi was recorded.

4.7.4 Static Firings

Four motors were static fired to determine if the above reductions in igniter pressure generation would prevent the grain from cracking at low temperatures. All motors were fired with vented closures at a simulated altitude of more than 100,000 feet.

The igniter in the first motor, Number D-36, was loaded with eleven 2D pellets and had an edge-bonded, 1-mil aluminum rupture disc. The motor was conditioned to -30°F before firing. On application of ignition current, the igniter functioned, but the propellant failed to ignite. X-ray, followed by disassembly and visual examination, showed that the grain had cracked radially through its web in one star point. The crack initiated 3 inches from the head end and propagated longitudinally to the aft end of the grain. The crack may be seen in the aft end view of the motor chamber shown in Figure 19. Peak pressure generated by the igniter in this test was determined to be only 247 psia.

The results of firing D-36 showed that igniter brisance could not be reduced sufficiently to prevent grain cracking and still ignite the propellant at -30° F. Thus, the firing temperature for the next three motors was increased to 0° F. The igniters in these motors all contained seventeen 2D ignition pellets. One motor, D-35, was not modified before firing. Its igniter body was subjected to three 800-psi hydrostatic proof tests to assure that the brass disc solder joint could withstand operating pressures of the same magnitude.

Test results from the three 0°F firings are summarized below.

Motor Number	Rupture Disc Material	Disc Joint	P _{max} (psia)	Grain Cracked
D-34	1-mil Aluminum	Edge Bond	991	No
D-35	2-mil Brass	Solder	948	Yes
D-31	1-mil Aluminum	Edge Bond	1000	Yes

These data indicated that the reduced pressure contributed by the igniter at $0^{\circ}F$ was still sufficient to cause propellant cracking. Thus, no further tests were conducted in this series.

4.8 REDESIGN OF PROPELLANT GRAIN AND RETENTION SYSTEM

Detailed stress and gas dynamics analyses indicated that eliminating the low temperature grain fracture would require either constraining the radial deformation of the grain during pressurization or greatly reducing the web pressure differential. Modifications designed to effect these changes were evaluated in three motors tested at -30° F and a simulated altitude in excess of 100,000 feet. The hardware for these tests consisted of refurbished components from the original program. On November 19, 1965, Motor DX-5 was tested to evaluate the effectiveness of a six-ply nylon cloth inhibitor impregnated with epoxypolyamide resin. This inhibitor is the same as that used in the MARC 7 motors employed on the TITAN and ATHENA vehicles. The output end of the igniter body was countersunk as described above. The igniter was otherwise identical to those used in the original motor evaluation firings: a 2-mil brass disc was soldered over the aft end, and the ignition charge consisted of seventeen 2D pellets. The motor burned for 1.009 seconds (web time), producing an ignition pressure peak of 1257 psia and a maximum pressure of 1024 psia. These values, the regressive shape of the ballistic records, and the post-test appearance of the motor case indicated that the grain had cracked during startup. This result showed that increasing the inhibitor strength alone does not impart sufficient radial support to eliminate web fracturing at low temperature.

The motor configuration for the next two tests, DX-6 and DX-7, is shown in Figure 20. Design revisions evaluated in these firings were as follows:

- A vented silicone rubber cap bonded to a laminated epoxyfiberglass inhibitor disc on the head end of the grain.
- A six-ply, nylon-epoxy circumferential inhibitor.
- An igniter body with a 2-inch brass rupture disc soldered to a countersunk aft end.
- Three 1/2- by 1/4-inch, epoxy-fiberglass rectangular tabs bonded to the aft end of the grain.

In the original motor design, the outside of the grain was vented only at its aft end. The introduction of channels in the silicone head cap thus permitted gases to vent to the outside of the grain at both ends of the motor. This change greatly reduces the web pressure differential since the maximum time required to sense pressure in the annulus is approximately halved. Such a design solution had been considered earlier, but was not adopted because of the possibility of creating a thermal problem. Venting both ends of the grain results in an axial pressure differential, which causes the gases to flow down the motor between the outside of the grain and the inside of the motor case. The flow could possibly have an adverse effect on either the effectiveness of the grain inhibiting system or the integrity of the uninsulated motor case, or both.

The epoxy-fiberglass tabs served as spacers between the aft end of the grain and the forward shoulder of the nozzle body. Their adoption permitted the spring-steel wave washer to be deleted. The washer, if sufficiently compressed, could act as a gasket and restrict the free flow of gases into the annulus around the grain.

Both motors performed satisfactorily. Maximum ignition pressures were only slightly above 1000 psia and the web burning times of 1.18 and 1.21 seconds were as expected for a normally operating motor at -30° F. The relatively neutral ballistic traces and the normal, unheated appearance of the motor cases confirmed that the grains had not cracked. Thrust- and pressure-time traces and test data sheets for these two firings are presented in Appendix D.

5.0 IGNITER PROOF TESTS

5.1 SQUIB ACCEPTANCE TESTS

The igniter is initiated with a redundant squib system capable of withstanding 1.0 ampere or 1.0 watt for 5 minutes without firing. For this contract, the Hercules Powder Company produced over sixty S-228A2 squibs, of which 35 were delivered and 25 expended in a lot acceptance test program. The acceptance test sequence was as follows:

a. <u>Inspection</u> - The entire squib lot was checked for workmanship and dimensional quality and then serialized starting with 00001.

b. <u>Hermetic Seal</u> - Each squib was tested in accordance with MIL-STD-202, Method 112, procedure IIIa, for conformance to the maximum helium leak rate requirement of less than 1.0×10^{-7} cc/sec. Three units failed this test and were removed from the lot.

c. <u>Insulation-Resistance</u> - The insulation resistance of the first 33 squibs was measured at 1000 V.D.C. Thirty squibs had resistances of more than 50 megohms; however, the other three units fired when the insulation resistance broke down. The remainder of the units were tested at 500 V.D.C. Insulation resistance for these squibs were all in excess of 50 megohms. With Atlantic Research concurrence, Hercules agreed to certify all future units to 50 megohms at 500 V.D.C.

d. <u>Bruceton</u> - A 25-unit sample was selected from those squibs which had passed all previous tests and inspections. A Bruceton test series was then conducted starting at 1.275 amperes and increasing the current in 0.075-ampere increments. Current was applied to one bridgewire for 30 seconds in each test. The first firing occurred at 2.250 amperes. (See Table IX.) As a result of the low initial current, no firing current data were obtained for the first 13 units. Thus, the Bruceton analysis was conducted on data from only the five units which fired. Based on these data, a rough estimate of the 50 per cent firing point is 2.33 amperes with a standard deviation of

× 00003€ 00013	X
× 20000 ×	×
00013	×
	×
27000	
89000	×
7 9000	
18000	
L0000 O	
£2000 ×	
₽9000	
₩ 00003	
28000	
62000	
90000 O	
29000 O	
00050	
G8000	
LL000	
T7000 0	
00030	
00025	
92000	
00033	
69000 •	
Squib S/N rrent Lev (amp) 1.275 1.350 1.350 1.425 1.575 1.575 1.650 1.575 1.650 1.575 1.650 2.025 2.175 2.175 2.325	2.400 2.475 2.550
quib S/ rent L6 (amp) 1.275 1.350 1.575 1.575 1.575 1.575 1.575 1.575 1.650 1.875 1.875 1.875 1.875 2.025 2.100 2.175 2.175 2.175 2.175	2.4
Squib S/N Current Lev (amp) 1.275 1.350 1.425 1.425 1.575 1.575 1.575 1.650 1.575 1.650 1.875 1.875 1.875 2.025 2.100 2.175 2.175 2.175 2.175 2.175	
U U	

0 = No Fire X = Fire

34

Table IX. Bruceton Test Results.

I

0.22 ampere. Plus or minus three standard deviations results in a maximum no-fire level of 1.67 amperes and a minum all-fire level of 2.99 amperes.

e. <u>Function Time</u> - Ten of the unfired units from the Bruceton test series were fired with currents of 3.0, 4.0, or 5.0 amperes applied to one oridgewire. Results were as follows:

Unit S/N	Current Level (amperes)	Time (milliseconds)
00075	3.0	22.86
00033	3.0	10.47
00020	3.0	22.47
00077	3.0	10.00
00071	3.0	no fire after 30 milliseconds
00057	4.0	4.44
00085	5.0	3.21
00007	5.0	3.42
00073	5.0	3.17
00005	5.0	3.08
00071	5.0 .	3.65 ¹

5.2 CLOSED BOMB FIRINGS

Six fully assembled igniters were fired to evaluate the following:

- Ability of the squib to reliably ignite 2D pellets.
- Ability of the main charge to reliably ignite Arcite propellant.

• Ability of the igniter assembly to withstand motor operating pressures when threaded in the motor case.

Each of the six test igniters was threaded into a closed right circular cylinder with a 3.75-cubic-inch free volume. A propellant charge was also placed in the bomb to effect a maximum chamber pressure of

^{1.} After no fire at 3.0 amperes.

6000 psi. A current of 5 amperes was applied to each bridgewire, and the current and bomb pressure were recorded. The firing curves are presented in Figure 21 the data are summarized in Table X. Parameter definitions are as follows:

- t_d Delay from switch-on to 10 per cent P_{max}
- t_i Delay from switch-on to 90 per cent P_{max}
- t_r Time from 10 to 90 per cent P_{max}
- P_{max} Maximum pressure
- P_r Residual pressure at 0.5 second after current application
- ΔP Pressure loss in 0.5 second due to cooling

The first firing was a preliminary test to determine the propellant charge required to achieve a 6000-psi pressure. The 2.25-gram charge resulted in a maximum pressure of only 4360 psi. The charge was thus increased to 2.75 grams in the remaining five tests. These firings were all successful: all data were within specifications and indicated that the igniter would perform its required function.

An additional eight igniters were subjected to proof cycle "B" for 10 seconds. One ampere was applied to both bridgewires connected in series. No detrimental effects were observed. One of these igniters was then subjected to a current soak test in which one ampere was applied to both bridgewires in series for 5 minutes. Post-test observations revealed no change in resistance, and the squib did not ignite.

Table X. Igniter Performance in Closed Bomb Tests.

. •

.

∆P (psia)	1930	2889	2381	2202	2517	1923 ^a	
P_{r} (psia)	2430	3340	3710	5150	3460	4420 ^a	
P _{max} (psia)	4360	6229	6091	7352	5977	6343	
t_{r} (sec)	0.086	0,096	0.072	0.063	0.072	0.073	
$t_{\mathbf{i}}$	0.088	0.100	0,076	0.068	0,077	0.077	
t _d (sec)	0.002	0.004	0,004	0,005	0,005	0.004	
Propellant Weight (gm)	2.25	2.75	2.75	2.75	2.75	2.75	
Test Number	7	2	က	4	5	9	

a. Recording machine shut off prematurely; P_r measured at 0.3 second.

6.0 CONCLUSIONS

The MARC 7G1 motor, as described in this report, was proven capable of withstanding the prefiring and operating environments required for use on the ATLAS-CENTAUR vehicle. Ballistic performance measured in the 20-round motor evaluation program was within design objectives. The ten motors fired at 160°F afforded highly reproducible impulse performance. At -30°F, nine of the ten motors performed abnormally; however, total impulse values were still acceptable and reproducible.

Abnormal low-temperature ballistics were attributed to radial cracking of the propellant through the grain web. The crack, caused by a pressure differential across the web during ignition, was propagating longitudinally from the head end of the grain. Two design changes — a stiffer, nylon-epoxy inhibitor and the venting of gases from both ends of the motor into the annulus between the inhibited grain and the motor case — were shown to eliminate fracturing of the web at -30° F. It is thus recommended that the design changes shown in Figure 20 be incorporated into the MARC 7G1 motor prior to use on the ATLAS-CENTAUR.

Pertinent design and performance ratings for the MARC 7G1 motor are presented in Table XI. These data represent nominal values derived from: (1) batch acceptance firings at $75^{\circ}F$; (2) evaluation program firings at $160^{\circ}F$; (3) the firings of Motors Q-17, DX-6, and DX-7 at $-30^{\circ}F$.

The Model 502 igniter was shown to be capable of withstanding 1.0 ampere (i.e., 1.0 watt) without firing and of functioning reliably with a current of 5.0 amperes applied to either bridgewire. Ignition delays and rise times obtained with this igniter were reproducible and unaffected by the number of functional tests prior to firing.

for the marce ref notice, motor.					
GRAIN PARAMETERS					
Туре	Arcite 377	'A-9C			
Length (in)	8.440				
Weight (lb)	2.135				
Outside Diameter (in)	2.535				
Web (in)	0.4106				
Initial Surface Area (sq in)	81				
NOZZLE DIMENSIONS					
Throat Diameter (in)	0.555				
Throat Area (sq in)	0.2419				
Exit Diameter (in)	1.663				
Exit Area (sq in)	2.172				
Expansion Ratio	9.01				
OVER-ALL MOTOR PARAMETERS					
Length (in)	14.7				
Maximum Outside Diameter (in)	2.9				
Weight (lb)	5.07				
BALLISTIC PARAMETERS	<u>-30°F</u>	<u>75°F</u>	<u>160°F</u>		
Ignition Delay, t _d (sec)	0.0053	0.0037	0.0038		
Rise Time, t _r (sec)	0.009	0.008	0.004		
Action Time, t_a (sec)	1.791	1.549	1.405		
Burning Time, t _b (sec)	1.226	0.997	0.873		
Maximum Pressure, P _{max} (psia)	922.4	1085	1217		
Ignition Pressure, P _{ign} (psia)	1052	1348	1530		
Average Action Time Pressure, P_a (psia)	663.3	779.6	865.5		
Average Burning Time Pressure, P_b (psia)	850.3	1009	1132		
Maximum Thrust, F_{max} (lb)	358.7	429.4	485.4		
Ignition Thrust, F _{ign} (lb)	406.2	532.1	607.6		

Table XI.Design and Performance Ratings
for the MARC 7G1 Rocket Motor.

ļ

|

Table XI. (Continued)

BALLISTIC PARAMETERS (cont'd)	<u>-30°F</u>	$75^{\circ}F$	<u>160°F</u>
Average Action Time Thrust, F_a (lb)	263.6	311.4	346.6
Average Burning Time Thrust, \overline{F}_{b} (lb)	337.7	401.8	452.3
Action Time Total Impulse, I_a (lb-sec)	472.1	482.7	486.8
Deliverable Total Impulse, I_{0-0} (lb-sec)	479.1	492.7	497.4
Propellant Specific Impulse, I _{sp} (lb-sec/lk)221. 3	230.3	233.3

GLOSSARY OF BALLISTIC DEFINITIONS

- $t_a =$ Action time, defined as beginning when the pressure has risen to 10 per cent of the maximum chamber pressure and ending when the pressure has fallen to 10 per cent of the maximum chamber pressure.
- $t_b =$ Burning time, defined as beginning when the pressure has risen to 10 per cent of the maximum chamber pressure and ending when the pressure has dropped to 75 per cent of the maximum chamber pressure.
- t_r = Rise time, defined as the time required for the pressure to rise from 10 per cent of the maximum chamber pressure to 75 per cent of the maximum chamber pressure.
- t_d = Ignition delay, defined as the time from switch-on to the point on the pressure trace when the pressure has risen to 10 per cent of the maximum chamber pressure.
 - r = Average burning rate, defined as the average web thickness
 divided by the burning time.
- $P_{max}(F_{max}) = Maximum pressure (thrust), defined as the highest chamber$ pressure (thrust) developed by the rocket motor under anynormal operating condition, excluding ignition.
 - $P_a(F_a) =$ Average action time pressure (thrust), defined as the area under the pressure (thrust)-time curve between the action time limits divided by the action time.
 - $P_b(F_b) =$ Average burning time pressure (thrust), defined as the area under the pressure (thrust)-time curve between the burning time limits divided by the burning time.
 - $P_{ign}(F_{ign}) =$ Ignition pressure (thrust), defined as the highest chamber pressure (thrust) developed by the rocket motor during ignition.

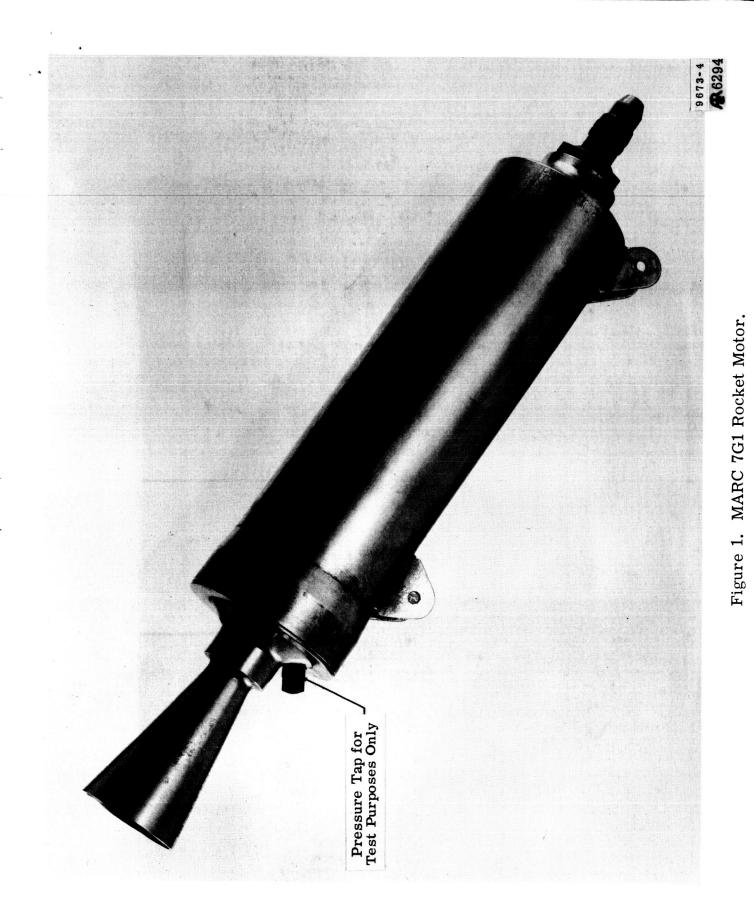
 C_d = Discharge coefficient, calculated by the following formula:

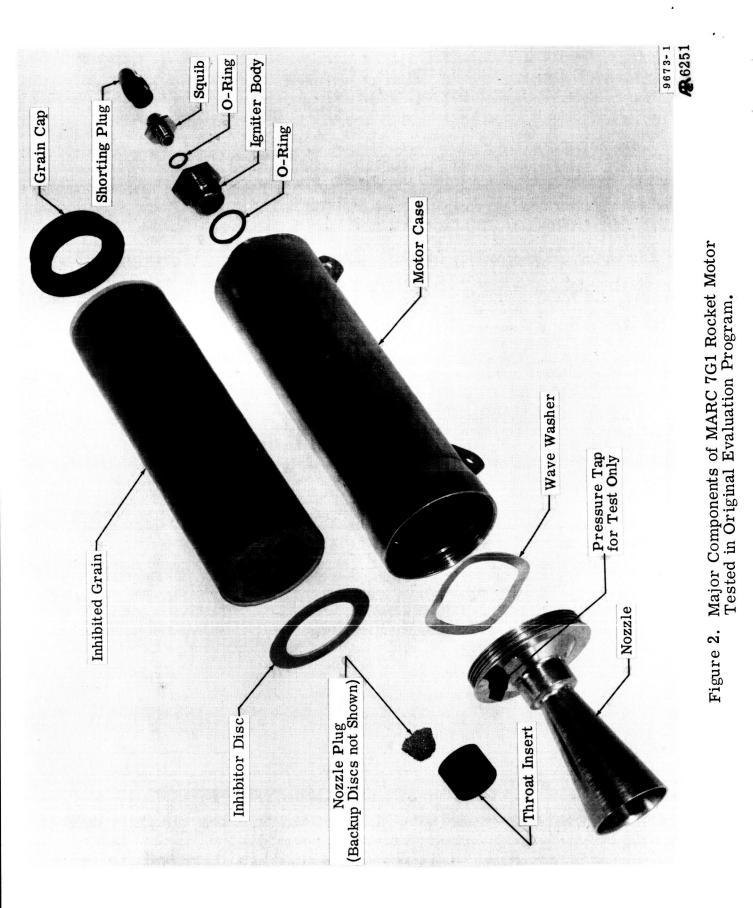
$$C_{d} = \frac{W_{p}}{\overline{A}_{t} \int P_{a} dt_{a}}$$

where

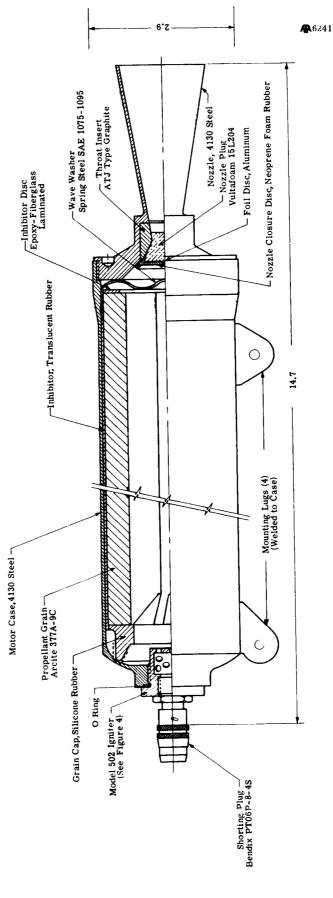
 W_{p} = Initial propellant weight

- \bar{A}_t = Average of mean throat areas before and after firing as determined from throat diameters measured at three equally spaced locations around the throat.
- C* = Characteristic exhaust velocity, calculated by the following formula:


$$C^* = \frac{g\overline{A}_t}{W_p} \int_0^0 Pdt$$


- $I_a =$ Action time total impulse, defined as the area under the thrust-time curve between the action time limits.
- $I_{0-0} =$ Deliverable total impulse, defined as the total area under the thrust-time curve.
- I_{sp_a} = Action time specific impulse, defined as the action time total impulse divided by the initial propellant weight.

I_{sp}0-0 (Propellant)


=

- Propellant specific impulse, defined as the deliverable total impulse divided by the initial propellant weight.
- $I_{sp_{0-0}}$ (Motor) = Over-all specific impulse, defined as the deliverable total impulse divided by the initial motor weight.
 - C_F = Thrust coefficient, defined as the product of the discharge coefficient and the action time specific impulse.

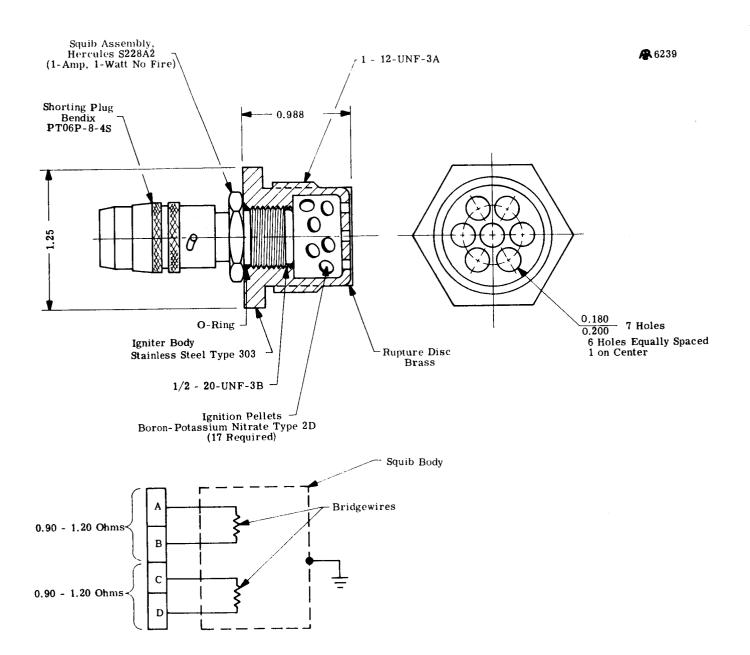
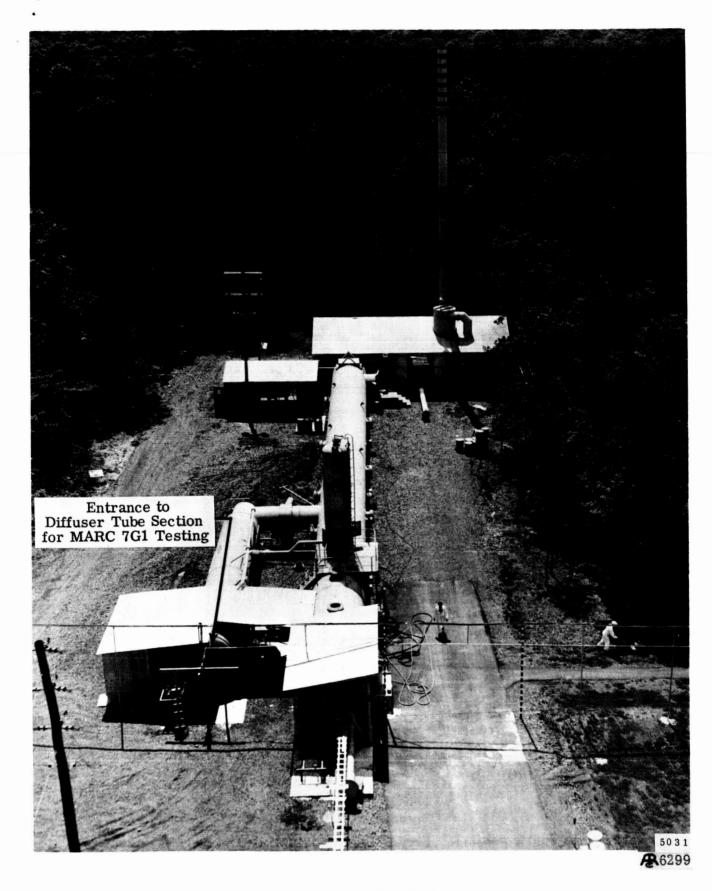
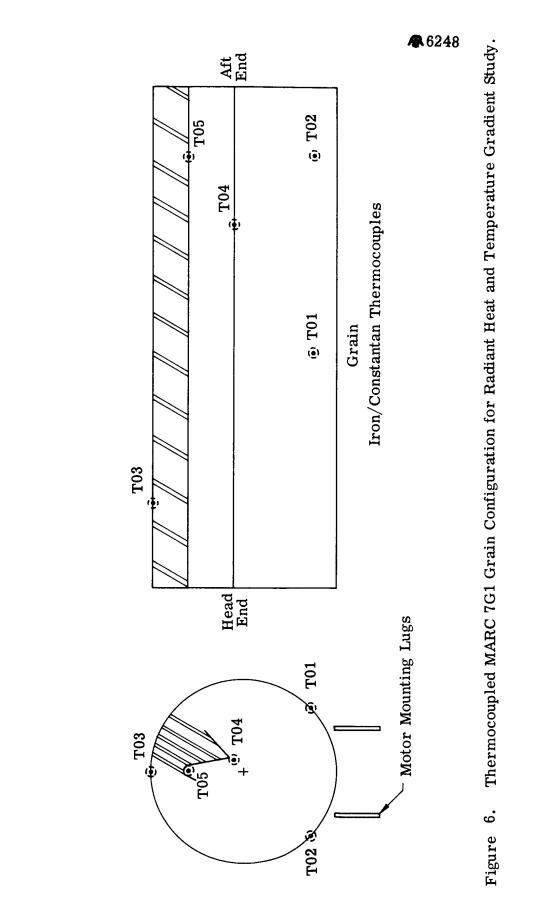
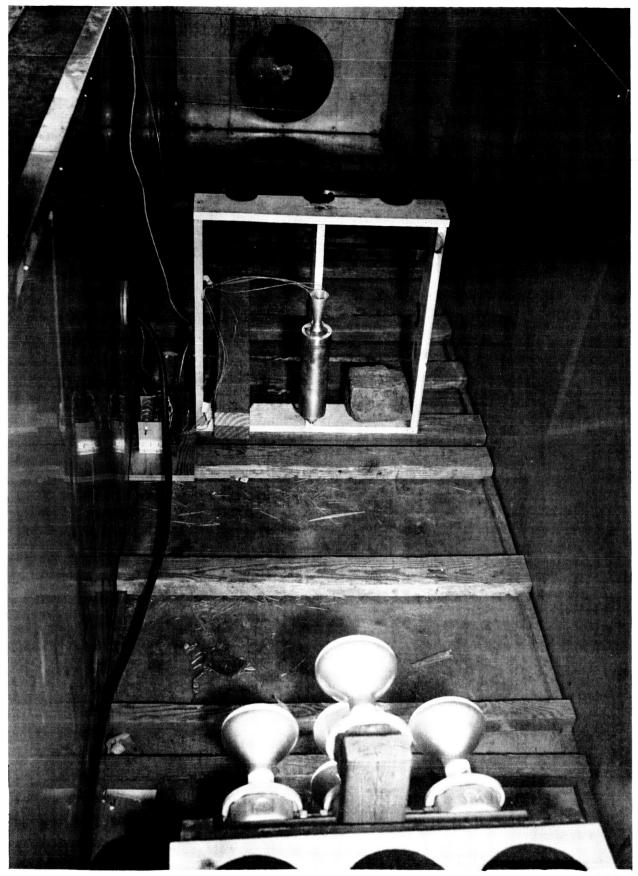
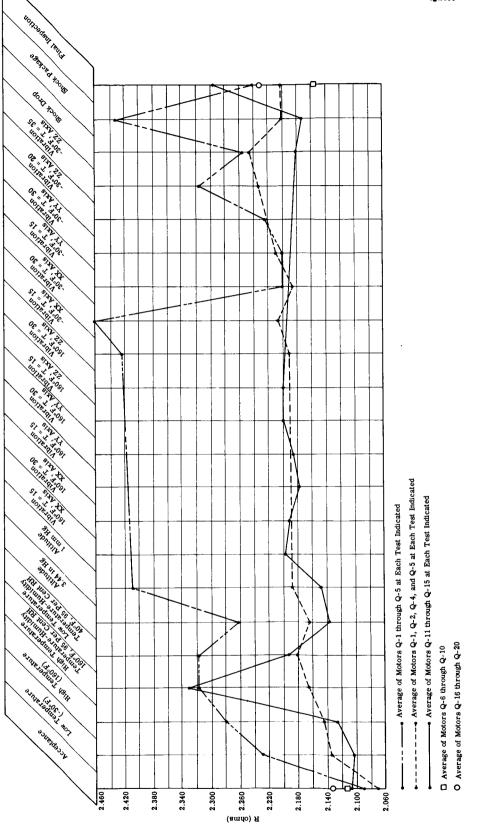
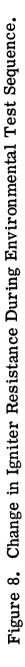


Figure 4. Cross Section and Circuit Schematic of Igniter Model 502 Tested in Original Evaluation Program.


Figure 5. Vacuum Test Facility at Gainesville, Virginia.



⁹⁶³⁵

Figure 7. Radiant Heat Test Arrangement.

۰.

#7395

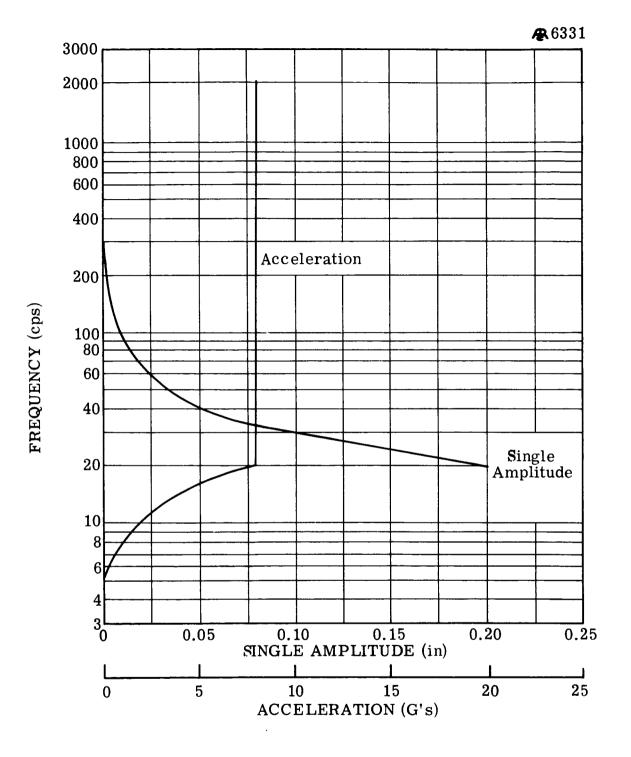
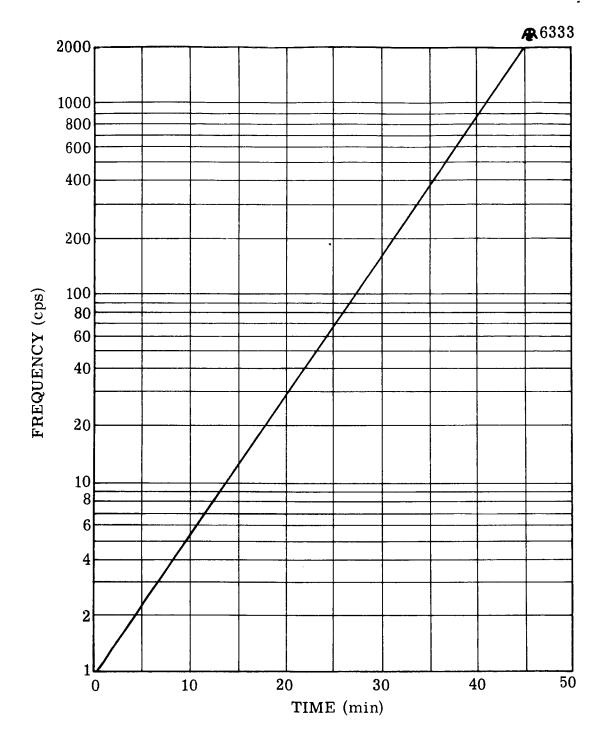
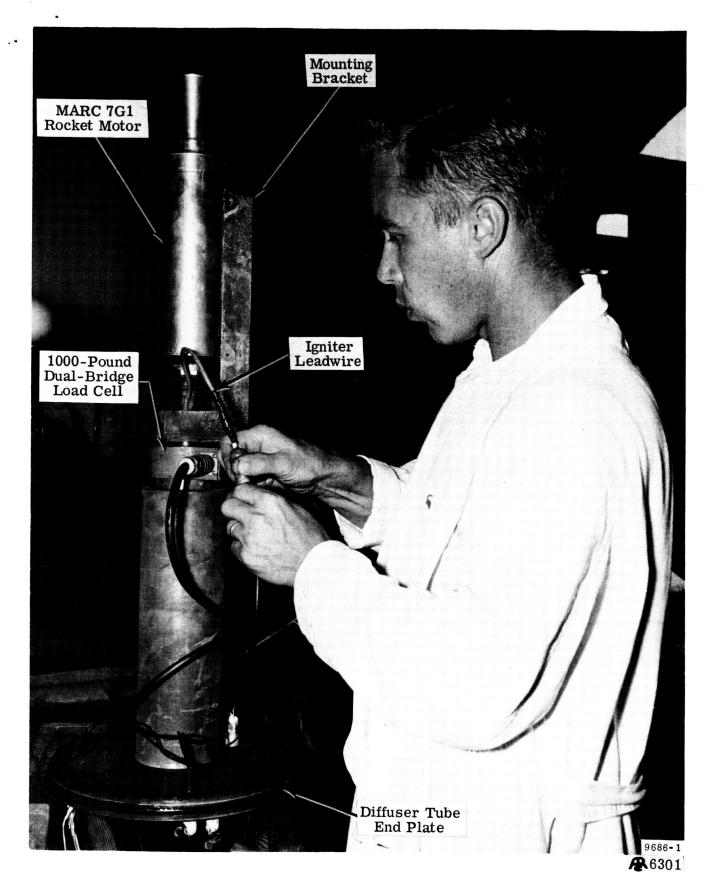
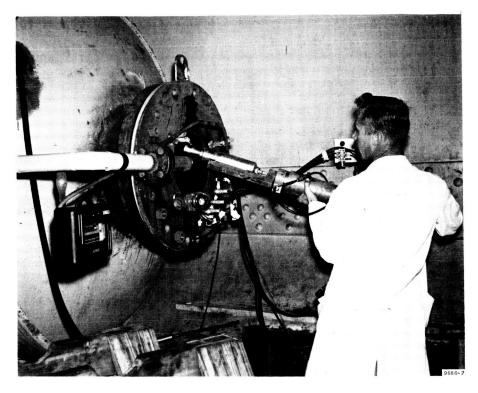
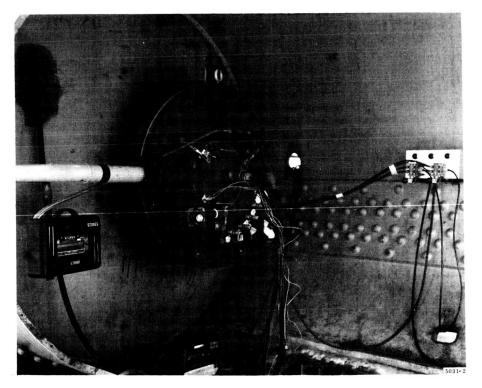
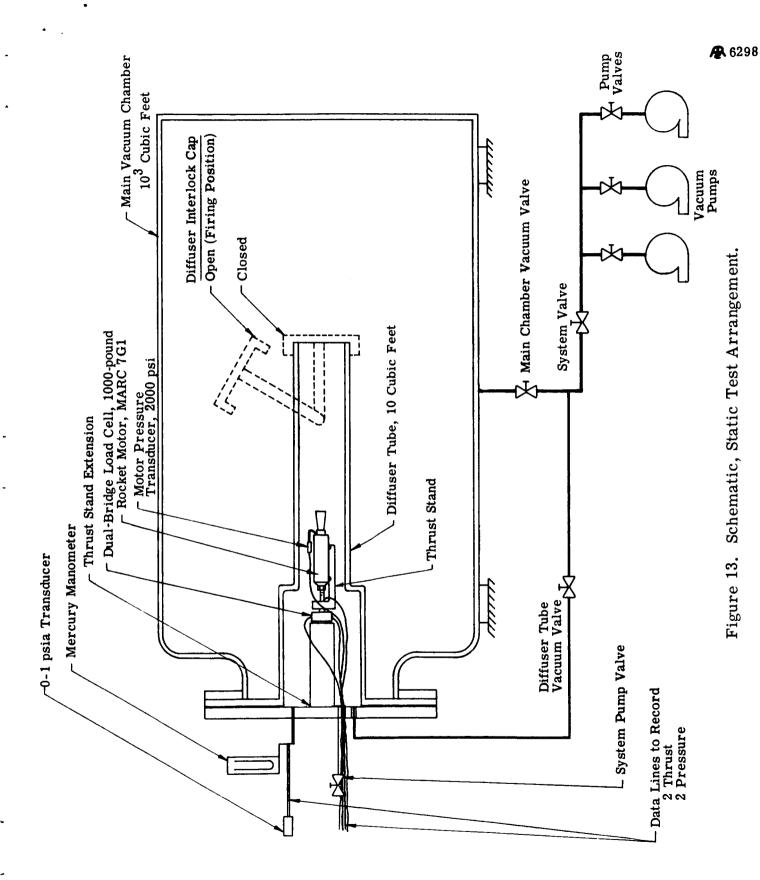
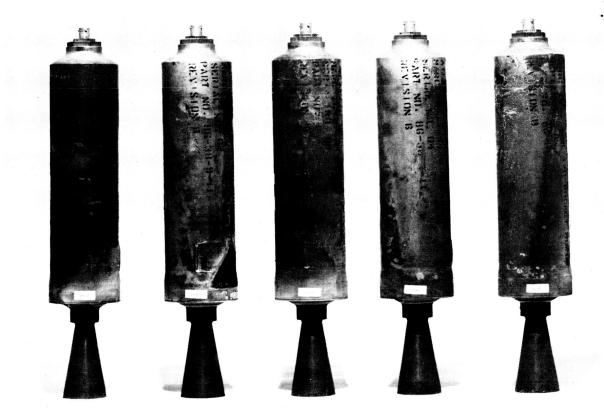


Figure 9. Sinusoidal Vibration Frequencies and Amplitudes.


Figure 10. Sinusoidal Sweep Rate.


a. Insertion into Diffuser Tube.


b. Diffuser Tube Sealed for Firing.

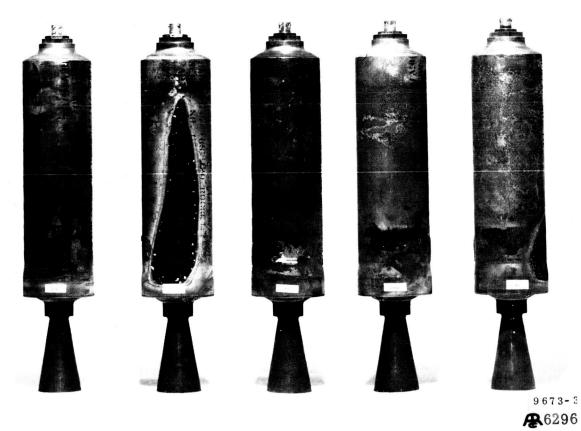
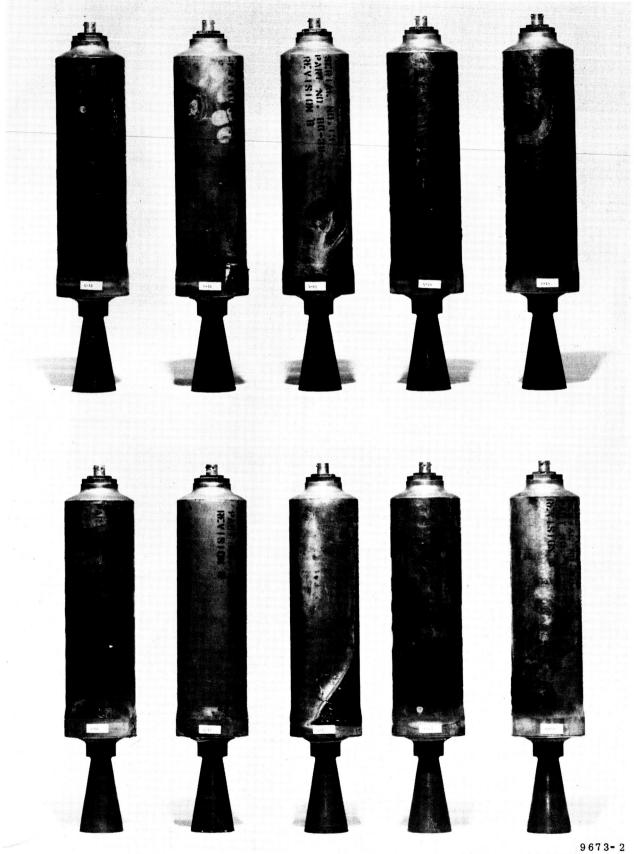

Æ6290

Figure 12. Installation of Rocket Motor into Vacuum Chamber for Firing.


ĺ.

·C()=0

Figure 14. Rocket Motors Q-1 Through Q-10 After Firing.

9673-2 **A**6295

Figure 15. Rocket Motors Q-11 Through Q-20 After Firing.

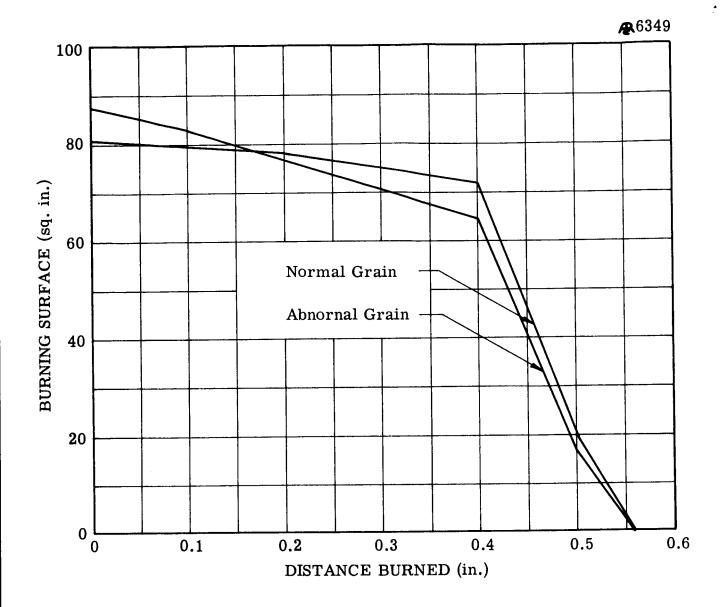
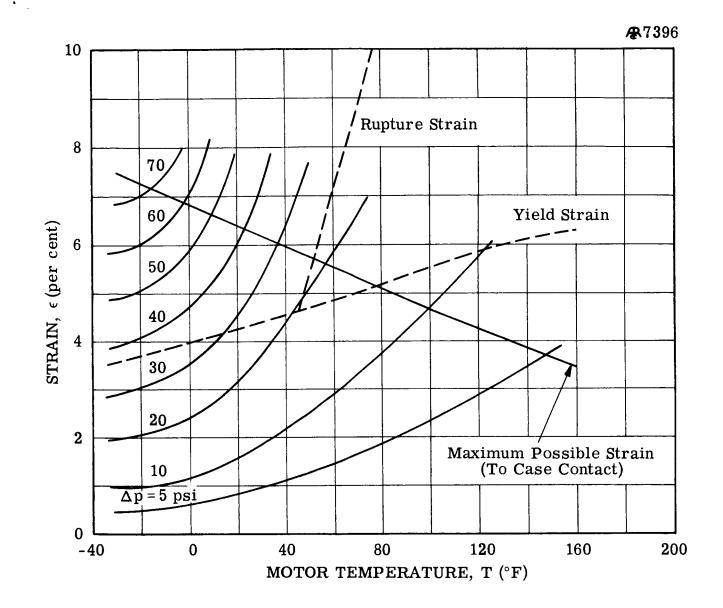
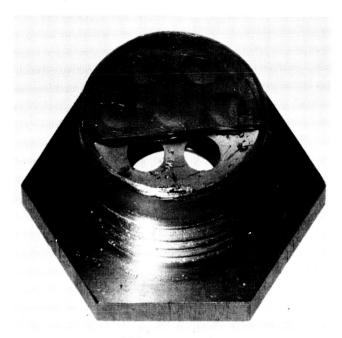
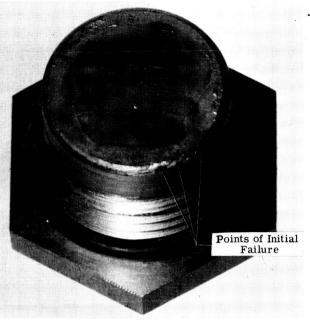
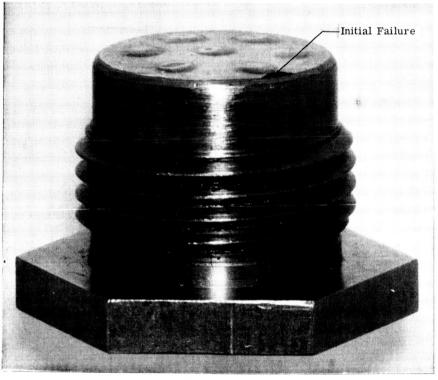
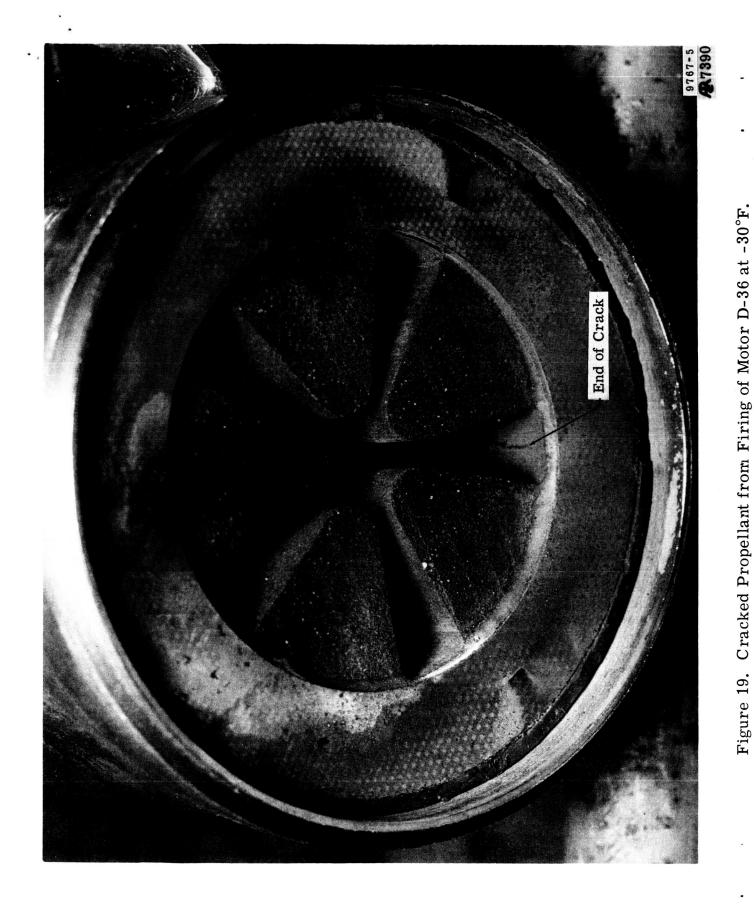


Figure 16. Effect of Cracked Grain on Surface-Web Burning History.


Figure 17. Comparison of Propellant Yield and Rupture Strains with Maximum Possible Strain Over Firing Temperature Range.

a. 400-psi Failure


b. 1000-psi Failure

c. 1500-psi Failure

Æ7**3**91

Figure 18. Igniter Bodies After Hydrostatic Burst Pressure Tests.

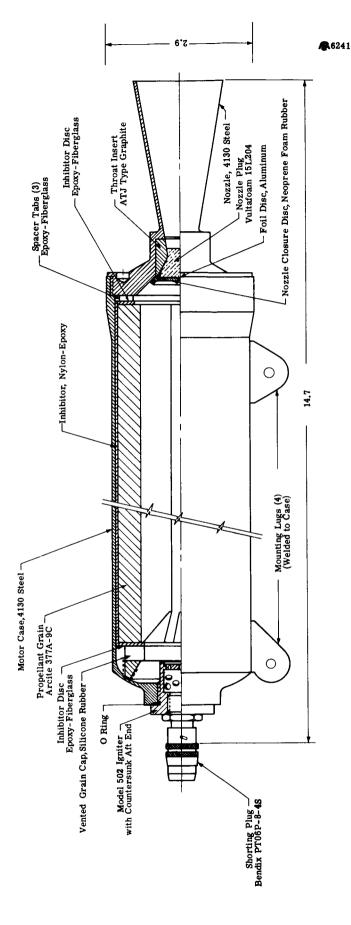
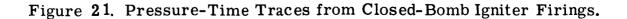



Figure 20. MARC 7G1 Motor With Recommended Design Changes Evaluated in Tests DX-6 and DX-7.

R6247 8000 Test No. 2 Test No. 1 **PRESSURE** (psi) 6000 $W_{\rm p} = 2.25 \, {\rm gm}$ $W_{\rm p} = 2.75 \, {\rm gm}$ 4000 2000 0 0.1 0.2 0.3 0.5 0.2 0.3 0 0.4 0 0.1 0.4 0.5 TIME (sec) TIME (sec) 8000 Test No. 3 **PRESSURE** (psi) $W_{\rm p} = 2.75 \,\,{\rm gm}$ 6000 4000 Test No. 4 2000 $W_{p} = 2.75 \text{ gm}$ 0 0.2 0.3 0.2 0 0.1 0.4 0.5 0 0.1 0.3 0.4 0.5 TIME (sec) TIME (sec) 8000 Test No. 5 Recording Machine PRESSURE (psi) 6000 $W_{p} = 2.75 \text{ gm}$ Shut-Off 4000 Test No. 6 2000 $W_{p} = 2.75 \text{ gm}$ 0<u>`</u> 0.2 0.3 0.1 0.4 0.5 0.2 0.3 0.1 0.4 0.5 0 TIME (sec) TIME (sec)

APPENDIX A

BALLISTIC RECORDS FOR BATCH ACCEPTANCE FIRINGS

(Data tabulated in Table IV)

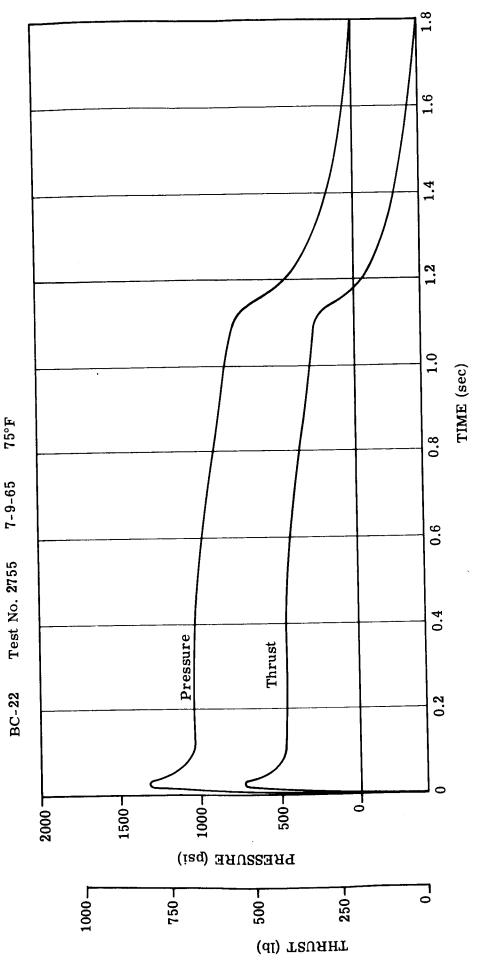
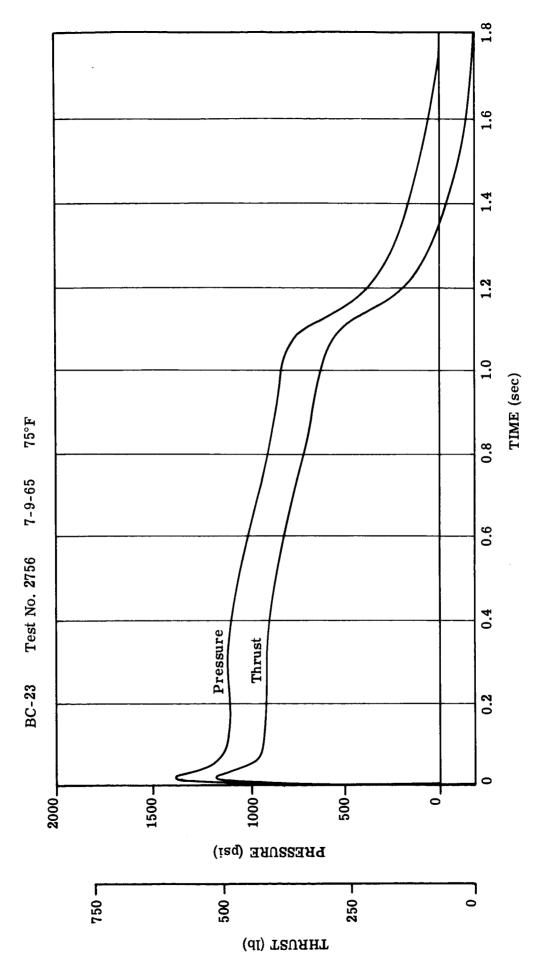
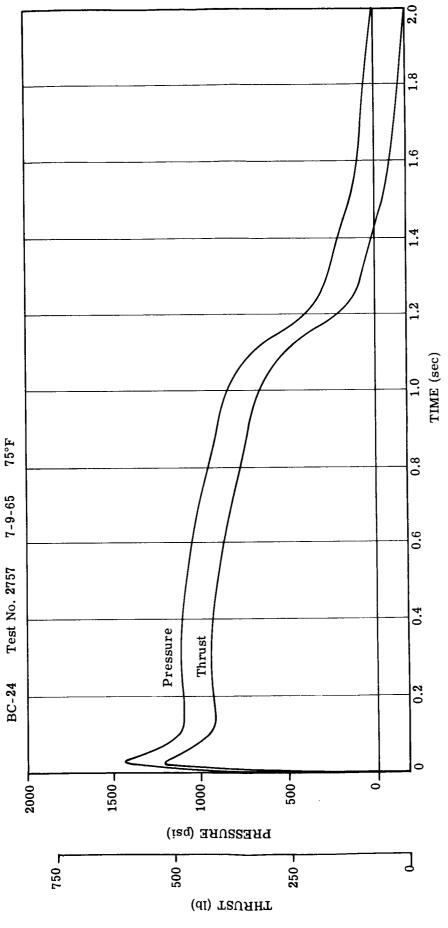




Figure A.1. Ballistic Records for Test BC-22.

A-4

APPENDIX B

TEMPERATURE-TIME PLOTS FROM THERMAL GRADIENT TESTS

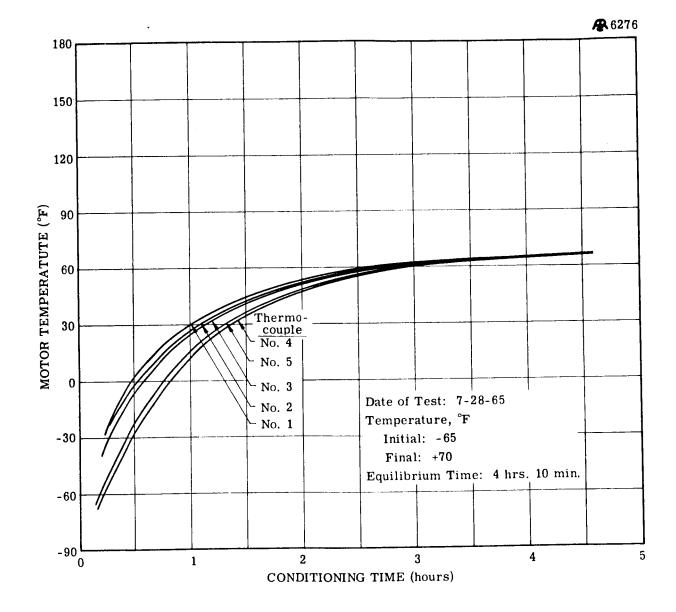


Figure B-1. Thermal Gradient Test of the MARC 7G1 Motor Number 21, -65°F to 70°F.

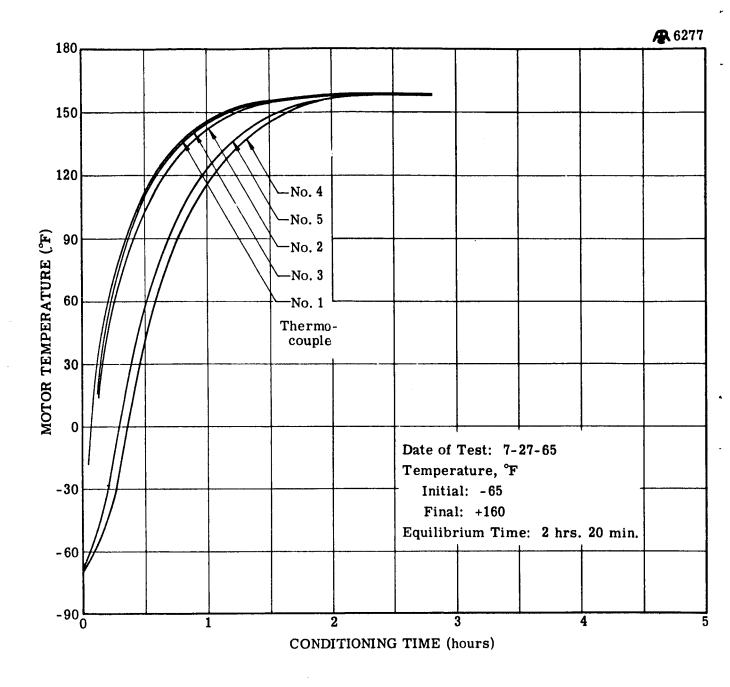


Figure B-2. Thermal Gradient Test of the MARC 7G1 Motor Number 21, -65°F to 160°F.

B-3

R 6274

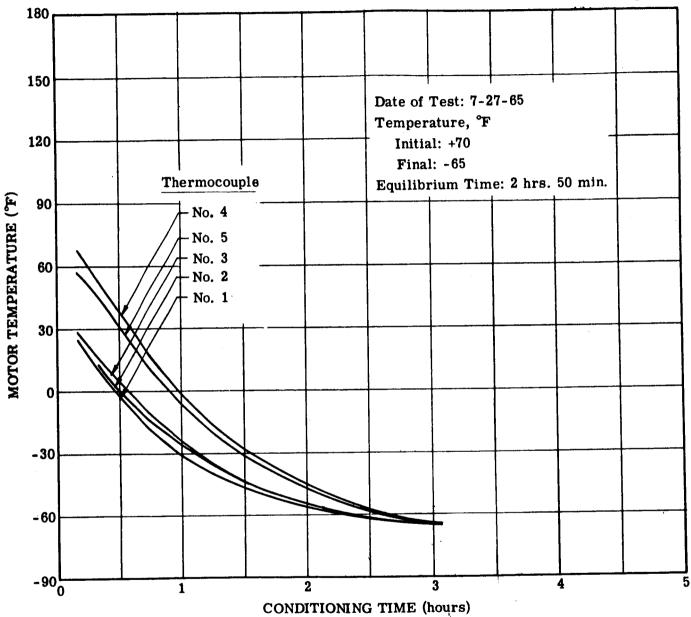


Figure B-3. Thermal Gradient Test of the MARC 7G1 Motor Number 21, 70°F to -65°F.

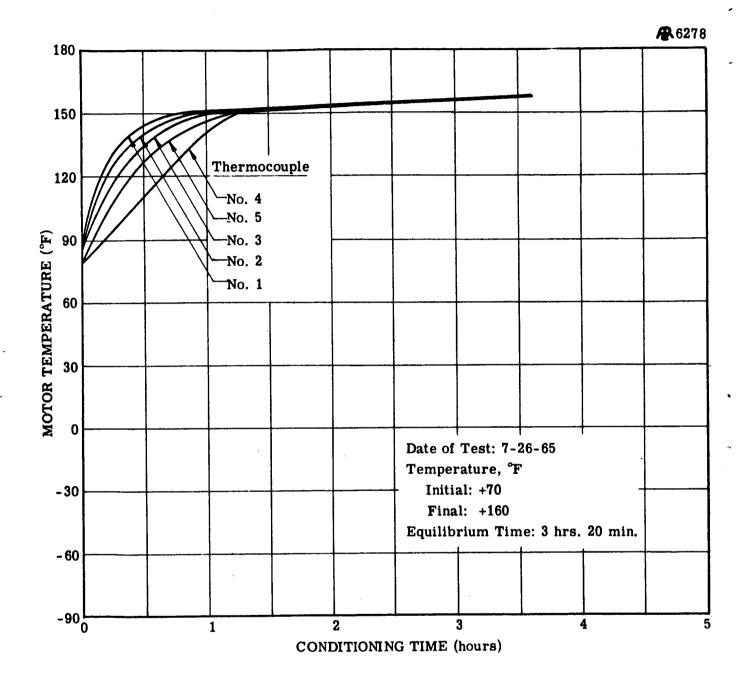


Figure B-4. Thermal Gradient Test of the MARC 7G1 Motor Number 21, 70°F to 160°F.

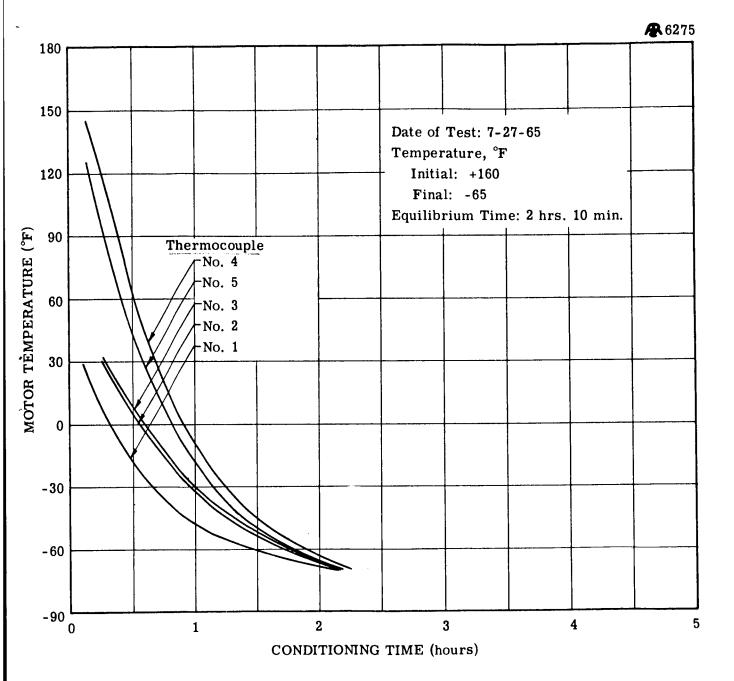


Figure B.5. Thermal Gradient Test of the MARC 7G1 Motor Number 21. 160° F to -65° F.

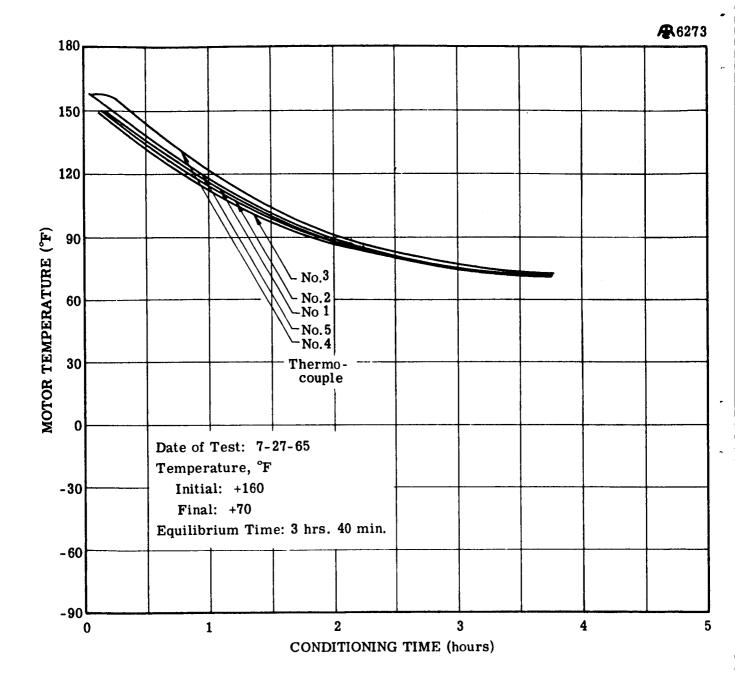
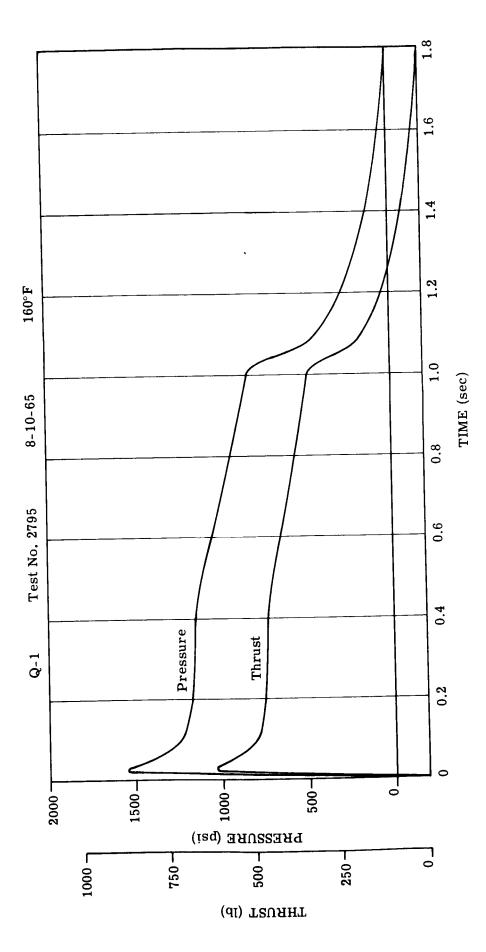
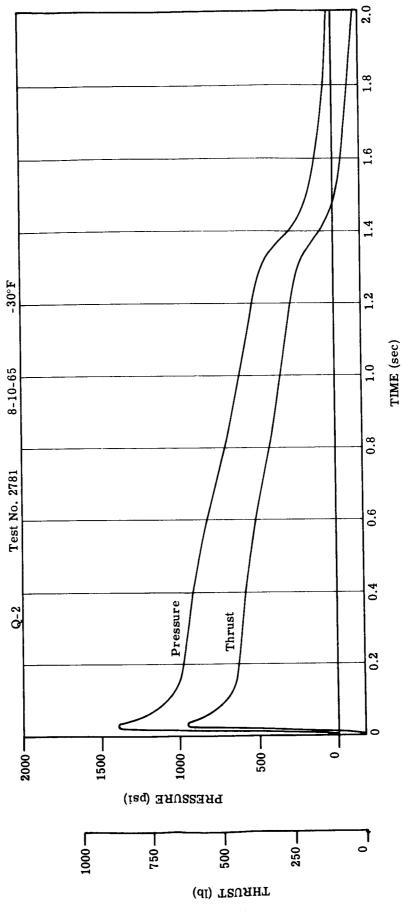



Figure B-6. Thermal Gradient Test of the MARC 7G1 Motor Number 21, 160°F to 70°F.

APPENDIX C

BALLISTIC RECORDS AND STATIC TEST DATA SHEETS FOR EVALUATION FIRINGS


٠

٠

C-2

- 2

ADMINISTRATIVE DATA Rocket Type and Model <u>1-K5-420</u> MARC 7G1 NAS 3-7198-H	Contract No	Test Agency: Rocket Test Group Atlantic Research Corporation Prepared by: James E. Dukate Date: 8/16/65 Date: 8/18/65	Report No. <u>TR-PL-8634-00-1</u> Appendix <u>C</u> Figure <u>C-3</u> Page <u>C-3</u>
BALLISTIC DATA 1.453 tb 0.910 0.000	Rise Time, t_{T}		Average Thrust. F_{b} $4.33.7$ $10f$ Ignition Thrust. F_{ign} 613.2 $10f$ Thrust Coefficient. C_{F} 1.6628 $10f$ O-O Thrust Integral 498.4 $10f$ Iprover 98.11 $10f$ -secIproventiation 98.11 $10f$ -sec/1bmIpropellant 232.7 $10f$ -sec/1bm
TEST DATA Temperature 160 °F for 2 4 Box 2006 Colspan="2">Colspan="2"	e 77 e 77 60 8. 5.03 C-D: 4.84 ntal Conditions Temperature at -30°F, Shock, Temperature	: In. 0.012; B: 26.2 ented befoo ented befoo attion: 	Average A _e /A _t
<u>MOTOF</u> h Part No.	Motor Serial No.	Serial No. 19 Resistances: Circuit A-B 1.070 ohms Circuit C-D 1.100 ohms BALLISTIC PARAMETERS ohms Nozzle Exit Area 2.172 sq in Propellant Weight 2.142 1b Inhibited Grain Weight 1b Average Web 0.4106 in	Grain Length 0.400 in

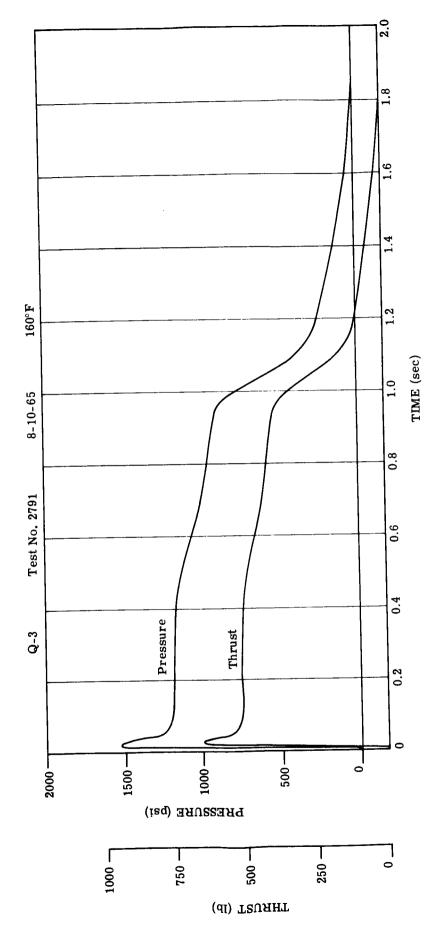
.

C-4

MOTOR DATA			TEST DATA
Atlantic Research Part No. P-86-38-9	6-1	Conditioning Temperature _	-30 °F for 2 4
Customer Part No.		Time Out of Box	1553
Motor Serial No. Q-2		Time Fired 1602	Time Elapsed 9
	Arcite 377A-9C	Ambient Temperature	83
Grain No. 2474-R-2-6B	-2-6B	Relative Humidity	55
IGNITER DATA		Barometric Pressure	29.54 in Hg
Model No. ARC 502	8	Ignition Current A-B: 5.	A-B: 5.20 C-D: 5.01 amps
Atlantic Research Part No. P-86-32-2	2-2	Pre-Test Environmental C	Pre-Test Environmental Conditions Temperature-Humidity,
Lot No.		Altitude, Vibration at -30	Altitude, Vibration at -30°F Shock, Temperature Shock.
Serial No.		Tunnel Pressure: Init 0.	Tunnel Pressure: Init 0.0077, Av. 0.0468, Final 0.0425
Resistances: Circuit A-B 1.150	ohms	psia, Ignition Voltage A-B: 26.0 C-D 27.4 volts	B: 26.0 C-D 27.4 volts
	ohms	Nozzle closure vented before firing. Prefiring Examination:	fore firing.
BALLISTIC PARAMETERS		Motor Weight	5.11
Nozzle Exit Area 2.172	sq in	Throat Diameter	0.555
Propellant Weight 2.127	ll	Post Firing Examination	
Inhibited Grain Weight	qI	Motor Weight	2.97
Average Web 0.4146	i	Throat Diameter	0.554
Grain 0.D. 2.547/2.511/2.531	.531 in	Average Throat Area	0.2416 sq in
Guain I and h	i	Average A /A.	8.99

	sec	sec	- sec	- sec	in/sec	- psia	psia-sec	- psia	_ psia	psia	f-sec	ft/sec	psia-sec	lbf-sec	:/lbm	Jol –	Ibf		— Ibf		lbf-sec
							isq —				lbm/lbf-sec		- psi		lbf-sec/lbm						¥
	_	~		_	75			~	_			4243		Abs. Vac.							
DATA	1.768	0.817	0.007	0.004	0.5075	940.1	1147	648.7	931.8	1396	0.00758	' ``	1161			Ì			Ì	-	
BALLISTIC DATA							PTI	7				I elocity		Measured 476.2	223.9	395.5	269.3	381.2	573.4	1.7237	483.8
BALLI					ate. r	P.	egral.	ן בי	ъ Б.	o d	_ign [_] ent. C	aust V	gral _	Me	2	XEC			5	с _F –	1
	ר ר	t. t. ^A	-	י ד ג ון	ning R	essure	me Int	ssure.	ssure	SIIFP	beffici	ic Exh	e Inte	ب م		irust.	ust. F	ust. F _b .	lst. F _i	icient,	Integra
	Time.	e Tim	Time. t		te Bur	um Pr	ure-Ti	re Pre	re Dre	Dres	rre Co	terist	ressur	slum	c Impr	um Th	şe Thr	ge Thr	n Thru	Coeff	hrust 1
	Action Time. t	ه Burning Time. t,	Rise T	Irruition Delay t	Average Burning Rate, r	Maximum Pressure. P	max Pressure-Time Integral, PTI	Average Pressure. P.	Average Pressure	Tomition Dressure P.	Discharge Coefficient. C.	Characteristic Exhaust Velocity. C*	0-0 Pressure Integral	Total Immise I	Specific Impulse. I	Maximum Thrust.	Average Thrust, F _a	Average Thrust.	Ignition Thrust, F _{ign}	Thrust Coefficient, $C_{\mathbf{F}}$	O-O Thrust Integral

Rocket Type and M	MARC 7G1	Contract No. NAS 3-7128-H			Purpose of Test:		Test No. 2781		Test Agency: Rocket Test Group			Prepared by:8/13/65	Annroved by: A. D. Mattox		_			Report No. TR-PL-8634-00-1	Appendix C	Figure	Page C-5	P129-6/65-2C	
Action Time. t _a 1.768 sec	Burning Time. t _h 0.817 sec	Rise Time, t 0.007 sec	Tonition Delay 1 0.004 sec	Bate r 0.5075 in/	940.1	TI 1147 DSia	a 648.7	931.8	1396	Discharge Coefficient, C _A 0.00758 lbm/lbf-sec	Characteristic Exhaust Velocity. C* 4243 ft/sec	0-0 Pressure Integral 1161 psia-sec	Measured Abs. Vac.	Total Impulse, I _a 476.2 lbf-sec	Specific Impulse. I _{SD} 223.9 lbf-sec/lbm	Maximum Thrust. Fmax 395.5 [] [] [] [] [] [] [] [] [] [] [] [] []	Average Thrust, F _a 269.3 lbf	Average Thrust. F _b 381.2 lbf		Thrust Coefficient, C _F <u>1.7237</u>	O-O Thrust Integral 483.8 [https://www.ascommons.es	I sp (0-0), Motor <u>94.68</u> lbf-sec/lbm	Isp (0-0), Propellant <u>227.4</u> lbf-sec/lbm


-*

•

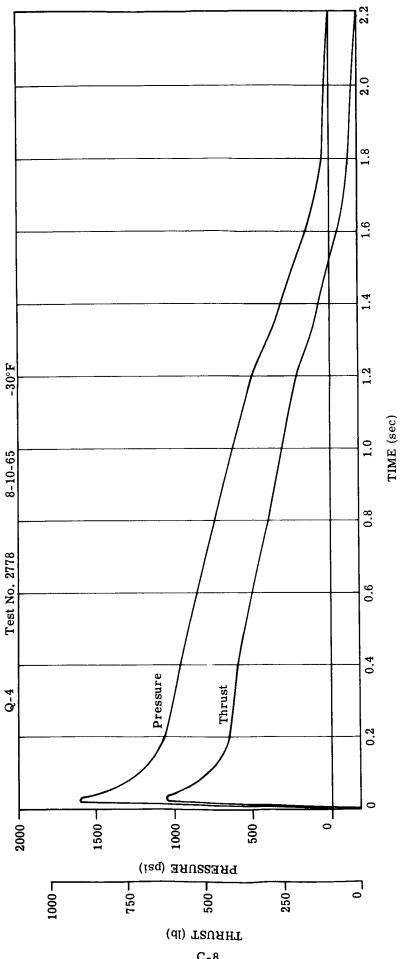
٠

ADMINISTRATIVE DATA

.

,

٠



ADMINISTRATIVE DATA Rocket Type and Model <u>1-KS-420</u> MARC 7G1 Contract No. NAS 3-7128-H	Customer NASA Lewis Research Center Purpose of Test: Motor Evaluation Test No. 2791	Test Agency: <u>Rocket Test Group</u> Atlantic Research Corporation Prepared by: <u>J. R. Wertz</u> Date: <u>8/16165</u> Date: <u>8/16165</u> Date: <u>8/16165</u>	Report No. <u>TK-PL-8634-00-1</u> Appendix <u>C</u> Figure <u>C-7</u> Page <u>C-7</u>
BALLISTIC DATA Action Time. t _a 1.394 sec Burning Time. t _b 0.955 sec Rise Time, t _r 0.003 sec	0.005 0.429 in ux 1194 . PTI _a 1212 psia	b 1521 p gn 1521 p t. C _d 1521 p t. C _d 0.00727 lbm/lbf-s st Velocity. C* 4533 ft/s al 1241 psia-s Measured Abs. Vac. psia-s 485.1 lbf-sec/l at 479.8 lbf-sec/l	Average Thrust. F_{b} $\xrightarrow{***.2}$ $\xrightarrow{***.4}$ bif Ignition Thrust. F_{ign} $\xrightarrow{596.8}$ $\xrightarrow{596.8}$ bif Thrust Coefficient. C_{F} $\xrightarrow{1.6583}$ 1.6
TEST DATAConditioning Temperature +160 °F for > 4 hrsTime Out of Box1919Time Flapsed6 min	Ambient Temperature 80 °F Relative Humidity 60 % Barometric Pressure 29.53 in Hg Ignition Current A-B: 5.30 c-D: 5.13 amps Pre-Test Environmental Conditions Temperature - Humidity, Attiving a Vibration at 20°F Shock Temperature Shock	Tunnel Pressure: Init 0.0073, Av 0.0539, Final 0.0460 psia Ignition Voltage A-B: 28.2, C-D: 27.4 volts Init 0.0460 psia Prefiring Examination: 5.03 Init 0.0460 psia Motor Weight 5.03 Init 0.0460 psia Prefiring Examination: 0.555 Init 0.0460 psia Motor Weight 0.555 Init 0.0460 psia Throat Diameter 0.555 Init 0.0460 psia Motor Weight 2.03 Init 0.0460 psia Post Firing Examination 0.555 Init 0.0460 psia Motor Weight 2.89 Init 0.0460 psia Average Throat Area 0.554 Init 0.0460 psia	Average A _e /A _t <u>o.39</u>
<u>MOTOR DATA</u> Atlantic Research Part No. <u>P-86-39-9</u> Customer Part No Motor Serial NoQ-3	Grain Type <u>Arcite 377A-9C</u> Grain No. <u>2474-R-3-5B</u> <u>IGNITER DATA</u> Model No. <u>ARC 502</u> Atlantic Research Part No. <u>P-86-32-2</u>	28 28 Circuit A-B 1.145 ohn Circuit C-D 1.110 ohn isht 2.172 sq n Weight 0.4100 o.4100 2.542/2.515/2.533 o.600	Grain Length

•

İ

l

٠

•

C-8

	MOTOR DATA	ST DATA
Atlantic Research Part No. P-86-38-9	art No. P-86-38-9	Conditioning Temperature -30 °F for 2 4 hrs
Customer Part No	t	Time Out of Box 1504
Motor Serial No.	Q-4	Time Fired 1515 Time Elapsed 11 min
Grain Type	Arcite 377A-9C	Ambient Temperature 83
Grain No.	2474-R-3-10	Relative Humidity 50 %
IG	IGNITER DATA	Barometric Pressure 29.54 in Hg
Model No.	ARC 502	Ignition Current A-B: 4.49 C-D: 4.42 amps
Atlantic Research Part No. <u>P-86-32-2</u>	art No. <u>P-86-32-2</u>	Pre-Test Environmental Conditions Temperature - Humidity,
Lot No.		Altitude, Vibration at -30°F, Shock, Temperature Shock,
Serial No.	15	Tunnel Pressure: Init 0.0070, Av 0.0542, Final 0.0470 psia
••	Circuit A-B 1.150 ohms	Ignition Voltage A-B: 26.5, C-D: 27.0 volts
Circu		Prefiring Examination:
BALLISTIC	BALLISTIC PARAMETERS	Motor Weight 5.05 lb
Nozzle Exit Area	2.172 sq in	Throat Diameter 0.555 in
Propellant Weight	2.176 lb	Post Firing Examination
Inhibited Grain Weight	ght Ib	Motor Weight 2:90 lb
Average Web	0.415 in	Throat Diameter 0.554 in
Grain 0,D,	2.542/2.522/2.532 in	Average Throat Area 0.2414 sq in
Grain Length	8.462 in	Average A _A /A _t 8.99

BALLISTIC DATA	ATA	
Action Time. t	1.774 sec	Ro
	0.765 sec	
	0.005 sec	Cor
	0.006 sec	Cus
Rate. r	0.5425 in/sec	
	1032 psia	Pu
E L	1203 psia-sec	
	678.2 psia	Tes
	1004 psia	Dat
	1592 psia	Ê
0	0.00734 lbm/lbf-sec	
Characteristic Exhaust Velocity. C*	C* 4383 ft/sec	
0-0 Pressure Integral	1228 psia-sec	Pre
Measured	Abs. Vac.	
Total Impulse, I 476.4	lbf-sec	Api
Specific Impulse, I _{en} 218.9	lbf-sec/lbm	
Maximum Thrust. Fmax 406.3	lbf	
Average Thrust, F. 268.5	JqI	
Average Thrust, F ₁ 396.9	lbf	
Ignition Thrust, F _{ign} 616.4	JdI	
Thrust Coefficient, C _F 1.6376		
0-0 Thrust Integral 485.5	lbf-sec	

ADMINISTRATIVE DATA	Rocket Type and Model 1-KS-420	MARC 7G1	Contract No. NAS 3-7128-H	Customer NASA	Lewis Research Center	Purpose of Test:	Motor Evaluation	Test No. 2778	Date of Test: 8/10/65	Test Agency: Rocket Test Group	Atlantic Research Corporation	Prenared hv: A. Johnson	Date: 8/12/65	Approved by: A. D. Mattox	Date: 8/18/65	-			Report No. TR-PL-8634-00-1	Appendix C	Figure	Page C-9	F129-6/65-2C
	2	2	S S	с С	ş	ia	S	ia	ia	ia	S	S	Š		S	E	pţ	đ	p	pt	1	ပ္စ	

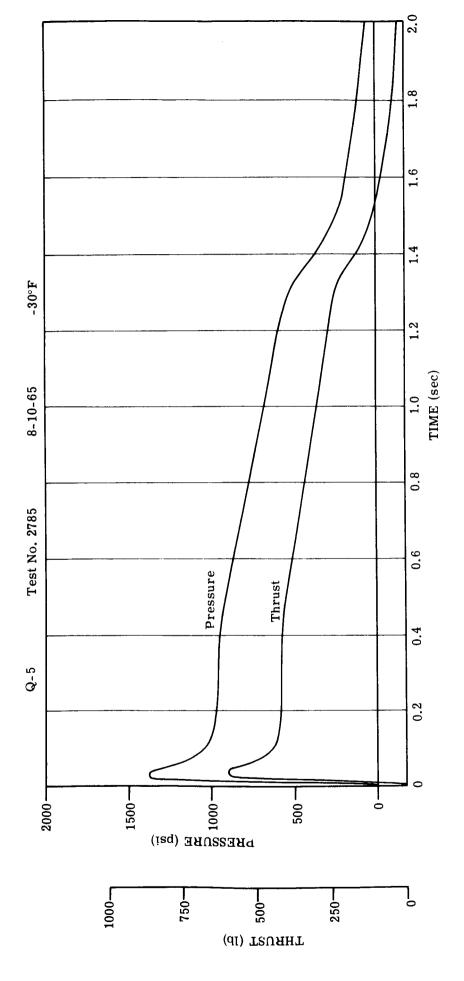
•

-

_

•

•

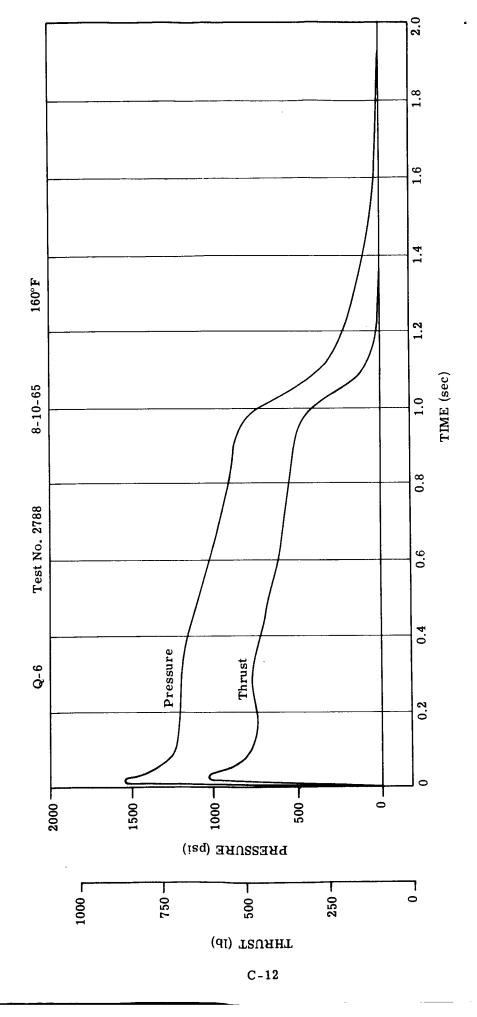

 I
 (0-0), Motor
 96.14
 lbf-sec/lbm

 sp
 (0-0), Propellant
 223.1
 lbf-sec/lbm

•

•

•


....

. . .

٠

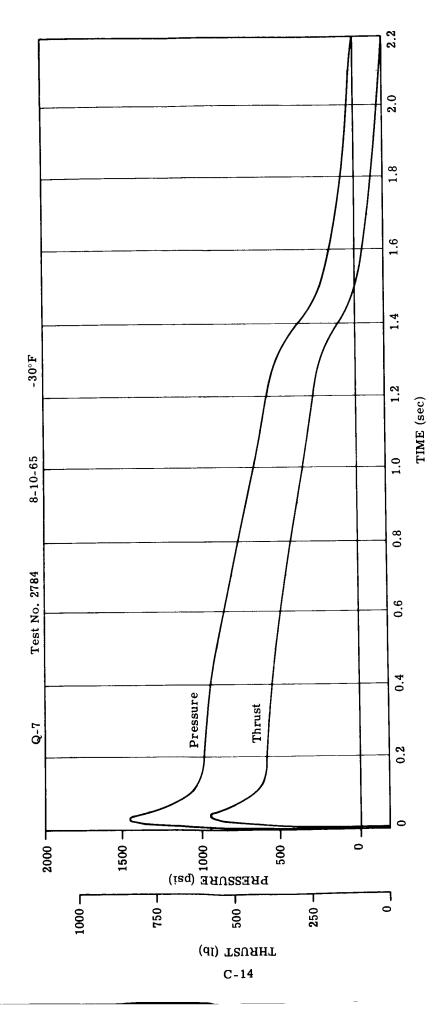
ADMINISTRATIVE DATA Rocket Type and Model <u>1-KS-420</u> MARC 7G1 Contract No. <u>NAS 3-7128-H</u> Customer <u>NASA</u> Purpose of Test: <u>NASA</u> Purpose of Test: <u>10/65</u> Date of Test: <u>8/10/65</u> Test Agency: Rocket Test Group Alantic Research Corporation Prepared by: <u>8/16/65</u> Date: <u>8/16/65</u> Date: <u>8/16/65</u> Date: <u>8/16/65</u> Date: <u>8/16/65</u> Date: <u>8/16/65</u> Date: <u>7. Dhnson</u> Date: <u>8/16/65</u> Date: <u>7. PL-8634-00-1</u>	Page
<u>BALLISTIC DATA</u> Action Time. t_a <u>1.829</u> secBurning Time. t_b <u>0.871</u> secRise Time, t_r <u>0.006</u> secIgnition Delay. t_d <u>0.006</u> secAverage Burning Rate. r <u>0.0066</u> secAverage Burning Rate. r <u>0.4696</u> in/secAverage Pressure. P_{max} <u>958.5</u> psiaPressure-Time Integral. PTI_a <u>1188</u> psia-secAverage Pressure. P_b <u>914.4</u> psiaIgnition Pressure. P_b <u>914.4</u> psiaIgnition Pressure. P_b <u>1359</u> psiaIgnition Pressure. P_b <u>1359</u> psiaIgnition Pressure. P_{ign} <u>1359</u> psiaIgnition Pressure. P_b <u>1359</u> psiaMaximum Tressure. P_{ign} <u>1359</u> psiaMaximum Threst P_{max} <u>936.4</u> lbf-secO-O Pressure Integral <u>1206</u> psia-secMaximum Thrust. F_{max} <u>233.1</u> lbf-secMaximum Thrust. F_{max} <u>365.4</u> lbfAverage Thrust. F_{ign} <u>586.66</u> lbfMarinton Thrust. F_{ign} <u>538.3</u> lbfIfguition Thrust. F_{ign} <u>16647</u> lbfIfguition Thrust. F_{ign} <u>16647</u> lbf	0-0 Thrust Integral <u>484.4</u> Ibf-sec I _{sp} (0-0), Motor <u>94.98</u> Ibf-sec/Ibm I _{sp} (0-0), Propeliant <u>226.8</u> Ibf-sec/Ibm
TEST DATA Time Cut of Box "F for 2 4 hrs Time Out of Box 1708 "F "F 1708 Time Fired 1716 Time Elapsed 8 min Ambient Temperature 83 "F "F Relative Humidity 55 "F "F Barometric Pressure 83 "F "F Barometric Pressure 83 "F "F Ignition Current A-B: 5.08 C-D: 5.19 mps Innel Pressure: Int 0.0126, Av 0.0514, Final 0.0460 psia Int Innel Pressure: Int 0.0126, Av 0.0514, Final 0.0460 psia Int Motor Weight 5.10 Int Int Innel Pressure: Int 0.02614, Final 0.0460 psia<	
MOTOR DATA Atlantic Research Part No. P-86-38-9 Customer Part No. — Motor Serial No. — Motor Serial No. — Grain Type Arcite 377A-9C Grain No. — IGNITER DATA Model No. — ICONTER DATA Model No. — ICONTER DATA Model No. — ICONTER DATA Model No. — Eastances: Circuit A-B Lot No. — Serial No. — Resistances: 20 Resistances: 20 Resistances: 21.190 Nozzle Exit Area 2.172 Nozzle Exit Area 2.172 Nozzle Exit Area 2.172 Norenage Web 0.4090 Average Web 0.4090 Average Web 0.4090 Average Web 0.4090 Grain Length 8.459	

ADMINISTRATIVE DATA	Rocket Type and Model 1-KS-420	MARC 7G1	Contract No. NAS 3-7128-H	Customer NASA	Lewis Research Center	Purpose of Test:	Motor Evaluation	Test No. 2788	Date of Test: 8/10/65	Treet Areanon. Rocket Test Group	Atlantic Research Corporation	A Johnson				Date:			Report No. TR-PL-8634-00-1	Appendix C	Figure	Page C-13	F129-6/65-2C	
BALLISTIC DATA	Action Time. t ₃ 1.411 sec	Burning Time, t. 0.861 sec	Rise Time, t. 0.009 sec	Ignition Delay. t _A 0.004 sec	Average Burning Rate. r 0.4799 in/sec	Maximum Pressure, P _{max} 1221 psia	Pressure-Time Integral. PTI ₃ 1214 psia-sec	Average Pressure, P ₂ 860.4 psia	Average Pressure, P _h 1134 psia	1558	Discharge Coefficient. C _d 0.00711 lbm/lbf-sec	Characteristic Exhaust Velocity. C* 4526 ft/sec	0-0 Pressure Integral 1239 psia-sec	Measured Abs. Vac.		Specific Impulse. I _{sn} <u>228.9</u> lbf-sec/1bm	Maximum Thrust. F_{max} 491.5 491.5 1bf	Average Thrust, F ₃ 344.9 [bf	Average Thrust. F _h 453.4 lbf	Ignition Thrust, F _{1gn} 615.5 lbf	Thrust Coefficient, C _F 1.6609	0-0 Thrust Integral 496.6 lbf-sec	I _{sp} (0-0), Motor <u>97.95</u> lbf-sec/lbm	I _{sp} (0-0), Propellant <u>233.6</u> lbf-sec/lbm
TEST DATA	Conditioning Temperature ± 160 °F for $\ge \frac{4}{2}$ hrs	Time Out of Box 1807	Time Fired 1815 Time Elapsed 8 min	Ambient Temperature 83 °F	Relative Humidity 53	Barometric Pressure 29.54 in Hg	Ignition Current A-B: 5.16 C-D: 5.09 amps	Pre-Test Environmental Conditions Temperature - Humidity,	Altitude, Vibration at -30°F, Shock, Temperature Shock,	Tunnel Pressure: Init 0.0135, Av 0.0580, Final 0.0536 psia,	Ignition Voltage A-B: 26.1, C-D: 27.3 volts	Nozzle closure vented before firing. Prefiring Examination:	Motor Weight 5.07 Ib	Throat Diameter 0.555 in	Post Firing Examination	Motor Weight 2.93 lb	Throat Diameter 0.554 in	Average Throat Area <u>0.2414</u> sq in	Average A _e /A _t 8.99					
MOTOR DATA	Atlantic Research Part No. P-86-38-9	Customer Part No.	Motor Serial No. Q-6	Grain Type Arcite 377A-9C	Grain No. 2474-R-2-2B	IGNITER DATA	Model No. ARC 502	Atlantic Research Part No. P-86-32-2	Lot No. —	Serial No29	Resistances: Circuit A-B 1.000 ohms	Circuit C-D 1.000 ohms	BALLISTIC PARAMETERS	Nozzle Exit Area 2.172 sq in	Propellant Weight 2.126 lb	Inhibited Grain Weight lb	Average Web0.4132in	Grain 0.D. 2.548/2.520/2.532 in	Grain Length 8.464 in					

.

•

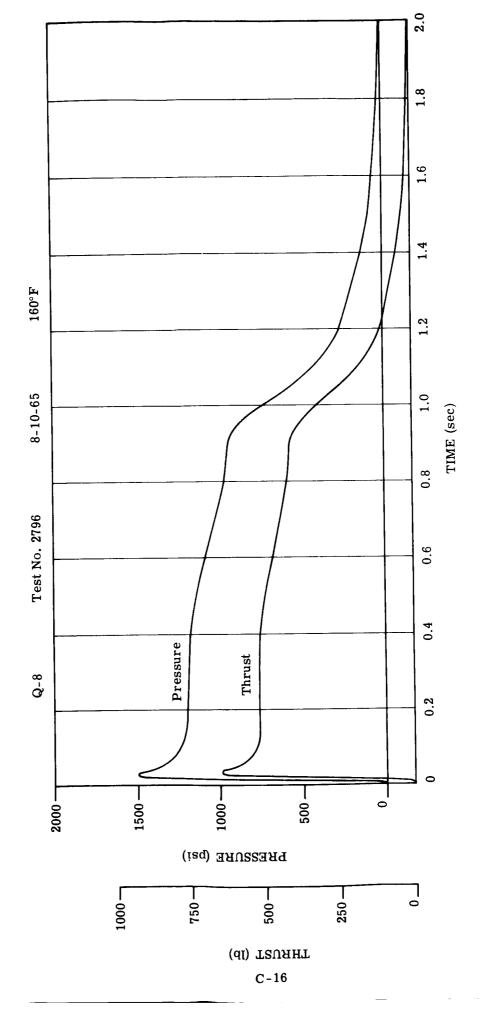
•


-

• ·

•

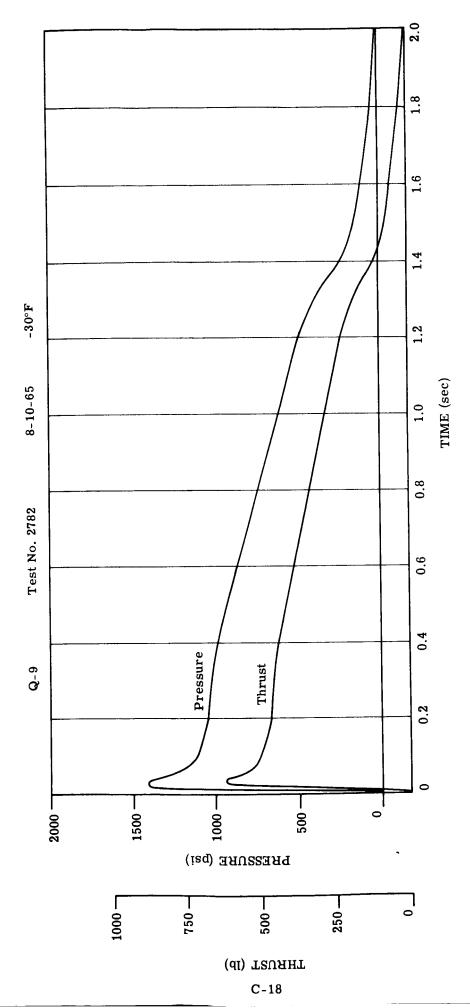
ļ


•

ADMINISTRATIVE DATA	Rocket Type and Model 1-KS-420	MARC 7G1	Contract No. NAS 3-7128-H	Customer NASA	Lewis Research Center	Purpose of Test:	Motor Evaluation	Test No. 2784	Date of Test: 8/10/65	Tost Amonovie Rocket Test Group	Atlantic Research Corporation					Date:			Report No. TR-PL-8634-00-1	Appendix C	Figure	Page C-15	F129-6/65-20
BALLISTIC DATA	Action Time. t _a 1.787 sec	Burning Time. t _h 0.849 sec	Rise Time, tr 0.003 sec	Ignition Delay. t _d 0.004 sec	Average Burning Rate. r 0.4834 in/sec	Maximum Pressure, P _{max} 981.6 psia	Pressure-Time Integral, PTI _a 1197 psia-sec	Average Pressure, P,669.8psia	Average Pressure, P _b 939.7 psia	1465	Discharge Coefficient. C _d 0.00730 lbm/lbf-sec	Characteristic Exhaust Velocity. C* 4409 ft/sec	0-0 Pressure Integral 1218 psia-sec	Measured Abs. Vac.		Specific Impulse. I sn 223.1 lbf-sec/lbm	Maximum Thrust, F., <u>388.5</u> Ibf	Average Thrust, F_2 267.3 lbf	Average Thrust. F _b 373.3 lbf	Ignition Thrust. Fign 573.4 Ibf	Thrust Coefficient, C _F 1.6556	0-0 Thrust Integral 485.6 Ibf-sec	I _{sp} (0-0), Motor <u>95.22</u> lbf-sec/lbm I _{sp} (0-0), Propellant <u>226.8</u> lbf-sec/lbm
TEST DATA	Conditioning Temperature -30 °F for 2 4 hrs	Time Out of Box 1655	Time Fired 1703 Time Elapsed 8 min	Ambient Temperature 83 °F	Relative Humidity 55 %	Barometric Pressure 29.54 in Hg	Ignition Current A-B: 5.05 C-D: 5.19 amps	Pre-Test Environmental Conditions Temperature - Humidity,	Altitude, Vibration at -30°F, Shock, Temperature Shock,	Tunnel Pressure: Init 0.0093, Av 0.0466, Final 0.0427 psia	Ignition Voltage A-B: 26.2, C-D: 27.2 volts	Prefixing Examination:	Motor Weight 5.10 lb	Throat Diameter 0.555 in	Post Firing Examination	Motor Weight 2:94 lb	Throat Diameter 0.553 in	Average Throat Area 0.2409 sq in	Average A _e /A _t 9.02				
MOTOR DATA	Atlantic Research Part No. P-86-38-9	Customer Part No.	Motor Serial No. Q-7	Grain Type Arcite 377A-9C	Grain No2474-R-3-9A	IGNITER DATA	Model No. ARC 502	Atlantic Research Part No. P-86-32-2	Lot No.	Serial No. 50	Resistances: Circuit A-B 0.970 ohms	Circuit C-D 1.300 ohms	BALLISTIC PARAMETERS	Nozzle Exit Area 2.172 sq in	Propellant Weight 2.141 lb	Inhibited Grain Weight lb	Average Web 0.4104 in	Grain 0.D. 2.550/2.510/2.533 in	Grain Length 8.462 in				

•

٠



.

ADMINISTRATIVE DATA	Rocket Type and Model <u>1-KS-420</u>	MARC 7G1	Contract No. NAS 3-7128-H	Customer NASA	Lewis Research Center	Purpose of Test:	Motor Evaluation	Test No. 2796	Date of Test: 8/10/65	Test Amonum Rocket Test Group	Atlantic Research Corporation	I E Durato				Date: 0/10/00			Report No. TR-PL-8634-00-1	Appendix C	Figure	Page C-17	F129-6/65-2C	
BALLISTIC DATA	Action Time, t ₃ 1.427 sec	Burning Time. t ₁		Ignition Delay. t _d 0.004 sec	Average Burning Rate, r 0.4312 in/sec	Maximum Pressure, P _{max} <u>1227</u> psia	Pressure-Time Integral. PTI, 1223 psia-sec	Average Pressure, P ₂ 857.3 psia	Average Pressure. P _b 1132 psia	Ignition Pressure. P _{ion} 1494 psia	Discharge Coefficient. C _d 0.00725 lbm/lbf-sec	Characteristic Exhaust Velocity. C* 4649 ft/sec	0-0 Pressure Integral 1281 psia-sec	Measured Abs. Vac.		Specific Impulse. Isn <u>228.1</u> lbf-sec/lbm	Maximum Thrust, F _{max} 480.0 1bf	Average Thrust, F ₃ 342.2 [bf	Average Thrust, F _b 445.9lbf	Ignition Thrust. F _{ign} 587.4 lbf	Thrust Coefficient, C _F <u>1.6537</u>	0-0 Thrust Integral 498.4 lbf-sec	98.5	1_{sp} (0-0), Propellant 232.8 IDI-sec/IDM
TEST DATA	Conditioning Temperature +160 °F for 2 4 hrs	Time Out of Box	Time Fired Time Elapsed min	Ambient Temperature 77 °F	Relative Humidity 65	Barometric Pressure 29.54 in Hg	Ignition Current A-B: 5.01 C-D: 4.83 amps	Pre-Test Environmental Conditions Temperature - Humidity,	Altitude, Vibration at -30°F, Shock, Temperature Shock,	Tunnel Pressure: Init 0.0135, Av 0.0536, Final 0.0414 psia,	Ignition Voltage A-B: 26.2 C-D: 27.0 volts	Prefiring Examination:	Motor Weight 5.07 Ib	Throat Diameter 0.555 in	Post Firing Examination	Motor Weight 2.93 lb	Throat Diameter0.554in	Average Throat Area 0.2414 sq in	Average A _e /A _t 8.99					
MOTOR DATA	Atlantic Research Part No. P-86-38-9	Customer Part No.	Motor Serial No. Q-8	Grain Type Arcite 377A-9C	Grain No. 2474- R-3-8A	IGNITER DATA	Model No. ARC 502	Atlantic Research Part No. P-86-32-2	Lot No.	Serial No. 27	Resistances: Circuit A-B 1.190 ohms	Circuit C-D 1.140 ohms	BALLISTIC PARAMETERS	Nozzle Exit Area 2.172 sq in	Propellant Weight 2.141 lb	Inhibited Grain Weight Ib	Average Web0.4092in	Grain O.D. 2.548/2.515/2.532 in	Grain Length 8.463 in					

.

•

i

,

MOTOR DATA	TEST DATA Conditioning Teamonshine -30 °F for > 4 hrs	BALLISTIC DATA	
Customer Part No.	1613	0.757	
Motor Serial No. Q-9	Time Fired 1621 Time Elapsed 8 min	0.003	0
Grain Type Arcite 377A-9C	perature 8	Ignition Delay, t ₃ 0.006 sec	0
Grain No. 2474-R-2-4A	Relative Humidity $\frac{55}{6}$	Average Burning Rate, r 0.5368 in/sec	
IGNITER DATA	Barometric Pressure 29.54 in Hg	1032	_
Model No. ARC 502	Ignition Current A-B: 5.20, C-D: 5.06 amps	Pressure-Time Integral. PTI, 1165 psia-sec	
Atlantic Research Part No. P-86-32-2	Pre-Test Environmental Conditions Temperature-Humidity,	Average Pressure, P. 688.6 psia	<u>н</u>
Lot No.	Altitude, Vibration at -30°F, Shock, Temperature Shock,	1002	<u>_</u>
Serial No. 24	Tunnel Pressure: Init 0.0077, Av 0.0526, Final 0.0451 psia	1401	
Resistances: Circuit A-B 1.150 ohms	Ignition Voltage A-B: 25.2, C-D: 27.2 volts	0.00746 lbm/lbf	-
Circuit C-D 1.080 ohms	Prefiring Examination:	city.	<u> </u>
BALLISTIC PARAMETERS	Motor Weight 5.10 lb	0-0 Pressure Integral 1185 psia-sec	<u>р</u> ,
Nozzle Exit Area 2.172 sq in	Throat Diameter 0.555 in	Measured Abs. Vac.	
Propellant Weight 2.131 lb	Post Firing Examination		<
Inhibited Grain Weight Ib	Motor Weight 2.95 Ib	Specific Impulse. I. 223.9 lbf-sec/lbm	_
Average Webin	Throat Diameter 0.553 in	Maximum Thrust. F., 425.9	
Grain 0.D. 2.540/2.514/2.536 in	Average Throat Area 0.2410 sq in	Average Thrust, F 282.0 lbf	
Grain Length 8.460 in	Average A _e /A _t 9.01	Average Thrust, F _h 406.1 lbf	
		 [54	
		0-0 Thrust Integral 487.4 Ibf-sec	

Atlantic Research Corporation

A. Johnson

Prepared by: _

8/13/65

A. D. Mattox

Approved by: __ Date: __

8/18/65

Date: _

Test Agency: Rocket Test Group

8/10/65

Date of Test: ____

2782

Test No. __

Motor Evaluation

Purpose of Test: _

Report No. TR-PL-8634-00-1

U

Appendix ____

Figure__

F129-6/65-2C

I (0-0), Motor <u>95.57</u> lbf-sec/lbm I_{sp} (0-0), Propellant <u>228.7</u> lbf-sec/lbm

C-19

Page ____

-

...

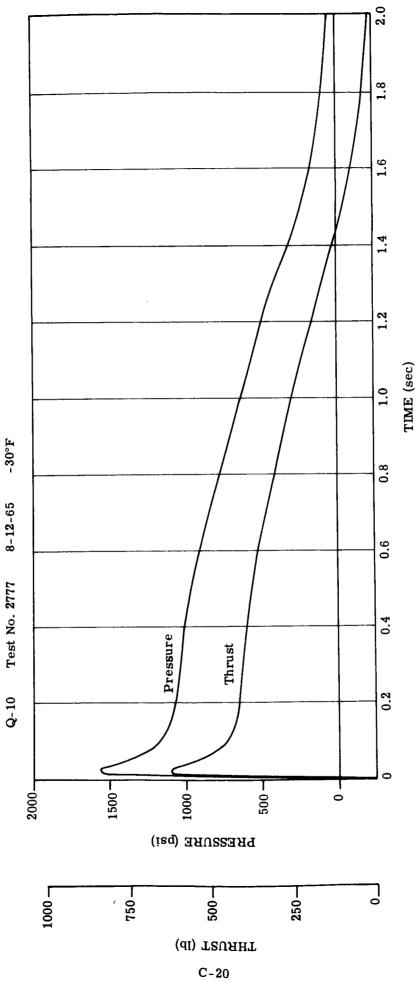
*

Rocket Type and Model <u>1-KS-420</u>

MARC 7G1

ADMINISTRATIVE DATA

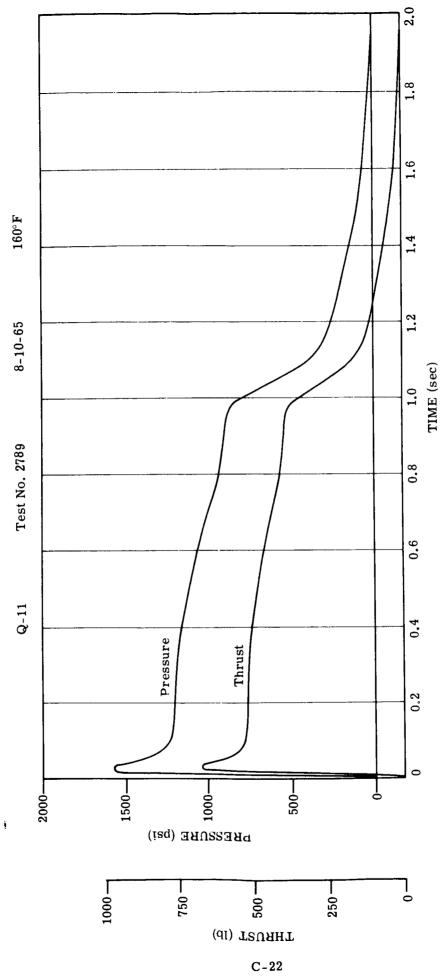
NAS 3-7128-H


Contract No. __

Customer___

Lewis Research Center

NASA


.

8-12-65 Test No. 2777

ADMINISTRATIVE DATA Rocket Type and Model <u>1-KS-420</u> MARC 7G1 Contract No. <u>NAS 3-7128-H</u> Customer <u>NASA</u> Lewis Research Center	Purpose of Test:	Prepared by: <u>A. Johnson</u> Date: <u>8/12/65</u> Approved by: <u>A. D. Mattox</u> Date: <u>8/18/65</u>	Report No. <u>TR-PL-8634-00-</u> 1 Appendix <u>C</u> Figure <u>C-21</u> Page <u>C-21</u>
BALLISTIC DATA Action Time. t _a 1.721 sec Burning Time. t _b 0.789 sec Rise Time, t _r 0.006 sec Ignition Delay. t _d 0.004 sec	ps	Characteristic Exhaust Velocity. C* <u>4402</u> ft/sec O-O Pressure Integral <u>1212</u> psia-sec Total Impulse. I _a <u>474.5</u> <u>1212</u> psia-sec Specific Impulse. I _s <u>221.7</u> <u>1bf-sec</u> /1bm Maximum Thrust. F _{max} <u>406.7</u> <u>1bf-sec</u> /1bm	Average Thrust. F_b^{α} 400.0IbfIgnition Thrust. F_{ign} 622.81bfThrust Coefficient. C_F 1.64911bfO-O Thrust Integral482.81bf-sec $I_p^{(0-0)}$, Motor95.04lbf-sec/lbm $I_p^{(0-0)}$, Propellant225.6lbf-sec/lbm
TEST DATA erature -30 °F for ≥ 4 hr 0850 0850 14 m 004 Time Elapsed 14 m	Relative Humidity 00 Barometric Pressure 29.59 in Hg Ignition Current 29.51 5.43 0.05 5.33 Ignition Current A-B: 5.43 C-D: 5.33 amps Pre-Test Environmental Conditions Temperature-Humidity, Altitude, Vibration at -30°F, Shock, Temperature Shock, Tunnel Pressure: Init 0.0058, Av *, Final * psia, Ignition Voltage A-B: 26.5, C-D: 27.0 volts	Prefiring Examination: 5.08 lb Motor Weight 5.08 lb Throat Diameter 0.555 ln Post Firing Examination Motor Weight 2.94 lb Motor Weight 2.94 lb Throat Diameter lb Average Throat Diameter 0.554 in	Average A _e /A _t 8.99 *Tunnel pressure lost due to malfunction of pressure transducer.

MOTOR DATA	Atlantic Research Part No. P-86-38-9	Customer Part No.	Motor Serial No. Q-10	Grain Type Arcite 377A-9C	Grain No2474-R-3-4B	IGNITER DATA	Model Ng. ARC 502	Atlantic Research Part No. P-86-32-2	Lot No.	Serial No. 22	Resistances: Circuit A-B <u>1.150</u> ohms	Circuit C-D 0.950 ohms	BALLISTIC PARAMETERS	Nozzle Exit Area 2.172 sq in	Propellant Weight 2.140 lb	Inhibited Grain Weight Ib	Average Web 0.4094 in	Grain O.D. 2.543/2.514/2.534 in	Grain Length 8.461 in
------------	--------------------------------------	-------------------	-----------------------	---------------------------	---------------------	--------------	-------------------	--------------------------------------	---------	---------------	--	------------------------	----------------------	------------------------------	----------------------------	---------------------------	-----------------------	---------------------------------	-----------------------

MOTOR DATA	_	TEST DATA		BALLISTIC DATA
Atlantic Research Part No. P-86-38-9	Co	Conditioning Temperature $\frac{+160}{1000}$ °F for $\geq \frac{4}{1000}$	hrs	Action Time. t ₃ sec
Customer Bart No.	Ti	Time Out of Box 1820		Burning Time, t. 0.873 sec
Motor Seriel No. Q-11	Ē	Time Fired 1826 Time Elapsed 6	min	Rise Time. t 0.002 sec
Guin True Arcite 377A-9C		mnerahire 6	°F	Fruition Delay t . 0.002 sec
		Relative Humidity 55	a v	Average Burning Rate, r 0.4806 in/sec
IGNITER DATA	Ba	Barometric Pressure 29.53	in Hg	Maximum Pressure, P _{max} 1212 psia
Model No. ARC 502		Ignition Current A-B: 5.23, C-D: 5.18	amps	Pressure-Time Integral. PTI _a 1216 psia-sec
Atlantic Research Part No. P-86-32-2		Pre-Test Environmental Conditions Temperature-Humidity,	Iumidity,	Average Pressure, P _a 856.3 psia
Lot No.	V	Altitude, Vibration at 160°F, Shock, Temperature Shock,	Shock,	Average Pressure, P _h 1128 psia
Serial No35		Tunnel Pressure: Init 0.0135, Av 0.0555, Final 0.0665 psia	665 psia	Ignition Pressure, P., 1562 psia
::	- ohms	Ignition Voltage A-B: 23.1, C-D: 27.4 volts Novila closura vantad hafora firing		Discharge Coefficient. C _d 0.00723 lbm/lbf-sec
Circuit C-D 0.990	- ohms Pr	Prefiring Examination:		Characteristic Exhaust Velocity. C* 4550 ft/sec
BALLISTIC PARAMETERS		Motor Weight 5.06	lb Ib	0-0 Pressure Integral 1244 psia-sec
Nozzle Exit Area 2.172	sq in	Throat Diameter 0.555	in	Measured Abs. Vac.
Propellant Weight 2.128	dl	Post Firing Examination		
Inhibited Grain Weight	qI	Motor Weight 2.91	ql	Specific Impulse. Is. 229.1 lbf-sec/lbm
Average Web 0.4196	'n	Throat Diameter 0.555	ni	Maximum Thrust. F, 482.1 1bf
Grain O.D. 2.552/2.530/2.535	i	Average Throat Area 0.2419	ni ps	Average Thrust, F ₂ 343.3 [bf
Grain Length 8.462	Li	Average A _e /A _t 8.98		Average Thrust, F _h 451.9lbf
				Ignition Thrust, Fign 620.2 [bf
				Thrust Coefficient, C _F 1.6564
				0-0 Thrust Integral 497.4 Ibf-sec

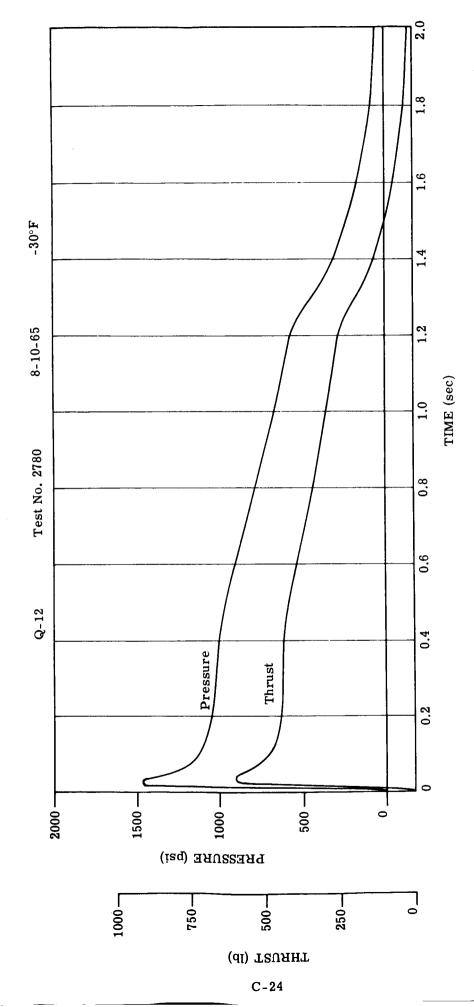
BALLISTIC D	ADN
Action Time, t ₃ sec	Rocket T
Burning Time, t ₁	
Rise Time, t. 0.002 sec	Contract
Ignition Delay. t _A 0.002 sec	Custome
Average Burning Rate. r 0.4806 in/sec	
Maximum Pressure, P _{max} 1212 psia	Purpose
Pressure-Time Integral. PTI, 1216 psia-sec	Mot
Average Pressure, P ₃ ^a 856.3 psia	Test No.
Average Pressure. P _h <u>1128</u> psia	Date of T
Ignition Pressure, P _{ion} 1562 psia	Test Are
Discharge Coefficient, C _A 0.00723 lbm/lbf-sec	At
Characteristic Exhaust Velocity. C* 4550 ft/sec	
0-0 Pressure Integral <u>1244</u> psia-sec	Prepared
:	2
metritrestred Abs. Vac. 1hf-ser	Approved
229.1 156 -	ä
max 343.3	
a 451.9	L.
Ignition Thrust, F	AI
Thrust Coefficient, C _F 1.6564	· £
0-0 Thrust Integral 497.4 Ibf-sec	<u>A</u>
sn (0-0), Motor 98.30 lbf-sec/lbm	J
I_{sp}^{or} (0-0), Propellant <u>233.7</u> lbf-sec/lbm	

ADMINISTRATIVE DATA	Rocket Type and Model 1-KS-420	MARC 7G1	Contract No. NAS 3-7128-H	Customer NASA	Lewis Research Center	Purpose of Test:	Motor Evaluation	Test No. 2789	Date of Test: 8/10/65	Test Agency: Rocket Test Group	Atlantic Research Corporation	Prepared by: J. E. Dukate	Date: 8/16/65	Approved by: A. D. Mattox	Tata: 8/18/65				Report No. TR-PL-8634-00-1	Appendix C	Figure	Page C-23	F129-6/65-2C	
	sec	sec	sec	sec	in/sec	psia	sia-sec	— psia	psia	— psia	lbf-sec	_ft/sec	sia-sec		lbf-sec	ec/lbm	lbf	lbf	lbf	lbf		lbf-sec		

• •

.

•


.

.

-

•

ŀ

i

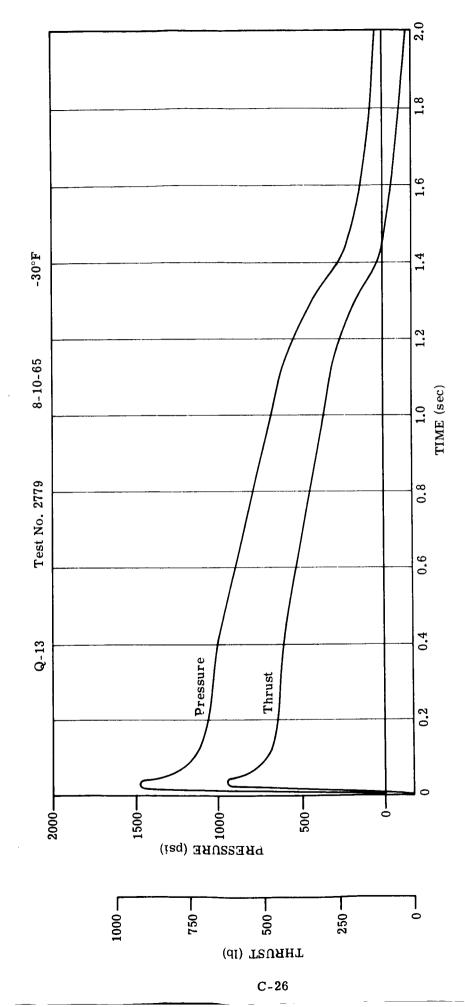
İ

ł

Ignition Thrust. Fign 582.8		
Average Thrust. F _b 391.0	Average A _e /A _t 8.99	Grain Length 8.463 in
Average Thrust. F _a 277.0	Average Throat Area 2.414 sq in	Grain O.D. 2.542/2.515/2.533 in
Maximum Thrust. Fmax 407.2	Throat Diameter 0.554 in	Average Web 0.4100 in
Specific Impulse. Isp 224.3	Motor Weight 4.31 1b	Inhibited Grain Weight lb
	Post Firing Examination	Propellant Weight 2.138 lb
Measured Abs.	Throat Diameter 0.555 in	Nozzle Exit Area 2.172 sq in
0-0 Pressure Integral 1228	Motor Weight 5.08 Ib	BALLISTIC PARAMETERS
Characteristic Exhaust Velocity. C*_	Prefiring Examination:	Circuit C-D 1.120 ohms
Discharge Coefficient. C _d 0.0072.	Ignition Voltage A-B: 26.0, C-D: 27.3 volts Novzla clocura varied before fixing	Resistances: Circuit A-B 1.230 ohms
Ignition Pressure. P 1475	Tunnel Pressure: Init 0.0079, Av 0.0497, Final 0.0441 psia	Serial No. 13
Average Pressure, P _h 984.0	Altitude, Vibration at 160°F, Shock, Temperature Shock,	Lot No
Average Pressure, P ₃ 694.9	Pre-Test Environmental Conditions Temperature-Humidity,	Atlantic Research Part No. P-86-32-2
Pressure-Time Integral, PTI _a 1203	Ignition Current A-B: 5.27 C-D: 5.12 amps	Model No. ARC 502
Maximum Pressure, P _{max} 1023	Barometric Pressure 29.54 in Hg	IGNITER DATA
Average Burning Rate, r 0.4994	Relative Humidity 55 %	Grain No. 2474-R-3-5A
Ignition Delay. t _d 0,005	Ambient Temperature 83 °F	Grain Type Arcite 377A-9C
Rise Time, t_r 0.003	Time Fired 1548 Time Elapsed 11 min	Motor Serial No. Q-12
Burning Time. t _b 0.821	Time Out of Box 1537	Customer Part No.
Action Time. t _a 1.731	Conditioning Temperature <u>-30</u> °F for <u>2</u> 4 hrs	Atlantic Research Part No. P-86-38-9
BALLISTIC DATA	TEST DATA	MOTOR DATA

lgnition Pressure. P _{ign} — Discharge Coefficient. C _d
479.5 479.5 224.3 max 277.0 391.0 582.8 n 582.8 c 489.4 96.34 t 228.9

	ec MARC 7G1	ec Contract No. NAS 3-7128-H	ec Customer NASA	c Lewis Research Center	ia Purpose of Test:	ec Motor Evaluation	ia Test No. 2780	ia Date of Test: 8/10/65	ia Treat Arenny: Rocket Test Group	Atlantic Research Corporation	ec Prenared by: A. Johnson	ec Date: 8/12/65	Approved by: A. D. Mattox	ac Date: 8/18/65	u - u	bf	þí	bf Report No. TR-PL-8634-00-1	bf Appendix C	Figure	ec Page C-25	F129-6/65-2C	
--	-------------	------------------------------	------------------	-------------------------	---------------------	---------------------	------------------	--------------------------	------------------------------------	-------------------------------	----------------------------	------------------	---------------------------	------------------	-------	----	----	-------------------------------	---------------	--------	--------------	--------------	--


••

.

-

: | .

•

,

MOTOR DATA	TEST DATA	BALLISTIC DATA	ADN
Atlantic Research Part No. P-86-38-9	Conditioning Temperature -30 °F for 2 4 hrs	Action Time. t ₂ 1.709 sec	Rocket T
Customer Part No.	Time Out of Box 1522	Burning Time. t _h 0.816 sec	
Motor Serial No. Q-13	Time Fired 1533 Time Elapsed 11 min	Rise Time, t. 0.008 sec	Contract
Grain Type Arcite 377A-9C	Ambient Temperature 83 °F	Ignition Delay. t _d 0.004 sec	Customer
Grain No. 2474-R-2-6A	Relative Humidity 50 %	Average Burning Rate. r 0.5081 in/sec	
IGNITER DATA	Barometric Pressure 29.54 in Hg	Maximum Pressure, P _{max} <u>1034</u> psia	Purpose
Model No. ARC 502	Ignition Current A-B: 5.43 C-D: 5.19 amps	Pressure-Time Integral, PTI _a 1193 psia-sec	
Atlantic Research Part No. P-86-32-2	Pre-Test Environmental Conditions Temperature-Humidity,	Average Pressure. P _a 698.2 psia	Test No.
Lot No	Altitude, Vibration at 160°F, Shock, Temperature Shock,	Average Pressure, P _b ps8.8psia	Date of T
Serial No. 30	Tunnel Pressure: Init 0.0060, Av 0.0499, Final 0.0447 psia,	Ignition Pressure. P _{ion} 1471 psia	Test Age
Resistances: Circuit A-B <u>1.160</u> ohms	Ignition Voltage A-B: 26.0 C-D: 27.5 volts	Discharge Coefficient. C _d 0.00728 lbm/lbf-sec	At
Circuit C-D 1.040 ohms	Prefiring Examination:	Characteristic Exhaust Velocity. C* 4422 ft/sec	
BALLISTIC PARAMETERS	Motor Weight 5.06 lb	0-0 Pressure Integral 1217 psia-sec	Prepared
Nozzle Exit Area 2.172 sq in	Throat Diameter 0.555 in	Measured Abs. Vac.	-
Propellant Weight 2.134 It	Post Firing Examination	Total Impulse, I ₃ 477.4 lbf-sec	Approved
Inhibited Grain Weight II	Motor Weight 2.92 lb	Specific Impulse. I sn 223.7 lbf-sec/lbm	ä
Average Web0.4146ir	Throat Diameter 0.553 in	Maximum Thrust. F _{max} 458.2 Ibf	
Grain O.D. 2.547/2.811/2.531 ir	Average Throat Area 0.2410 sq in	Average Thrust, F _a 279.3 lbf	
Grain Length 8.457 ir	Average A _e /A _t 9.01	Average Thrust, F _h 392.8lbf	a a
		Ignition Thrust. F _{ign} 637.8 lbf	A
		Thrust Coefficient, C _F 1.6628	
		O-O Thrust Integral 487.4 lbf-sec	<u>ď</u> .
]

Type and Model 1-KS-420 **MINISTRATIVE DATA**

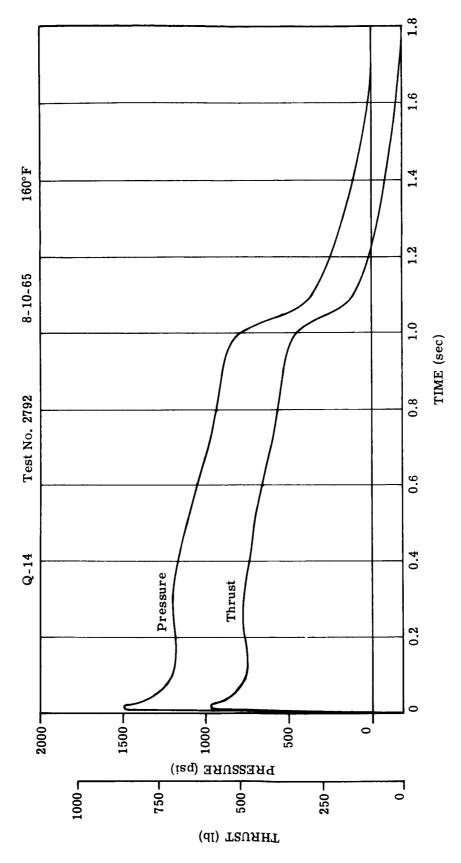
NAS 3-7128-H

NASA

MARC 7G1

I

٠


Lewis Research Center Motor Evaluation ie of Test: ____ ct No. Test: ler____ | . ł j 96.32 lbf-sec/lbm $I_{sp}^{I} (0-0), Motor \underbrace{ 96.32 }_{Isp} lbf-sec/lbm$

8/10/65

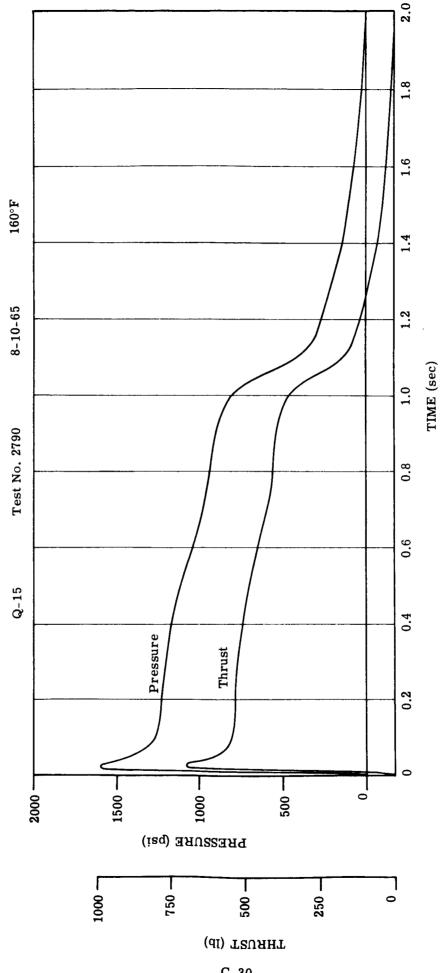
2779

Atlantic Research Corporation Report No. <u>TR-PL-8634-00-</u>1 F129-8/65-2C gency: Rocket Test Group A. D. Mattox A. Johnson 8/12/65 8/18/65 C-27 Appendix C ed by: ----Figure ____ Date: ____ ed by:---Date: ___ Page ___

-

MOTOR DATA	TEST DATA	BALLISTI
Atlantic Research Part No. P-86-38-9	Conditioning Temperature +160 °F for 2 4 hrs	Action Time, t _a
Customer Part No.	Time Out of Box 1929	Burning Time, t _h
Motor Serial No. Q-14	Time Fired 1936 Time Elapsed 7 min	
Grain Type Arcite 377A-9C	Ambient Temperature 80 °F	Ignition Delay. t _d
Grain No2474-R-3-4A	Relative Humidity 60	Average Burning Rate. r
IGNITER DATA	Barometric Pressure 29.53 in Hg	Maximum Pressure, P _{max} -
Model No. ARC 502	Ignition Current A-B: 5.07 C-D: 5.30 amps	Pressure-Time Integral. PT
Atlantic Research Part No. P-86-32-2	Pre-Test Environmental Conditions Temperature-Humidity.	Average Pressure, P ₃
Lot No.	Altitude, Vibration at 160°F, Shock, Temperature Shock,	Average Pressure. P _h
Serial No. 32	Tunnel Pressure: Init 0.0155, Av 0.0589, Final 0.0460 psia,	Ignition Pressure, P.
Resistances: Circuit A-B 1.100 ohms	s Ignition Voltage, A-B: 26.2, C-D 27.4 volts	Discharge Coefficient. C _A
Circuit C-D 1.030 ohms	s Pretiring Examination:	Characteristic Exhaust Veloc
BALLISTIC PARAMETERS	Motor Weight 5.03 Ib	0-0 Pressure Integral
Nozzle Exit Area 2.172 sq in	n Throat Diameter 0.555 in	Measur
Propellant Weight 2.137 1	lb Post Firing Examination	Total Impulse, I _a 486.
Inhibited Grain Weight1	lb Motor Weight 2.91 lb	
Average Web 0.494	in Throat Diameter 0.553 in	
2.545/2.511/2.533	in Average Throat Area 0.2411 sq in	
th 8.465	in Average A _A /A, 9.01	Average Thrust, F ₁ 449.
	۔ ب	Ignition Thrust, F _{irm} 589.
		Thrust Coefficient C - 1.65

Average Pressure. P_a $a 800.6$ $a 800.6$ $b b$ psiaTest No.Average Pressure. P_b 1124 $b b$ psiaTest No.Average Pressure. P_{ign} 1124 $b b$ psiaTest Agency.Ignition Pressure. P_{ign} 1124 $b b b$ psiaTest Agency.Discharge Coefficient. C_d 0.00728 0.00728 $b b m/bf-sec$ PatiantiCharacteristic Exhaust Velocity. C^* 4516 $b b b b a b a b a b a b a b a b a b a b$

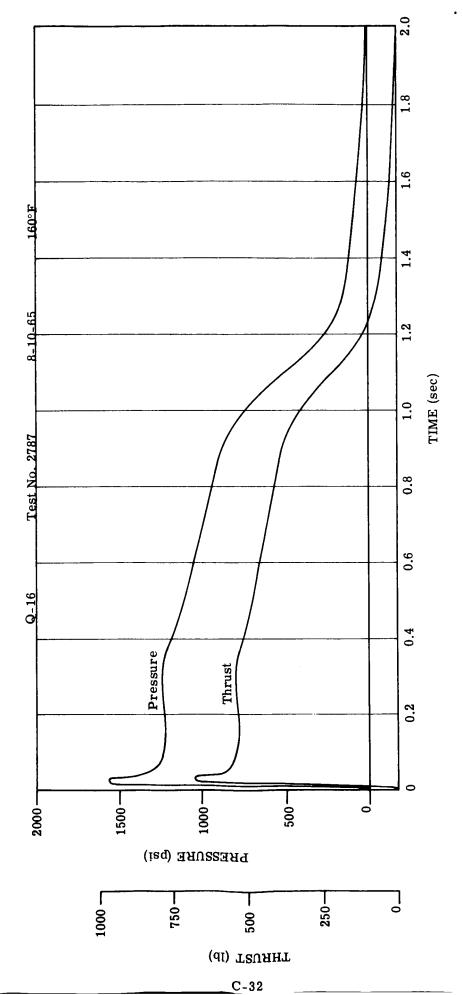

ADMINISTRATIVE DATA	Rocket Type and Model 1-KS-420	MARC 7G1	Contract No. NAS 3-7128-H	Customer NASA	Lewis Research Center	Purpose of Test:	Motor Evaluation	Test No. 2792	Date of Test: 8/10/65	Test Agency: Rocket Test Group	Atlantic Research Corporation	Prepared by: J. R. Wertz	Date: 8/16/65	Approved by: A. D. Mattox	Date: 8/18/65				Report No. TR-PL-8634-00-1	Appendix C	Figure	Page C-29	F129-6/65-2C
	sec	sec	— sec	- sec	in/sec	- psia	ia-sec	- psia	- psia	- psia	bf-sec	ft/sec	la-sec		bf-sec	c/lbm	— Ibf	— Ibf	1bf	lbf		bf-sec	

Ì

1

Ţ

٠


• .

MOTOR DATA	
Atlantic Research Part No. P-86-38-9	Conditioning ¹
Customer Part No.	Time Out of E
Motor Serial No. Q-15	Time Fired
Grain Type Arcite 377A-9C	Ambient Tem
Grain No2474-R-2-3B	Relative Humi
IGNITER DATA	Barometric P
Model No. ARC 502	Ignition Curre
Atlantic Research Part No. P-86-32-2	Pre-Test Env
Lot No.	Altitude, Vib
Serial No. 25	Tunnel Pres
Resistances: Circuit A-B 1.190 ohms	Ignition Volt
Circuit C-D 1.120 ohms	Prefiring Exa
BALLISTIC PARAMETERS	Motor Wei
Nozzle Exit Area 2.172 sq in	Throat Dia
Propellant Weight 2.131 lb	Post Firing E
Inhibited Grain Weight lb	Motor Wei
Average Webin	Throat Dia
Grain O.D. 2.546/2.512/2.532 in	Average T
Grain Length 8.466 in	Average A

BALLISTIC DATA		~ 1
Action Time, t	sec	Rocke
0.826	sec	
0.003	sec	Contr
0.003	sec	Custo
Rate. r 0.4944	in/sec	
1235	psia	Purp
max Pressure-Time Integral. PTI, <u>1224</u> psia-sec	sec	
a 872.6	psia	Test 1
1144	psia	Date
1581	psia	Test
Discharge Coefficient, C ₃ 0.00721 lbm/lbf-sec	sec	
u Velocity. C* 4572	ft/sec	
0-0 Pressure Integral 1254 psia-sec	sec	Prepa
Measured Abs. Vac.		Appro
Total Impulse, I _a 487.7 Ibf-sec	sec	
Specific Impulse. I _{Sp} 228.9 Ibf-sec/lbm	lbm	_
Maximum Thrust. F _{max} 491.5	. Ibf	
Average Thrust, F. 347.7	lbf	
Average Thrust. F, 455.8	. Ibf	
Ignition Thrust. F. 629.6	lbf	
Thrust Coefficient, C _F 1.6504		
498.3	lbf-sec	
$\frac{1}{s_0}$ (0-0), Motor $\frac{97.90}{1000}$ lbf-sec/lbm		
Iso (0-0), Propellant 233.8 lbf-sec/lbm		

레리니	Contract No. NAS 3-7128-H Customer NASA Lewis Research Center	Purpose of Test:	Test Agency: Rocket Test Group Atlantic Research Corporation Prepared by: J. E. Dukate	Date: 8/16/65 Approved by: A. D. Mattox Date: 8/18/65	Report No. <u>TR-PL-8634-00-1</u> Appendix <u>C</u> Figure <u>C-31</u>
-----	---	------------------	--	---	--

L

ADMINISTRATIVE DATA	Rocket Type and Model 1-KS-420	MARC 101	Contract No. NAS 3-7128-H	Customer NASA	Lewis Research Center	Purpose of Test:	Motor Evaluation	Test No. 2787	Date of Test: 8/10/65	Test Agency: Rocket Test Group	Atlantic Research Corporation	A. Johnson	Frepared by:	American hur A. D. Mattox	8/18/65	Date:			Report No. TR-PL-8634-00-1	Appendix C	Figure	Page C-33
BALLISTIC DATA	Action Time. t _a 1.389 sec	Burning Time. t _b 0.798 sec	Rise Time, t _r 0.002 sec	Ignition Delay. t _d 0.005 sec	Average Burning Rate. r 0.5123 in/sec	Maximum Pressure, P _{max} <u>1240</u> psia	Pressure-Time Integral, PTI _a 1213 psia-sec	Average Pressure. P _a <u>873.3</u> psia	Average Pressure, P _h 1155 psia	Ignition Pressure. Piene psia	Discharge Coefficient, C _d 0.00714 lbm/lbf-sec	Characteristic Exhaust Velocity. C* 4510 ft/sec	0-0 Pressure Integral 1240 psia-sec	Measured Abs. Vac.	Total Impulse, I _a 485.7 Ibf-sec	Specific Impulse. I _{Sp} 227.8 lbf-sec/lbm	Maximum Thrust. Fmax 493.8 Ibf	Average Thrust, F ₃ 349.7 1bf	Average Thrust. F _b 461.5lbf	Ignition Thrust. F _{ign} 617.9 lbf	Thrust Coefficient, C _F 1.6636	0-0 Thrust Integral 496.8 Ibf-sec
TEST DATA	Conditioning Temperature +160 °F for 2 4 hrs	Time Out of Box 1756	Time Fired 1804 Time Elapsed 8 min	Ambient Temperature 83 °F	Relative Humidity 53	Barometric Pressure 29.54 in Hg	Ignition Current A-B: 5.05 C-D: 5.12 amps	Pre-Test Environmental Conditions Temperature-Humidity,	Altitude, Vibration at 160°F, Shock, Temperature Shock,	Tunnel Pressure: Init 0.0077, Av 0.0549, Final 0.0510 psia,	Ignition Voltage A-B: 26.2, C-D: 27.3 volts	Nozzle closure vented before itring. Prefiring Examination:	Motor Weight 5.08 lb	Throat Diameter 0.555 in	Post Firing Examination	Motor Weight 2.94 lb	Throat Diameter 0.553 in	Average Throat Area 0.2410 sq in	Average A _e /A _t 9.01			
MOTOR DATA	Atlantic Research Part No. P-86-38-9	Customer Part No	Motor Serial No. Q-16	Grain Type Arcite 377A-9C	Grain No. 2474-R-2-1B	IGNITER DATA	Model No. ARC 502	Atlantic Research Part No. P-86-32-2	Lot No.	Serial No. 18	Resistances: Circuit A-B 1.160 ohms	Circuit C-D 1.120 ohms	BALLISTIC PARAMETERS	Nozzle Exit Area 2.172 sq in	Propellant Weight 2.132 lb	Inhibited Grain Weight Ib	Average Web 0.4088 in	Grain O.D. 2.548/2.511/2.529 in	Grain Length 8.466 in			

. •

•

.

.

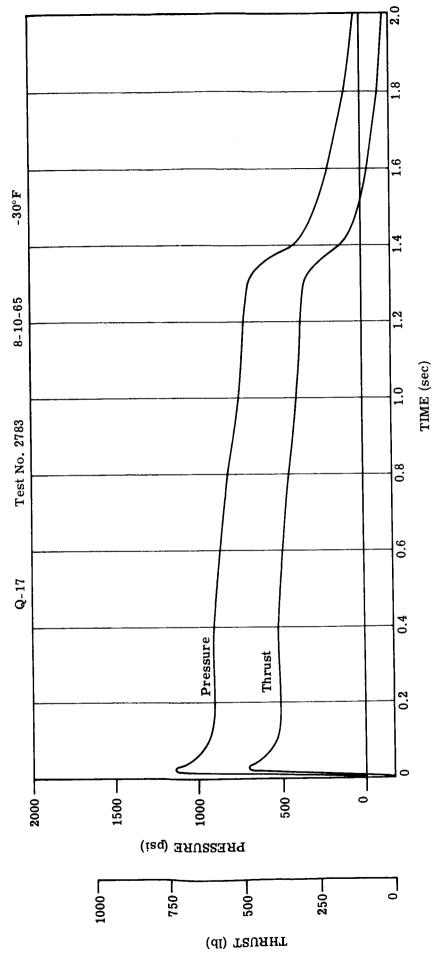
F129-6/65-2C

> 97.80 lbf-sec/lbm I (0-0), Motor _____ Isp (0-0), Propellant ____

233.0 lbf-sec/lbm

.

•


•7

.

•

-

R

•

C-34

Atlantic Research Part No. P-86-38-9	Conditioning Temperature -30 °F for 2 4 hrs	Action Time, t ₃ 1.818 sec
	Time Art of Box 1633	Burning Time t 1.292 Sec
Customer Part No.		
Motor Serial No. Q-17	Time Fired 1646 Time Elapsed 13 min	Rise Time, t _r 0.006 sec
Grain Type Arcite 377A-9C	Ambient Temperature 83 °F	Ignition Delay. t 0.004 sec
Grain No. 2474-R-3-3B	Relative Humidity 55	Average Burning Rate, r 0.3172 in/sec
IGNITER DATA	ire 29.54 in l	907.9
Model No. ARC 502	Ignition Current A-B: 5.23 C-D: 5.07 amps	Pressure-Time Integral. PTI _a 1220 psia-sec
Atlantic Research Part No. P-86-32-2	Pre-Test Environmental Conditions Temperature-Humidity,	Average Pressure. P _a 671.2 psia
Lot No.	Altitude, Vibration at 160°F, Shock, Temperature Shock,	Average Pressure, P _h 838.7 psia
Serial No. 44	Tunnel Pressure: Init 0.0097, Av 0.0534, Final 0.0497 psia,	Ignition Pressure, P _{ice} psia
Resistances: Circuit A-B 1.150 ohms	Ignition Voltage A-B: 26.1, C-D: 27.2 volts	Discharge Coefficient. C _d 0.00710 lbm/lbf-sec
Circuit C-D 0.970 ohms	. С 1	Characteristic Exhaust Velocity. C* 4529 ft/sec
BALLISTIC PARAMETERS	Motor Weight 5.09 Ib	0-0 Pressure Integral 1244 psia-sec
Nozzle Exit Area 2.172 sq in	Throat Diameter 0.555 in	Measured Abs. Vac.
Propellant Weight 2.135	lb Post Firing Examination	Total Impulse, I _a 479.8 lbf-sec
ight	lb Motor Weight 2.93 lb	Specific Impulse, I _{sn} 224.7lbf-sec/lbm
0.4098	in Throat Diameter 0.554 in	Maximum Thrust. Fmax 355.7 lbf
2.545/2.514/2.534	in Average Throat Area 0.2416 sq in	Average Thrust, F ₃ 263.9
th 8.460	in Average A _e /A _t 8.99	Average Thrust. F _h 330.5
	•	Ignition Thrust. Fign 437.6
		Thrust Coefficient, C _F <u>1.6202</u>
		0-0 Thrust Inteoral 487.2 lbf-sec

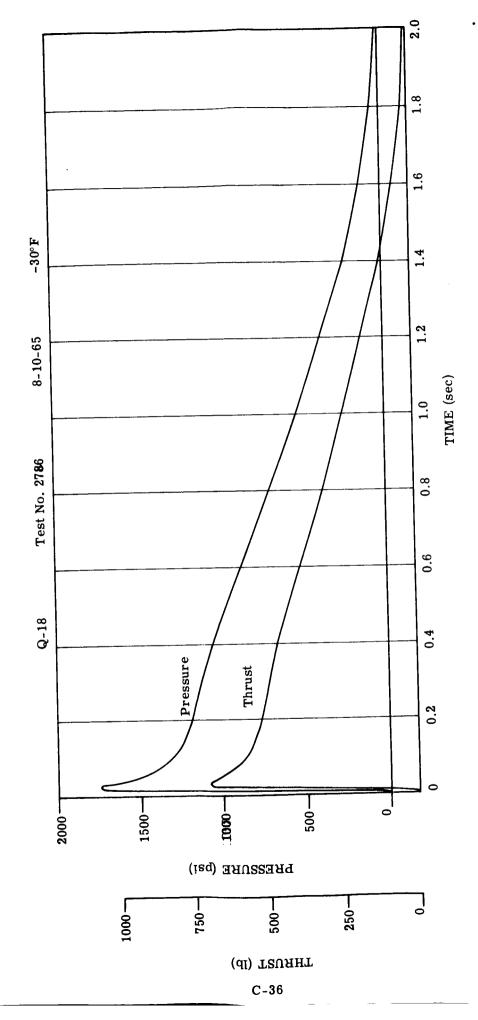
BALLISTIC DATA		ADMIN
Action Time. t ₃ 1.818	sec Roc	Rocket Type
Burning Time, t. 1.292	sec	
Rise Time, t. 0.006	sec Con	Contract No.
Ignition Delay. t ₃ 0.004	sec Cus	Customer
Rate. r 0.3172	in/sec	Le
907.9	psia Pur	Purpose of '
F	sec	Motor
a 671.2	psia Tes	Test No.
838.7	psia Date	Date of Test
1124		Tonon 4
0.00710 lbm/lbf		rest agency Atlar
elocity. C* 4529	ft/sec	
0-0 Pressure Integral 1244 psia-sec		Prepared by
	-	Date
Me	App	Approved by
Total Impulse, I _a 479.8 Ibf-	lbf-sec	1
Specific Impulse, I 224.7 lbf-sec/lbm	lbm	Date:
Maximum Thrust. F 355.7	lbf	
max Average Thrust. F 263.9	, Ibf	
Average Thrust, F, 330.5	lbf	Repo
Ignition Thrust, F _i	- Ibf	Appe
Thrust Coefficient, C _F <u>1.6202</u>	1	Figur
487.2	lbf-sec	Page
I gp (0-0), Motor <u>96.09</u> lbf-sec/lbm]
I _{sp} (0-0), Propellant <u>228.2</u> lbf-sec/lbrn		

ADMINISTRATIVE DATA	Rocket Type and Model <u>1-KS-420</u> MARC 7G1	Contract No.	Customer NASA		Purpose of Test:	Motor Evaluation	Test No. 2783	Date of Test: 8/10/65	Test Agency: Rocket Test Group		Prenared by: A. Johnson		Approved by: A. D. Mattox		_			Report No. TR-PL-8634-00-1	Appendix C	Figure	Page C-35	P129-6/65-2C
	sec	sec	sec	sec	psia	sec	psia	psia	psia	sec	sec	sec		-sec	lbm	lbf	lbf	lbf	lbf	1	-sec	

•

•

.

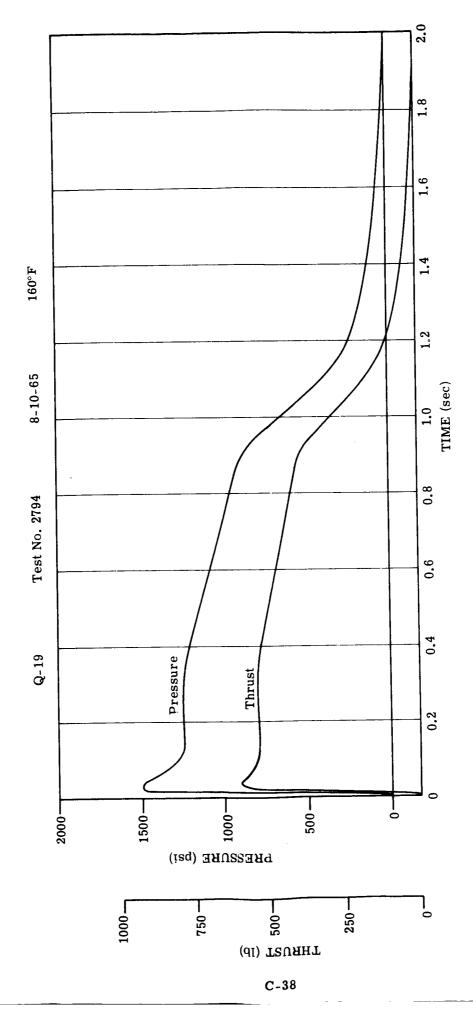

•

.

•

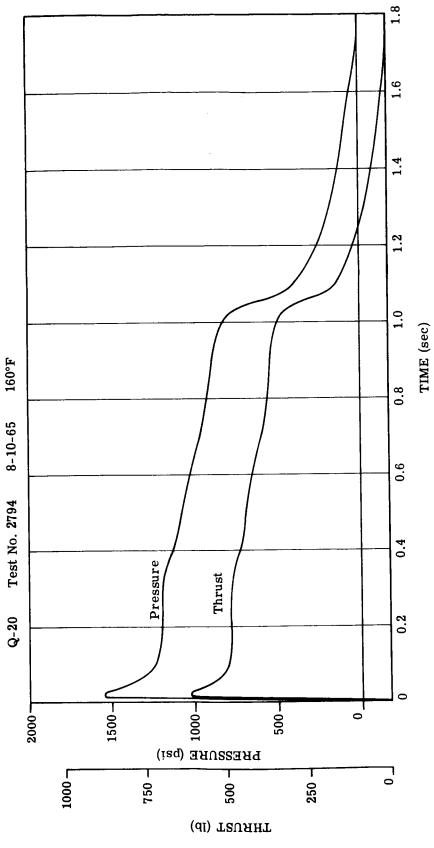
. .

• 、


• .

MOTOR DATA	:
Atlantic Research Part No. F-00-30-9	Conditioni
Customer Fart No	Time Fire
	Ambient T
Grain No. 2474-R-2-1B	Relative H
IGNITER DATA	Barometri
Model No. ARC 502	Ignition Cu
Atlantic Research Part No. P-86-32-2	Pre-Test
Lot No.	Altitude,
Serial No. 34	Tunnel P
Resistances: Circuit A-B-1.130 ohms	Ignition V
Circuit C-D 1.130 ohms	Prefiring
BALLISTIC PARAMETERS	Motor
Nozzle Exit Area 2.172 sq in	Throat
Propellant Weight 2.126 lb	Post Firir
Inhibited Grain Weight Ib	Motor
Average Web 0.4088 in	Throat
Grain O.D. 2.548/2.511/2.529 in	Averag
Grain Lanoth 8.466 in	Averad

TEST DATA Conditioning Temperature -30 of for 2 4 hrs 1716	Time Fired 1727 Time Elapsed 11 min Ambient Temmerature 83	55 29.53	A-B: 5.22 C-D: 5.04	Pre-Test Environmental Conditions Temperature-Humidity, A Nitude Vibration at 160°F Shock Temperature Shock	Tunnel Pressure: Init 0.0135, Av 0.0491, Final 0.0339 psia,	Ignition Voltage A-B: 26.2, C-D: 27.4 volts	Prefiring Examination: Motor Weight 5.06 lb	Throat Diameter 0.555 in	Post Firing Examination Motor Weight 2.90	0.554	rrea 0,2414 sq	Average A _e /A _t
Conditioning Ten Time Out of Box	Time Fired.	Relative Hur	Barometric Pres Ignition Current.	Pre-Test Er	Tunnel Pre	Ignition Vo	Prefiring E: Motor W(Throat D	Post Firing	Throat D	Average	Average


BALLISTIC DATA		Ī
Action Time, t ₂ 1.645	sec	Rocket
Burning Time, t, 0.617	sec	
Rise Time, t. 0.006	sec	Contra
Ignition Delay. t _A 0.003	sec	Custor
Average Burning Rate, r 0.6626	in/sec	
Maximum Pressure, P 1147	psia	Purpos
Pressure-Time Integral. PTI, 1171	psia-sec	
Average Pressure, P _a 711.8	psia	Test N
Average Pressure, P _h 1157	psia	Date of
Ignition Pressure. P _{jon} 1728	psia	Test A
Discharge Coefficient. C _A 0.00736	lbm/lbf-sec	
elocity. C*	4369 ft/sec	
O-O Pressure Integral 1196	psia-sec	Prepar
Measured Abs. V	Vac.	A month
Total Impulse, I ₃ 473.7	lbf-sec	AD IDIA
Specific Impulse. I _{sn} 222.8	_ lbf-sec/lbm	
Maximum Thrust. $F_{max} \frac{461.0}{}$	lbf	
Average Thrust, F _a 288.0	lbf	
Average Thrust. F _b 459.5	lbf	L
Ignition Thrust, F _{ign} 692.8	lbf	
Thrust Coefficient, CF 1.6398		
O-O Thrust Integral 485.4	lbf-sec	<u> </u>
I _{SD} (0-0), Motor <u>95.93</u> lbf-sec/lbm	lbm	J
Isp (0-0), Propellant 228.3 lbf-sec/lbm	lbm	

f Report No. <u>TR-PL-8634-00-1</u> f Appendix <u>C</u> Figure <u>C-37</u>		JI K K K K K K K K K K K K K K K K K K K
_	A. D. 8/18/(0
Approved by:	8/1	0
Date: 8/16/ Approved by: 4. D. Date: 8/18/	tic Resea. A.	0 0
Atlantic Prepared by: Date: Approved by: Date:	Agency: .	~
Test Agency: <u>R</u> Atlantic Prepared by: Date: Approved by:		
Date of Test: Test Agency: <u>R</u> Atlantic Prepared by: Date: Date:	1	
Motor Test No. Date of Test: Test Agency: <u>Rc</u> Atlantic Prepared by: Date: Date:	Purpose of Test: _	~
Purpose of Test Motor. Test No. Date of Test: Test Agency: <u>R</u> Atlantic Prepared by: Date: Date:	Lewis Research	
Lewis Purpose of Test Motor Test No. Date of Test: Test Agency: <u>R</u> c Atlantic Prepared by: Date: Date:		
Customer <u>Lewis</u> Purpose of Test Motor Test No. <u>Motor</u> Test Agency: <u>Re</u> Atlantic Prepared by: Date:		
Contract No	Type and Model	~ ~
Rocket Type and Contract No Customer Purpose of Test Motor. Test No Date of Test: Prepared by: Atlantic Prepared by: Date:	ADMINISTRATIVE DATA	

ADMINISTRATIVE DATA Rocket Type and Model <u>1-KS-420</u> MARC 7G1 Contract No. NAS 3-7128-H	Customer NASA Lewis Research Center Purpose of Test: Motor Evaluation Test No. 2794 Date of Test. 8/10/65		Report No. <u>TR-PL-8634-00-1</u> Appendix <u>C</u> Figure <u>C39</u> Page <u>C39</u>
BALLISTIC DATAAction Time. t_a 1.350Burning Time. t_b 0.805SecRise Time. t_r 0.004Sec	Ignition Delay. t _d 0.004 sec Average Burning Rate. r 0.506 in/sec Maximum Pressure, P _{max} 1253 psia-sec Pressure-Time Integral. PTI _a 1209 psia-sec Average Pressure. P _a 995.6 psia-sec	1484 0.00728 1bm/l Velocity C* 1240 ps (easured Abs. Vac. 485.2 1bf-se 500.8 1bf-se	Maximum Thrust. F_{max} 359.4 In Average Thrust. F_{p} 359.4 Ibf Average Thrust. F_{b} 468.7 Ibf Ignition Thrust. F_{ign} 592.1 Ibf Thrust Coefficient. C_{F} 1.6584 Ibf O-O Thrust Integral 497.6 Ibf-sec Isp (0-0), Motor 99.12 Isp (0-0), Propellant 233.6 Isp
TEST DATAConditioning Temperature +160 °F for 2 4 hrsTime Out of Box1952Time Fired 1959Time Fired 7 min	Ambient Temperature 77 "F Relative Humidity 60 "F Barometric Pressure 29.53 in Hg Ignition Current A-B: 5.07, C-D: 4.80 amps Pre-Test Environmental Conditions Temperature Shock. Altitude Vibration at 160°F. Shock. Temperature Shock.	5, Av 0.0556, Final 0.0454 psi C-D: 27.3 volts .02 .555 .93	Throat Dameter
<u>MOTOR DATA</u> Atlantic Research Part No. <u>P-86-38-9</u> Customer Part No	Grain Type Arcite 377A-9C Grain No. 2474-R-2-5A IGNITER DATA Model No. ARC 502 Atlantic Research Part No. P-86-32-2	33 33 Circuit A-B 1.120 ohr Circuit C-D 1.190 ohr Circuit C-D 1.190 ohr STIC PARAMETERS ea 2.172 sq ea 2.172 sq ght 2.130 weight - - odore odore	Average Web

r

· •

٠

ADMINISTRATIVE DATA Rocket Type and Model <u>1-KS-420</u> MARC 7G1 Contract No. <u>NAS 3-7128-H</u> Customer <u>NASA</u> Customer <u>NASA</u> Urpose of Test: <u>NASA</u> Purpose of Test: <u>10/65</u> Test Agency: <u>8/10/65</u> Test Agency: <u>Rocket Test Group</u> Allantic Research Corporation Prepared by: <u>J. E. Dukate</u> Date: <u>8/16/65</u> Date: <u>8/16/65</u> Date: <u>8/16/65</u> Date: <u>8/18/65</u>	Report No. TR-PL-8634-00-1 Appendix C Figure	F129-6/65-2C
ALLI ALLI al	Average Thrust. F10451.610fIgnition Thrust. F10613.210fThrust Coefficient, CF1.664810fO-O Thrust Integral496.310f-sec	I _{sp} (0-0), Motor <u>97.89</u> lbf-sec/lbm I _{sp} (0-0), Propellant <u>233.6</u> lbf-sec/lbm
TEST DATA Time Out of Box 940 Time Out of Box 1940 Time Fired 1940 Ambient Temperature 80 °F Ambient Temperature 80 °F Relative Humidity 60 ~6 Relative Humidity 60 ~6 Ignition Current A-B: 5.03 C-D: 4.86 amps Pre-Test Environmental Conditions Temperature-Humidity, Altitude, Vibration at 160°F, Shock, Temperature Shock, 10 Ignition Voltage A-B: 26.3, C-D: 27.2 volts 10 Motor Weight 0.355 Final 0.0416 psia Ignition Voltage A-B: 26.3, C-D: 27.2 volts 10 Motor Weight 0.355 10 Throat Diameter 0.555 10 Motor Weight 2.93 10 Throat Diameter 0.555 10 Motor Weight 0.554 10 Motor Weight 0.554 10 Motor Weight 0.554 10 Motor Weight 0.554 10	Average A _e /A _t 8.98	
MOTOR DATA Atlantic Research Part No. P-86-38-9 Customer Part No. - Motor Serial No. - Motor Serial No. - Grain Type - Grain No. - Model No. - Model No. - Model No. - Model No. - Serial No. - Model No. - Model No. - Serial No. -	Grain Length 8.462 in	

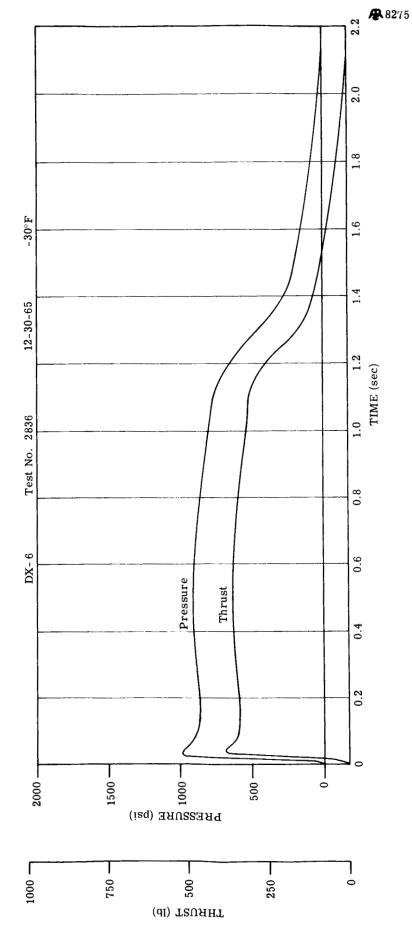
.

. 1

,

•

•


•

• 、

*

APPENDIX D

BALLISTIC RECORDS AND STATIC TEST DATA SHEETS FOR MOTORS WITH RECOMMENDED DESIGN CHANGES

÷

i

i

| | ~

D-2

<u>ADMINISTRATIVE DATA</u> Rocket Type and Model <u>1-KS-420</u>	MARC 7G1 (Modified)	Contract No. NAS 3-7128-H	Customer NASA Lewis	Research Center	Purpose of Test: Evaluate design changes		Test No. 2892	Date of Test: 12/30/65	Test Agency: Rocket Test Group,	5		Prepared by:		Approved by				Report No. TR-PL-8634-00-	Appendix D	Figure	Page D-3	F129-6/65-2C	
<u>BALLISTIC DATA</u> Artion Time + 1.774 sec	1.181	Rise Time, t _r 0.012 sec	Ignition Delay. t _d 0.006 sec	Average Burning Rate, r 0.3319 in/sec	Maximum Pressure, P _{max} 930.3 psia	Pressure-Time Integral, PTI _a <u>1170</u> psia-sec	Average Pressure, P _a 659.6 psia	Average Pressure. P _b 861.0 psia	Ignition Pressure, P., 1001 psia	Discharge Coefficient. C _d 0.00773 lbm/lbf-sec	Characteristic Exhaust Velocity. C* 4220 ft/sec	0-0 Pressure Integral 1186 psia-sec	Measured Abs. Vac.	Total Impulse, I _a 466.3 Ibf-sec	Specific Impulse. Isn 213.9 lbf-sec/lbm	Maximum Thrust. F _{max} <u>362.9</u> lbf	Average Thrust. F _a <u>262.9</u> lbf	Average Thrust. F _b 342.5lbf	Ignition Thrust. F _{ign} 383.8 lbf	Thrust Coefficient, C _F <u>1.6534</u>	0-0 Thrust Integral 472.8 lbf-sec		Isp(O-O), Propellant 216.9 [bf-sec/lbm
TEST DATA Conditioning Temperature -30 °F for > 4 hrs	1115	Time Fired 1135 Time Elapsed 20 min	Ambient Temperature 46	Relative Humidity — — %	Barometric Pressure 30.06 in Hg	Ignition Current 5.0 (per bridgewire) amps	Pre-Test Environmental Conditions Temperature only;	Tunnel Pressure: Initial 0.0367 psia	Final 0,0915 psia	Nozzle closure vented before firing.	Prefiring Examination:	Motor Weight 5.06 Ib	Throat Diameter 0.555 in	Post Firing Examination	Motor Weight 2.94 lb	Throat Diameter 0.553 in	Average Throat Area 0.2411 sq in	Average A _e /A _t					
MOTOR DATA	Atlanuc research Part No.	Motor Serial No. DX-6	Grain Type Arcite 377A-9C	Grain No. 2836-R5-9B	IGNITER DATA	Model No. ARC 502	Atlantic Research Part No. <u>Z-710</u>	Lot No.	Serial No.	Resistances: Circuit A-B ohms	Circuit C-D — ohms	BALLISTIC PARAMETERS	Nozzle Exit Area 2.172 sq in	Propellant Weight 2.180 lb	Inhibited Grain Weight 2.28 lb	Average Web 0.392 in	Grain O.D. 2.535 in	Grain Length 8.44 in					

.

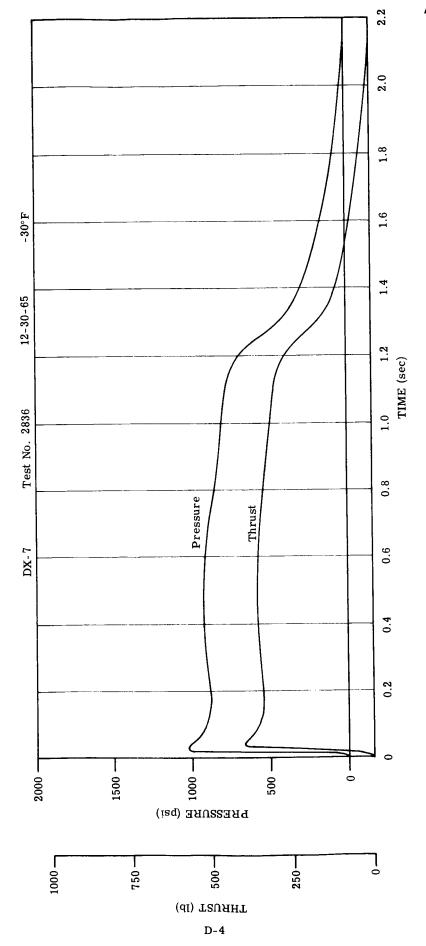
.

-

,

. •

.


•

L

ļ

ļ

*

A8276

and M Addition and Addition and Addition and M Addition and M Addition and M Addi	Page D-5
ALLISTIC DATA 1.781 1.781 1.781 1.781 1.781 e. r 0.009 e. r 0.006 e. r 0.3320 e. r 0.006 f a 259.0 f a 851.2 f a 851	0-0 Thrust Integral <u>477.3</u> Ibf-sec I _{sp} (0-0), Motor <u>94.33</u> Ibf-sec/Ibm I _{sp} (0-0), Propellant <u>218.9</u> Ibf-sec/Ibm
TEST DATA Time Conditioning Temperature -30 *F for 2 4 hrs Time Out of Box 1557 ** ** ** Time Out of Box 1557 ** ** ** Time Out of Box 1557 ** ** ** Time Fired 1605 Time Elapsed ** ** Ambient Temperature 60 ** ** ** Ambient Temperature 60 ** ** ** ** Barometric Pressure 29.97 in Hg # ** ** ** Ignition Current 5.0 (per bridgewire) amps ** <t< td=""><td></td></t<>	
MOTOR DATA Atlantic Research Part No. Z-709A Customer Part No. Z-709A Customer Part No. — Motor Serial No. — Motor Serial No. — Motor Serial No. — Motor Serial No. — Crain Type — Grain No. — Grain No. — Model No. — Model No. — Model No. — Atlantic Research Part No. — Lot No. — Serial No. — Resistances: Circuit A-B — Noz — Resistances: Circuit A-B — Norz — BALLISTIC PARAMETERS Nozzle Exit Area 2.172 Nozzle Exit Area 2.130 Inhibited Grain Weight 2.130 Average Web 0.400 in Grain Length 8.47 in	