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ABSTRACT 

The  differential  equations  governing  the  small deflectims of  a 

sandwich  shell  are  developed  from  the  Hellinger-Reissner  variational 

theorem.  The  facings  are  thin  anisotropic  Kirchhoff-Love  shells  with 

different  physical  properties  and  thicknesses.  The  core is considered 

a  three  dimensional  orthotropic  medium  which  can only resist  transverse 

shear  and  normal  stresses.  Representative  equations  for  a  sandwich 

shell  with  a  viscceLastic  core  are  displayed. 

Illustrative  examples  investigating a circular  plate  with  a 

circular  hole, a square  plate  with  orthotropic  facings  and  an  infinite 

circular  cylinder  with  a  visccelastic  core  are  given. 
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INTRODUCTION 

The  type of sandwich  construction  which  is  considered  here  consists 

of two  thin anisotropic  Kirchhoff-Love  shells  (facings)  separated  by  a 

three  dimensional  orthotropic  medium  (core)  in  which  the  in-plane 

stresses y m e  + are  zero,  see  figure 1. Since TUB= 0 in  the 
core,  only  the  transverse  shear  resultants s and  the  mean  normal 

stress dj3 need  be  considered  when  dealing  with  the  core. On  an 

element of a  facing  (see  figure I) the  force ~ N and  couple 

“OC 

a 

-cc 
- 

- rlM per  unit  of  coordinate  Ere  evaluated  at  the  surfaces  which 

are  common to  both  a  facing  and  the  core  (interfaces). 

The  prefix  stands  for 0 or  according as  the  quantity  is 

associated  with  the  upper  or  lower  facing,  respectively. 

To avoid  considering  continuity  of  displacements  at  the  interfaces, 

the  interface  displacements (,v ) are  utilized. In the  formulation 

of  the  theory,  the sums and  differences Df the  interface  displacements 
- 

(nr and /cur ) are  introduced. 

The  dimensionless  surface  coordinates 8 are  assumed to be  lines 

of curvature.  Hence,  the  metric  tensors ( a and “arnp ) and  the 

coefficients  of  the  second  fundamental  forms ( b and b 
are  diagonal  matrices.  Also,  the  coefficients Df the  second  fundamental 

forms  are  associated  with  the  curvatures  of  the  surface  under  consideration. 

oc 

“B - 
OCB _n “p  1 

The  differential  equations  governing  the  small  deflections  of  the 

above  described  sandwich  shell  are  derived  from  the  Hellinger-Reissner 

+ Usual  tensor  notation  prevails,  see  reference 1. 
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FIG. 1 ,  COMPOSITE SHELL 
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variational  theorem 2 . The  equi.librium  equations  Tor  the  composite 

shell  are  similar to those  obtained in 3 and  the  boundary  conditions  for 

the  individual  facings  are  comparable to those  obtained  for  a  homogeneous 

shell  in 4 . The  stress  resultant-displacement  relations  for  the 

composite  shell  obtained  here  have  not  been  presented  before.  Repre- 

sentative  equations  for  a  sandwich  shell  with  a  viscoelastic  core  are 

1 J" 1 1  
[I 

displayed. 

The  equations  presented  here  are  applicable to plates  as  well  as 

shells,  however,  they  will  not  be  specialized  in  their  general  form 

since  a  complete  theory  of  sandwich  plates  has  been  given  by  G. A .  

Wempner  and J. L. Baylor 5 . 1 1  
Many  authors  have  used  variational  principles  in  the  derivation 

r i  1- 1 

of  sandwich  shell  theories. E. Reissner  and C. T. Wang 

the  principle oI' minimum  complementary  energy to derive  the  stress 

resultant-displacement  relations  for  a  composite  shell.  Both  Reissner 

and  Wang  regarded  the  facings  as  membranes.  Equations  which  include 

the  bending  stiffness  of  the  individual  facingshave  been  derived  by 

E. I. Grigolyuk  and  R.  E.  Fulton 9 from  the  principle of i l  
stationary  potential  energy. A non-variational  derivation of sandwich 

shell  theory  is  given  by  Wempner  and  Baylor . 
[31 

Presented  here  is  a  theory,  developed  from  the  Hellinger-Reissner 

variational  theorem,  which  includes  bending  resistance  and  dissimilarities 

of  the  facings.  The  resulting  equations  are  applied  to  examples 

illustrating  the  effects  of  anisotropic  facings  and  a  viscoelastic  core 

on  sandwich  shell  behavior. 

++ Numbers in brackets  refer to the  bibliography  at  the  end of the  report. 
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A THEORY OF ANISOTROPIC  VISCOELASTIC  SANDWICH SHELLS 

1. Stress  Distribution  thru  the  Core 

In  what follows it  is  assumed  that  the  components of the  displace- 

ment  vector  and  their  derivatives  are  infinitesimals of the  first  order 

and  the  squares  and  products of these  infinitesimals  are  neglected  when 

compared  with  their  first  powers. 

The  core  is  weak  in  the  sense  that  it  only  resists  transverse  shear 

and  transverse  normal  stresses, i.e. T OC' = 0. Upon  setting 

y T =  0 in  the  equilibrium  equations,  the  core  stresses 

become  statically  determinate.  Integration  of  the  equilibrium  equations 

gives [ 31 

+ 

-x  
where d33 and "/' are proportimal to  physical  stress  and 

physical  stress  resultants,  respectively. 

On the  edge  of  the  core  the  shear  stress  distribution  is a priori 

statically  determined  in  terms of the  shear  resultant.  From  equilibrium 
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of a boundary  element, the   shear   resu l tan t  on t h e  edge  of the  core i s  

This shear   resu l tan t  must be  assigned on the  edge  of the  core .  

2. Core Stress-Strain  Relat ions 

The relative  displacement of  two p a r t i c l e s  on t h e  normal, one a t  

each  interface,  i s  

After s m e  manipulatim 131 t h i s   y i e l d s  

and 

Presuming the   co re   t o  be orthotropic  with  respect  to  the  surface 

coordinates ,   the   s t ress  and s t r a i n  components a re   re la ted   as   fo l lows;  

x =  zL4L4 T 3 3  
33 F > 

L 

c 
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Because of the  displacement  assumption 

X 33 = ea 
and 

X = e3=. 3oc 
Substituting) in turn, (7) and (5) into (3) and ( 7 ) )  (8), ( 5 )  and 

(6) into ( L I ) ,  expanding  the  integrands  in 2 power series  and  neglecting 

A2 when  compared to one, there  results 

and 
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Equat ims ( 9 )  and (10) a re   t he   co re   s t r e s s - s t r a in   r e l a t ions .  

3. St.ress  Distri .bution  thru a Facing 

The force and  couple,  per  unit of coordinate, on an element of a 

facing  are   (see  f igure 1) 

physical stress resu l tan ts .  

Neglecting  terms of order x ~ the  stress resu.l tants are r e l a t e d  - 
t o   t h e   s t r e s s e s   a s  follows; 

and 

7 



Notice t h a t  and n m"'p - . .  are  symrwLric. 

Guided by (11) and (12), tine stress cam9oneni;s w e  presumed t o  have 

t h e   f o l l m i n g  form 

stress y33 i s  assumed t o  be zem. 

k ,  Strain-Displacement  Relations  for a Facing 

The fac ings   a re  presumed t o  be th in   Ki rchhoff -Lwe  she l l s ,   i . c .  

normals  remain s t r a i g h t  and normal t:, t he   i n t e r f ace   swfaces .  

If extension o? t h e  normal i s  neglected,  the  displacement 3f a 

p a r t i c l e  i n  a facing i s  

The deformed  and  undeformed u n i t  normal  vectors are r e l a t e d  as 

f3113IiS [3], 

a 



Substituting (17) into (16), one finds 

The covariant  components of the  displacement  vector are 

2nd 

and 

Equations (20) and (2.1) are  obtained directly  from  the definitims of 

ar and fir . 
r l  

Because of the  displacement  assumption 1 1 I 

If m e  uses (l8), (lg), (20), (21) and (22) in (23) and neglects  terms 

Df order nl then - 
9 



Equations (24), (25) and (26) are  the 
" 

obtained  in [3]. Also  and 

with  and pwp 
n Mi9 

v of [lo]. 
. I  

same  strain-displacement relatims 

-P 
as  defined  here  agree 

The  shear  strain  is zero 

assumed  zera  throughout  a  facing. 

at  the  interfaces  and rLl1 be 

2" Hellinger-Reissner  Three  Dimensipnal  Variational ~~~ Theorem 

The  equilibrium  equations,  stress  resultant-displacement  relations 

and  boundary  conditions  for a sandwich  shell  will  be  derived  from  the 

following  variational  principle  of  Hellinger  and  Reissner 

The  state of stress  and  displacement  lihich  satisfies  the  differ- 

entia1  equations  of  equilibrium  and  the  stress ~ displacement ~ . . . ". relations . " 

in the  interior  of  the  body, . . and . . - the . . conditions . . .~~ ~~~ of ~- prescribed ~ stres2-m I 

the  paxt 4 and  of  prescribed  displacements ~ on  the - . part - - - . d e  . . . of . . . the . 

surface  of  the  body,  is  determined  by  the  variational  equation 

~~ ~ . . ~ ~~~ ~ ~ ~ 

~~ . ~ . . .  ~ .~ 

10 



6. Contribution to the  Hellinger-Reissner  Theorem  from  the  Facings 

The  normal  stress T33 and  the  shear  strains x3< have  been 

assumed  zero.  Having  zero  shear  strains, 

zero  inplane  stresses Twf and  non-zero  shear  stresses 3oc 

requires  the  elastic  coefficients f and,, C a3p to be 

zero.  Thus  the  only  contributions  from  the  facings to the  volume 

L J  while  there  exist  non- 

- P  - 
integral of' the  variational  theorem  are 

QY 

and 

Substituting (15) and (24) into  the  integrals  thru  a  facing  thickness 

and  neglecting  terms  of  order r) 3, one  finds - 

11 



L 'lA 

and 

"1 

The surface of a fac ing   cons is t s  of t h ree   pa r t s ;   t he   i n t e r f ace  

surface,   the   exter ior   face and the  edge. Over the   ex te r ior   face  and 

1s the   in te r face  d2= 0 a i e. ,   s t . resses   are   prescr ibed.  The in tegra  

J-pry- d,s - )  

- ns 
mer   t he   i n t e r f aces ,  from the  facings  are   the  negat ives  of the  corre-  

sponding i n t e g r a l s  from the  core,  consequently  they sum t o  zero. 

The load on the   ex te r ior   face  of a facing i s  

L 

- n P =  

12 



OL 3 
where ,p/c and cp/p are   p ropor t iona l   to   phys ica l   force  

per   un i t  undeformed area.  

Using  (18), (lg), (20), (21) and (32), neglecting  surface  load  times 

rotation  terms and neglecting  terms of order ,-,x and a .2  one 

abtains  
- 

13 



This  is  the  contribution to the  surface  integrals  from  the  edge  of  a 

facing 

7 .  Contribution  to  the  Hellinger-Reissner  Theorem from the  Core 

For the  core  the  equilibrium  equations  have  been  identically 

satisfied,  the  stress-strain  relations  have  been  determined,  the  boundary 

condition has been  obtained  and  over  the  interface  surfaces d2 has 
been  presumed  zero. Thus the  only  contribution  to  the  variational  theorem 

from  the  core  is 

J-P %v, d,s - 
- ns 

The  outward  .unit  normals  to  the  core  interface  surfaces  are 

Equations (l), (2), (20) , (21)  and (35) give 

8. Hellinger-Reissner  Variational  Theorem  for  a  Sandwich  Shell 

Upon  substituting (28) , ( 2 9 ) ,  ( 3 0 ) ,  (31)9 (33), ,  (34) and ( 3 6 )  into 

the  variational  theorem (27) and  using  Green's  theorem , one  obtains 
the  following  variational  equation  appropriate  for  a  sandwich  shell. 

1.1 

14 
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In  t h e  boundary i n t e g r a l s  of (37) the  following  mment 

equilibrium  equation was used; 

This  equation i s  de r ived   i n  
131 

Equation  (37) i s  the  required  var ia t ional   equat isn for 8 composite 

sandwich s h e l l .  

9. Equilibrium  Equations 

The Eul.er equat icns   resul t ing  f rzm  cperat ing on (37) end c=rre-  

sponding t o  6% and &M3 a r e  

and 

18 



and 

Equations ( 3 8 ) ,  (39) ,  (40) and (41)  are  the  equilibrium  equations 
I- 1 

a composite  sandwich s h e l l .  If the  equilibrium  equations  of 3 are  

spec ia l i zed   t o   sma l l   ro t a t ions  and i f  2 i s  neglected when compared 

t o  one,  the  result ing  equations  are  the same 8 s  (38) (39) (40) and 

2 1 1  

(41) - 
Equations (38) and (40)   are   ident i f ied  with  the  equi l ibr ium of a 

gross  element  of  the  composite  shell. 

.LO. Stress  Resultant-Displacement ~. Relations 

Combining t h e  ICuuler equations  correspmding t.o 6 f i H p  J 6 n-, 
6 E  Mp and 6 m-p i n  a su i tab le  way, it can  be  verified  that  

19 
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Remembering  that nx 2nd a2 have  been r.cgl.cct.;d vhen  compared 

to one,  care  must  be  teken  when  using (!k2.), (431, ( l d k )  and (11.5) since 

and 2 are  contained  in ZJOC,p., p ~ x and  and 2 
_. 

n - 
may  be  contained in B 

Terms  multiplied  by OCJ f and x when I x by 

Bwp? when  the  facings  have  the  same  physical  properties,  by 
- - 

the  geometry  thru  the  composite  shell  thickness.  If  the  sanchich shell 

is  thin  these  terms  can  be  neglected.  Hence  for  a  thin  sandvich s'ncl.1- 

with equal  facings, (42) reduces to 

Il. Boundary  Conditions 

The  boundary  condition for the  edge of the  core has already  been 

given,  i.e.  the  shear  resultant  on  the  edge of the  core, 

must  be  specified. 

Since  on  a  normal t3 the  core  mid-surface  at  the  edge of the 

composite  shell  stresses  may  be  prescribed  for  one  facing  while  dis- 

placements  are  prescribed  for  the  other  facing,  the  boundary conditims 

for  the  individual  facings  will  be  given.  Using 13J 

25 



in tegra t ing  by p a r t s  and then 

v a r i e d   q u a n t i t i e s   i n   t h e   l i n e  

s e t t i n g   t h e   r e s u l t i n g   c o e f f i c i e n t s  of t h e  

in tegra ls   equa l  t3 zero,   the  required 

facing boundary c o n d i t i m s   a r e  

and 

and 

n 
on - 
These  boundary  conditions  have  the same form as   those   ab ta ined   in  

26 



12. S t ress -St ra in   Rela t ions   fa r  a Snndwich She l l   x i th  a Viscoelastic 

Core - 
In the  following two sections a  sanawich she l l   w i th  a v i scoe la s t i c  

care i s  cansidered.  Representative  equatioas f o r  t h i s   s h e l l   a r e  

displayed. 

0n.b- the  core will be presumed v i scoe la s t i c ,  hawever, v i scoe la s t i c  

facings cou1.d b e   t r e a t e d   i n   t h e  same way. 

The ca re   s t r e s s - s t r a in   r e l a t ions   a r e   a l t e r ed  a s  f ~ l l ~ ~ , j ~ ;  E and 

€IX are  replaced by ?*E and y*Eoc ~ respect ively,  end ell 

zther  functions zf t ime  are  replaced by the i r   Laplace   t ransform,  e.g. 

(9) becomes 

resul tant-displscement   re la t ions for the  conposire  shell   are  converted 

simply by substi tuting  Laplace  transfcrms far a l l  time  functions. Ta 

i l l u s t r a t e   t h i s  a Tew terms or“ the  equation cwr-esp::nding t o  ( ‘+a)  a r e  

presented.; 

t 

27 



13. Equilibrium  Equations and .~ Boundary - Conditions  for a Sandwich S h e l l  

with a Viscoelastic Core 

The equilibrium  equations  for  the composite s h e l l  and the  boundary 

condi t ions  for   the  individual   facings and the  core  are  obtained by 

msrely  replacing a l l   f u n c t i o n s  of time by t h e i r  Laplace  transforms,  e.g. 

(38) and (46) becc:me 

and 

It has  been assumed t h a t  dm and, C, are  independent of 

time 

- 

EXAMPLES 

The theory  present-ed  here i s  v a l i d   f o r  sandwich s h e l l s   ( p l a t e s )  

w i th   t h in  Kirchhoff-Love she l l   (p l a t e )   f ac ings .  However, the  following 

th ree  examples are  only  concerned  with sandwich she l l s   (p l a t e s )   w i th  

membrane facings.  The fac ings   a re  presumed membranes so tha t   t he  

influence of a hole, of or thotropic   facings and  of a v i scoe las t ic   core  

on the  behavior of  a  sandwich s h e l l   ( p l a t e )  can  be studied  without 

unduly  complicating  the  examples. 

28 



l4* Circular  Plate  with  a  Circular  Hale  at  the  Center 

Consider  a  simply  supported  circular  plate  with  a  circular  hole  at 

the  center  loaded  by a uniformly  distributed  bending  couple  around  the 

outer  boundary.  The  facings  are  isotropic  membranes  with  similar 

physical  properties  and  equal  thicknesses. The care  is  presumed 

isotropic.  The  dimensionless  surface  coordinates  are 

where an5 4 are  polas  coordinates ( s e e  figure 2). 

Dtie to the symmetry of  the  plate  and t he  applied  edge  couple, 

2 
and  the  remaining  dependent  variables  are  independent of 

The  equilibrium  equations  which  are  not  identically  satisfied are 

d 3 3 = ~ ,  

29 
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FIG.2, CIRCULAR PLATE 
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m e  care z!-,r.zss-sixain relations are 

?he stress resultant-displacement  relations for the composite plate  are 

31 



From (48)  and (5.1) one sees   t ha t  /ctr' = 0, 
The solution  of  (47) and (57) i s  

3 

s'= 0. 
Subsfvituting  (53),  (54) and (61) into  (49)   gives  

Equation  (63)  and  the  boundary  conditions (58) y i e l d  

T = O  

Hence 

I n  the  same  way (64) was obtained, from  (SO), (62), ( 5 2 ) 9  ( 5 5 ) ,  

(56),  (59)  and  (60) one f inds  

This  solut ion  has   exact ly   the same character   as   the  solut ion of a 

homogeneous p l a t e  [12]. If the   fac ings  had  been th in   p la tes   ins+ ,ead  of 

membranes t h e  problem would  have been greatly  complicated and t h e  

character cf the   so lu t ion  would have  been d i f f e r e n t .  The character of 

the   so lu t ion  would depend  on t h e  boundary c o n d i t i m s ,  however, 

and x' i .n  general would not  be z e m  and  would be  considerably 

more complicated. 

% 
3 

A sandwich plate   with  equal   facings and a ho le   ( c i r cu la r  or not )  

32 



I 

loaded  by  the  same  inplane  edge  tensions  on  each  facing  has  exactly  the 

same  solution  as  a  homogeneous  plate. In this  case  the  facings  can  be 

either  membranes or thin  plates. 

15. Square  Plate  with  Orthotropic  Facings 

To illustrate  the  influence of anisotropic  facings  consider  a 

simply  supported  square  plate  with  orthotropic  membrane  facings. 

The  principal  axes of each  facing  are  parallel to the  coordinate  axes. 

The  facings  have  the  same  thickness  and  the  core  is  isotropic. A 

uniform  transverse  load  is  applied to the  upper  facing, 

The dimensionless  surTace  coordinates  are 

L 

(see  figure 3)  and  it  is  assumed  that 

For  this  example ~ E, is  the  elastic  modulus  in  the 8 direction 

and GE12 is  the  cross  modulus for the  facings.  If  the  facings  are 
isotropic &< and 17EJ.2 are  equal to Young's  modulus.  It  will 
be  assumed  that E, is  the  largest  of  all  the  moduli. For brevity 

it  has  been  assumed  that 

oc 
- 

- - 

t c 

33 



. .. . . ... . .. . ._ .. . , . , . . ... 

1 

FIG. 3, S Q U A R E  PLATE 

34 



Since  the  plate  is simply supported  and symmetric 

n=FL 0 

The  equi.Ebrium  equations not identically  satisfied are 

SOL - P- 0, 
L2d33 + p = 0, 

The  core stress-strain  relations are 

3-  200E 

um = - 
The stress 

plate are 

resultant-displacement  relations  for  the composite 

The boundary  conditions are 

35 



From (67) it i s  seen  that  d3 i s  a constant,  hence, from (69) 

it folknrs t h a t  /cc/' i s  a constant.  According to (66), 5 :a 
i s  a constant so t h a t  (70) reduces to 

3 

Using (65),  (71) and (72) in   (68)  one obtains  

+ g551 = 0, 
L 

(75) 

36 



Equations (66), (75) and (76) are   three  s imultencous  diffcrent ia l  

equations  in  the  three  dependent  variables 4 , 5 and 5 - - - 1  2 

The fo l lowing   se r ies   sa t i s fy   the  boundary c m d i t i o n s  

Q . 
Subs t i t u t ing   t hese   s e r i e s   i n to  ( 6 6 ) ,  (75) and (76) one obtains   three 

simultaneous  algebraic  equations  in  the  three  sets of constants 

0 and c, . Solving  these  equations one f inds  rs 

37 
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w 
a3 

A = -  
rs 

+ 





where  

- - jl'h) - 
9 1  

\ 





The  remaining  unknowp  functions  czn n m  be determined.  One  Gbtains 

Figures 4, 5, 6 and 7 show  displacements  and stress resultants  for 

a  sandwich  plate  whose  upper  facing  remains  isot.rapic whik its  Icwer 

facing ranges over  various  degrees of orthotropy. E is  equal to 

Young's  modulus f o r  the  upper  facing  and ,E, decreases f r m  
- 1 1  

The  cross  modulus  is  assumed  to have the following  form 
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From the   f igures   we’see   tha t   as   the  lower facing  ranges  over  various 

degrees  of  orthotropy a l l  displacements and s t r e s s   r e su l t an t s  behave a s  

one  would expect. The s t r e s s   r e su l t an t s  and n’’ are   larger   than 

g2 and n 22 s i n c e   t h e   p l a t e   s t i f f n e s s   i n   t h e   d i r e c t i o n  i s  

g rea t e r   t han   t he   s t i f fnes s   i n   t he  8 direction.  For  the same reason 

the   ro t a t ion  /cA/” i s  l e s s   t han  1 2‘ 
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16. Inf ini te   Circular   Cyl inder   with a Vi.scoelastic Core 

I n  opder t o  s tudy   the   e f fec t  of a viscoelast ic   core ,  an i n f i n i t e  

c i rcular   cyl inder   loaded by a concentrated  uniform  ring  load  acting  at  

e2=o i s  invest igated.  The fac ings   a re   i so t ropic  membranes with 

the  same thickness and physical   propert ies .  The core i s  i s c t r o p i c  

wi th   an   in f in i te  Young's  modulus i n  transverse  extension. 

,The dimensionless  surface  coordinates  are 

see   f i gme  8. Tke assumed v i s c o e l a s t i c   c h a ~ a c t e r  of  the  core is tha t  

of a s tandard   l inear   so l id  a s  shown i n  f igure  9. For t h i s  exsurple 

we take 

3 y =  - 1 0  - 
In  t h e  sequerL the   var ia t ion   o f   the  geometry thru  the  thickness  

of the  composite  shell  has  been  neglected. 

Fmm  symmetry of t he   she l l  and the  load 

and al.1  remaining  functions  are  independent of 8 '- 
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FIG.8, CIRCULAR CYLINDER 
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FIG. 9, CORE VISCOELASTIC 
BEHAVIOR 
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The following  equations  are  the  time  Laplace  transforms of the 

equilibrium equations, the core stress-strain  relations and the  stress 

resultant-displacement  relations for the  composite  shell 

L 2 W  33 f 
sod +803 
*"22 

J E  = 0, (79) 

Notice  that 
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n -22= O 

I1 n =  8 0 0  /q 
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-5 i- 

L 

?here 3 is the Fourier tramsform 

indico.tes a Faurier transform. 

Ync ir.versc Laplace trencform of (89) is 

V 
,, 

:.:here 
d 

D Q 

Xxpanding the  exponential functioc 

exP I- I I 1  



i n  a power ser ies  and  csmparing the  integrals  which r e s u l t  from sulosti- 

tut ing (90)  and the  pmer  series  of (92 )  in to  (gl), it is  seen   tha t   in  

approximating  (92) by exp (-'4a / 4 only a term of order iow3 as 

compared t o  one i s  being  neglected when t/r & 1200, With t h i s  

approximation  (91)  reduces to 

Making the same approximation in   the   in tegra l  form of 3 and E! 
satisfying  (85) one finds 

me   s t r e s s   r e su l t an t  '' can  be  determined f r m  (87) and (93). 

To determine 3 one uses (77)9  (87) and (863 t.0 obtain 

Integrating (95) and using  the boundary conditions on and 2 
one f inds 
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t h a t  

must 

In   eva.hat ing ,ZiY it i s  seen  that  it conta i r s  6(e2) and 

( 9 2 )  can  no  longer  be  approximated by exp ("zoo& Here  one 
3,22 

After some manipulation one f inds  

From (78) and (84) we have 

L2d33 22 

P = - 6(e2) + 24(+ ). 
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Equations (93), (94), (9) and (99) are  only  valid for /% c 1200 f 

and e2> 0. For 8 2h 0 it is observed  that  and 0 22 
are  even  functions  of e2 and  that  and  are  odd  functions 
of g2 Equations (96) , (87) and (100) are  valid  for  all t and 8 . 2 

3 

2 2 

For = 00 

Equaticns (98) and (102) show that & is  discontinuous  at e2= 0 2 
which  does  not  agree  with  physical  reality. From (83) it  is  seen t h a t  

AAJ2 must  be  discontinuous  if n22 is to finite  at 0 2= 0. 
If the  facings  had  been  thin  shells  instead of membranes  this  incon- 

sistency  would  not  have  arisen. 

As can  be  seen from (94) and (.lOl), at @= 00 is 
2 

independent of e - 
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In figures 10 to 14 only  the  functisns  for t equal  zero  and 

infinity  are  plotted. The functions  at / 1200 are s3  cllose to the 

functions  at 2 =-OO that  they  are  almost  indistinguishable  an  the 

figures. 

f 
. y =  

For  the  numerical  values  of  the  physical  constants  chosen  the 

displacements  and  stress  resultants do not  vary  great.ly  as  functions  af 

time.  HDwever,  for a different  set  of  numerical  values  for the physical 

const.ants  this  may  not be true. 
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KOTATIORS 

The  tensor  notations  of 2 are uti.lized.  Latin  suffixes  take on L I  
numbers 1, 2 and 3 while  Greek  suffixes  take on numbers .l and 2. 

Repeated  indices  are  not  summed  when  enclosed  by  parentheses.  The 

prefix  stands  for Q or according  as  the  quantity  is  associated 

with  the  upper or lower  facing,  respectively. If two  signs  appear,  i.e. * nw7 the  upper (or lower)  sign  applies  whenever  reference is being 

made  to  the  upper (or lower)  facing. A comma  denotes  partial  differen- 

tiation,  i  .e. h = &h A vertical  bar ( I ) denotes  covariant 
differentiation  with  respect to th.e three  dimensional  space  while  a 

double  vertical  bar ( 11 ) denotes  covariant  differentiation  with  respect 
to the  core  mid-surface  coordinates. 

doc &w' 

Symbol - Description 

L a  characteristic  length of the  care 

d thickness of the  core 

mid-surface 

n d thickness  of  a  facing, E =Q o r l  - 
1 
4 n 2 

dimensionless  surface  coordinates, 

lines of curvature 

dimensionless  normal  coordinates 

base  vectors oc where  is 

the  dimensionless  pasition  vector  of 

3 
8, s e3 - 
CLO, 

- 
the  core  mid-surface 

63 unit  normal to core  mid-surface 
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A 
nQ-3 

noc b' 

h 
le 

dimensionless  interface  base  vectors 

(see a, 1 

8 3  
coef f ic ien ts   o f   the  second fhdamenta l  

form for  the  core  mid-surface 

coe f f i c i en t s  of the second  fundamental 

form for   the   in te r face   sur faces  

determinant 

permutat,ion symbol 

defcrmed uni t  normal t o   i n t e r f a c e  

s w f a c e s  

uw& o( u n i t  normal t o  core edge 

at   the  mid-surface 

A 

(J EOc unit. normal t o   t h e  edge a HE 
of a f a c i n g   a t  Che in t e r f ace  

/t a OC unit tangent   to   the edge 
L 

e OCG 
of a f ac ing   a t   t he   i n t e r f ace  

mean curvature  of  core  mid-surface 

Gaussian  curvature of core  mid-surface 



B 
P 

Y 
d 
s 
- P) s 
- n s 

d 2 

Christoffel  symbols of the  second 

kind  evaluated  at  the  interface 

surfaces 

vclume of a b d y  

surface of a  body 

care  mid-surface 

interface  surfaces 

exterior  faces of the  facings 

part of d on  which  the  stresses 
are  prescribed 

part  of d on  which  the  displace- 
ments  are  prescribed 

dL for the  edges  of  the  facings 
d2 for  the  edges of the  facings 
part of interface  boundary c w v e s  on 

which  the  stress  resul.tants  are 

prescribed 
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- n n 

V 

sa 

d33  

m 

P" 
P r  

part  of  interface  boundary  curves  on 

which  the  displacements  are  prescribed 

dimensionless  arc  length  along  inter- 

face  boundary  curves 

dimensionless  arc  length  along  the 

normals to the  edges  of  the  facings 

at  the  interfaces 

vr 8 ~ displacement  vector -r 

interface  displacement  vector 
* " a &+=v ) average  displacement 
of  the  interfaces 

rrmLT-AT) relative  displacement 

of the  interfaces 

strain  tensor 

st~ess tensor 
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E 

EX- 
G 
- n E 
v 

extension of the core 

shear mzdulus of en  orthotropic core 

shear maciuius af :an isc.*+ropi.c cere 

Young's modulus of en i,sotmgic facing 

Poisson's ratio for both facings 

elastic cDefficients f c r  a facing 

elastic coefficients defined by 

W 
# 

indicating that the quant..i'iy is 

7 

prescribed on the edge of a Eecing 

a symbol placed over a function of 

time to indicate %he Iwplace trans- 

form of the function 

Laplace transform parameter 
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