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A survey of some current research in functional-

differential equations

Jack K. Hale

1. Introduction. Functional-differential equations provide a mathematical

N model for a physical system in which the rate of change of the system may depend
upon its past history; fhat is, the future state of the system depends not only
on the present but also a part of its past history. A special case of such an
equation is a differential-difference equation

x (t) = £(t,x(t),x(t-r))
where r 1is a nonnegative constant. For r = 0, this is an ordinary differential
equation. A more general equation, which we choose to call a functional-differ-
\ ential equation, is one of the form

(1) x(t) = £(t,x,
where x is an n-vector and the symbol Xy is defined as follows. If x 1is a
function defined on [-r, ), then for each fixed t in [0, ®), Xy is a function
defined on the interval [-r,o0], r finite, whose values are given by

xt(ﬂ Y= x(t+8), -r =6 =0. Inother words, the graph of x, is the graph

of hie n [t_r

, of x on To
for ¢t gto, one specifies an initial function on the interval [to - r,to] and
then extends the function to tzt = by the relation (1).
Functional-differential equations arise in various applications. The
\ importance of such equations has been amply emphasized by Volterra [1,2] in the
discussion of visco-elastic materials and the interaction of biological species.
Such equations also occur in other aspects of biology, econometrics, number theory

and problems of feedback control. It is also hard to visualize an adaptive control

systém which would not use in a significant manner a part of its past history.
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. It may even be possible to formulate such equations as functional-differential
equations.

Although functional-differential equations have been investigated
for many years, they have received more intensive study in the past few years,
probably due to the diverse applications of such equations and especially due
to the present interest in control problems. As a consequence some books are

> now available on the subject (Mishkis [ 3], Pinney [4] , Krasovskii [ 5],
Bellman and Cooke [6], Halanay [7] ). The book of Minorsky [8] also contains
material on differential-difference equations and an excellent discussion of

specific applications. Hahn[ 9] includes a section on stability by Lyapunov

functions.

In this short report, we attempt to indicate some of the areas of
investigation that are presently being discussed in the literature. Naturally,
the discussion will be biased by the viewpoint of the author and is not in any
way to be understood as a criticism of topics not included below. Also it is
impossible to even mention all areas of research. We only attempt to present
enough topics to stimulate the regder to consider the above books as well as
some of the literature for details.

Throughout the presentation we will emphasize a geometric approach
for the discussion of equation (1). This approach has certainly proved to be
advantageous in ordinary differential equations. To the author's knowledge, it
was Krasovskil who first pointed out that the naturalyconcept of a state for a
. system described by (1) is not the value of x at time t but the restriction

of x to the interval [t-r,t] ; or, equivalently, the function Xy defined
above, This is natural since the state of a system at any particular time should
be that part of the system which determines its behavior in the future. Of

course, this implies that the orbits of trajectories of the system will take

place in a function space rather than in Euclidean space. This introduces
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some complications but, on the other hand, it indicates the direction for the
development of a qualitative or geometric theory for functional-differential
equations.

To be more specific, let C be the space of continuous vector functions
on the interval [-r,0] and, for any ¢ in C, let the norm of ¢, designated by
loll , be defined by

loll = max_ o |o(0)]

where | x| is say the Euclidean norm of a vector x.

Suppose f(t,? ) is defined for t20, ®in C, lol <H ., 1If 0 isa
given real number and ® is a continuous function defined on [o0-r,0] with

lo l < H, then we say x = x(0, ) is a solution of (1) with initial value
[o}

® at 0 if x is defined and continuous on [o-r, 0+A) for some A>0, coincides
with® on [0-r, 0] , || xtn <H and x satisfies (1) for 02t< o + A,
Throughout the remaining discussion, we assume existence and uniqueness of solu-
tions of (1) for any 0 ,® and the solution is defined on[o, ®) If (t,®) in
(1) is continuous in t,® and locally Lipschitzian in @ , then existence and
uniqueness is proved in a manner similar to ordinary differential equations.
Uniqueness theorems under conditions as general as the ones for ordinary equations
do not seem to be available.

If 0,9 are as above, ‘then we define a trajectory of (1) through

(9,9,) as the set of points in [0,2) X ¢ given by {t,xt(o,q> ), tz o} .
If (1) is autonomous; that is, f£(t,® ) is independent of @ , then we may take

0 = 0 and designate the solution of (1) by x(® ). In the autonomous case, the

orbit of (1) through @ is the set of points in C given by Utgoxt(q) ).

2. Liapunov stability. With the above interpretation of a solution of (1) as

defining a trajectory in the space [o,oo) x C, it is almost obvious how to

define Lyapunov stability. In fact, if f(t,0) = O, the solution x = 0 of (1)
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is called uniformly stable if the following conditions are satisfied for

every ¢ z O:
i) there is a b = b(0o )>0 such that ¢ in C, |[9]] < Db
implies the solution x(0,p ) of (1) exists for t 2z o
and || x, (g,@) | < H for t z g
ii) for every € > 0, thére is a 8= ®e€) > 0 such that
® in C, ||| < & implies the solution x(o ,9 ) of
(1) satisfies || xt(o , ) <e for.t z 0,

The solution x = 0 of (1) is called asymptotically stable if it

is stable and in addition for every o 2 O, there is an Ho = Ho( g)>0
such that ||| < H implies || xt(o , )| 20as t 0w,

This is the same definition of uniform stability as for ordinary
differential equations except for the fact that we assume properties i) and
ii) for every o 2 0. 1In the case of ordinary differential equations this is
not necessary, but, for functional-differential equations, a system can be
uniformly stable at 0 and not uniformly stable for o 1 > 0, For examples
of this property see Zverkin [lO];

We have always assumed our retardation r 1is finite. If r 1is
infinite, then one can also discuss stability and obtain the results below,
but we cannot use the uniform nérm in C((-», 0]). If C((-%, 0]) is given
the compact open topology (uniform convergence on compact subsets), then our
épace becomes a metric space and everything is repeated with the metric rather
than norm. Driver [11] has also discussed infinite retardations, but the results
seem to be weaker due to his topology.

Following Krasovskii {5], we say a scalar function V(t,p ) defined

and continuous for t 20, 9 in C, |||l < H is positive definite if there

exists a continuous positive definite function w(s), 0ss < H, such that



V(t, ®) 2 w(l|9]) for all t 20, ¢ in C, |9 <H. The function V(t, 9)

has an infinitely small upper bound if there is a continuous function w(s),

0 £s<H w(0)=0, such that V(t, ¢) = w(||l¢l|) for t20, 9 in C,
ol < H. The derivative of V along the solutions of (1) is denoted by \'/( 1)
and is defined by

. —_ 1
Veole,x,) = Iim S [V(t +h, x_ ) - V(t, x.)].
()™t N h t+h t
With these definitions, one can prove the usual theorems of Liapunov for
stability and asymptotic stability. More specifically, if there is a V(t, @)

which is positive definite, has an infinitely small upper bound and v ) £ 0,

(1
then the solution x=0 of (1) is uniformly stable. If, in addition, 'V(l) is
positive definite, then x = 0 is asymptotically stable. Furthermore, if the
solution x = 0 of (1) is assumed to be asymptotically stable, then one can con-
struct a V(t,*@) with the above properties such that -V is positive definite
(the converse theorem of asymptotic stability). The importance of the converse
theorems is to deduce properties concerning the implications of stability; for
example, stability with respect to the first approximation, stability under con-
stantly acting disturbances, etc. For details of this type of investigation, see
Krasovskii [5], Halanay [T7].

Given a particular equation, one would hope to construct a Liapunov functional
from which sufficient conditions for stability could be deduced. Unfortunately,
it seems to be almost impossible for specific equations to find Liapunov functionals
which are positive definite in the sense described above. We give the following
simple example to illustrate the properties that are more easily satisfied in

applications.

Consider the eguation

(2) x(t) =-ax(t) - bx(t - r)

where x 1is a scalar and a, b, r are constants, a >0, r z 0. If
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0
v(9) = %5 CP2(O) + %f q>2(9)d9,

then
Tioy(x) = - %1x2(t) + 2 x(t)x(t - 1) + x(t - 1)]

and it is clear that néither V nor -ﬁ(g) is positive definite in the above
sense regardless of the values of a and b. On the other hand, V(®) 2 QE(O)/Ea
and -V(E)(w) z kmz(o) if |b] < a, which is certainly a type of positive definite-
ness. One can show that conditions of thié type on V and -V are sufficient
for asymptotic stability. We do not state the result any more precisely, but refer
the reader to Krasovskii [5) and Driver [11] for the theory and examples. Much
more research is needed in the area of determining practical conditions on V
and V which wili ensure stability.

Another possible attempt to obtain sufficient condi£ions for the stability of

(2) would be to take the function V as only a function of the vector x(t)

and not include any of its past history. In particular, if
2 _
V(x(t)) = x(t)/2a,
then
Tooy = - [x9(8) + 2 x(t)x(t - )]
(2) a

which does not even have fixed sign. On the other hand if ]b[ < a and

| x(t - r)] < |x(t)| then ﬁ(g

) < - 5x2(t) where & is a positive constant.
It is rather remarkable that these weak conditions on V and v imply asymptotic

stability of the solution x = O of (2). General results along this line were
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first given by Razumikhin [12, 13]. See, also, Krasovskii [5] and Driver [11].
In the particular case of equation (2) one can actually obtain the exact
region of stability of the zero solution as a function of a, b, r. The region-
|b| <a a>0, is the maximal region which yields stability for all values
of r. One would hope to be able to obtain a more realistic approximation of the
stability region by using a more clever choice of the function V. If the func-

tion V 1is chosen as

V(o) = 0%(0) + aLf 0(6)aeTo(0) + I E()o?(0)ae
-r -r
then it was shown by Hale [14] that o and PB(#) can be chosen as functions of
r 1in such a way that the application of the previous type of stability theorem
yields a region of stability which approaches the region a + b >0 as r —0.
This is the exact region of stability of (2) for r = 0.

Much more research is needed in the area of determining sufficient conditions
for stability by use of Liapunov functionals and also man& more examples need to
be constructed to show the types of functionals that occur in applications.

For autonomous ordinary differential equations, the importance of relaxing
the conditions on V was pointed out by LaSalle [15]. He gave many applications
in which it was not too difficult to construct positive definite Liapunov functions
but V would be only £ O, The limiting behavior of the solutions was then shown
to be determined by the largest invariant set contained in the set where V=o0.

In particular, if this set contained only the origin, then solutions will approach
the origin with increasing time.

For autonomous functional-differential equations, the concepts of w-limit
set and invariant set can be introduced. One can then obtain a generalization

of the theorem of LaSalle to functional equations which is a practical tool. The
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reader can consult Hale [1k, 16] for the details of this theory as well as
applications. One of the applications is an interesting problem in the stability
of nuclear reactors considered in a beautiful paper of Levin and Nohel [17], who
also were using Liapunov functionals and essentially the concept of invariant
set. Another interesting application is a model of the interaction of biological
species considered by Volterra [2] who, by the way, also used a type of Liapunov
functional. The paper [16] also contains some results on instability.

Many papers on functional-differential equations and control theory have
appeared in recent years in the journal Applied Mathemafiés and Mechanics
(Prikl. Mat. Mek.). The reader may consult this journal for the general flavor
of the research, but we think the paper of Krasovskii [18] deserves special atten-
tion. Krasovskii studies the problem of the stabilization of a system by indirect
control; that is, the control parameters are determined through a differential
equation and, in particular, a functional-differential equation. He then gives
as an example the problem of trying to stabilize, by means of a linear control
variable, a pendulum at its unstable equilibrium position when only the deviation
from the vertical can be measured. Krasovskii shows that the system can be sta-
bilized if the control variable satisfies an appropriate linear functional-differ-
ential equation, but it can never be stabilized by a control variable which satis-
fies a linear autonomous ordinary differential equation.

5. Behavior near equilibrium points and cycles. One of the basic problems in

ordinary differential equations is to understand the behavior of solutions near
invariant sets. This theory is fairly complete near those invariant sets for
which it is possible to introduce a local coordinate system. It would be desir-
able to obtain the same type of information for functional-differential equations.
Some results along this line have been obtained for equilibrium points and cycles

and these are briefly described below.
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Consider the autonomous equation

(2) x(t) = £(x,).

N

An equilibrium point of (3) is a constant function which satisfies (3); that is,
a constant function b for which f(b) = 0. Without loss in generality, we can
assume b = 0 and if f has continuous Frechet derivatives of order two, then
(3) can be written in the form

0
(4) x(t) = Jfan(8)1x(t + 8) + F(x,)

-T -
where 1 1is a matrix whose elements are functions of bounded variation on [-r, O]
and |F(@)|/l¢] -0 as o} —o.
A basic understanding of the solutions of (4) in a neighborhood of zero

requires a detailed investigation of the linear system

0
(5) x(t) = [ [dn(€)1x(t + 6).
-r
As expected, the characteristic equation
0 A6
(6) det[NI - [[an(8)]e™] = 0
-r

and the characteristic values (solutions of this equation) will play a fundamental
role. To any solution of (6), there are a finite number of linearly independent
solutions of (5) of the form p(t)eXt where p(t) 1is a polynomial in t.
Solutions of this type are called characteristic functions. It is acéually the

case that the characteristic functions serve as a basis for the solutions of (5)
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in the sense that any solution of (5) with initial value ® at O can be
expanded in a uniformly convergent infinite series of characteristic functions on
an interval [o, T], o > 0. For the investigation of (5) along this line, see
Pinney [4] and Bellman and Cooke [6].

To understand the geometric properties of the solutions of (4) near zero,
it is advantageous to interpret the solutions of (5) as orbits in C. In this
approach, the expansions of solutions in terms of characteristic exponents is
not needed. If x = x(¢) denotes the solution of (5) with initial value @
at 0O, then xt(w) is a bounded linear operator, taking C into C for each
fixed t 2z 0. If we designate this operator by T(t), that is T(t)9 = xt(w),
then T(t + 1) = T(t)T(7) for all t, T 2 0; that is, T(t) is a semigroup
of operators. Furthermore, T(t) is compact for t = r. One can now borrow
results from the theory of functional analysis to analyze the behavior of the
orbits of (5) in C, an orbit through @ being defined as before as UthT(t)Q.
To any solution A of (6), there corresponds a finite dimensional subspace of
C with basis ¢ = (wl, cee, Qp) which is invariant under the operator T(t)
for each t 2 0 and

T(t)o = oeb®

where B is a square matrix of dimension p whose only eigenvalue is X; that
is, on this subspace the solutions of (5) interpreted in C behave essentially

as an ordinary differential equation. If it is assumed that no solution of (6)

lies on the imaginary axis and Xl’ ooy Xk are the solutions of (6) with posi-
tive real parts, then there exist two subspaces P, @ of C, which are both

invariant under T(t), t 2 0, such that every @ in C can be uniquely decom-

posed as @ = @P + @Q’ @P in P, ¢Q in Q and
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where KX, a are positive constants. The subspace P is finite dimensional
and Q 1is infinite dimensional. Once the estimate (7) is obtained, it is natural

to call the equilibrium point a saddle point and the orbits of (5) are essentially

as in the accompanying diagram where the arrows

P

Y
N
5

designate the direction of the motion with increasing time. One can also give
an explicit procedure for computing the subspaces P, Q from system (5) and a
system adjoint to system (5). The explicit form of the subspaces P, Q is im-
portant in the applications, especially in the theory of perturbations discussed
in the next section. Shimanov [19] has also used this method to discuss stability
of a nonlinear system when the linear part has some characteristic values with
zefo real parts. For details of this theory see Shimanov [19, 20] and Hale [21].
Once this geometric picture of the orbits of (5) is obtained, it is natural
to ask the following question: is the saddle point property of system (5) pre-
served for system (4)? More specifically, do there exist sets P*, Q* which
are homeomorphic near zero to P, Q respectively such that the solutions of

(4) with initial value on P* remain on P* for all t in (- =, 0] and approach
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zero as t — -» and the solutions of (4) with initial values on Q* remain on
Q¥ for t in [0, =) and approach zero as t - o ? The affirmative answer
to this question as well as more detailed information is given by Hale and
Perelld [22].

Now suppose that system (3) has a nonconstant periodic solution xo(t) of
period 2r. In the space €,  this periodic solution generates a closed curve
', If the concept of asymptotically orbital stability with asymptotic phase
is defined as in ordinary equations, then the following question can be posed:
what conditions on f in (3) will ensure that the curve f is asymptotically
orbitally stable with asymptotic phase ?

To answer this question, we proceed as in ordinary differential equations
to discuss the linear variational equation of the periodic solution xo(t). This

will be a linear functional-differential of equation of the form

(8) x(t) = [O[an(t, 6)1x(t + 6)

-r

where n(t, 6) is a matrix which is periodic in t of period 2m. Hahn [23],
Stokes [24], Halanay [7] and Shimanov [25] have discussed in detail systems of
the form (8). In particular, if x(®) is the solution of (8) with initial value

® at 0O, then xt(w) again defines a continuous, linear mapping of C into

C for each fixed t = 0. If the operator U{t), t =0, is defined on C by
U(t)e = xt(m), then the characteristic multipliers of (8) can be defined as the
elements of the point spectrum of the operator U(2r) (the monodromy operator).
With this definition of the multipliers, one can then discuss in what sense the
Floduet theory is applicable to (8). It is true that the behavior of solutions
of (8) for large values of t 1is determined by the characteristic multipliers.

On the other hand)there may be only a finite number of characteristic multipliers
and the expansion of solutions in terms of characteristic functions is impossible.
Hahn [23] has given some conditions on the measure n(t, 6) fo? which such an
exp;nsion theorem is true. See the above works of Hahn, Stokes, Halanay and

Shimanov for the details of this theory.
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Using the above theory for systems of the type (8), Stokes [26] has proved
the following interesting result for system (3): If the linear variational egqua-
tion associated with a nonconstant periodic solution of (3) has all characteristic
multipliers with modulus less than one except for the obvious multiplier which
is equal to one, then the curve I' in C generated by this periodic solution
is asymptotically orbitally stable with asymptotic phase.

This result is a.direct generalization of the known property of ordinary
differential equations and can actually be used to determine stability of periodic
solutions which arise in the perturbation theory of linear systems described in
the next section.

The proof employed by Stokes is a nontrivial generalization of the one given
in Coddington and Levinson [27] for ordinary differential equations, and, therefore,
a local coordinate system in the neighborhood of I' is not necessary. In order
to go further in this direction of a qualitative theory, it seems to be essential
to have local coordinate systems near the siﬁple invariant sets in C. If the
form of the new equations could be obtained, many important results of ordinary
differential equations could be extended to functional-differential equations.

A simple case of the possible new equations was considered by Hale [28].

L, Theory of oscillations. Consider the homogeneous linear equation
. 0]
(9) x(t) = ["Tan(t, 8)1x(t + 6)
-7 0
where 1 1is a function which is sufficiently smooth so that [ [dn(t, 8)]9(8)
-r

is a continuous function of t for all ¢ in C, and also consider the non-

homogeneous equation

0 )
(10) x(t) = [ [an(t, 6)1x(t + 6) + £(t)

where f 1is a continuous function on (-, «). Halanay [7] has proved that a
necessary and sufficient condition that all solutions of (10) be bounded on [0, o)

for every function f(t) bounded on [0, ®») is that the zero solution of the
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homogeneous equation be uniformly asymptotically stable (the Perron problem).
Furthermore, uniform asymptotic stability of the zero solution of (9) implies
exponential asymptotic stability. With a more detailed analysis one can show
that this type of stability and 1, f almost periodic implies there is a unique
almost periodic solution of (10). These results can then be used along with
successive approximations to obtain the existence of almost periodic solutions

of nonlinear equations of the type

0
x(t) = [ [an(t, 6)1x(t + 6) + ef(t, xt)

-T
where € 1is a small parameter (see Halanay [7]). General results along this
line have been obtained for small perturbations of nonlinear equations by
Yoshizawa [29] by using the converse of the stability theorems of Lyapunov. Re-
ference [29] also contains other references on this same subject.

If the function n in equation (9) does not depend upon t, then one can
show easily from the general theory of linear autonomous systems mentioned in
section 3 that a necessary and sufficient condition that the nonhomogeneous sys-
tem have a bounded solution in (- e, ) for every forcing function f bounded
in (-=, =) is that no characteristic values of (9) lie on the imaginary axis.

In this case, the bounded solutién is also unique., What happens when 17 does
depend upon t? This problem seems to be unanswered at the present time.

More interesting questions in the theory of nonlinear oscillations is the case
in which the homogeneous equation has solutions which do not tend to zero as
either t — o or .«; for example, a periodic solution. For simplicity we
restrict our attention to the case in which 1 does not depend upon t and f
is periodic of period 27; that is, the equation

0

(11) %(t) = [ [an(6)1x(t + 6) + £(t), £(t + 2r) = £(t).
-
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One can then prove the following: a necessary and sufficient condition that (11)

has a periodic solution of period 2r is that
or
[ y(t) - £(t)at = 0
0

for all periodic solutions y(t) of period 2r of the "adjoint" equation

0
(12) ¥(s) = -/ y(s - 8)an(e).

-r
In particular, if the homogeneous part of equation (11) has no periodic solutions
of period 2w, then (12) has no periodic solutions of period 2r and, thus,
(11) has a unique periodic solution of period 2r (see Halanay [7]).

As is well known in ordinary differential equations, this is a basic re-
sult for discussing periodic solutions of perturbed linear systems (see Coddington
and Levinson [27], Cesari [30], Hale [31]). It is also true that one can use
this result to discuss functional-differential equations of the form

0]
(13) x(t) = [ [an(@))x(t + ) + ef(t, x,)
-r

where € is a small parameter and f(t, ®) 1is periodic in t of period 2.
Some results in this direction may be found in Halanay [7j. A more complete dis-
cussion extending the method of Cesari and Hale will appear in the forthcaming
Ph.D. thesis of Perelld from Brown University. Perelld exploits the general
theory of linear systems mentioned in section 3 to derive the bifurcation or de-
termining equations for the periodic solutions of period 27 of (13) and, thereby,
reduces the problem to the solution of a finite number of transcendenﬁal equations,

Research is also being devoted to the extension of the pefturbation method s
of éolving (13) when f(t, ®) 1is more general than a periodic function of t.

In particular, the method of averaging of Krylov-Bogoliubov-Mitropolski-Diliberto
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(see [32, 33]) has been extended to functional-differential equations. For the
case when r, the retardation parameter, is €7, this was done by Halanay [7],
and the case for arbitrary r by Hale [34]. This theory is too complicated to
describe here, but we mention one simple consequence of the theory. Consider

the system
(1%) x(t) = ef(t, xt)

where f(t, ®) is almost periodic in t wniformly with respect to @ on every
compact subset of || < H. If

lim 1 T
£(9) = 1, o7 fof(t, P)de

and there is an equilibrium solution e, of the ordinary differential equation

y=£(y)

such that the characteristic exponents of the linear variational equation have
negative real parts, then, for € sufficiently small, system (14) has an asymp-
totically stable almost periodic'solution which reduces to P, for € = 0., Other
interesting examples are discussed in [34].

In the theory of autonomous ordinary differential equations which do not
contain small parameters, one of the basic methods for determining existence
of limit cycles is to determine a subset of the Euclidean space which is homeo-
morphic to a cell such that any solution of the equation with initial value on
the subset returns to the subset at a future time. One can then use the Brouwer
fixed point theorem to assert the existence of a limit cycle. In a series of
papers, Jones [35, 36] has shown that the application of similar arguments (but,

of course, in the function space C) lead to existence of nonconstant periodic
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solutions of the equations

x(t) = -a x(t - 1)(1 + x(t)), a>mw/2,

)(t) = -a x(t - 1)(1 - x(t)), a>m/2,

as well as much more general eguations. The periodic solutions of the second
equation above are related to the elliptic functions. If many more examples of
this type were available, then it seems feasible that one could begin to formu-
late energy principles for functional-differential equati&ns.

Much of the theory of ordinary differential equations is devoted to boun-
dary value problems. This theory for functional-differential equations is still
in its infancy and this is probably due to the fact that7§nough applications have

been discovered to dictate the proper manner in which to formulate the problems.

Some results have been obtained for a few special problems and the reader is re-

ferred to Norkin [37] where additional references may also be obtained.

5. Other problems. In the previous discussion, many areas of investigation

have not been mentioned. In this section, we refer to two other important areas.
First of all, there is the interesting class of functional-differential equations
TrrmAavT

known as equations of neutral type; that is, those equations in which the deriva-

v s

tive of x in (1) also appears on the right hand side of (1). The system

x(t) = ax(t) + bx(t - 1)

is of neutral type.
Certain types of problems in the theory of transmission lines can be reduced
to the study of equations of neutral type (see Miranker [38]). The géneral theory

of these equations is contained in Bellman and Cooke [6] and, in some respects,
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is formally very similar to the systems discussed in the previous pages. On the
other hand, the problems are much more complicated and not too well understood.
For example, if all the roots of the characteristic equation of a linear autono-
mous system of neutral type are in the left half of the complex plane, it is
not always true that all solutions approach zero as t — . The reason for the
difficulty is that the characteristic roots in such a situation are not necessarily
bounded away from the imaginary axis. Evén if the solutions do approach zero,
the rate of decrease dépends very strongly upon the smoothness of the initial
data. The papers of Hahn [39] and Snow [40] are good intfoductions to this fasci-
nating subject.

Another interesting area of investigation for functional-differential equa-
tions is singular perturbations; that is, systems of equations in which a small
parameter is multiplying some of the highest derivatives. Cooke [41] (see this
paper for additional references) has given a detailed presentation of this question
for linear nth order scalar equations., It turns out that the introduction of
retardations in singular perturbations leads to considerable difficulty, but
Cooke has managed to obtain criteria for regular degeneracy of the solutions

which generalize known criteria for ordinary differential equations.
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