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ABSTRACT

This thesis 1s concerned with nonsupervisory problems which arise in

the design of numerous types of detection systems. A rather general epproach

is given which differs from approaches taken by other investigators in that
(a) the solution is formulated to include nonparametric as well as purametric
knowledge, (b) the definition of the nonsupervisory problem is extended to

a class of nonsupervisory problems, and (c) it is recognized that a certain
minimum amount of a priori knowledge is required for a solution to exist.

The approach begins by showing that when samples are not classified,
the probability distribution of the samples is a mixture c.d.f. A mixture
c.d.f. is constructed by utilizing the a priori knowledge available. It
is then possible to determine if a sufficient amount of a priori knowledge
1s available for a solution to exist. By solution is meant that a system
exists minimizing sample-conditionhl propability of error (or, more generally,
sample - conditional risk) and converging to the minimum probability of error
system.

Histogram and empirical c.d.f. concepts are defined for nonsupervisory
problems. Furthermore, it is shown that classical results for Bayes estimates,
maximum likelihood estimates, etc. can be applied to nonsupervisory problems.

Computer simulated results verifying the approach are given for several

examples.
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CHAPTER I

INTRODUCTION

1.1 The Problem

This thesis is concerned with the nonsupervisory problem (i.e. adapting
without & teacher) which arises in the design of numerous types of detection
systems. Given here is a description of a rather general approach which
differs from approaches taken by other investigators in that (a) the solution
is formulated to include nonparametric as well as parametric knowledge, (v)
the definition of the nonsupervisory problem is extended to & class of non-
supervisory problems, and (c) it is recognized that a certain minimum amount
of a priori knowledge is required for a solution to exist.

The study begins with & treatment of how & priori knowledge is taken
into account when processing a sequence of vector samples. This a priori
knowledge could include knowledge of cumulative distribution functions,
possible families of cumulative distribution functions, the number of
pattern sources, snd any constraints on parameters. The system objective
is formulaeted in such & way that it can be an optimum one which minimizes
conditional risk or conditional probebility of error or one of a variety
of suboptimum.applications.

If, as the number of observations becomes large, the system is to
converge in the limit to the system obtained when all statistics ere known,
a ceratin minimum amount of a priori knowledge is required. This minimum
amount of a priori knowledge must guarantee that the system will converge;
this is equivalent to saying that the parameters characterizing the cumulative
distribution function of the observations must be identifiable. If these

paremeters are identifiable, it is then possible to show that a priori prob-
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ability laws defined on fixed but unknown parameters ere not required.
It is assumed that a sequence of ¢ dimensional samples are presented to

a receiver as denoted by

n
Ko Xp5eee,X s (xs}l (1.1)
where Xs is a representative { dimensional vector sample:
X =(x 3 X yee0,X ) (1.2)
s 8 8, sJZ

We assume that a cumulative distribution function (c.d.f.) F(XB) exists.
If the form of this distribution function is specified by a vector set of
parameters B, then we write this functional form F(XS|B) and call it the

parameter-condifional distribution function. Further, if w, is the pattern

i
class or source acting to produce XS where there are M possible pattern
classes, this is denoted as the event wio The c.d.f. of XS, given wi and

a vector Bi’ is F(Xslwi,Bi). For convenience we drop the superscript s
when it will not cguse confusion, and write F(Xs[wi,Bi), meaning it is given
that the ith pattern class is acting to produce X_. F(Xs|wi,Bi) will be
called the ith class, parameter-conditional c.d.f. In the nonsupervisory
problems considered in this thesis, the family {F(Xslmi,Bi)} will be assumed

known a priori.

More generally, let X be any sequence of v samples of the n samples-for
example X = {xs}g-v+l' Let W be the number of possible ways that M classes
could be active to cause the v samples. Call the rth way the rth partition,
n_. Then {F(Xlnr,Br)] is the family of rth partition, parameter-conditional
c.d.f.'s. The definition of this latter family allows the extension of the

nonsupervisory problem to & class of nonsupervisory problems. In the

literature survey which follows we will be concerned only with the former




family, 1.e., (F(X_ |w,B )]

Define the probability of the event that the ith class is active on the
sth sample by P(wi). If the probability of this event is independent of
the sample number, then P(w:) = P,, an assumption made throughout this thesis.
The set {Pi}¥ is called the set of mixing parameters corresponding to M
members of the family {F(Xs]mi,Bi)}° More generally, when there are W
partitions, (P(“r)}Y is the set of mixing parameters corresponding to W
members of the family {F(Xlxr,Br)]. If X is indexed, corresponding to a
set of sequences of v samples-for example X, = {Xik]I, X, = {Xéi{,o..,Xh = thiI
we assume that the mixing parameters for each sequence are {P(nr)]y, independent
of the sequence number.

If the samples [Xs]; are statistically independent given their c.d.f.,

then the samples are parameter-conditionally independent and we have
F(X_|B,{x 11y - R(x iB), for all n (1.3)
nt=? g’ n!~"’ : '

1.2 Literature Survey

An optimality criterion frequently used is as follows: Given a sequence
of ¢4 dimensional semples {Xs]i—l, meke a decision as to which of M classes
is active to cause sample Xh. This decision is made by a decision function
obtained with a system constraint of minimum sample-conditional risk. The
word sample is used here to make clear that we are talking about risk conditioned
on the pest samples, {Xs];-l.

It is desirable that this sample-conditional risk or sample~-conditional
probability of error become stable as n becomes large. Even more desirable
is that the stable point be identical to that obtained if s&ll the vector
perameters in B were known. That is, it is desirable that the performance

of an adaptive system converge uniquely to that of a system minimizing risk or

probability of error. We therefore make a distinction between & stahle system ani a




stable system which converges, the latter implying convergence to the unique
system obtainable had all the parameters characterizing the system been
known.

A suboptimum system is defined as a system which minimizes probability
of error when n - @, but which has a sample-conditional probability of error
greater than optimum. A suboptimum system possibly could be better than an
optimum system when the system complexity, cost, etc. are teken into account.

Abramson and Bravermanl considered an example where it is known which
class is active to cause gample Xs, 5 = 1,2,.,..,ni (i.e., the samples are
supervised). That is, the a priori knowledge includes knowledge that

F(XBIB) = F(Xslmi,Bi), 1 known, s = 1,2,...,04 (1.4)

Further, it is known that the family {F(Xslwi,Bi)] is & multidimensional
gaussian family, with only the mean vector m, (in Bi) unknown for each member.
If M groups of supervised samples are taken corresponding to M pattern classes

and if all samples are parameter-conditionally independent, then

M n
n 1
f([XS}llB) =T T + f(xslwi,Bi) (1.5)
1-4L s-n
i-1
vhere n = n, + n, +oo.t e Since the a priori knowledge includes knowledge

of the femily and of M, Eq. (1.5) is a known function of B. In this example
they also assumed that the a priori knowledge includes & c.d.f. F(B). Using
this & priori knowledge, they obtained a system minimizing the sample-conditional
probability of error.

Keehn;5 extended the work of Abremson and Braverman to the case where
the family is multivariate guassian and where the mean vector and covariance
matrix are unknown. He carefully defined c.d.f.'s F(Bi) for all i such that

the a posteriori c.d.f. of Bi’ for each i, is reproducing20
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Daly3 investigated a nonsupervisory system where the classification
of the samples is unknown. A priori knowledge includes: knowledge
that there are M classes with a single class active causing each sample,
that the family [F(xsiwi,Bi)} is known, the set of mixing paremeters [Pi}?
are known, and a c.d.f. F(B) is available. Daly computed the sample-
conditional risk using this & priori knowledge obtaining, in particular,
the decision function which minimizes the sample-conditional probability
of error for decision on sample xn. This decision function computes the
sample-conditional density functions, f(xn,wi[{xs]i'l), 1=1,2,...,M.

(n-1)

His computation for f(Xn, wi'{xs}i_l) is & sum of M terms, thus requiring

repidly increasing computer memory. Daly indicated that the system is stable
as n becomes large; however, he did not show convergence. In general this
solution does not converge, and additional a priori constraints are required

to assure convergence. The approach described in this thesis provides for

..... -

using these additional consirainis.

Fralickz’lu, looking for an iterative solution to Dely‘s problem,

obtained an iterative form assuming that if Bi characterizes F(Xs'wi,Bi)
. - n=1
and Bj characterizes F(xs!wj’Bj)’ then F(Bil[xﬂ}? 1,34) = F(B, [{x_}; 7).
. [= B J e o
Fralick's result is in general suboptimum since, in general,

n-1 n-1 .
F(Bil{xs}l R Bj) £ F(B, | (X )]77), #1i. This condition is true when B,

is known and M = 2, which, with B, = Bl and B, = B,, corresponds to the

i J 2

binary on-off case without supervision.

Hancock and Patrickl9’l6

showed that the desired a posteriori probability
density f(Bil{Xs}i_l) is either of the growing form, or equivalently is

computed by integrating the joint density f(BI[Xs]E_l) with respect to all
vectors except B,, where f(BI[Xsli-l) has an iterative form. Their result

is that
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-
) \
[,f‘Pj f(xn=l'wj’Bj/*'Pif(xn_l!wiBi)]

Jr[‘ T ap, & — 2(B](x,)]7)
© A J f(Xn--lHXs]l “) ’
(1.6)

Equation (1.6) is the Bayes solution for a "mixture" of M class,
parameter-conditional c.d.f.'s. This basic result, obtained by Hancock and
Patrick, includes Fralick's result as a special case. Equation (1.6) is
the result for the specific mixture considered, one of a class of mixtures
considered herein, and 1s an introduction to the parameter-conditional mixture
approach to nonsupervisory problems considered in this thesis.

Cooper and Cooperh considered the binary (M = 2) case with the family
[F(Xslwi,Bi)} one dimensional gaussian. They obtained moment estimators for

B, =(m Pi ) with o, =o0_ known, and maximum likelihood estimators

i i? 1 2
(o] (o) (o] o (@] 7
for B, =m, vwith P, = 1/2 known, i = 1,2. Patrick and Hencock', using
(o] O (o]

a different approach obtained meximum likelihood estimators for the more

general case where B, = (m, ,0, ,P, ), all entries in B, being unknown.
10 i, io io 10
Some of the first work on applying a histogram, approximating & class-

conditional c.d.f. F(Xslwi), to adaptive communication systems was done

5,8

by Sebestyen He considered only supervised semples with a single class

active on each sample.

7,6

Patrick and Hancock applied a histogram, approximating & class-

conditionel c.d.f. F(xslwi), to the nonsupervisory problem. They presented

T

computer simulated results for the rate of convergence of a blnary system

vhere the a priori knowledge includes knowledge that F(Xs|wi) is symmetrical,
Pi = 1/2 and is known, and, that there is an appropriately lerge signal-to-

o]
noise ratio. They compared this rate of convergence with that obtained by
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two other approaches using moment estimetors and meximum likelihood estimators,

respectively.

Robbins considered estimators for P, with F(Xs|wi,Bi) known, i = 1,2,...,M.

1o

His estimators are approximations to maximum likelihood estimators, obtained
in Chapter V of this thesis, when F(Xslwi,Bi) is gaussian, and perform badly.
Teicher9’lO defined a mixture and identifisbility and gave a theorem

giving sufficient conditions for & mixture to be identifiasble. In appendix
A vwe include and give a simple extension of Teicher's work, and define a
peremeter-conditional mixture which is & useful concept for applying Bayes
Theorem to mixtures. In addition we state a theorem and several propositions
giving sufficient conditions for a parameter-conditional mixture to be
identifieble. One of Teicher's propositionslo, for example, states that

&8 finite mixture of one-dimensional gaussian c.d.f.'s is identifiable if

the class-conditional c.d.f.'s can be ordered such that o > oJ, i<y,

or if o; = cj, mi < mj. An extension of Teicher's proposition in Appendix

A gives sufficient conditions for the multidimensional gaussian case.

The work by Daly and Fralick, discussed previously, does not consider
identifiability or system constraints assuring a unique solution. The
parameter-conditional mixture approach, considered in this thesis, does
provide for utilizing such constraints.

1.3 Approach end Contributions

In this thesis the approach to the nonsupervisory problem begins by
showing that, whén samples are not classified, the probability distribution
of the samples is a mixture c.d.f.9’lo A mixture c.d.f. is constructed
by utilizing the a priori knowledge availeble. If, for example, the a priori

knowledge included the classification of the samples, then the c.d.f. of the
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samples would be a degenerate mixture c.d.f. as in (1.5). In this sense,
classification of the samples is a priori knowledge used in constructing the
c.d.f. of the samples.

The overall contribution of this mixture approach to nonsupervisory
problems is that sufficient amounts of a priori knowledge for a solution to
exist can be determined. As an example, for the nonsupervisory problem
considered by Dely we show that if the family [F(Xslwi,Bi)] is one dimensional
gaussian with Bi = (mi, oi), it is sufficient that all the means be unequal
in order for a solution to exist. In addition, the mixture approach demonstrated
that in order to minimize sample conditionel risk in general, the joint a
posteriori probability density of all parameters characterizing the mixture

must be computed. Fralick,z’lu for example, had to make the assumption that

F(Bilixsli-l, Bj) = F(Bi|{xs}§-l) because he did not compute joint densities.

Another contribution of the mixture approach is that classical results
on Bayes estimates and maximum-likelihood estimates can be applied. It 1is
shown in Chapter V that a uniqueness requirement, imposed by classical methods
vwhen obtaining the asymptotic variance of a maximum likelihood estimate,
is replaced by the identifiability requirement when the c.d.f. is a mixture.
Also in Chapter V, the asymptotic variances of parameters characterizing
& binary, one dimensional, gaussian, non-supervisory problem are obtained.
Previous i.n.ve'-:stigtad:ors1+ had assumed all parameters known except the one being
estimated-an assumptionwe do not make.

In addition to the development of the mixture approach, a class of non-
supervisory problems is defined (Chapter 2). This class of nonsupervisory
problems includes such problems as (&) any number of M pattern classes are

jn
s 'n-v+l
parameter conditionally independent, and (c) sets of samples are from the

possibly active causing each sample X, (v) the samples {X are not
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same pattern class with the pattern class unknown.
A second contributiqn is an application of histogram and empirical
c.d.f. concepts to the nonsupervisory problem. When there is supervision,
a histogram can always be obtained to approximate a class-conditional c.d.f.
F(Xslwi). In Chapter III it is shown that the use of a histogram to approximate
a class-conditional c.d.f. F(Xslwi), when the samples are not classified,
results in a mixture of multinomial distributions. Whereas in the supervisory
case parameters characterizing a multinomial distribution (histogram concept)
can always be uniquely found, this is not true in the nonsupervisory case. it
is shown in Chapter III that such parameters can be uniquely found, for the
binary nonsupervisory case for example, 1f at least three samples from the
same pattern class are taken at once (the class, of course, being unknown).
Whether the family has members with continuous functional forms or 7

is multinomial, the mixture approach applies. The problem reduces to a

+
o
O

3
[$)
5]

classical problem of computing the & posteriorli probavili
B if the objective is to minimize sample-conditional risk, or to finding
a consistent estimator for B if the objective is suboptimum. In Chepter
V, a congistent minimum distance estimator of B is given for a class of non-

supervisory problems where the classes of mixtures are identifisble.




-10-

CHAPTER II

NONSUPERVISION AND PARAMETER-CONDITIONAL MIXTURES

2.1 Mixtures and Parameter Conditional Mixtures

In this chapter a parameter-conditional mixture is defined. The
type of the mixture depends upon the a priori knowledge used in its
construction. By approaching nonsupervisory problems through first defining
mixtures, we are able to define precisely different nonsupervisory problems
and the a priori knowledge they utilize. For example, the mixture defined
in Section 2.4 is used in Chapter III to apply histogram concepts to the
nonsupervisory problem. The mixture defined in Section 2.2 corresponds to
the nonsupervisory problem discussed in the Literature Survey. The mixture
defined in Section 2.5 arises when more than one claess can be active on the
same sample. The minimum conditional risk solution given in Chapter IV
applies to all the nonsupervisory problems discussed in this chapter.

A mixture results when a vector X can be partitioned W ways, LEL N RREFLATE

If, for example, X = {X )8

o) nev+l with a single pattern class active causing

each Xs’ there are W = M’ ways the pattern classes could be active to cause
X. If, as another example, X = Xs with a single pattern class active causing
xs, there are W = M ways the pattern classes could be active to cause X.

Since the partitions are mutually exclusive and exhaustive,
W

FX) = ) FX|x_) P(x) (2.1)

r=1

vhere F(X) is called the mixture c.d.f., F(X|x_) the rth partition-conditional
c.d.f., and P(nr) the rth mixing paremeter.

When we speek of a family of gaussian c.d.f.'s or & family of multinomial
c.d.f.'s, we have in mind the nature of the parameters which characterize

the family. It is therefore appropriate to define & parameter-conditional
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mixture c.d.f. F(X|B) constructed using the family {F(Xl:tr,Br)} of rth

partition, parameter-conditionel c.d.f.'s. To do this, define

J3=1310132 U....U B, UR, (2.2)

where

Br’ r=1,2,...,W.: vector characterizing rth partition-conditional c.d.f.
W
By = (Blx )} (2.3)
Thus B 1s simply the collection of the mixing parameters and all entries
in Bl""’BW' In other words, B contains all the fixed but unknown perameters

characterizing the problem. Since (X, nl), (X,xz),...,(x,xw) are mutually

exclusive and exhesustive events,

W
F(x|B) = z F(x,xr|13)
Ir=.
= i ?(X{x_,2) P(=_|B) (2.4)
=

Now, the rth partition-conditional c.d.f. is characterized by Br’
F(X|x,B) = F(X|x,B) (2.5)

and since B contains P(xr),

P(x,|B) = P(xr) (2.6)
Thus, (2.4) becomes
W
F(X|B) = ) F(X|x,,B,) P(x,) (2.7)
r=1

If we are given F(X), W, and the family [F(Xlnr, Br}, then when can B
be uniquely found? Or, put another way, given F(X), when does F(X) = F(X|B)
have a unique solution Bo, vwhich is the true value of B. The answer is that

Bo can be uniquely found when the class of parameter-conditional mixtures
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is identifiable, sufficient conditions for which are given in Appendix A.

We now proceed to relate (2.7) to nonsupervisory problems arising in

practice.

2.2 X = X.s with Single Class Active

Let X = Xs with one of M pattern classes possibly active. Then W = M

and (2.7) becomes

F(XSIB) = g F(Xslwi,Bi) P, (2.8)
i=1
This parameter-conditional mixture (2.8) arises when samples Xl,xz,.no,xn

are paresmeter-conditionally independent.

2.3 v _Samples Parameter-Conditionally Dependent

Let X=(X ]n v+ Vith a single pattern class active causing each sample
X,. ThenW = MY, Equation (2.7) becomes
MY
X 13) = ) F(x)P . fx,B ) B(x ) (2.9)
r=1
A mixture of this form arises when meking a decision on sample Xn if Xn,

given . and Br’ is statistically dependent on the previous (v-1) samples.

The distribution function of X , conditioned on {XS}E:l and B, can be

v+l
expressed as

F(X_|B, (x Loy

8 ' n-v+l
v
M
Vv v
)RR 1B, ) B()
r=1
) (2.10)
A -1 v-1 v-1
Ei F({x }n v+lI “r ) P(“r )
r=1
vhere n denotes the rth partition for samples X v+l’°"’xh and nz-l




-13-

denotes the rth partition for samples Xﬁ-v+l"'°’xn-l'

Thus, when the v semples are statistically dependent, a priori knowledge
must include the family {F({Xs]ﬁ_v+l|Br,xr)} of multidimensional rth partition,
parameter-conditionel c¢.d.f.'s, the dimension of each member increasing as

v increases. Furthermore, the number of terms in this mixture grows as

v Increases.

2.h X=X = (X ]‘l’ with Single Pattern Class Active

k
let X=X =X_,X ,...,X with class w, active for all v samples.
8 5, 8, 8, i
The parameter-conditional mixture c.d.f. F(XslB) is
M
v
F(X_|B) = ) R((%, )log,B,) By (2.11)

i=1

This mixture does not grow with increasing v as did the previous mixture
because the statistically dependent samples are supervised. The a priori
knowledge used to construct this mixture is knowledge of M, the family, and

the fact that XS = {XS }v with one pattern class active for all samples.

1
We will find in Cﬁapter IIT that this type of mixture arises when
applying the histogram concept to nonsupervisory problems. By taking v
samples at the sth observation with pattern class wi active, the class of
mixtures may be identifiable whereas it would not be with only one sample

taken.

2.5 X = Xs with Interclass Interference

Let X = Xs with any number of M classes possibly active ceausing Xs, 8
situation we will call interclass interference. The a priori knowledge also

includes knowledge of M, the family, and that claess w; is active on the sth

i

each sample Xs, there are ZM mutually exclusive and exhsustive ways that the

sample with probabilitiy Pi- Since a class w, is either active or not for




-

sth sample can occur. Thus the parameter-conditional mixture c.d.f.

F(x_[B) is y

F(X|B) = i F(X_|x ,B ) P(x) (2.12)
r=1
2.6 Two Possible Sets of Mixing Parameter

Let X = XS and & single class mi active for XS. The a priorl knowledge
includes knowledge that M = 2, the family is known, and that there are two
possible sets of mixing paremeters defined as follows:

It is known that either Pl or (l-Pl) is equal to P; Pl = P with probability
Q, and (l-Pl) = P with probebility (1-Q), @ = O or 1. Since the events
Pl = P and (l-Pl) = P are mutually exclusive (assume P # %), the parameter

conditional mixture c.d.f. is

F(XS|B) = Q[P F(xsiwl,Bl) + (1 - P) F(Xs’mz,Bz)] +

(2.13)
(1-q) [(1-P) (x_|o ,B,) + P F(x_]u,,5,) ]

where

B = (Q: P, Bl’ BZ) (Z.l)-l»)
Define

F(x|B) =P F(X |w ,B,) + (1-P) F(X, |m,,B,)

Fz(xslB) = (1-P) F(Xs’ml,Bl) + P F(Xs[wz,Bz)
Equation (2.14) then simplifies to

F(x|B) = q F (x_|B) + (1-Q) F,(x_|B) (2.15)

As the problem is formulated, Q is either 1 or O since only one of the two
sets of mixing parameters is active at & given time. Thus, (2.15) is a

‘parameter-conditionel mixture with one mixing parameter of value zero. The
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sufficient conditions given in Appendix A require all mixing parameters

to be greater than zero but less than one. We therefore cannot conclude
sufficient conditions for identifiebility in this present problem. On the
other hand, the fact that one of the mixing paremeters has value P is a
priori knowledge and should not impose greater constraints on the class of
resulting parameter-conditional mixtures for identifiability. This shows

the need for a study of identifiebility when a mixture has one or more mixing
parameters of value zero, and corresponds to the nonsupervisory problem with
an unknown number of pattern classes M.

2.7 Given a Set of Families

Consider now a situation where there are R possible families,
EFS = {FJ(Xé’wi,Bi)}, j =1,2,...,R. This might correspond to & problem
where the class-conditionel c.d.f. depends upon some parameter, for example

phase, which changes from sample to sample, and takes on R possible values.

a
[/]]
ck
m

sample to sample, being represented by one of R possible c.d.f.'s. We will

now assume that the samples are classified but that the families are not.

That is, let X = Xs with w, known active causing Xs and the jth femily active
with probability Q., 0<Q <1, j =1,2,...,R. Then
JR J
F(Xs) = z Qj FJ(Xslwi), w, known (2.16)
J=1

Thus the probability distribution of Xs is given by a mixture c.d.f. even
though the samples are classified. In this case, the families active causing
the samples are unclassified.

It is possible to give other examples where mixtures arise, by carefully
defining the a priori knowledge aveilable and using it to construct the

mixture. We now proceed however, to Chapter III, where a construction
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technique is developed for approximating ith-class, parameter-conditional
c.d.f.'s with multinomial distributions, utilizing available a priori knowledge

about the c.d.f.'s. This, put another way, is the application of the histogram

concept to nonsupervisory problems.




CHAPTER III

CONSTRUCTING ith CLASS, PARAMETER-CONDITIONAL C.D.F.'S

3.1 Introduction

Knowledge of the family or possible families of rth partition, parameter-
conditional c.d.f.'s is required a priori knowledge in constructing the
mixtures in Chapter II. The purpose of this chapter is to apply the histogram
concept to nonsupervisory problems. To do this, we develope a construcﬁion
method where multinomial c.d.f.'s are used to approximate ith class, parameter-
conditional c.d.f.'s, utilizing available a priori knowledge a&bout the
c.d.f.'s.

3.2 The Fixed Bin Model

n n n
_ 1 - 2 - n
In general let X, = [Xik]l » % [Xék}l seens X [th}, be n sequences

of samples, the samples in sequence Xs coming from class w, . Although

it ig known that semples in a given sequence are from the same class, this

class is unknown. In terms of the notation in the previous chapter, X = Xs
and W = M.

Consider now the nonsupervisory problem where nl = n2 =ee.=n =V, the

samples Xs , k=1,2,...,v, are parameter-conditionally independent, but for
k
a given vector Xs , the different components are in general parameter-
k
conditionally dependent.

X is an f dimensionsl vector. We quantize each of these dimensions
into R ?évels, obtaining Rz, £-dimensional "cubes" on "bins". Each £
dimensional bin has the same volume. Xsk can'lie in any of these R’c bins,
or in the (Rz + 1)st bin representing the remaining part of the £-dimensional
space. The bins are indexed and indicated by Be, £ = 1,2,...,(RL +1).

F(Xs) is now epproximeted using the vector set g? of fixed but unknown
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o
probabilities, P, pg,...,poz, where P; is the amount of probability in
R

bin Bg of the sample space. Any probability in bin B , 1s given by

L

R“ R+l
(o] o]
P, =l-2p§ (3.1)
R7+1

g=1

In like manner, the ith class-conditional c.d.f., F(Xs[wi), is approximated
i
by the vector set P of fixed but unknown probabilities, pi, p;,...,piz,
R

where pé is the amount of probability from F(Xslwi), in bin Bg of the
sample space.

Analogous to (3.1),
i i
P‘c =1 - z Pg (3'2)
The mixture corresponding to the nonsupervisory problem under consideration

is of the same form as the mixture described in Section 2.4, since W = M

and a single class is active for all v samples in a sequence. Therefore,

M
F(Xs|Bi) = z F(xslwi,Bi) P, (3.3)
i=1 ‘
Under the framework of the approximations described above, (3.3) implies the

following:

M
pgz z Pé Pi, g =1,2,...,R” +1 (3,4')
i=1

A binary (M = 2) one dimensional (£ = 1) example of this fixed bin model
1s shown in Fig. 1.

Since XB 1s & sequence of v vector samples, samples fall in v of the
(R£+l) bins of the sample space, not all bins being necessarily different.

Let this relative frequency in the bins during the sth sequence be denoted

by

V =lv v ev ey V
8 ( 8.7 's.’ -

Vs, Rl'+1) (3.5)
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The distribution of Vs’ given the class mi and.gé, is
£ \A

iy _ v! i] 3

P(Vsluk’z ) = v, l.oww ! [pg (3.6)

Sl S!’

Approximating F(Xs|mi) by (3.6), we obtain the following paremeter-conditional

mixture of multinomia& distributions:

P(v_|B) = ) P(V_|u,B,) P, (3.7)
i=1
vwhere
_ ol
B =E

1 M
B=(P,...,P, E,...,PM)

We now turn attention to the problem of estimeting the bin probabilities

corresponding to & single bin, say Bl' The M probabilities associated with

bin Bl are Pi’ pi,...,pﬁ. For convenience, drop the subscript 1 in what
2
follows. Then (l—pl), (1-p ),...,(l-pM) are the respective probabilities

corresponding to all bins except Bl' What we have done here is the same as

if we had originally chosen only two bins for the fixed bin model. The

probability generating function of the binomial distribution P(V 'pi,v,wi)

, i_ - iw " i v .
18 (pZ2+1-p) =(1L+0ps) vwheres=2-1.

Moled e 4+
L8RATE T

generating function of both sides of (3.7), which is a mixture of binomial

c.d.f.'s for this discussion, gives

ﬁ Pi(-l + 8 pi)V = (L +sp°), alls. (3.8) 1
i=1

M

2 Py =1

i=1

with s = 1, this is equivalent to
v M
z <§> [ { ) P, (o)) (1-p7)""3}- (%) (1-2°)"9] = 0
J=0 ) i=1

M
P, =1
=1

i
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or | M . . Py
z Pi(Pi)J (l'Pl)v-j = (PO)J (l‘Po)vu.J) J=0,1,...,v
i=1 :

M
ZPi =1 (3.9)
=1

Proposition A.5 in Appendix A guarentees & unique solution of (3.9)
for pl,pz,...,pM, P, Pg,...,PM, given the right side of (3.9), if v.> 2M-1.

The significance of the gbove result for engineering pgrposes is that
&8 priori knowledge sufficient to solve such a nonsupervisory problem, where
the form of the statistics is unknown, is provided by the existence of
sequences of v samples from the same pattern cless. A binary (M = 2) one

dimensional (£ = 1) example will help to illustrate (3.9). For this binary

case it is sufficient that v ='3; i.e., three samples be taken at a time with

-the same class active. Then Vs can occur four ways: three occurrences in

bin Bl’ two occurrences in bin Bl

in bin Bl' These relative frequencies are consistent estimators of

(po)J(l-po)v“J, j =0,1,2,3, respectively. Then (3.9) can be solved for
P

s ONe occurence in

metors cof in terms of these consistent estimators.

Another way to obtain estimators of pl, pz, and Pl is given by Blischkee,ll
who derived moment estimators. Such moment estimators can be substituted
into the decision equation developed in the next chapter, thereby obtaining

a suboptimum solution of this nonsupervisory problem.

3.3 Utilizing Additional A Priori Knowledge about the C.D.F.'s

If it is known, for exemple, that & c.d.f. is symmetrical, then approximating
this c.d.f. by a multinomial c.d.f. does not utilize the symmetrical knowledge.
For this case we would use an appropriately defined symmetrical multinomial

distribution to approximate the c.d.f. If, as asnother example, it is known
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that the ith class, parameter-conditional c.d.f.'s differ only by trans-
lational parameters, we would approximate each c.d.f. by an appropriately
defined translsted multinomiel c.d.f.

We have not yet said how we propose to count the bin probabilities in
{ dimensional space, although writing pi, p;,...,pgz indicates we must

have had some counting procedure in mind. One method of counting is to

redefine the bin probabilities as

pé 3,3 . 1< Jg SR forall a. (3.10)
l) 2)!.3)“”,&]‘ o
Then let
14
Pp=P0,...1
14
Pp = Pr,1,...,1 (3.11)
i i

Pra1 = PR,2,1,...,1
etc.
It is convenient to define a vector tg whose entries are the subscripts

corresponding to quantum level §. Then, (3.11) becomes
i i y -
Pg = Py » £ =1,2,...,R (3.12)
3

Define the family of ith class, parameter-conditional multinomisl
c.d.f.'s where B, ==_1=_'t by EF% = [F(X|wi,2?)}. This is the family used in
the construction of the parameter-conditional mixture (3.7). Next define
the family ?%P of multinomial c.d.f.'s differing only by translationel

vectors, {611. To accomplish this, define 26
o]

where 90 is a vector of

4 indices
'9 - "R+l R+l R+1

o A AR ‘>, R odd
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The vector eo locates the center bin in the £ dimensional space with R‘

quantum levels used for representinglge . In terms of 29 » the vector 2}
o} o]

characterizing the ith class-conditional c.d.f. is expressed as

i

, i
g =ge -9 bl p ﬂ = 0, i = l,z’ooo’M (:'3913)

o i R"
Llso define & family ?;ETP of symmetrical multinomial c.d.f.'s differing

only by translational vectors, {ei}, by letting 266 be a vector whose entries
are symmetrical in each of the £ dimensions. °

Returning to the nonsupervisory problem under consideration, assume
it is known that the ith class-conditional c.d.f.'s are all identical
except for different translatioconal perameters. We approximate these c.d.f.'s
by members of the familyfF&P. The distribtuion of Xs is then epproximated

by the parameter-conditional mixture c.d.f.,
M "
- P P . .
P(V_[B) = ) PV, oy g, 10,) Py v 21 (3.14)
i1

where

LA
s.«l

\n

et

& 9 ';;:—Q A_P,—ﬂﬂobu e o
\_9 ) l) J"b’x: 1’ ,PM.) (

he]
g

i

The & priori knowledge that the ith class-conditional c.d.f.'s differ
only by translational vectors reduced the number of entries in the vector
B, characterizing the mixture, by (M-1) Rz-M.which may be & considerable
reduction. If the family € 9ETP’ instead of'?%P, the number of parameters

jﬁ
characterizing the mixture is further reduced by [ <F ; ?) -l} s

Another way to consider z symmetrical multinomial c.d.f. is as follows:

Let
P(-x-6, |w;,6,) = F(x-6,[0;,6,), £ =1, v>1 (3.16)
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be aspproximeted by a symmetricel multinomial c.d.f., where ei

paremeter. If xl,xz,.n.,xn are samples from F(xlwi,ei), then samples
6; - (xi-ei), 6, - (xz-ei),o.,,ei-(xn-ei) are just as likely to have occurred.
That is, given symmetry, Gi, and n samples, we really have 2n samples as

far as constructing the c.d.f. is concerned. We might write

U [knowledge of symmetry

and ei

Or defining a "symmetry operator" Si’

(x)] } = {x’s}"l1 U(zei-xslrl1

5, ({x}], 6,) = (x}] U (26,-x_)] (3.17)

So, knowledge: of symmetry and 6, maps the n received samples to 2n samples.

i
If it is also known that the ith class, parameter-conditional c.d.f.'s differ
only by translational perameters, and say n samples are received from each

of M classes, then there are 2n M samples available for the construction

of each ith class,'parameter-conditional c.d.f. It is obvious that such

& priori knowledge increases convergence rate if the system converges.

3.4 Family of Multinomial C.D.F.'s with Spacial Constraints end v = 1

Let x = X;, 8 single sample, W =M =2, £ =1, and assume it known a
priori that F(xlwz) = 0 for x € 6, and F(x]wl) =1 for x 2 6, where 6, and
92 are translational paremeters. This latter constraint corresponds to
an approximastion that can be made when the "signal-to-noise" ratio is
"sufficiently large," and each class-conditional c.d.f. is symmetrical
ebout its translstion parameter.

Samples X s B = 1,2,...,n, which fall 5_91, given el, are thus known
to have been caused by class w, ; and samples which fall 2_92 are known to
have been caused by clasas W, . Only samples greater than 6. and less than

1
92, glven 91 and 92, are not classified.

is a translational
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n n

1 as those semples < 6., and {x_} 2 as those samples

L -1 n "1+l

ps &nd {x_}) g as those samples greater then 6, and less than 6,. Let

n 2+1 n
D, be an operator mapping ({xs}g,el) to {xs }ll and Sl an operator mapping
n 2n n

(x. 1.2 to {x. ). T as described by (3.17). Similarly, let S, D. and S. D

sn 1 Sn 1 2 2 273

be the respective operators for the samples nl+l,...,n2, and the samples

Define {xs }

> 6

n2+l,...,n3.
Since a single class is active causing each sample, the parameter-
conditional mixture is of the form (2,8) for any of the samples n2+l,...,n3,

but is a degnerate mixture for any of the samples l,.,.,nl, or n1+l,...,n2:
/

F(V_|o,B)), Dix <6

1 1

F(ViB) = F(V_lw,,B,), Dx, 26, (3.18)

< <
iF(Vslmi,Bi) P, 6 szs 6,

1=1
where
1
B, = (E, 6;)
2
B, = (B, 6,) (3.19)

B =(B,B,P ), v =1end
V is the relative frequency in the bins resulting from the application
]

of the symmetry operator to Xg -

An example where the samples n2+l,.,o,n were not used is given in

3

reference 7; the system objective considered there was to minimize sample-

0 o]
unknown, it is shown that the system converges when the ith-class, parameter-

conditional probebility or error. Setting Pl = % and known, el and 62
o

conditional c.d.f.'s were guassian, but not known a priori. Equation (3.18),

however, shows how to use the semples n2+l,”.,n3 in constructing the
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mixture. The minimum ssmple-conditional probability of error solution
given in Chapter IV, utilizing the mixture (3.18), gives an optimum
solution to this problem reported in reference 7.

Rather than using the symmetry operator we can define the symmetrical

vector gi. Then, the form of (3.18) becomes

Ve
1?(vslml’Bl) D,x = 6
F(V_|B) = F(Vsiwz,Bz) D,x 2 6,
2
< <
z F(vslwi,Bi) P, 6 <Dyx <6,
i =
where
1
Bl - (ES, 91)
2
Bz - (28, 92)

B = (B}, By, Py)
with zi the vector 2} with symmetry sbout its middle entry. VS is the
actual relative frequency in the bins resulting from sample b

If it is also known that the ith class, parameter-conditional c.d.f.'s

differ only by translational parameters, then

By = (B - 5)

B, = (P
2 ‘=86, 6,)
B = (_riseo} el, 92’ Pl)
with gse the vector common to both classes and symmetrical about 90.
o

3.5 Families of Empiricel C.D.F.'s

In the rest of this chapter we consider the problem of applying empirical

c.d.f. concepts to & nonsupervisory problem with £ = 1. A single, one
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dimensional sample Xy is teken at the sth observation. For the remainder

of this chapter, let (x.n yer X ) be the ordered samples of n one dimensional
n

samples from the c.d.f. F(x). Denote the corresponding empirical c.d.f. by

Fh(x) = F(x[{xn );). Fh(x) is constructed from the ordered samples as
s

follows:
x < xh
1
X <x<x , vy=12,...,n (3.20)
n - n
-1 v
X > X
-
n

n
The paremeters characterizing Fn(x) are the n ordered samples {xn }l, the
s

number growing as n increases.
Let a single class be active causing each sample; then there are W = M

vays the samples could have been caused. The distribution of x given [xn };
s

can be expressed as
n
*

R
n n
Rl U, 00 (P ) =) Pxlr,) (5, 17) B(x,) (3.21)
r=1
Although (3.21) may appear to be a parameter conditional mixture, this is not

asracterizing this c.d.f. are random variables,
which grow in number with increasing n. The Adaptive Bin Model is now
introduced to provide an engineering solution to this difficuity.

3.6 Adaptive Bin Model

A model is next obtained where the R bins are R coverages13 formed from

the ordered samples. There are numerous ways that coveragesl3’l7’18

can be
formed given a sequence of ordered samples {xh }; from & c.d.f. F(x). We
will consider one such way to be used in an adaptive bin model. This model

involves an approximaetion which improves as n increases.
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Let the number of samples be n = Rv - 1. If x(Rv-l) is the vth
v
smallest semple, then it is well knownl3’17 that
1
F(x(py-1) \7'-%3 R (3.22)
v

. 1
x(Rv-l)v is called the lst sample quantile (ﬁth quantile) and F(X(Rv-l)v) the

corresponding lst population quantile. The adaptive bin model is established

by defining the following:

n = Rv - 1 = number of one dimensional samples
R = number of coverages (or adaptive bins)
X = a0
By
X = 0
nn+l
v = number of samples in a bin

and the locations of the R adaptive bins are denoted by
(x » X ]; (x_, x ]:'°°)(x » X ) =
By Ty Ny Tay N(R-1)v “n (3.24)

x Ve, (x x )

((X » ’
D1l Py YR-1)v “n+l

F(xn ) is the amount of probability from the population c.d.f. in the interval

Ev

(x. ,x_ ). It is well xnown 327 that
n ’’n
o &y
E[F(x )] = 5V - % € =1,2,...,R (3.25)
ne, w’Rv-1) +1 ° R 3G
The difference Ug = FF(xn )] - [F(xn )] is called converage § corres-
Ev (E-1)v

ponding to adeptive bin Bg. Using (3.25),
E[U§‘] = ‘-g-‘-’-'-%im =%, £ =1,2,...,R (3.26)

Thus the expected amount of probability is 1/R in all R adaptive bins.

Furthermore, the adaptive bins (3.24) converge in probasbility to the intervals
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corresponding to the l/Rth quantiles of the population c.d.f.l3’l7. The
adaptive bins thus become statistically stable in location as n becomes large.
Let 2? be the vector of bin probabilities characterizing the multinomial
c.d.f. approximating F(x) as in the fixed bin model except that there is no
(R+1)st. bin. Set pi = pg = vees = pg ='%, end let the adaptive bins (3.24)
be approximations to the actual l/Rth intervals of the c.d.f. F(x).. Let
2} be the vector characterizing the c¢.d.f. F(xlwi), with pé the amount of
probebility from the ith class in the actual &th, l/Rth interval of the
c.d.f. F(x).
Another feature of the adaptive bin model is that coverages are used
to approximate the R equal probability intervals of F(x), and the fixed bin
model is then applied. The parameter-conditional mixture looks the same es

for the fixed bin model:
M

F(x,|B) = ) F(x,|3,,0,) 7, (3.27)

except that

B, = (B}, (( , % 5. (3.28)
1 7% "n(g_l)V "ng, 7'8=1

That is, the parameters characterizing F(xlmi) include the locations of the
adaptive bins.

The practical advantage of adaptive bins is that the bins are sutomatically
placed where there are samples. That is, there are few bins where there are

few samples and many bins where there are meny samples.
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CHAPTER IV

MINIMUM CONDITIONAL RISK SOLUTION FOR NONSUPERVISORY PROBLEMS

4.1 Optimum System Objective

We are interested in observing sample Xh(v:l) and deciding which class
W, is active or in observing the sequence Xn = {X }I of v samples and deciding
which class is active.

For each w, e (1 it is possible to use any decision function d € D. Let
L(d(xn)lwi), independent of B and {Xs}ial, be the class-conditional loss
function defined at every point in the product space D X (. For any d ¢ D
and w, € Ql, the class-conditional risk function r(dlwi) is defined as the

average of the class-conditional loss function over the sample space:

r(alw,) = EL(a(x )|w,)] = [L(a(x o )£(X o )ax (4.1)

For given decision function d,mixing paremeters (Pi}ﬁ, and vectors [Bi)l,

the paremeter-conditionsl risk averaged over (! is

M
r(d|B) = z r(d|w 5 0By )P z[IL(d(xn)luui)f(xnlwi,Jai)dxn]Pi (4.2)
1=1 1=l

Let f(B|(XS}$-1)he the sample conditional density of B, given the samples

{Xs};-l, which will be computed shortly. Then the sample-conditional risk

is
r(a (x )20 = [r(alB) £(3] (x)27) aB (.3)
8" 1
since r(d|B) is completely characterized by B.

Since L(d(xnlmi) is independent of B and [Xs]z-l, (4.3) can be written

r(d) (x )77 =

l
Jasfax [}: n(a(x,)lw, )e(x Ju, 3, )2, 1} 28] (x,)] (b .4)
i=1
Thus to minimize sample-conditional risk against a priori knowledge which

includes a set of loss functions, the family of ith-class, parameter-
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conditional c.d.f.'s, M, and f(Bl{XS}T-l), solve (4.4) for the decision
function 4.

If the loss function is & 0,1 loss function, X is a discrete random
vector, and 4 is chosen to be the following:

d(x_): choose w 4 such that

P(x,0,0 (X )] = sup (P(X 0 | (X1 ) (4.5)
then semple-conditional probability of error is minimized. When f(Xn,wil[Xs}i-l)

1s continuous in X , the decision equation (4.4) with 0,1 loss function is

equivalent to

d(xn): choose wJ such that
2(x 0, [T = sup (202 0, | (x )2 NY (4.6)
n-l.

1 ) for Mixtures

4.2 Computation of f£(B] (x.)

In order to minimize sample-conditional risk, f(B|{XB}§-l) must be computed
vhere the following & priori knowledge is available:
(a) The family of ith class, parameter-conditional c.d.f.'s and M are known,
and the parameter-conditional mixture c.d.f. F(Xh_l|B,[XS);-z) thus constructed.
(b) Additional constraints on X or B to insure the class of mixtures is
identifiable.
(¢) F(B) - at least an appropriately defined uniform c.d.f., not ruling out
the true value of B.

Working with density functions rather than c.d.f.'s, f(Bl[Xs}i-l) is

given by Bayes Theorem as follows:
n-2 n-2
£(X,_, 13, (x ), ") 2(B] (X,}77°)

n-l) _

1 (&.7)

£(B| {x_)
8 n-2

' £(x,_, 1 (X))

The demominator on the right side of (4.7) is a normslization constant which

assures that f(Bl{Xs}E-l) integrates over the B space to unity. f(BI{XS]i-Z)

is the density in the B space at the (n-2) stage. f(Xh_l|B,{Xs}§-z)

is a function directly utilizing the a priori knowledge above. If, for
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exsmple, the samples are parameter-conditionally independent, f(Xn_lIB,{Xs}g-z)
is given by (2.8). If the samples are parameter-conditonaslly dependent only
on the last v samples, the form of f(Xh_llB,[Xs]i-z) is given by (2.10). If
the samples are from multinomial distributions with v samples taken at the
sth observation with e single class active as in the fixed bin model, X _,
is a sequence of v samples and (2.11) is used.

If the identifiebility requirement (b) assures the existence of en
estimator for B, (the true value of B) converging to B, with probability
one, then f(Bl{Xs]?-l) converges to a Dirac delta function?’ at B,. In Chapter
III we showed sufficient conditions for the existence of such an estimator
for femilies of multinomial c.d.f.'s when using the fixed bin model. We will
show in Chapter V (Theorem 5.1) that for any parameter-conditional mixture
c.d.f. F(X|B), the cless of which is identifiable, continuous in X end B,
such & consistent estimator for Bo exists.

For convenience we now limit considerations to the vector samples
being parsmeter-conditionally independent. F(Xn_lIB,(xs]i-z) then has the

form (2.8) such that (4.7) becomes

M
[ z f(xn-llwi’Bi)Pi] (B {Xs)g_l-z)

2(B| [xs]ﬁ“l) L

(4+.8)
n-2
f(xnv-lHXs}l }

Equation (4.8) is the fundamental result for the a posteriori probability
density of the vector B characterizing & parameter-~conditional mixture. It
is used in the minimum sample-conditional risk equation (4.4). Sometimes

it is desirable to obtaln the a posteriori probability of Just one parameter
in B; f.r example, the Bayes estimate of such & parameter may be desired.

Therefore, let Yx be some parameter in BK° The sample-conditional density
J




of v, 1is obtained by integrating (4.8) with respect to all paremeters in

J
B not equal to vy, . Integrating (4.8) in this fashion gives

J

[2 JPi 2%, 1 13,,0,) 23] (x)]7) i |

£y, | (x )21 o K - (%.9)
Ky el £(x_, 1(x)27%)

[ 2 2x , Bom) 2(el x)}7%) aB

+ n-2
2(x o 1(x.37%)

where B is defined as the vector not conteining parameter YK but containing
J
all other parameters of B. Continuing with (4.9) we obtain

f(vle {XS}:-I) =

[ ; fPi 2(X _,1B,0,) £(B| {xs]rll'z,yxi) dB ]
14K o

- £y, | {x_)77%)
£(x__ [x 1373 Ky et

[ I Py 20X, [Bo ) 2(3] {xs}rll-z’ Y ) dﬁ] ez
+ d £y, 1{x377) (+.10)
J

n-2
£(x_, 1 (x)77)
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n-2
end since f(Xn_llBi,wi) = f(xn_llBi,wi,'yK.,{Xs]l ) and

PKf(Xn_lIBK,wK) = f(Xn_l,wKIB,YK ,[Xs}n_zg where B is a vector containing

all entries in B except yy , (4.10) vecomes
J

_ £(x__1 0 | (x )72, ¥,)
f(ijl{xs}rl1 Yy = [2 el sl

n-2
n-z ] £y 11%3,77)
£(x__,1(x37) 3

(k.11)
n-2 n-2
(X, 10l (X)) ’YKJ) E[f(xn—l’wxl "k’ (Xgdy )]

Fly, | (x )°%)
n-2 n-2 K. s’1
f(Xn_ll (x.3;7°) f(xn-l’“’xl (x )7 ,YKj 3

where the expectation is & conditional expectation, conditioned on [Xs}i-z

and YKJ, and taken with respect to B. That is,

n-2
E[f(xn-l’le YKJ’ x5 "] =

f f(xn_l,wxlix,vxj) £(B| ij,{xs);'z) dB (4.12)

Define the "weighting coefficients" within { } (4.11) by Ci(YK E

J
n-2
g0y 1)y o )

c,(y, ) = . (4.13)
17K, (x| (x )7 )

Using these "weighting coefficients," (4.13) becomes

£y, | (x )21 = ZKC( )
YKJI o1 ) [j_ 1ij +

E[f(xn-l"”xl YKJ’ [xs}rlx-2 )]

C (v, ) Te(y, | (x )2°2) (4.1k)
h K .”‘9.\ -
d f(xn--l’wKIYK’{xs}i ) £ 8

The interpretation of (4.14) is as follows:
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a) }E Ci(yK ) is the probability, conditioned on Yy and {Xs];-z, that

- 1K J
class W, was not active to produce the sample xn-l' With probability

E: C (YK ), the conditional density of YK at the (n—Z) stage is thus retained.

i)éK J J

b) C (YK ) is the probability, conditioned on Y, end [X ] , that class
J

wK was active to produce sample Xn. With probability CK’ the conditional

density of Yy at the (n-2) stage is updated in a supervisory manner. That

is, if it is known X _, came from class ., then (4.14) vecomes
n-2,"
o | E[f(xn-l’leYK J’(xs]l )J (v 112 h15)
£y {x b ) - £y, | (X 4.15
Y P S I

c) E[f(x o |y ,{X ]n 2] is involved in (4.14) because f(X s Wy |B ) is
n-1’ "K' 'K -1
in general a function of parameters other than Yg

4.3 Systems Minimizing Sample-Conditional Probability of Error

In this section we consider the design of sysiews minimizing sample-
conditional probsbility of error. When F(Xslwi) is approximated by a
multinomial c.d.f. using the fixed bin model, X is & discrete random vector.

gse decision equation (4.5) with P(X TH I{X ) ) computed in
terms of f(BI{XS};-l) as follows:
n-1l, _ J n-1 n-1 o
P(Xn,wil{xs}l ) = P(Xn,wi|B, (x}77) 2(Bl{x},77) a8, 1 = 1,2,...,M
Since the samples {xs]; are assumed parameter-conditionally independent,
n-1, _ J [ ] n-1 -
P(Xn,wi“Xs}l ) = P(xnlwi,B)Pi #(Bl{x)]77) @B 1 =1,2,...,M  (k.16)

with

= g}, v known (4.17)

where in géneral Xs is a sequence of v samples as described in Chapter III.
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Denote the bins that the v samples on the nth observation fell in by

BnK, K =1,2,...,v. Using this notation and (3.6) in (4.16),

P(X 0, ) (X770

: o i n-1
= i !.Y.vn T f [{AE; PﬂK}Pi] f(BI{xs)l ) aB (4.18)
L v

where v is one.

K
It is convenient to define the sample conditional expectation of

v M Mot
{V'Il (A -V”*—! }g;rl P’nkj Pi by Lpn]n_li that is,
1 v

- R — n-1 1S
[Pn] = ,wi|{xs}l ) = E[ {Vr po ”x }P | {x }l (4.15)
o ll lv
If v =1, (4.19) reduces to

fp”]n 1 E[ Pp Py | (x } | (4.20)

when pﬁ is the probability from the ith class in the single bin in which sample
X fell. Equation (4.20) used along with the decision equation (4.5) has an
interesting interpretation: To minimize the sample-conditional probebility

of error when v = 1, while making & decision on the nth. sample, observe

the bin into which the nth sample fell, say B . Then compute the expected

i
amount of probability in bin B.n for all M classes and make decisions as

folléws: ¢hoose w, >

(g} = o { 7]} (k.21)

If v > 1, one observes the expected values (for each 1) as in the right side
of (h.l9). These expected values do not have the simple interpretation
as when v = 1.

Equation (k.7) requires £(X _,|w,,B,) which is computed from P(V__,|B,,w,)
by

£(X,_1 1B ,0,) = KP(V_,[B,,0,) (k.22)
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Since K is just a normalization constant, substituting (4.22) in (4.8) gives

[ZPW le)P]

n-1
) f Lnumerator] d B f(Bl{X ]l ) (k.23)

f(BI[X }

When the femily of ith class, parameter-conditional c.d.f.'s has
members continuous in X and Bi’ such as the gaussian family, the decision
equation is (4.6). f(BI(XS]i‘l) is computed by (4.8). If the family is

multiveriate gaussian with Xs a single vector sample,
X _lw,B) =

( )1/2T - I% eXP{'% (x:n_l-ei)T [@ij]‘l(xn_l-ei)} (h.24)
2x ]
XX

where Q;x is the ith covariance metrix and 9i the corresponding mean vector.
Note that
B, = (@

i xx’

|
~~
re—
!9‘

[y
u—a

H =

B 12 (O }1 =17 {Pi}i a)

“The two types of optimum systems are shown in Fig. 2. The upper system
uses the fixed bin model, and the lower system is for cases where the family
has ith class, parameter-conditional c.d.f.'s continuous in X and Bi'

4.4 Quantizing the Parameter Space

The computation of f(BI{Xs}i) is iterative, in terms of f(Bl[Xs)g-l).
The procedure is that, upon receiving sample X , f(Bl(Xs};-l) is replaced

n- l), it is necessary that B

in storage by f£(B] (X }l) To store f(Bl[X ]
take on a finite number of points in the parameter space. For some cases
where there is supervision, it is not necessary to compute f(B[{Xs]i-l).

Instead, f(Xn,wilixsli-l) can be expressed in terms of a sufficient statistic
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Fig. 2.

Minimum probability of error systems
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which is fixed in sizezo.

In general, however, it is necessary to compute f(BI(Xs}i-l). To do

this, denote the number of scalar entries in B by q and write

B = (7, gz,...,gq) (&.25)
Quantize Qi into Ni one dimensional levels of length Ai each, 1 =1,2,...,q.
a
B can thus be in any of'ﬂ"Ni g-dimensional levels. Denote a particular level
i=1
by L, . , and denote the true probability measure attached to this
Jl’JZ"' :Jq
level by m'j 3 j . Denote the probebility measure sttached to this level
l) 2}" }
at the nth stage by (m 3 . Then, using this quantum level model,
319dprteadg
(B e L, 3 X} = C(L) (m . . 4 .2€
( Jl: 27" ,J I{ 5 l) (L) ( Jl:Jz)"')Jq)n ( )

where C(L) is a normalization constant for the level considered. Equation

(4.26) expresses the density of B in the level L )3 . at the nth stage
l 2
in that lovel st

in terms of the probability measure in -1)st stege.

Using the quantum model defined inthis section, (4.7) can Le written

(m, . ) =

317900000

n-1
(X L, . . X m, . .
( n'll Jl:Jz:"';Jq){ 5}1 ) Jl:JZ:"':JQ)n'l
for all J,,q
q Ni i
n-1

(X . . X m, .

zj E: ( n'l' Jysdos s ersd 3 S}l ) ( Jysdosesd )n'l
1’°2 a -z 2

i=1 ji=l

(k.27)

If the samples are parameter-conditionally independent, (4.27) reduces to

(X L, . . m, .
( ) ( n'll JI’JZ""’Jq) ( Jl)Jz:"°)Jq)n‘l
m, . . =
Jl’JZ’...’Jq n q i
) £l ) (a, )
i j=l 1 Jl’Jz}" }j Jl’vjz)"')x]q n-1
1

(4.28)
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F(x_ . |L ) might be called & "level-conditional" mixture
n-l Jl,jz,ooo’jq 7
c.d.f. where the vector B characterizing the mixture has been quentized.
It is a known function of the quantum levels.

As an example, let the family be multinomial parameter-conditional
c.d.f.'s ¢ :FTP’ and let there be sufficient constraints for identifiability.

Consider & one dimensional (£=1), binary (M=2) example such that
B = (py, Ppse++sPgs 65 655 Pp) (.29)

Here B is an R+3 dimensional vector. B is then quantized and (4.28) applied,
assuming the samples are parameter-conditionally independent.
As a second example, consider & one dimensional binary example where

the family {F(Xslwi,Bi)] is multiveriate guassian with
2

1 2 ©
Qxx = Qxx - [Z 02] (4.30)

and Oy Gl , and 92 being fixed but unknown. Here,
o]

o)

B = (91: 92) G)

B = (elo, ezo, oo), the true vector (4.31)

and & sufficient constraint is

6, > 6, (&.32)

Computer similated results for this last case were obtained, where
the average sample-conditional error in making decisions on the nth sample
was plotted vs. n in Fig. 3. If the number of experiments used to obtain
this average is sufficiently large, then this average error vs. n is a computer

simulation of the theoretical sample-conditional probability of error.
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For o =1end P, = 1/2 end both known, and the constraint 6, > 6,
o
and 90 quentum levels of length 1/10 in each dimension of the parameter space

(8100 two-dimensional levels, 5040 having zero measure because of the constraint

92 > 91), end with el and 82 both unknown, the average error is plotted
o o

vs. n in Fis;. 3 for the following 3 cases:

Case 1: 61 = 0, 92 = 2.4, and F(el,ez) uniform in the quantized parameter
o o] .
space.
Case 2: 6, =0, 6, =0.5 end F(el,ez) uniform in the qunatized parameter
o] o
space.
6,~-1 6,-5
1 1l 7\2 2 2
M = - =2 = | — —
Case 3: 610 2, 620 2, and F(el,ez) (Zn) exp( 5 )¢ exp( 5 )
in the qunatized parameter space.
For Pl = 1/2 and the constraint ez > 91, O elo, and 62 all unknown,

o
and 62 exis and 10 along the o axis,

(o}

with 45 quantum levels along the 6,

all of length 1/10, and with F(Gl,ez,c) uniform in the quantized parameter

spece, the average error is piotted vs. (52 -Gl ) in Fig. 4 for two cases:
o o
Case 1: n = 20, 10 experiments, el = 0, 92 variable.
o o
Case 2: n = 50, 10 experiments, el =0, 62 variable.
o o

In this second example with three unknown, there were a total of 20,250
quantum levels, with zero measure in 10,570 levels because of the constraint

92 > 91.
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CHAPTER V

CONSISTENT ESTIMATORS AND ASYMPTOTIC CONVERGENCE RATES

5.1 A Consistent Minimum Distance Estimator for B0

Suboptimum systems which minimize probability of error as n = « but
not sample-conditional probability of error can be designed using eétimators.
Since the family {F(Xslwi,Bi)} 1s assumed known a priori, the decision
equation (4.5) or (4.6) can be applied once the B, are known. In Chapter
III, it was shown that a conslistent estimator for BO can be found for the
fixed bin model when the class of mixtures of multinomial distributions is
identifiable. In this chapter we consider a consistent minimum distance
estimator for B0 vhen F(XiB) is continuous in X and B; we also obtain maximum
likelihood estimators for the entries in Bo for a gaussian family of ith class,
paremeter-conditional c.d.f.'s. In addition, we obtain the asymptotic variance
of these maximum likelihood estimators, equal with probebility one, to that
of the corresponding Bayes estimators.

Consider the nonsupervisory problem where X = Xs = X4 is & one dimensional
sample (£=1) with a single class active on each sample and v=l.

Theorem 5.1

Let xh',...,xn be the. order statistics with X5, 8 = ,2,...,n, identically
n
and independently distributed from the parameter-conditional mixture c.d.f.
F(x|B) continuous in x end B. Given the family (F(x|ur,Br)}, let the cless

of mixtures be identifieble. Then Bo can be estimated by a minimum distance

v vV P
estimator B such that B = Bo-

PROOF:

(i) Define D, = S%PIFn(X) - F(xIBO)I, B being the true value of B
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, . 17,18 .
Then for any ¢ > 0, Kolmogorov's Theorem asserts that

lim
n-oo

P(D_ <) =1

That is, Fh(i) converges in probability to F(xIBO) uniformly in x 8s n = o,
where Bo is the unique vector characterizing the mixture c.d.f. F(x). |
(11) Obtein en estimator % for B, by solution (essuming the solution exists)

v
for B of

128 SWP|E (x) - F(x|B)| = syl F,(x) - F(x|B)] >

U rd
(iii) Since B satisfies (5.1),

S‘;(l’an(x) - F(x|B)| < s;’cpan(x) - F(xlBo)I, all n.

But since Bo is the true vector characterizing F(x), we have for any € > O,
lim ., sup - M < ‘ < _

oo PO | (x) - F(x|B)| < sup| F, (x) - F(x[B))| < ¢) =1

or, for any e,

11:: P(S;PIF(X|§) - F(x|B )| < 2¢) =1
which gives F(xlg)-2+ F(x|Bn). Since F(X|B) is continuous in B, in particular
at Bo’ and there is a 1:1 mapping of E-n F because of identifiability,
this implies % —zé Bo' This concludes the proof.

The fact that ]%P—) Bo implies that given the a priori knowledge required
by Theorem 5.1, & system (not using ell available a priori knowledge) can

be designed which converges to the system obtainable had all statistics been

known. Such a system is not sample=-conditionally optimum but is, for all \
practical purposes, optimum in the limit n = «. This method does not provide
for taking into account el1 the a priori knowledge that the minimum conditional

risk approach provided for.
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5.2 DBayes and Maximum Likelihood Estimetors for Bo

I£ B = (6, 92,...,eq) and a square law loss function L(B,B) is defined,

- - - . 2 -~ - 2 c
L(B,B,) =(6, - 6; )" +....¢ (eq 64 ) (c.2)
(o] o]
where
B =(6,, 6, ,...,6_)
o] lO 20 a,
and
B = (8, ez,---,eq) (5.3)

it is well known that a Bayes estimate B minimizing average loss 1s given

by

B - f B £(B| {xs];‘) d B (5.4)

On the other hand, given the samples {xsli and the family of rth
partition, parameter-conditional c¢.d.f.'s, the maximum likelihood estimator,

i@ for Bo is given by

f({xs}§|§) = sgp f({xslle) (5.5)

Theorem II of reference (20) gives rather general conditions under
which 5'_29 Bo if end only if é._§+ Bo' Since convergence in probability
implies convergence in distribution, F(ﬁl{xs}g) ? F(ﬁ]{xs]i) under these
same conditions.

Thus, finding the asymptotic distribution of B also gives the asymptotic
distribution of B in the sense that |F(B| {xs];‘)—F(Ta'l (x_37) » o.

5.3 Implicit Equations for Maximum Likelihood Estimators

Consider the nonsupervisory problem where the family [F(Xslwi,Bi)] is

one dimensional gaussian. Then B, = (mi’ oi) and

(x_-m, )®
f(xsl wi}Bi) = %qi expl:—% Sczi ] (5'6)
i
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If M =2 (binary case) snd o, =0, i = 1,2,

i
B = (ml’ m,, o, Pl) (5.7)

with the true velue of B,

B = ( ’ y 0, P ) (5.8)
o mlo mzo o’ "1,
It is shown in Appendix B that the maximum likelihood estimators,
El’ Hz B '5, and ?1 are given implicity as follows:
n
Pl Z gi,s’ Pz 1 Pl ( )
s= ‘
n
sz i,s
m, == 1=1,2 (B-5)
i n ’ ’
sZigi’s
2 - :
"2___]_._ -~\2 ’ _~\2., fn_£\
o =3 L [\Xg - ™) P1,6 W Xg T Bl V5 o] Ve
s=1
where
~ (xs-al)z (XS- )2
‘Fs = Pl elcp[-%-_—:z—_. + (l-Pl) exP|—-% =) ] (B-7)
2 - g
(xg-m, )°-
P exp['% NG J
¢} -
¢:’L,s - v (B-8)

It can be shown that for the general case of M pattern classes where
Gi =0, 1 =1,2,...,M, the maximum likelihood estimators are given implicity

as follows:

n
A Zgi’s, 1=1,2,...,M (5.9)
=1
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n
Exs gi,s
7, s i s L2, (5.10)
gi,s
S=
n M
~ 1 ~ \2
Y Z [ Z (xg-m, ) Q’i,s] (5.11)
s=1  i=l
where ( f«)z
X -m
v, = ? P, exp[-% -—S—z——i--] (5.12)
i=1 g

and Qi s is the same as for the binary case.
J

Returning to the binary cesze, even with Bl, &2, andfz replaced by known

velues m; , m, , and o, equation (B-4) for ?1 still involves ?3 on both
o] o] i
sides of this equation:
(x_-m )
N , s lo
?‘ Pl exp['ﬁ 2
= o £.12
‘ﬁl L (x —m1 )c (x_-m_ )2 (5.13)
s=1 = %o = S 2o
by o4 ]+ (1%, onf 4 ]
1 c2 1 o2
o o

It is interesting to compare (5.13) with an estimator obteined by

Robbinslz for Pl . For the same situation, i.e. & gaussian family with
' o]
known values m o, m,, and o , Robbins' estimator is as follows:
o
o] ¢

- brd
n r . (Xs mlc)u
E: CXp "% 00
X o
_ s=l N ) [
P == X _~m. 3 X_~M, - = (5.1%)
\ S J s 2y
s 1 Q + 1 [}
@xpl -8 —5r— exp| -5 — 5z
S °© X ©
Although (5."") is an explicit solution for Pl in terms of the samples,

X
computer simulation shows the variance of Pl is much larger than the variance

3f'§i. In a subsequent section, computer simulated results for the variance
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of §i are presented as a function of n and other importaht parameters. The
computer simulated results for the variasnce of él will not be given since
they give no indication of convergence.

5.4 Convergence and Asymototic Distribution of B

In this section we first state the sufficient conditions for meximum
likelihood estimators to converge with a known asymptotic distribution. We
then relate these sufficient conditions to the nonsupervisory problem and,
in particular, derive the asymptotic distribution of the estimators given
by (B-4) through (B-8).

Let X be an £-~dimensional vector with distribution F(XIBO), a parameter-

conditional mixture with B given by (5~3)~ DEfinel7 the following:

7,(x|B) - 55~ Log £(x|5) (5.15)

(X|B) = T ,(x|B) ' (5.16)
CJK(B) = f [TJ(XIB) TK(XIB)] £(X|B) @ X (5.17)
DJK(B) = j [TJK(XIB)] £(X|B) a X (5.18)

It is said.l7 that F(X|B) is regular with respect to its first 6. - derivative
J

if
E(TJ(XIB)] = 'a'% J' a F(x|B) ='JTJ(x|B) a Mx|B) =0 (5.19)

and F(XIB) is regular with respect to its second 6 .-derivative if the matrix
J

[CJK(B)] is positive definite and if

E[T (xIB) T (XIB)] + E[TJK(XIB)] j a Fx|B) = (5.20)

J -
We now state & theorem.l7 giving sufficient conditions for B to converge

a.c. toB = (6, , 6, ,...,6_).
(e} 1o 20’ q,
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Theorem 5.2. Let {XS]; be n independent and identically distributed tzmples
from the c.d.f. F(XIBO), where B = (9l RPN ) and F(X|B) is reqular with

o
respect to its first 6, derivatives. Let TJ(XIB), J =1,2,...,q, be &

continuous function of B for all values of X, except possibly a set of zero
probability. Then there exists a sequence of solutions {(5&,...,5&)} which

converge almost certainly to (6 .+,6_ ). If the solution is & unigue

1°°
~ ~ O
vector (91""’9q) for n > some no, the sequence of vectors converges almost
certainly to (6, ,...,8 ) &8s n = o,
lo 9

Theorem 5.2 gives sufficient conditions for B to converge a.c. to Bo'
On the other hand, a necessary condition for there to be a unique solution for
B, given F(X) and F(X|B), is that the class of mixtures be identifisble.
This seems to imply that Theorem 5.2 gives a sufficient condition for
identifiability. Actually, Theorem 5.2 assumes identifiability by the

statement, "if the solution is a unique vector (61,...,5é) for n > some

n

0 "
If, in addition to satisfying the first regularity conditions, F(X|B)

n

satisfies the second regularity condition then B is esymptotically normal

according to the following theorem;7:

Theorem 5.3: If {Xs}; is a sequence of independent and identically distributed

B) is regular with

samples from F(XlBO), where B_ has g entries and F(x
respect to its first and second ej derivatives, and if (51,...,5&) is unique
n ~ "~ )
for n > some n_, and measurable with respect toJT, F(XSIB), then (61,...,9q)
is asymptotically distributed for large n, according to the g-dimensional
q =)

l.o.oarning to the binary gaussian nonsupervisory problem in Section 5.2,

normal distribution N({e6

we can show that the requirements of Theorem 5.2 and Theorem 5.3 are fulfilled
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as follows:
a) The mixture is identifiable, according to Proposition A-1, if we constrain
m, > m, which would involve no loss of generality.
b)o The girst and second regularity conditions are shown to hold in Appendix
c.
5.5 Iheoretical end Computer Simulated Asymptotic Variances

Let asymptotic variances be the entries in [n Cjk (Bo)]-l corresponding

to the asymptotic distribution of (5;,...,3;). Consider, for convenience,

the case where there are two unknowns, 6, = m, and 6, = m, - Performing

1l 2
o] o) o] o
the required matrix inversion and denoting the entries in [n Cjk (Bo)]-l by

E[a‘ -6, ]2, we obtain
3 T4,

2 c,.(B)
n E[mi - m ] = ii 2 (5.21)
[o]
[Cll(Bo)CZZ(BO)-CZl(Bo)Clz(Bo)]
where (X’m )2
?
Pi al: (x-mi )2 e %
~ (oY __9O o ~ .
“1i‘Y%’! " 4rx o’ J 2 z ax (5.22)
0 te (x-m, ) (x-m2 )
_ o) - o)
2 Nz 02
P, e “0o +(1-P, )e )
lO 10
Defining (x‘mio)
2 oi
Hi(x) =e (5.23)
(5.22) becomes
2 2 2
P (x-mio) [Hi(x)]
C;4(B)) = dx (5.24)

o]
2 oz -J; PloHl(x) + (l-Plo) Hz(x)




Also

P o (x-m )(x-mJ ) H, (x) H (x)

C35(Bs) = 0 P, E (x) T ?1 P ) Hz(x) dx (5.25)

Note that C12 = C21 because of symmetry.

The necessary integrals (5.24) and (5.25) were evaluated, using & digital

computer, and substituted into (5.21). The results, n EFE; -m ]2, are
o
plotted vs(m2 - m )} in Fig. 5 for the following cases:
o o

Case 1: o, = 1, P, =%, both known; moo= 0, m, variable, both unknown.

(¢] (¢]

0.5, P, = %, both known; m
O [e]

1

]
)

Case 2: o 0 variasble, both unknown.
o) > By

Case 3: o =0.2, P

= %, both known; = 0, veriable, both unknown.
o 1 gt "2,

o]
The important aspects of the results in Fig. 5 are the following:

(a) n[m mio] decreases as (mz m1 ) increases

(v) n[ﬁ’ -m, ] decreases as 0 decreases
(c) A perturgation occurs in each curve. The curve corresponding to Case 1
with co = 1 has the perturbation in the region where f(xIB) changes from a
bimodsel to & unimodal density function. The value of (m2 - m1 ) for this
change decreases as % decreases; this would explain the :oving of the
perturbation to the left in Fig. 5 as % decreases.
(d) The value of n E[E& - o ]2 increases indefinitely as (m2 - m ) decreases
to zero. ° °

One way to explain (d) is as follows: it is assum.edl7 in the proofs
of Theorem 5.2 and Theorem 5.3 that the components of Bo are functionally
independent so that inverse matrix [cjk]-l exists. Whenm, =m , this

assumption is violated, and [Cjk]-l does not exist. If it is known a priori
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1
o]

of two pattern classes in incorrect. Recall, however, inat a priori knowledge

that m = m2 » then this problem is supervisory andthe a priori assumption
o)

of M is assumed in the approach teken in this thesis.
Consider next a special case of this binary, one dimensional, gaussian
nonsupervisory problem, where only one of the four parameters n , m,, o, ,
o o] o]

end P is unknown. This is not a special case of Theorem 5.3 where all

l 2
o]
but one of the 93 's are known. Instead, the result is that
o
n E[9, - o ]2 = 1 , only 6, unknown (5.26)
J J C ZG. 5 J
) 347 3, o
Equation (5.26) for ej = Pl was evaluated using a digital computer. The

results, n E[?i - P ]2 vs(m2 - m ), are plotted in Fig. 6 for the following
) o o

cases (with m = o, m, variable, cl =1, all known):
o o]

o}

Case 1: Pl = 0.5, unknown.

o]
Case 2: P, = 0.66, unknown.

o
Case 3: Pl = 0.75, unknown.

o)
Then, for three values of (m? - m ), E[?i - Pl ]2 is plotted vs n in Fig.

e} o} o]

7, using the results displayed in Fig. 6.

To check the theoretical results given in Fig. 7, the quentity Av. (?i -P )
was simuleted using & digital computer, by evaluating (B-4) as a function °
of n. Given the samples {Xs}i, an iterative solution of (B-4) was obteined;
the iteration was started for the first sample by choosing ?i on the right
side of (B-4%) from a uniform [0,1] rendom number generator. To obtain the
average, 100 experiments were performed for each value of n considered.

These computer simulated results are presented in Fig. 8 for comparison with

the corresponding theoretical results of Fig. 7. The essential conclusion

2
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is that agreement between computer simulation and theory improves &s

(m2 - m1 )} incresses and as n increases. The latter is certainly to be
o o)

expected since the theoretical curves in Fig. 6 are asymptotic results.
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CHAPTER VI

CONCLUSIONS

6.1 General Conclusions

Nonsupervisory problems lack the a priori knowledge of semple class-
ification. For this reason, the probability distribution function for the
samples is in general more complex than when there is supervision. There
are nonsupervisory problems where the distribution function (mixture c.d.f.)
for the samples is not uniquely characterized by the mixing parameters and
the parameters characterizing each ith class-conditional c.d.f. It is
not possible to estimate these parameters with consistent estimators or to
optimally converge to a minimum-probability-of-error solution. By providing
additional a priori knowledge about the ith class-conditionel c.d.f.'s,
the way the samples are taken, spacial constraints, constraints on the
parameters characterizing the mixture c.d.i., etc., the nousupervisory
problem may have a solution. Even when the ith class-conditional c¢.d.f.'s
are one dimensional gaussian, we are not assured of a solution without sufficient
constraints on the parameters. These constraints cause no loss of generality
in this gaussian case, but must be imposed.

The importance of sufficient a priori knowledge in nonsupervisory
problems is exemplified when the rth-partition, parameter-conditional c.d.f.'s
are empirical c.d.f.'s, corresponding to no a priori knowledge about the
c.d.f.'s. Here the resulting c.d.f. of the samples is characterized by the
ordered samples, the number of which increases as n increases. A parameter-
conditional mixture does not exist for this problem. If the ith-~class

conditional c¢.d.f.'s are approximated by multinomial c.d.f.'s, the number
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of parameters characterizing the mixture is fixed in size; but it is not

possible to estimate these parameters in general without additional a priori

knowledge. On the other hand, when the samples are classified, estimating \
parameters characterizing such ith class-multinomial c.d.f.'s corresponds

to the histogram concept. It can be concluded that such nonparametric

techniques do not directly apply to nonsupervisory problems. The difficulty

is that such nonparametric techniques do not directly provide for the use

of additionsl a priori knowledge.' By teking into account additional a priori
knowledge, such as that mentioned ebove, a nonsupervisory problem may have

a solution. We have introduced a construction technique, where additional

a priori knowledge, such as spacial constraints, symmetry, the number of
samples taken at the sth. observation, etc., is utilized.

6.2 Conclusions on Performance

Evaluation of the theoretical performance of the optimum systems is in
general difficult. One approach, given in Sections 5.2, 5.3, 5.4, and 5.5,
is to find the. asymptotic distribution of Bayes estimators or maximum likeli-
hood estimators for the perameters characterizing the mixture concerned.
Using classical statistical techniques, it was shown that the joint distribution
of these estimators is multivariate gaussian (when a solution exists). Using
this Joint distribution, a bound on asymptotic sample-conditional probability
of error can be obtained.

An example where the above asymptotic distribution is eveluated was
glven in Section 5.5 for the binary, gaussian case with two unknowns.
Theoretically, the asymptotic distribution for the M-ary geussian case with
any number of unknowns can be obtained. Practically, however, this requires

evaluating a large number of integrals using a digital computer.
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Results giving tight bounds on sample-conditional probability of error
for all values of n would be useful. Such results, however, should be presented
with a precise statement of the a priori knowledge utilized in the non-
supervisory problem concerned.

6.3 Implementation Difficulties

The generasl optimum system, illustrated in Fig. 2, can be implemented
using a digital computer by quantizing the parameter space B (c.f Section
4.&). Once the parameter space is quantized, the required storage in a digital
computer is fixed in size--it does not grow as n increases. On the other
hand, this fixed amount of storage increases as the number of unknowns in
B increases. As this storage increases, the number of computations a digital
computer must perform, in the time interval between receiving two samples,
increases. The speed with vhich the computer operates can be held constant,
however, if the time interval between samples it increased.

A conmputer simulation of an optimum nonsupervisory problems having three
unknowns was given in Section 4.4, It is difficult in general to implement
such a problem when it has more than four unknowns without having more
storage than that aveilable in an IBM 7094 computer.

There are some specific nonsupervisory problems with certain spaciel
& priori knowledge (Section 3.4) which have many unknowns, say 100, that
can be implemented with an IBM 7094 computer. This reemphasizes the need
for precisely stating the a priori knowledge assumed used in & nonsupervisory
problem.

Besides digital implementation, it is possible to use analog techniques
to implement optimum systems. For example, assume that it takes T/2 seconds

to obtain sample Xs; and sample Xs+l begins to be received T/2 seconds after
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Xs is completely received. In the T/Z seconds between sgmples, all computations
in the iteration (4.23) must be made. As the number of unknowns in the
nonsupervisory problem increases, the computation rate between semples increases.
This computetion rete determines the bandwidth required in a deley line used
for storage in the analog implementation. We can thus conclude that for a
given semple transmission rate, the bendwidth required in the enalog processing
equipment increases as the number of unknowns in the nonsupervisory proolem
increeses.

In summary, digital implementation of optimum nonsupervisory problems
is restricted by increasing required storage as the number of unknowns increases.
And, snalog implementation of optimum nonsupervisory problems is restricted

by increasing required delay-line bendwidth as the number of unknowns increases.
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APPENDIX A

MIXTURES AND IDENTIFIABILITY

Following Teicher's definitionlo of identifiability for one dimensional
mixture c.d.f.'s, we give the following definition of identifiability for
f-dimensionael mixture c.d.f.'s.

Identifiability of Mixture C.D.F.'s

Let 1,3:= {(F(X|a) : ae Rll{] constitute a family of £-dimensional index-
conditional c.d.f.'s, indexed by a point a in a subset Ri{ of Euclidean
k-space Rk. Then, the f-dimensional mixture c.d.f.

F(X) = I[ F(x]a) 4 c(a) (A-1)
Rl
is the image under the above mapping, s&y?E; of the k-dimensional c¢.d.f.
G(where the measure W, induced by G assigns measure one to R?).
The c.d.f. F(X) is called & mixture (or G-mixture ofF ) while G is
referred to as the mixing c.d.f. Let & denote tne class oanll such c.d.f.'s

G, and  the induced class of mixtures F(X) (given a priori the family ).

Then 4 will be said to identifiable if ?‘ is a one-~to-one map of ¥ onto!f .

F(X) 1= celled a finite mixture if its mixing distribution G, or rather
the corresponding measure M is discrete and doles out positive mass to
T
only a finite number (W, of partitions in Rl Let these partitions be R

r =1,2,...,W, and the corresponding mass or measure be P(nr), r=1,2,...,W.

Then (A-1) becomes

W
R(X) = ) F(xlx) P(x) (a-2)
r=1
Identifiebility of Parameter Conditional Mixture C.D.F.'s

k

W .
Let F= (F(X|nr,Br) o S Rl’}r=l constitute a family of size W of
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L-dimensional rth partition, parameter-conditionel c.d.f.'s, the rth partition
indexed by nr; and let Br be the vector set of paremeters cheracterizing the

rth partition. Then the f-dimensional, parameter-conditionel mixture c.¢.f,

.

F(x|B) = E: F(X|B_,n.) P(,)

r=1
is the imege under the above mapping, say'-f' , of the vector parameters
B),B,, 5By, P(ﬂl),...,P(nW), where B = (Bl,Bz,...,Bw, (P(nr)}y).

Let G denote the class of all such sets of mixing parameters {P(ﬂr)}g
and vector psrameters {Er}g.,’ and ﬁf the induced class of parameter-concitional
mixtures F(X|B) (given a priori the familyF ). Then/¥ will be said to be

identifiable if "}:—‘ is a one-to-one map of B onto ¥,

Thus, for & given c.d.f. F(X), there is a unique vector B, such that
F(X) = F(XlBo).

The following is a simple extension of Teicher's Theorem on identifiability
to the case of parameter-conditional mixtures.
Theorem A.l. Let "F= {F(Xiﬂr,Br)} be a family of rth partition parameter-
conditional c.d.f.'s with transforms ﬂr(vl, °..,vler) defined for V = (vl, . -,Vz)

and Sg (the domain of definition of ﬁr), such that the mepping A:F =  is

r
linear and one-to-one. Suppose that there exists a total ordering (‘;’) of
Fsuch that F, < F, implies (i) S, €S, (ii) the existence of some V, € g
LoE B V) A
1im 2 _ 5 '
(Vl being independent of ¢2) such that Vv, m = 0. Then the class ﬁ
of all finite parsmeter-conditionel mixtures of Tis identifiable.

PROOF:
Suppose there asre two finite sets of elements of "F, say }"1 = {Fi’
i < = < K - b . = | .
1g1g k} and 9§3 [FJ, 1< 3<k}, F, = F(z|ni, Bi), Fj F(XIKJ:BJ),

such that




Xk
(&) ) ¢F(X)

= < 1
x J J=7
i=1 J=1
k
C=ZC=1
i J
i=1 j=1

Without loss of generality, index the c.d.f.'s so that Fi < Fj’ Fi < i:‘J,
for i< j. If Fl £ Fl, suppose 8lso without loss of generality that F]_ <'Fl.

Then, F, < i‘J, 1<3< k and from the transform (ed) version of (a), it

follows that for Ve V, =S : [v: g (v) £ o],
177 1
k

k
c, vy clamigm]=) & [5,mlgm]

i=2 J=1

n

4

<,

Letting V = V. through velues in Vl, Cl = 0 contradicting the supposition

1
of (a) that C, > 0. Thus, F, = T, and for any V e V,

1 1
h k

(c8) + ) efa,mlgm]= Y & [5,mlgwm]
i=2 J=2

Again letting V = V, through values in Vl » Cl = él whence

"

C. F.(X
JJ()

>~

k
zci F (X) N
i=2 J=2
Repeating the priori argument a finite number of times, we conclude that
F,=F and C, =C, fori=1,2,..., min (k,k). Further, if k £ k, sey k > k,

then ? C, F, (X) = 0 implying C_‘ -0, k+1<1i<kin contradiction to
[N 4 4 - = =
i=k+l . .

(a). Thus, k = x, C; =C; end F,

e 1
identifiability of 4. That is, B = B.

A

1<1i<k, implying?z = fz' and

Proposition A.1. The class of one dimensionel parameter-conditional mixtures

of rth partition, parameter-conditionel normal c.d.f.'s, with constraint that
the family be ordered lexicographically by Ni < Nj if o5 > cj or if o, = Gj

but 6, < 93, is identifisble.

i
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PROOF:

Let Nr = F(xler, .., ﬂr) denote the rth partition, parameter-conditional
normel c.d.f. with mean er and variance oi > 0. Its bilateral Laplace
transform is given by er(vler, oi) = exp {oi t2|2 - 6.t). Order the family
lexicographically by N, < N, if o, > o, or if 0, = 0, but 6; < 6,. Then

i 73 177 17 J
Theorem A.l applies with S¢ = (-, «) and V=V =

1

The significance of Proposition A.l is that if the family of rth partition,
parameter-conditional c.d.f.'s is one dimensional gaussian, then, given F(X|B),
there is a unique solution for Bl oo BM’ BM+l if the a priori knowledge
includes

(a) o, > Iy i< jor

= <
(b) 4if k is the smellest index such that O = Oy, thenm <m .

(c) repeat (a) and (b) starting with s 50 €te.

>
17 %+
In other words, (a) ... (c) is sufficient a priori knowledge to assure identifi-
ability. It is not necessary a priori knowledge to assure identifiability.

We cen veiw {(a) ... (c¢) as a constraint on the domain of definition of B.

If this constraint is utilized, then a unique solution for Bo can be found
given the sequence of samples {xs}? as n = o,

The following is a proﬁosition where we have simply extended Proposition
A.l to the multidimensional case.

Proposition A.lg The class of mixtures of two (M = 2) one dimensional

parameter conditional normal c.d.f.'s, F(xlwl,el,o), F(xlwa,ez,c), with
g, 91, and Pl known,is identifiable.

PROOF:
2
Suppose there are two finite sets of elements of ;: say':f1‘= [Fl}i—l

-~ 2 »
and ?2 = {Fj]J=1’ F, = F(xlei,o,wi) F, = F(xlej,c,wj), such that




2

(a) i c, F(x) = Z C, F.(x), 0<c, C,. <1,
. . X .

i= J=1

2 2

Y e =) c =1

+ J
i=1 3=1

Taking the bilaterel Laplace transform of both sides of (a), we obtain

22 5242 o212 il w
7 " &t 2~ %t _ . 2~ 5t . 7 " Ot
Cle +C2e =Cle +C2e
t
Since Pl is known, Cl = Cl
C, = C2
ol 6.t ofsf 8.t
e 2 2 =e 2 2
t
(52 AL .
i.e. e 21,86, =96
% 2 2

Proposition A.2. Let {F(Xlﬂr,Br)) be & finite family of #£-dimensional normal

e s _ roy oL -
c.d.f.'s with B = (Mr,éxx) with mean vector M (mrl, m.rz,...,mr

covariance matrix Qix = [cgk]. If the family is ordered lexicographically

1 2 k k+1
+h < < <,..< 21 - o w0, (k .
so thet N1 ’ Hz N,<,e-5 Nw if %1 > 0117 193 >0,
k k+1

Tk = Ckk but oo < mk+l,k’ then the family is identifiable.

PROOF:

z) and

..y Or if

w

The bilateral Laplace transform of F(Xlnr,Br) is given by g = exp

(% vT Q;x vV - ME V). Then, with the family ordered as above, Theorem A.l

applies with S¢ = (- < v.<®, r= 1,2,...,4) and v, = (vl = ®, v finite,
r
T =2,3,000,8).
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Proposition A.3. The class of all finite mixtures of #-dimensional c.d.f.'s

which differ only by translational vectors and have bilateral Laplace trans-
forms is identifiable if the family is ordered lexicographically by F} < Fé
< .
fm, <my
PROOF:
Let F(X|nr, Br) = FB(X - Mr) denote the rth partition, parameter-conditional
c.d.f. with Br = Mr’ a mean vector, which differs from other partitioned
- t = | ) .
perameter-conditional c.d.f.'s only by M_. IfV = (Jy; + &,.-erdv, * az) © Sy
and ¢O(V) is the bilateral Laplace transform of Fb(x), then exp(-VTMr) ¢0(V)
is the bilateral Laplace Transform of F(X‘ﬁr, Br)’ Order the family lexico-
< < . . i i =
graphically by Fi Fé if My < My Then Theorem A.l applies with Sg

£-dimensional complex Euclidean vector space and

v, = (JO + =, Jy, + Gpyeee,dy, + @5 y,, @ finite, i = 2,00y d)

£

We have been concerned with a vector X end its c.d.f. and have not related
X to & specific nonsupervisory problem. Thus the results so far on mixtures
and identifisbility are quite general. They can be applied to the several
nonsupervisory problems defined in Chapter II and the families of ith class,
parameter-conditional c.d.f.'s defined in Chapter III.

The families of the ith class, parameter-conditionasl c.d.f.'s defined
in Chapter III have members which are multinomial distributions. These
multinomial distributions arise when a general family of ith class-conditional
c.d.f.'s are approximated by ith cless-conditional multinomial distributions
under the framework of & "fixed bin" model or "adaptive bin" model. In general,
mixtures of ith class-conditional multinomial c.d.f.'s are not identifiable
because they are, in general, used to approximate ith class-conditional

c.d.f.'s about which little is known a priori. We then ask what constraints
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must be imposed on the ith class-conditional c.d.f.'s approximating them,
to insure identifiability? The following propositions give a partial answer

to this question.

Let X_ = {x_ ) be a sequence of one dimensional samples where x_ = 1
s 5y 1l 8y
with probability p° and O with probability 1 - p°, with a single pattern class
i

w, active for all v samples. Let F ({xs }Ilv, P, wi) be the c.d.f. of the
k

samples when class wi is active. The distribution of [xs ]\lr is thus & mixture
k
c.d.f.; the corresponding parameter-conditionel mixture c.d.f. is

M :
v i
2, O Tl B e By (8-3)

v
F({xsk}lls) = 2

The quenstion is when can pi and Pi’ i=1,2,...,M, be uniquely found
givenl"({xsk]z)‘.’ The following Proposition A.k by Teichc_erlo gives sufficient
conditions for a unique solution to exist for a more general problem than
the one above. Proposition A.5 applies to ‘the specific problem (A-3).
Propositions A.6 and A.7 are extensions of Proposition A.5 to the multinomial

case.

T <t ) "
Proposition A.4. Let 9:1:- [F(xlni, ), 1 <1i<k'} and g = (F(x|n", pi ),
1< 1<k') denote 2 finite families of binomial distributions; let k = number
n>n_>..> n i
of elements in?'?L U :Fz and rﬁ_>n2 o> nh be the distinct integral parameters
of the members of "F:, U?’,,. A necessary but, in general, insufficient

condition for

1 1 "
k 0, o & k
! 1 - " " " ' 1
(8) ) ¢y Fxlny, p*) = ) ¢ R(xln, '), ) cf = ) ¢ <1, 0<¢, ¢
1=1 X 12 i=1 i=1
to imply

"

' J

(b) k' =k, (nj'_, pi ) = (n; , P i) for some permutation (jl,...,,jk) of
i

(1,2,...,k) is that




(e) myzr -1

vhere ry o= number of occurrences of n, among the elements of 3?1 L/%Fé,

1 <1i<h. A sufficient condition that (a) imply (b) is that (c) and

() n, - n, . >r,, 1<1i<h-1hold

i’

A special case of Proposition A.L is ni =v, 1 =1,2,...,. This corresponds

to X_ always consisting of v samples, no mavter what class is active.

) 10 s . .
Teicher's Proposition for this case is:

i

o
Proposition A.5. Let F= (F(x|v, ;ﬁ\, 0<p <1,1=12,...,M) constitute

a one-parameter family of binomial distributions, v being fixed. A necessary
and sufficient condition that the class U?:l f% of all finite mixtures of at
most M elements of F be identifiable is that v > 2M - 1,

The significance of Proposition A.5 is that pi and pi in Fig. 2 can
be uniquely found if Xs consists of et least three samples from the same
class. This may be a strong constraint, but there are some adeptive problems
in practice where one class or pattern will be active long enough to take
2M -~ 1 semples, where M in the number of classes.

We will now give an extensioﬁ of Proposition A.4 and Proposition A.5
to a parameter-conditional mixture of rth class-conditional multinomial

distributions. Define a parameter-conditional mixture of multinomial c.d.f.'s,

using (A-2), as

F(X_|B) = i F(Xslnr,{pgli) (a-k)
r=1

where the set [pz)i are the R probabilities characterizing the rth class-
conditional multinomial distribution. We state the following proposition

and proof:

Proposition A.6. A sufficient condition for the multinomial family

3
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F = (F(x [n, {pr}R} to give an identifiable class of mixtures is that
8 £

(a) Hh 2r, -1land
(v) B =My 2T, 1<i<h -1 hold.
PROOF:
i i
Let p; =p
R+l
i i

Pg =1l-p,1=12,...,
E=
Then (a) and (b) are sufficient, by Proposition A.4, for {pjlg_{ and (Pi)rf to

be uniquely found. In general, repeat the above with

1,2,...,M
2,3,...,R

i 4 Z i 1 - i i

P” =P, Pg = L, 7
gM

The following is & special case of Proposition A.6, as Proposition A.5

was a specisl case of Proposition A.L.

R

Proposition A.7. Let F= (F(X_|v, {pz]l

, 0~ pg <1, r =1,2,...,M} constitute

a family of rth class-conditional multinomial distributions, v being fixed.
M
A sufficient condition that the class gj___l /‘f] of all finite mixtures of at

most M elements of ? be identifiable is that v > 2M - 1.
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APPENDIX B

IMPLICIT SOLUTIONS FOR MAXIMUM LIKELIHOOD ESTIMATORS

For f(xslwi’Bi)’ B, and B_ given respectively by (5.6), (5.7), and
(5.8), maximum likelihood estimators i, ﬁé, o, and ?i are obtained as

follows:
n n
F({xs]lIB) =T £(x_|B)
s
s=1
such that the likelihood function is
n
log £({x_};|B) = i log f(xslB)

s=1
Differentiating this likelihood function with respect to ei glives

d log f(x_|B)
T, ((x,)7]B) = i o

s=1 i
For later use, define
(x -, )2 (x, H >2
b, =P exp| -3 —25 1 + (1-P,) expr % ]
(o)
(x -m;)°
T& exp[-% S_- ]
gi)s - *S
(a) For 6, =m, 1 =1,2 we obtain
df(x_|B)
n 8
T, (X}, 1B) = 2 t(x_[B) 36, =
s=1 8
2 (x, m)
0 (xgmg) (Pl >exp[-%——2~

(B-1)

s=1 p exp{ éfj:___-—] + (1- P ) exp[ l_:i;jz_l.]
o

1 PO
=2 i (xg-my ) gy s =09 1=15
o
s=1
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Thus,

»
o]

w

[T
Al

[}

P
It
A
’_l
I
F
[aV]

=

o
-
]

L D1 | s

H
il
—

(b) For 63 = 0 we obtain

2 3f(x, |B)

n, 1
T3 ()3im) = ) (%, 15) 36, -
s=1 3

(x -m ) (x,- )2
2 -4 2 P (x —m,a)2 -%_{2‘;2_

i__ f(x iB) +T[l(x -ml) . o +-—2-—§3—-e o :l

o
f(x |B)
s=1
(x,m )? (x-m,)?
. i 1 [Pl(x om ) exp(-%—soT-) +P (x-mz)z exp(-3 XSUZZ ]
== -1+
° s=1 (x - ')2 mz)
[P ex(- ) + P, exp(-b—2p2)]
o?
=ii- +-]-‘-[(x-m)2¢ + (x_ - )2 ]-O
o o2 s i 1,s s = Mo gz,s -
s=1
n
2% Z [ sﬁ"l: ljs * (Xs-az)2 Q'2,5:} (3.

S=
(¢) For 6, = P, we obtain

0 . 3f(x|B)
Ty ((xs}l'B) = z f(xsﬁﬁ 36, -
s=1

(X - )2 X -m 2
n exp[-% 2 ml ]-—exp[-% (——23—2—)-]

(x m)2

_ 2
bpy e ] 4 (1) el 4 ZpE

3 0}
zl[—%f’(lpﬂ"o
S=



or
1 n 1 n
i’: zgl,s B il-Pls z gz,s =0
s=1 s=1
or
n n
(1’P1) 2 9’1,5 - P z gz,s
_s=1 s=1 -0
Pl (l-Pl)
or
n n n
zgl,s -Pl[ Z gl,s * Z ¢2,s]=o
:l =l =l
such thet

~

P

The maximum likelihood estimators are summarized as follows:

o

B

n

E: gl,s
=1

l=n n
LIt ) B
i,s , 2,8
s=1 =1

n
= E: gé,s

(B-3)

(B-%)

(B-5)

(B-6)
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where
(x5 )2 (x,-3,)°
v, = exp[ -] s (1)) exp - —2—] (3-7)
g
and ( ~)2
-m.
%, ex -2t ]
gi,s = ¥ . (B-8)
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APPENDIX C

REGULARITY CONDITIONS

First and Second Regularity Condition of F(x|B) for B = (ml, m,, O, Pl)

In this appendix we show that the first and second regularity conditions
for F(x|B) are satisfied for the binary, gaussian nonsupervisory problem.

The first regularity condition is verified by showing that (5.19) holds
for j =1, 2, 3, 4, corresponding to m, m,, o, and Pl respectively; thus,
four equations must be verified. The second regularity condition is verified
by showing that (5.20) holds for all combinations of j and k, Jj,k =1, 2, 3, b
thus, sixteen equations must be verified. Because of symmetry, however,
only three of the former and seven of the latter need be verified.

1) Let 6, =P, . Then

(x-ml)2 ) (x-mz)2

2 2

20 _ 20 '
Th(x!B) = S%- Log f(x|B) = ° J
1 -(x-ml)2 -(x-mz)z

2 2
20 20
[Pl e + (l-Pl) e J

and

-(x-ml)z -(x-mz)2

| T,(xIB) 2(x|B) ax =mlo_,£ [e 20°

-0

o

ol
-e “© ] dx=1-1=0

2) Let 6, =m

5 1 i =1, 2. Then

-(x-mi)z

(x-m, ) 2
P i e 2o

g
Yox o £(x|B)

o)
Ti(X|B) = 3w, log (x|B) =




———— =

and
(x-m, )

o - 202
_[T(xlB) f(x|B)dx=-—;'-ﬁl—;o.l(x-m)e dx = 0
3) Let 6, =
T, (x|B) = 108 £(x|B) =

(x-m, )? (x-m, )2
- zm1 -+ :2
al‘[‘l‘ 31 Pl(x-mL)z e :( . + (1-P)) (x-my) e ° ]
o ¥en x

and
fT (x|B) £(x|B) dx=%+ [P o +(lP)02]=-— al-=o

The seven equations for the second regularity conditions are showan Lo be

satisfied as follows:

1) For 6, = P(wl) = P,, we show Chh(B) + Duu(B) = 0:

(x.-ml)2 (x:-mz)2

2 - -
T (xIB) _e 20 e 20
! (x-m )2 (x-n,)? (x-my )2
Pl[e 202 - e 202 J +e 202
CGem)® Gem)
2 2 2
2o _ e 20
Thh(xIB) = - [ ]

2x o° fz(xlB)
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such theat

Com) Lom)
) o [ 20° - e 20° ]
D, (B) = s J: #(x5) V% o
On the other hend,
_ (x-ml)2 ) (x-mz)z
® [e 20" - e 20° ]2
MORS | T(x[B) V2% o

Thus: th(n) + cu(B) =0

2) For 6

dx

g =0y 1 =1, 2, we show Cii(B) + Dii(B) =0
T, . (x|B) =
i1 (x-m, )2 (x-m, )2 (x-m, )
—eee 2 2 _
L, 202 \ (x-m, ) . 202 (x-m, ) . 2 P
P 0'2 O'i 0,“ D§ﬂ (o3
i
Vo o (x| B) £ (x| B)
such that
2 2
o (x-m, ) (x-m, )
-P 2 2
Dii(B) =Tl— i e 2o dx + 2o dx
X o -

2 )
P -
B H [ (x-m, )
o? & 2n 06 % £(x|B)

On the other hand,




——— . -

<X=mi>>2
() P? 2 (x=mi)2 0'2
Co B = I A e ax
11 2 0’6 v £(x|B)
Thus s 11‘3) + (B} =0, i=1,2.
For 6
3) 3
(:Hnl)z 3 (x-m,,
2 -
{(x-m, ) 2 (x-m, } P
[Pl i 2 4 (1-F, ) 1;2 e o
x|B) = _1;273* g - o
o o A2z £(x|B)
(o 2 . Z
et o, bemy)
o 2 - 2
[P (x- -m, ) @ + (1-P. ) (:me?)é e ¢ ]
csﬁ (x| B)
2 )
m,}<x,m1) z,}(me?
- U"‘ o, 2 - Gz - ’
. [Pl(x=m1) + (lmPl) (x=m2) e ]2
68 25 (x| B)
such that
SR T
33¢8) = 2 T 2
o o
, 2 2
(%= -m )
m (x-m, ) m (x-m;)
o« 2 6'2 2 O’Z » 2
2 J. [Pl (xmml) e + (lel) (mez) e :' o
o 2n =% £{x|B}
On the other hand, : V2 . .
(x=~ml ) Qx«m2 )
. 2 . 7 2
) 1 1 " - [Pl'\x-mlz“ e © + (1«?,}1{}:»111:}‘ e g ]2
C??"B>=_§°_§+82rj ‘ ‘ - . - |
: o° T £(x|B)
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Thus: D,.(B) + C,.(B) = 0.
We now consider the four remaining "cross" regularity conditions.
4) To show Dij(B) + CiJ(B) =0, 1, =1, 2, 1 £ J:

Define

On the other nand,
S E,E
c,,(8) = f-LJ_ dx
J % £(x|B)
Thus DiJ(B) + CiJ(B) =0, 1,3 =1, 2, 1 £

5) To show D, * Cil& =0,1=1, 2:

(x-mi)z
- 2
(x-m ) e 2o T, (x|B) 3£(x|B)
Tih(xIB) = 5 =
¥2x o° £(x|B) £(x|B) 3P,
(x-mi)2
) 2
Define Ji = e 2o
Then
(x-m,) J P, (x- -
T,,(x|B) = - mi3 ; Clem) (9;-9;)
Yox o° £(x|B) fZ(XIB) Vzx 03 Vex o
(x—mi) Iy [l ) (Ji-JJ) P

Yz o> 2(x|B) £(x|B) ¥2x o

- —-— e o



) s

such that
P, ¢ (xemy) 5,(9,-9,)
Dy, =0 - T ax, i =1,2
2 g - (x| B)
On the other hand,
(x -m, (J -J.)
T (x|8) T,(x|B) =
1 b Y o3 f(xlB)] [f(xlB) i
and
) Pi r (x—mi) Iy (Ji-qiz
Cih(B) h o dx
2x g -® (x| B}

‘I'huSi DiL'v'<B} + Ci\L‘-(B) = O’ i = l, 2

Finslly, one can show

6) D3A(B) + cBu(B) =0
and
7) D; 4(B) + 013(3) =0, 1i=1, 2.




