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ABSTRACT

The distribution of charge about a space vehicle moving
in the ionosphere (e.g., a satellite or probe) is given by the
simul taneous solution of the Poisson and Boltzmann equations.
One method for obtaining a self-consistent solution employs a
computer code which takes into account the details of particle
trajectories. A computer program is described in which the
space in the vicinity of the object is represented by a discrete
grid of points on which the potential and charge density dis-
tributions are defined. The advantage of such a purely numer-
ical scheme is that conditions not amenable to analytic methods
may be considered. For example, arbitrary velocities, body
shapes and potentials, particle-surface interactions, magnetic
fields, particle velocity distributions, and Mach numbers may
be included. The program is straightforward and consists of
two parts, one of which computes the densities on the grid
when the potential is given., The other solves the Poisson prob-
lem on the grid when the densities are given. A self-consistent
solution is sought by means of an iteration technique which
may be started with a guessed potential distributionm as initial
input to the density calculation. The result of the density
calculation becomes the input to a new Poisson problem which
results in an improved guess for the potential distributionm.

The prescription for obtaining rapid convergence is largely a
matter of art and is presently being investigated. The effects
of variations in numbers of trajectories, trajectory step size,
and grid dimensions, will be discussed, as well as the appli-

cation of the method to a current satellite probe problem.
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1. INTRODUCTION

The interaction of a charged object with a plasma results in the
formation of a sheath which tends to shield the electrostatic field of

the object from the plasma particles (e.g., a probe).

A kinetic-theoretical description of this effect is given by che
simultaneous solution of the Boltzmann and Poisson equations resulting

in self-consistent charged particle and electrostatic field distri  ions.

Approximate time-independent solutions for the collision-free
satellite problem have been obtained by various investigators for the
limiting case of high vehicle velocity (Mach number). It has been
assumed, for example, that the ions are not affected by the electric

field;(l’ 2) that the ions have no random velocity;(B) or that the iomns

(4) Another

undergo very small deflections in the electric field.
interesting limiting case is the special one of a stationary planar,
cylindrical, or spherical probe, where the high symmetry allows the
problem to be described in terms of only one space variable.(5’ 6, 7, 8
However, no analytic or numerical method has been developed for solving
these problems under less restrictive assumptions. A purely numerical
method would have the enormous advantage of being capable of including
vehicle velocities, vehicle shapes and potentials, particle-surface
interactions, magnetic fields, and particle velocity distributions in
the ambient plasma, all of which may be arbitrarily specified. The
numerical approach has the inherent disadvantage, however, of requiring
unlimited computer speed and storage capacity in the absence of applied
physical insight. It is the purpose of the present investigation to
reduce the computer requirements by employing physical assumptions which

do not vitiate the capacity of the computer program to handle compli-

cated boundary conditions.

A computational procedure for determining mutually consistent
charged particle and electrostatic potential distributions would be an

iterative one requiring the performance of the two tasks:



A. Compute the charge density distribution, assuming the

potential field is known. (The '"Density' program.)

B. Compute the potential field, assuming the charge

density distribution is known. (The '"Poisson' program.)
y prog

The iteration procedure is begun with a guess, say for the potential
field. First, task A is performed to compute the particle densities
corresponding to the guessed field. Then these densities are used as
inputs to the task B problem which results in a new potential field.

This in turn becomes the input to a new task A problem. If the procedure
converges, the potentials (or densities) of two successive cycles will

eventually become equal, and will then be accepted as the solution.

The output of task A, the density calculation, is the heart of
the problem, since methods are well known for solving task B, the
Poisson problem.(g) The primary contribution of this paper has, there-
fore, to do with methods for computing particle densities and currents

when the field is given.

The density of particles at a point'? in space may be written as

the triple integral

n (P) = ///f %, ¥ a7 (1)

where T and v are, respectively, the local position and velocity vectors,
and the integrand f is the function which satisfies the Boltzmann equationm.
In the collision-free case, the function £ is a constant along each
trajectory defined by the pair of vectors‘?, T At the "other end" of
each trajectory the function f is assumed known, for example, at infinity
or on the surface of the vehicle. If the velocity distribution at
infinity is a Maxwellian characterized by a temperature (T) and an

ambient part density (no), then in a coordinate system in which the

vehicle is statiomary the function £ is given, for those trajectories



which originate at infinity, by:

no -v z . v 2 + 2v_ v cos¢
f=f°°.=. 3/2e oo s ®0 g (2)
14
with
2 2
Vo =V + & (3)

where v and v, are the magnitudes of the local velocity and the velocity

5

at infinity, respectively, in units of (2kT/m) ° where m is the particle

. . . 2. . .
mass, ¢ is potential energy of the particle at r in units of kT, v, is

1
the magnitude of the vehicle velocity in units of (2kT/m)6, i.e., the
Mach number, and @ is the angle between the vectors:r"oo and.eg.

For those trajectories which originate at the surface of the
vehicle the appropriate distribution function is to be used for f in
Eq. (1). 1If there is no surface emission, f is set to zero. For other
particle-surface interactions, an appropriate value of f may be assigned.
If the trajectory corresponds to a trapped particle it will be considered

unpopulated (£ = 0) in the absence of collisions.

Thus, the problem of the density calculation is that of determining
the demarcation between those trajectories which originate at infinity
and those which do not (e.g., trapped or emitted particles). In the
theory of thfe spherical and cylindrical probe by Mott-Smith and Langmuir(5>
it is in effect assumed that every trajectory of positive total energy
connects with infinity. However, the revised versions of spherical and

(6) (7

cylindrical probe theory by Bernstein and Rabinowitz and Hall take
account of trajectories which, though energetically capable of doing so,
do not connect with infinity. As a result, there may be a portion of the
velocity space in which the integrand in Eq. (1) is zero, even for tra-
jectories haking positive total energy. Since the boundary of the for-

bidden portion of velocity space is an unknown function of the potential



distribution in position space, the integral in Eq. (1) is difficult to
evaluate analytically. Bermstein and Rabinowitz(6) evaluated it for an
isotropic monoenergetic particle velocity distribution at infinity, but
numerical methods are required for the isotropic Maxwellian.(7’ 8 In
the stationary spherical or cylindrical probe problem, the symmetry makes
possible a great simplification which depends in a fundamental way on

the constancy of angular momentum. The case of a moving object presents

much greater analytic difficulties.

In Section 2, the method of evaluating the density integral Eq. (1)
by summing over trajectories is described. 1In Section 3, the 0GO
satellite probe geometry is defined and the approximate analytic Laplace
solution is presented. 1In Section 4, the method of calculating probe
currents and the grid representation for a potential field are described.
The trajectory calculations are discussed in Section 5. In Section 6,
the current vs voltage calculations are presented, on the assumption of
no space charge effects (Laplace field). The Poisson problem and density
calculations are discussed in Section 7. The iteration procedure and

results are given in Section 8.



2., THE SUM OVER TRAJECTORIES

In the general problem, the detailed trajectories of the particles
must be calculated. A numerical evaluation of the integral in Eq. (1)
may be carried out by replacing it approximately by a discrete triple

quadrature of the form

5 % Ny
n (r) =ZZZ Ak, £, ) £__ (k, £, n) (%)
k £ =n

where the indices k-£-n refer to the velocity vector ‘3tk, £, n) which
characterizes the (k-~£-n)th trajectory. The function f,, is obtained
from Eqs. (2) and (3) by tracing the (k-£-n)th trajectory backwards in
time to its source. If the source is at infinity, v(k, £, n) is used in

Eq. (3), and the computed limiting value of o in Eq. (2).

The coefficient A(k, £, n) is a coefficient which depends on the
quadrature scheme used (e.g., Gaussian), and which vanishes if the tra-
jectory corresponds to a trapped particle or if it originates on a non-
emitting surface. The accuracy of the trajectory sum in Eq. (4) may be
i.e.

increased by increasing the product NlN , the number of trajectories.

N3
In general, the potential field must be given as a function defined
on a grid of space points in the vicinity of the vehicle. A magnetic

field may also be defined on the same grid.

The particle is considered as having reached "infinity'" when it

passes through the outer boundary of the grid.

The other half of the self-consistent calculation, i.e., the
Poisson problem, may be solved on the same grid of space points through
the replacement of the Poisson equation by a set of simultaneous dif-
ference equations for the discrete values of the potential. These are
to be solved subject to the conditions that the potential vanish at
infinity and that it be equal to the vehicle potential at the vehicle

surface.



3. THE OGO PROBE PROBLEM

The ideas of the preceding discussion are being applied to the
problem of computing the space charge and potential distributions in the
vicinity of a planar ion and electron trap experiment(lo) on the Orbiting
Geophysical Observatory satellite. The objective of the experiment is
to infer the particle velocity distribution in the ambient ionosphere
plasma from the velocity distribution measured at the aperture of the
probe. The procedure might be to compute the aperture distributions

which would be associated with various hypothetical ambient distributions

and to compare these with the observed ome.

The probe geometry is shown in Fig. 1, which is not drawn to
scale. The probe consists of a circular opening in the skin of the
satellite below which is a plate maintained at a potential VO with
respect to the satellite. The separation between the plate and the
satellite skin is about 1/35 of the radius of the hole. Part of the
plate consists of a grid, the collecting aperture, whose radius is %
that of the opening. Below this grid is a current-collecting electrode
(not shown in Fig. 1) whose voltage is variable with respect to the grid.
The theoretical problem is that of computing the particle velocity dis-

tribution at the grid plane when the grid voltage Vo and the velocity

distribution at infinity are given.

Since the depth of the grid plane below the level of the outer
surface of the satellite skin is less than 1/13 the hole radius, the
probe geometry may be approximated by an infinite plate surrounding a
circular disc which is maintained at a different potential, schematically
shown in Fig. 2. 1In the following, the disc will be referred to as the

"probe'.

The plate is considered in this approximation to extend to
infinity since the dimensions of the satellite are large compared with
the probe radius. The satellite is also large compared with the Debye
length. The question of the effect of the sheath of the satellite on

the probe characteristics is not considered here. It is assumed that



the effect is negligible if the probe potential is large compared with
kT while the satellite potential is of the order of kT, where T is the

temperature of the ambient plasma.

Under the stated assumptions, the unshielded Laplace field in the

neighborhood of the probe can be expressed analytically in the form
u’_zx r
= - X
V(r, z) VokZ:e a Jl(x) Jo(a ) dx (5)

where a is the radius of the probe, z and r are cylindrical coordinates
for the problem, which is restricted to be rotationally symmetric about

the z-axis, J. and Jo are Bessel functions of order one and zero,

respectively,land VO is the potential of the probe (i.e., the circular
disc) with respect to the infinite plane. The Laplace solution for

V0 = 1.0 is tabulated in Table I and expressed in terms of contours in
Fig. 2. The potential distribution for Vo other than 1.0 is obtained

from these by multiplying by Vo'

The asymptotic form for the potential is given by

A" a2 z
(o]
2 (r2 + 22

V(r, 2)~ 575 (6)

)

which is the potential of a dipole of moment %Voaz.



4, CURRENT-VOLTAGE CHARACTERISTICS

Before proceeding to the space charge calculations, we will dis-
cuss the application of the numerical method to the calculation of the
current-voltage characteristics of the Laplace field given by Eq. (5).
The same ideas will be applied to the Poisson problem later. The
potential field is described by a discrete grid in r - z space such as
that shown in Fig. 3. 1In Fig. 3, the r-domain is divided in 12 equal
intervals, with r going from O0(i = 1) to rm(i = 13). The z-domain is
divided in 12 equal intervals also, with z going from 0(j = 1) to
zm(j = 13). The column i = 1 (r = 0) represents the axis of the system,
which is presently rotationally symmetric. The row j =1 (z = 0)

1, =1

represents the plane of the probe, on which the point i
represents the center of the circular probe area, i.e., the center of

the grid in Fig. 1. The point r = a, that is, the radius of the probe,
is chosen to be some point on the first row, defining the r-scale. 1In

Fig. 3, this point is i =5, j = 1.

The outer boundary of the grid is defined by T and Z at which
the particles are assumed to have a Maxwellian distribution, shifted by
the plasma velocity. The z-axis of the problem is defined by the normal
to the probe, which is assumed parallel to the plasma velocity vector.
The device of using an outer grid boundary to represent "infinity" is
only valid if the dimensions of the boundary are sufficiently large that
the resulting solution is independent of their value. The Laplace
field may be taken from Table I if the scales are appropriately chosen.
If the point 1 = 5 in the first row represents the probe radius
a = 3.33 cm (see Fig. 1), then r = 3a = 9.99 cm and Ar = .8325 cm.

If z_ is chosen to be 1.5a = 4,995 cm, then Az = .41625 cm. The
quantities Ar and Az may be designated as ''grid spacings'. In Table I,
Ar and Az are both equal to a/4 (ignoring the 0.1 row). The potentials
obtained from Table I are to be multiplied by the appropriate scale
factor such that the potentials on the first 4 points in the first row

in Fig. 3 have the probe potential. The 5th point is assigned % of



this value, In Fig. 3, the probe potential is -5.1 volts, corresponding

to an ion potential energy -45.54 kT,

Y
The current density at a point r on the probe is obtained by

evaluating the first moment of the distribution, i.e., the integral

Tes =fﬂf(‘§, D v, % 7

where j is the current density normal to the probe and v, is the z-component
of velocity. This triple integral is similar to Eq. (1) and may be treated
in the same manner using a triple quadrature in a form similar to Eq. (4),

where the trajectories are treated exactly as in the discussion of Eq. (4).



5. TRAJECTORY CALCULATIONS

For the trajéctory calculations, the following units have been
adopted. The unit of energy is kT. The unit of velocity is (2kT/m)%.
The unit of length is the Debye length, XD’ which is taken to be
exactly one centimeter, corresponding to an altitude of about 200 km,
where the temperature (T) is assumed to be 1300°K and the electron
density (no) is assumed to be 6 x 104 particles/cmS. The symbol @ is
used for the dimensionless potential energy, which is negative for
attracted particles and positive for repelled particles. Thus, if the
probe potential is -5.1 volts, the dimensionless probe potential is
4% = +45.54 for electrons and -45.54 for singly-charged ions. The

only relevant mass-dependent quantity in the problem is the Mach number.

A trajectory may be described by the solution of the simultaneous

dynamical equations in cartesian form:

Q/
-

%

]

]
N j=
KX

o/ Q/
H

R
&

(8)

~
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N =
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N
]
1
N =
&
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z

The unit of time, XD(m/ZkT)%, is irrelevant since the intervals of time,
At, must only be chosen short enough to obtain an arbitrarily accurate
description of the particle path in space. Empirically, the required
accuracy is determined by making test rums with successively smaller time
step sizes until the sequence of densities or currents converges. The
gradients O¢ /Or and O¢ /dz in Eq. (8) are obtained by interpolation
within the potential grid. The trajectory is followed backwards in time,
where the initial values of x, y, z are given by the components of-? and
the initial values of %X, y, z by the components of the velocity vector
3kk, £, n) which characterizes the (k-£-n)th trajectory in the triple

sum. The trajectory is followed until it either strikes the (non-emitting)

- 10 -



=773

plate or passes out of the boundary. A trajectory is considered as
trapped if it spends too much time meandering within the grid. Thus,
if the total arc length exceeds a reasonable value, the value of f is set

to zero.

(11)

There are several methods for integrating Eq. (8), such as a
predictor-corrector, a Runge-Kutta method, or a Taylor series. The
Taylor series was chosen for simplicity and truncated beyond the second
derivative terms. Use of a higher-order method such as a predictor-
corrector did not appear justified when used in coarse potential grids
in the preliminary phases of the work. However, the accuracy of the
computed densities and currents was found to depend strongly on the

accuracy of the trajectories.

The number of trajectories used for a density point is determined
by the orders of the quadrature scheme adopted for Eq. (4). The scheme
adopted here has been the Gaussian triple quadrature. 1In some of the
calculations, the orders 64, 32, and 8 were used for the velocity com-
ponents, namely, the speed (index k), the polar angle (index £), and
the azimuthal angle (index n), respectively. The number of trajectories
was therefore 16384 per density point. This large number gave accuracies
ranging from 1 part in 106 to 1 part in 104 for zero potential for Mach
numbers up to 7. However, the computing time was very great, i.e.,
several minutes per point. In the celculations for the Laplace field
at zero Mach number, the orders 16, 8, and 8 (or 1024 trajectories)
were found to give accuracies varying between 1% and 307%, depending on

the potential field and the position of the density point.

- 11 -



6. CURRENT VS VOLTAGE FOR THE LAPLACE FIELD

Tables II, III and IV represent the Laplace field for a probe
potential of -5.1 volts. 1In Tables II and III, the same space is
represented by a 13 x 13 grid and a 4 x 4 grid, respectively. For
these tables, the radius and height of the outer boundary of the grid are
at r_ = 3a and z = 1.5a, respectively. 1In Table IV, a 13 x 13 grid
represents a space of the same radial dimension, T, 3a, but of height
z = 3a. For the grids in Tables II, III, and IV, the currents are 36,
34, and 35, respectively. They are expressed in units of the zero-

potential current, namely:

5 -v 2
& An_(KT/27m) [e s +JT v (1+ erf vS)] (9)

where A is the current-collecting area and v, is the Mach number.

The values 36, 34,and 35 for the currents are equal to within
the accuracy of the calculation. They were obtained by using a small
trajectory step size, about 0.2 per step in units of XD. When the step
size was 0.4 and 0.8, the values of the 3 currents differed by as much
as 1007 from one another. From these calculations it may be concluded
that the effects on the Laplace field current of increasing r orz, or

the number of grid points, is small compared with the effect of the step

size, i.e., the accuracy of the trajectory calculations.

Current-voltage characteristics are shown in Fig. 4 for the
Laplace fields of Tables II, III, and IV. These lie close to one another
and are represented approximately by straight lines which have the
equation J/J0 =1- ,75¢ This may be compared with the Langmuir
formula 1 - ¢ for a sphere. The linear term may be tentatively associ-
ated with geometrical effects which may diminish it, such as intersections
with the satellite. The constant term, on the other hand,probably depends

only on the energy distribution at infinity.

A current-vs-Mach number curve is shown in Fig. 5 for a

probe potential of -5.1 volts. The current decreases from a large value

- 12 -
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asymptotically to unity. The currents for small Mach numbers are not
accurate, since the step size was large, corresponding to an arc length

of about .8 per step. The grid was a 7 x 7, with r,= 2, T 1l.5a.

Somé distributions in energy, dJ/dE, of the particle currents
arriving at the aperture were calculated for probe potentials of zero
and -5.1 volts. The energies are associated with the z-components of
particle velocity. The distributions are given in Table V for three
cases:

(a) potential zero and Mach 7
(b) potential -5.1 volts and Mach zero
(c) potential -5.1 volts and Mach 7

The currents for case (a) agree exactly with the theoretical
expression (see Table V) for all values of the energy. The currents for
case (b) satisfy the exact exponential law for energies greater than 5.1
volts, but are less than unity for energies less than 5.1 volts. The
deficiency is consistent with the reduced slope (.75) of the current-
voltage curve and is probably due to trajectory intersections with the
satellite. The results of case (b) suggest that the energy distribution
represents the distribution at infinity quite accurately, i.e., an
exponential, for particle energies greater than the probe potential.

For energies less than the probe potential, the distribution appears to
be affected by the geometry of the probe. In case (¢), the maximum of

dJ/dE lies beyond 8.4 volts.

- 13 -



7. THE POISSON PROBLEM

For the solution of the Poisson equation, a difference equation
was used to approximate the Laplacian operator in cylindrical coordinates.
The boundary condition was unusual in that an asymptotic analytic form
was assumed to represent the potential outside the boundary. The coeffi-
cient was an unknown quantity, to be determined such that the potential
and its partial derivatives were continuous. Since there were three
equations for each boundary point, the system was over-determined and a
least-squares matrix reduction was employed. The idea of using an
asymptotic form is based on the success with which Laframboise(s) obtained
numerical self-consistent solutions to the spherical probe problem with
the grid boundary close to the sphere surface. Laframboise adopted the
r-2 asymptotic law derived by Bernstein and Rabinowitz(6) for the mono-
energetic distribution. However, in the absence of an asymptotic theory

for the general problem, it is not clear how to choose the form for such

a function.

In the present work, solutions of the Laplace equation were found
using various asymptotic forms for the potential. The dipole form,
Eq. (6), was tried, as well as several other forms and combinations
thereof. The Laplace solution depended rather strongly on the choice of
the form. The dipole term gave excellent agreement with the exact values
in Table I. Attempts were made to solve the non-linear equations to
determine the exponent in the asymptotic power law, but this was not
pursued far enough to determine the effectiveness of the method. While
perhaps promising, it would probably require excessive computer time.

The dipole law was adopted provisionally for the space charge calculations.

Attempts were also made in the density calculations to obtain some
idea of the effects of the asymptotic force law beyond the boundary. A
first-order velocity correction based on an impulse approximation was
applied to the trajectories at the grid boundary. This produced at most

a change of a few percent, even for Mach 7.

The densities at the grid points of the Laplace field defined by



T\}

Table II are shown in Table VI. These were obtained from Eq. (4) by
essentially the same method as was used for computing currents. The
Mach number was zero. The number of trajectories used was 1024, and

the trajectory step size used varied with the position of the grid point.
For points on the probe surface, for example, the arc length per step was
about .2, while for points on the boundary it was 3.2. This scheme
sufficed to keep the estimated overall accuracy within 10%. At a few
places, the error in density was 30%. The 169 values of the ion density
(attracted particles) were obtained in about 10 minutes. The electron
densities (repelled particles) were obtained in about 3.5 minutes by

reversing the sign of the potentiagl field.

- 15 -



8. SEIF-CONSISTENT SOLUTION

In the iteration scheme, the initial guessed potential field was
designated the "zero-order'" potential, and the densities resulting there-
from the '"zero-order' densities. Thus, the Laplace field in Table II
was chosen as the zero-order potential, and the densities in Table VI
were the zero-order densities. These densities were used in the Poisson
problem to obtain a "first-order' potential, which resulted in "first-
order' densities. The iteration converged in the sense that the 6th-
order potential was reproduceable to 2 significant figures, with minor
exceptions. The Poisson potential for a probe potential of -5.1 volts
is shown in Table VII and the associated self-consistent densities in
Table VIIIL. A definite sheath region is evident from the electron dis-

tribution.

More rapid convergence was obtained by coupling the densities of
successive iterations. That is, the newest set of densities was averaged
with the previous input set to obtain the next input set. The zero-
order densities were averaged with zero, i.e., divided by 2, to obtain
the input to the first-order potential. This procedure reduced the
number of iterations to 3, instead of 6, to produce the self-consistent
potential shown in Table VII. The sequence of iterates was oscillating

rather than monotonic.

The fact that convergence was achieved rather easily is probably
connected with the fact that the solution grid (Table VII) still lies
well within the sheath region; that is, some of the potentials along
the upper boundary of the grid, where z = 1.5a, are considerably larger
than kT. Attempts are being made to obtain convergence for grids for
which z = 3a and z = 4a, These appear to have more difficulty in con-
verging, tending to oscillate much longer. This may be connected with
the fact that the upper boundaries are outside the sheath, i.e., in the
region where the potential is less than kT. Experimentation is in prog-
ress with very small grids, i.e., 3 x 3, 4 x 4, etc., to determine the

numerical properties of the procedure. For example, the iterations



diverged in the absence of coupling for z = 3a and z = 4a.

The probe current for the Poisson (self-consistent) field was 24,
as compared with the zero-order value 36, at a probe potential of -5.1
volts. This point is indicated in Fig. 4, showing that a considerable

reduction in current can be expected.

- 17 -



9. CONCLUSIONS

A numerical method and its application to the OGO probe experiment
has been described. A current-voltage characteristic has been obtained
for the Laplace field at Mach zero, and a self-consistent solution at
one value of the probe potential. Rather coarse grids were found to
describe the field well. However, it was found that the trajectory
step sizes needed to be small compared with the grid spacing. The
results obtained with an arbitrarily chosen form for the asymptotic
potential (dipole potential) were found useful. An iteration procedure
in which successive density iterates were coupled was found to converge

more rapidly than when the iterates were uncoupled.
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TABLE OF THE INTEGRAL

TABLE I

fm

& T T (x) TS X)dx

(o]

.0 .25 .50 .75 1.00 1.25 1.50
.1940(-1) .1933(-1) .1913(-1) .1880(-1) .1836(-1) .1781(-1) .1718(-1)
.2143(-1) .2135(-1) .2111(-1) .2071(-1) .2017(-1) .1952(-1) .1876(-1)
.2380(-1) .2370(-1) .2340(-1) .2291(-1) .2226(-1) .2146(-1) .2055(-1)
.2657(-1) .2644(-1) .2607(-1) .2548(-1) .2467(-1) .2370(-1) .2259(-1)
.2984(-1) .2969(-1) .2923(-1) .2848(-1) .2748(-1) .2628(-1) .2492(-1)
.3375(-1) .3356(-1) .3297(-1) .3203(-1) .3078(-1) .2928(-1) .2760(-1)
.3847(-1) .3821(-1) .3746(-1) .3626(-1) .3467(-1) .3279(-1) .3069(-1)
.4621(-1)  .4388(-1) .4290(-1) .4135(-1) .3931(-1) .3691(-1) .3427(-1)
.5131(-1) .5087(-1) .4958(-1) .4753(-1) .4487(-1) .4177(-1) .3841(-1)
.6020(-1) .5960(-1) .5787(-1) .5513(-1) .5161(-1) .4756(-1) .4323(-1)
.7152(-1) .7070(-1) .6831(-1) .6459(-1) .5985(-1) .5447(-1) .4882(-1)
.8618(-1) .8503(-1) .8169(-1) .7651(-1) .7001(-1) .6276(-1) .5530(-1)
. 1056 .1039 .9913(-1) .9178(-1) .8268(-1) .7274(-1) .6277(-1)
.1318 .1293 .1223 L1116 .9864(-1) .8474(-1) .7122(-1)
.1679 .1643 .1538 . 1380 .1189 .9908(-1) .8051(-1)
.2191 .2136 .1977 .1736 ;1450 .1160 .9008(-1)
.2929 .2846 .2606 .2233 .1787 .1350 .9853(-1)
.4000 . 3884 .3532 .2951 .2228 .1542 .1026
.5528 .5390 .4937 .4068 .2815 .1659 .9500(-1)
.7574 . 7469 . 7079 . 6062 .3625 . 1409 .6297(-1)
. 9005 .8956 .8768 .8158 .4303 .7375(-1) .2788(-1)

1.0000 1.0000 1.0000 1.0000 .5000 0.0 0.0
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TABLE I Cont'd

©
-z
TABLE OF THE INTEGRAL /e a*J(x) Jo (& x)dx
0

r/a = 1.75 2.00 2.25 2.50 2.75 3.00 3.25

z/a = 5.0 .1648(-1) .1572(-1) .1493(-1) .1412(-1) .1331(-1) .1250(-1) .1171(-1)
4.75 .1792(~1) .1703(-1) .1610(-1) .1516(-1) .1421(-1) .1328(-1) .1238(-1)
4.50 ,1955(-1) .1849(-1) .1739(-1) .1629(-1) .1519(-1) .1412(-1) .1309(-1)
4.25 .2138(-1) .2011(-1) .1881(-1) .1751(-1) .1624(-1) .1501(-1) .1383(-1)
4.00 .2346(-1) .2193(-1) .2038(-1) .1885(-1) .1736(-1) .1593(-1) .1459(-1)
3.75 .2581(-1) .2396(-1) .2210(-1) .2029(-1) .1854(-1) .1690(-1) .1536(-1)
3.50 .2848(-1) .2622(-1) .2399(-1) .2183(-1) .1979(-1) .1788(-1) .1613(-1)
3.25 ,3151(-1) .2874(-1) .2604(-1) .2347(-1) .2107(-1) .1887(-1) .1687(-1)
3.00 .3495(-1) .3153(-1) .2824(-1) .,2518(-1) .2236(-1) .1982(-1) .1755(-1)
2.75 .3884(-1) .3459(-1) .3059(-1) .2692(-1) .2363(-1) .2070(-1) .1814(-D
2.50 .4322(-1)  .3790(-1) .3302(-1) .2864(-1) .2480(-1) .2146(-1) .1858(-1)
2.25 .4809(-1) .4141(-1) .3545(-1) .3024(-1) .2578(-1) .2200(-1) .1881(-1)
2.00 .5339(-1) .4499(-1) .3772(-1) .3157(-1) .2645(-1) .2223(-1) .1875(-1)
1.75 .5896(-1) .4840(-1) .3960(-1) .3243(-1) .2665(-1) .2202(-1) .1831(-1)
1.50 .6441(-1) .5120(-1) .4071(-1) .3252(-1) .2617(-1) .2124(-1) .1741(-D)
1.25 .6898(-1) .5271(-1) .4053(-1) .3149(-1) .2478(-1) .1975(-1) .1594(-1)
1.00 .7122(-1) .5185(-1) .3837(-1) .2893(-L) .2224(-1) .1741(-1) .1385(-1)
Q.75 .6861(-1) .4714(-1) .3345(-1) .2447(-1) .1840(-1) .1416(-1) .1113(-1)
0.50 L5741(~1) .3699(-1) .2519(-1) .1793(-1) .1322(-1) .1004(-1) .7808(-2)

0.25 .3399(-1) .2070(-1) .1365(-1) .9526(-2) .6936(-2) .5221(-2) .4032(-2)
0.10 .1436(-1) .8569(~2) .5590(-2) .3877(-2) .2815(-2) .2116(-2) .1630(-2)

0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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r/a

z/a =

.75
.50
25
.00
.75
.50
.25
.00
.75
.50
.25
.00
.75
.50
.25
.00
.75
.50

.25

.10

.00

TABLE I Cont'd

TABLE OF THE INTEGRAL

o0 Zz
f e Z% J.(x) Jo( % x)dx
o .

3.50 3.75 4.00 4.25 4.50 4.75 5.00
.1094(-1) .1020(-1) .9502(-2) .8839(-2) .8215(-2) .7630(-2) .7085(-2)
.1152(-1) .1069(-1) .9910(-2) .9177(-2) .8492(-2) .7856(-2) .7266(-2)
L1211(-1)  .1119(-1) .1032(-1) .9509(-2) .8759(-2) .8067(-2) .7430(-2)
.1272(-1) .1168(-1) .1072(-1) .9827(-2) .9008(-2) .8257(-2) .7572(-2)
.1334(-1) .1217(-1) .1110(-1) .1012(-1) .9231(-2) .8421(-2) .7686(-2)
L1394(-1)  .1264(-1) .1146(-1) .1039(-1) .9420(-2) .8548(-2) .7765(-2)
.1453(-1)  .1308(-1) .1178(-1) .1061(-1) .9563(-2) .8631(-2) .7801(-2)
.1507(-1) .1346(-1) .1203(-1) .1077(-1) .9647(-2) .8659(-2) .7786(-2)
.1554(-1) .1377(-1) .1221(-1) .1085(-1) .9660(-2) .8619(-2) .7709(-2)
.1590(-1) .1396(-1) .1229(-1) .1084(-1) .9584(-2) .8500(-2) .7562(-2)
.1612(-1) .1402(-1) .1223(-1) .1071(-1) .9404(-2) .8290(-2) .7334(-2)
.1614(-1) .1390(-1) .1202(-1) .1044(-1) .9103(-2) .7976(-2) .7018(-2)
.1590(~1) .1355(-1) .1161(-1) .1000(-1) .8667(-2) .7547(-2) .6606(-2)
.1534(-1) .1293(-1) .1098(-1) .9391(-2) .8080(-2) .6996(-2) .6092(-2)
.1440(-1) .1201(-1) .1011(-1) .8581(-2) .7336(-2) .6317(-2) .5474(-2)
.1302(-1) .1076(-1) .8981(-2) .7568(-2) .6432(-2) .5510(-2) .4755(-2)
.1119(¢-1) .9159(-2) .7588(-2) .6354(-2) .5372(-2) .4582(-2) .3940(-2)
.8897(-2) .7225(-2) ,5948(-2) .4955(-2) .4171(-2) .3546(-2) .3039(-2)
.6195(-2) .5001(-2) .4097(-2) .3401(-2) .2854(-2) .2420(-2) .2070(-2)
.3183(-2) .2560(-2) .2093(-2) .1734(-2) .1452(-2) .1231(-2) .1052(-2)
.1284(-2) .1032(-2) .8464(-3) .7025(-3) .5880(-3) .4992(-3) .4277(-3)

0.0 0.0 0.0 0.0 0.0 0.0 0.0
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(1.5a)

12

11

10

TABLE II

Laplace Potential For 13 x 13 Grid

Probe Potential =

-5.1

volts

(All values are negative for ions,

1 2 3 4 5 6 _7

7. 7. 6.5 5.5 4.5 3.6 2.8
8. 8. 7.4 6.3 5.1 4.0 3.0
9. 9. 8.5 7.2 5.8 4.5 3.3
11 11 9.8 8.3 6.6 5.0 3.6
13 13 11 9.6 7.5 5.5 3.8
15 15 13 11 8.5 6.0 4.0
18 17 16 13 9.7 6.5 4.2
21 20 19 15 11 7.0 4.2
25 24 22 18 13 7.2 4.1
29 29 27 22 14 7.2 3.6
34 34 32 27 17 6.5 2.9
40 39 38 35 19 4,5 1.6
46 46 46 46 23 0 0
Current

- 22 -

ro = 3a, z = 1.5a
positive for electrons)
8 9 10 11
2.1 1.6 1.3 1.0
2.3 1.7 1.3 1.0
2.4 1.8 1.3 .99
2.5 1.8 1.3 .96
2.6 1.8 1.3 .93
2.7 1.8 1.2 .87
2.7 1.7 1.2 .80
2.6 1.6 1.1 .71
2.4 1.4 .91 . 60
2.0 1.2 .72 A7
1.5 .83 .50 .33
.78 .43 .26 .17
0 0 0 0

.79
.78
.76
.73
.69
.64
.58
.50
42
.32
.22

.11

.66
. 64
.61
.58
.53
.49
.43
.37
.31
.24
.16

.08

(3a)



TABLE III
Laplace Potential For 4 x 4 Grid T, = 3a, z = 1.5a
Probe Potential = -5,1 volts

(All values are negative for ions, positive for electrons)

1 2 3 4
(1.5a) 4 7.3 4.5 1.6 .66
3 13 7.5 1.8 53
2 25 13 1.4 31
1 46 23 0 0
Current = 34 (3a)
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(3a)

12

11

10

TABLE IV
Laplace Potential For 13 x 13 Grid r, = 3a, z = 3a
Probe Potential = -5.1 volts

(All values are negative for ions, positive for electrons)

1_ 2 3 4 _ 5 6 _7 8 9 10 11 _12  _13
2. 2.3 2.3 2.2 2,0 1.9 1.8 1.6 1.4 1.3 1.2 1.0 20
2. 2.7 2.6 2.5 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.1 9%
3. 3.2 3.1 2.9 2.7 2.5 2.2 2,0 1.7 1.5 1.3 1.1 98
3. 3.9 3.7 3.5 3.2 2.9 2.5 2.2 1.9 1.6 1.4 1.2 1.0
4, 4.7 4.5 4.2 3.8 3.3 2.9 2.4 2.1 1.7 1.4 1.2 1.0
6. 5.9 5.6 5.1 4.5 3.9 3.2 2.7 2.2 1.8 1.5 1.2 1.0
7. 7.5 7.0 6.3 5.4 4.5 3.7 2.9 2.3 1.9 1.5 1.2 97
10 9.7 9.0 7.9 6.6 5.3 4.1 3.1 2.4 1.9 1.4 1.1 90
13 13 12 10 8.1 6.2 4.5 3.2 2.4 1.8 1.3 1.0 .79
18 18 16 13 10 7.0 4.7 3.1 2.2 1.5 1.1 .84 .65
25 25 23 19 13 7.6 4.3 2.6 1.7 1.2 .82 . 60 46
35 34 32 28 17 6.4 2.9 1.6 .94 . 62 43 .32 .24
46 46 46 46 23 0 0 0 0 0 0 0 0
Current = 35 (3a)
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TABLE V
Energy Distribution In Current (dJ/dE) /Jo

(a) Probe Potential = 0 and Mach 7

Volts E (d3/dB) 13, W/ Cgmenl - & - .02 ]
0 0 0 0
2.8 25 .0Q0378 .000378
5.1 45.54 .0378 .0379
5.5 49 .0403 :0403
8.4 75 .00256 .00255
(b) Probe Potential = -5.1 Volts and Mach zero
Volts E (aJ/dE) /Jo 1.0 or exp (45.54 - E)
0 0 0 1.0
1.12 10 .401 1.0
2.24 20 .991 1.0
3.36 30 .992 1.0
5.1 45.54 .978%¥ 1.0
5.6 50 .0116 .0116
6.16 55 .779 x 1074 779 x 1074
8.4 75 1.61 x 10713 1.61 x 10713

¥ Became 1.00 when arc length per step changed from 0.2 to 0.1

(¢) Probe Potential = -5.1 Volts and Mach 7

(dJ/daE) /Jo

Tolts £
0 0 0
2.8 25 8.0 x 10717
5.1 45.54 1.1 x 1071°
5.5 49 1.8 x 10°°
8.4 75 .0055
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TABLE VI

Ion And Electron Densities For The Laplace Field (Table II)

Probe Potential = -5.1 volts
IONS
1 2 3 4 5 6 7 8 9 10 11 12 13
(1.5a) 13 1.0 1.1 1.0 .95 .96 1.0 1.1 1.0 1.0 .96 .88 .83 .79
12 1.1 1.1 1.0 .97 .89 .87 .77 .86 .96 1.0 .91 .85 .77
11 1.2 1.0 1.0 .96 .94 .88 .86 .96 .95 .92 .89 .85 .78
10 65 68 66 63 .82 .76 1.0 1.0 .98 .93 .84 .80 .77
9 .68 .70 .73 .71 .78 .70 .99 1.1 1.0 96 .83 76 73
8 87 78 85 1.1 .93 .85 1.1 1.2 1.1 99 .85 .76 .74
7 95 98 1.3 1.3 1.2 1.1 1.2 1.3 1.2 1.0 86 75 72
6 1.3 1.1 1.5 1.4 1.3 1 1.1 1.0 1.1 1.0 85 73 69
5 1.3 1.3 1.6 1.2 1.2 1.0 .98 .94 .95 .82 .76 .67 .61
4 1.5 1.5 1.6 1.2 .97 .85 .95 .92 .84 .82 .75 .66 .60
3 1.9 1.7 1.8 1.1 .93 .60 .77 .84 .76 .72 .66 .59 .54
2 2.3 1.9 1.4 .84 .43 .34 .70 .66 .63 .66 .60 .55 .52
1 2.5 2.5 1.9 1.5 .23 .03 .31 .32 .42 41 47 L4648
10 min. (3a)
ELECTRONS
1 2 3 4 5 6 7 8 9 10 11 12 13
(1.5a) 13 O 0 0 0 .01 .03 .06 .09 .13 .16 .19 .23 .25
12 0 0 0 0 0 .02 .04 .08 .11 .15 .19 .22 .25
11 0 0 0 0 0 .01 .03 .06 .10 .14 .18 .22 .25
10 0 0 0 0 0 .01 .02 .05 .06 .13 .18 .21 .25
9 0 0 0 0 0 0 .02 .04 .08 .12 .16 .20 .25
8§ O 0 0 0 0 0 .01 .03 .06 .11 .16 .21 .24
7 0 0 0 0 0 0 .01 .02 .05 .10 .15 .20 .25
6 O 0 0 0 0 0 0 .02 .04 .09 .14 .21 .25
5 0 0 0 0 0 0 0 .02 .04 .09 .15 .22 .28
4 0 0 0 0 0 0 0 .01 .05 .09 .15 .22 .28
3 0 0 0 0 0 0 0 .01 .04 .09 .15 .23 .30
2 0 0 0 0 0 0 0 .02 .05 .09 .16 .24 .31
1 0 0 0 0 0 0 0 .02 .05 .11 .17 .25 .32

3.5 min. (3a)
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TABLE VII
Poisson Potential For 13 x 13 Grid r = 3a, z = 1.5a
Probe Potential = -5.1 volts

(All values are negative for ions, positive for electrons)

(1.5a) 13 5.0 4.8 4.4 3.7 3.0 2.3 1.7 1.3 .95 .75 .63 .56 .45
12 5.8 5.6 5.0 4.2 3.3 2.4 1.7 1.1 .75 .54 44 41 L43
11 6.9 6.6 6.0 5.0 3.8 2.7 1.7 1.1 .63 .39 .30 .31 .40

10 8.3 8.0 7.2 6.0 4.5 3.1 1.9 1.1 .56 .29 .20 .23 .36

9 10 9.8 8.8 7.3 5.4 3.5 2.1 1.1 .53 .22 .13 .18 .32
8 12 12 11 8.9 6.4 4.1 2.3 1.2 .52 .19 .09 .13 .28
7 15 15 13 11 7.7 4.7 2.6 1.3 .54 .19 .07 .10 .24
6 19 18 16 13 9.2 5.3 2.7 1.3 .56 .21 .07 .09 .21

5 23 22 20 17 11 5.8 2.8 1.3 .56 .23 .09 .08 .17
4 28 27 25 21 13 6.1 2.7 1.2 .52 .23 .10 .07 .13
3 33 33 31 26 16 5.7 2.2 .90 .41 .20 .09 .06 .09
2 39 39 38 34 19 4,1 1.3 .50 .23 .12 .06 .03 .04

1 46 46 46 46 23 0 0 (0] 0 0 0 0 0

Current = 24 (3a)
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(1.5a)

(1.5a)

Mo e
o = N W

=
N W =N W Py 0w

=
[

HoON W DS Ny 0w

Ion And Electron Densities For The Poisson Field (Table VII)

Probe Potential =

1 2 3
.88 .90 .87
.92 .91 .87
.75 .65 .70
.57 .59 .59
.61 .60 .67
.67 .58 .57
.73 . 64 .67
.69 .57 .63
.54 .57 .61
.57 .55 .45
.59 .55 .46
.88 77 .40
1.3 1.5 1.2
1 2 3
.01 .01 .01
0 0 .01
0 0 0
-0 0 0
0 0 0
0 0 0
0 0 0
0 0] 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

OOOOOOOOO0.0

.90
.81
.69
.58
48
.57
.63
.67
.50
.54
.53
.39
.75

TABLE VIIT

-5.1 volts
IONS

5 6 7 8 9 10

1.0 1.0 1.1 1.1 1.1 1.1
.76 .81 .89 .93 .95 .90
.57 .77 .86 .84 .87 .82
.70 . 60 .81 .83 .80 .81
.54 .55 .73 .82 .80 .79
.46 .53 .67 .76 .79 .78
.50 .55 .61 .68 .75 .73
. 60 .46 .53 .52 .61 .65
.51 .43 41 .42 .46 .48
41 .26 .32 .34 .33 .35
.28 .25 .27 .29 .28 .30
.04 .12 .29 .26 .26 .28
.05 .03 .19 .23 .24 .25
ELECTRONS

5 6 7 8 9 10
.05 .08 .10 .12 .15 .16
.04 .08 .12 .16 .18 .19
.02 .06 .12 .17 .19 .23
.01 .05 .11 .17 .20 .23
0 .03 .09 .16 .19 .21
0 .02 .07 .15 .19 .19
0 .01 .06 .13 .18 .21
0 0 .04 .11 .21 .27
0 0 .03 .10 .21 .38
0 0 .02 .10 .22 .35
0 0 .01 .12 .29 .39
0 0 .02 .19 .40 47
0 0 .04 .21 .32 .33
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.98
.83
.75
.75
.74
.74
.71
. 64
.52

AR

.36
.32
.30

.20
.23
.26
.26
.24
.22
.24
.28
.28
.33
.35
.40
.35

12

.90
.79
.72
.70
.69
.68
.67
.63
.56
.50
yaa
.41
.38

.27
.31
.30
.32
.34
.35
.34

13
.73
.71
.71
.71
.71
.70
.67
.63
.60
.54
.53
.48
45

(3a)

.28
.28
.28
.29
.30
.32
.32
.34
.36
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