

GPO PRIC:

CFSTI PRICE!S) \$ \qquad

Hard copy (HC) \qquad
Microfiche (MF) \qquad

653 July 65

UNIVERSITY OF MARYLAND COMPUTER SCIENCE CENTER

 COLLEGE PARK, MARYLAND

```
Technical Report TR-66-26
NsG-398 January 1966
INPUT-OUTPUT SUBROUTINE PACKAGE
                    UOM IOS
            for the
            IBM 7090/7094
            by
                        Alfred E. Beam
Senior Computer Systems Analyst
                Computer Science Center
```

The work on this program was performed at the computer Science Center of the University of Maryland and was supported by Grant NsG-398 of the National Aeronautics and Space Administration.

Abstract

This report describes an input-output subroutine package for use under the IBSYS or DC-IBSYS Monitor System on the IBM 7090/7094. The package is most useful in handing of non-standard tape records under the FORTRAN II and IBJOB sub-monitors of IBSYS. Handling of extremely long records, input records with incorrect parity, short records, variable length records, and mixed mode records are examples of good uses for the package. Also the package may be easily used to write efficient buffering routines.

Introduction

Much of the information which must be processed on the IBM 7090/7094 consists of tape recordings in a format not easily handled by the standard library programs of systems such as IBJOB and FORTRAN II. Such information may come from satellites, radio telescopes, and medical applications. This report describes a basic tape input-output package which allows one to write a small program that handles the nonstandard input-output, and the bulk of the program to process the information may be written in other languages such as FORTRAN. The package can also be used to pre-process information into standard FORTRAN records.

A new system to be put under IBSYS could utilize the package to accomplish all of its input-output.

The package requires the IOEX routines of IBSYS and will operate on any $7090 / 7094$ IBSYS system which has tapes. Tapes are referenced by logical numbers which correspond to the standard IBSYS units (e.g. SYSINI). Assembly parameters are provided for the package to be assembled as an IBMAP or FAP subroutine. An important feature of the routines is that they may be called at interrupt times -- allowing the easy writing of buffering routines.

This package has already had wide use. Versions of the package were used exclusively by two sub-systems to accomplish all of their input-output operations. IOS is in both the IBLIB and FORTRAN II libraries on the UOM IBSYS operating systems tapes.

Identification

a. 7090/7094 I/O Subroutine Package For IBSYS

UOM IOS
b. A. Beam, January, 1966
c. Computer Science Center, University of Maryland, College Park, Md.

Purpose

To provide a set of basic tape input-output routines for use in the FORTRAN II and IBJOB Monitor Systems which operate under IBSYS or DC-IBSYS.

Restrictions

The symbolic deck for IOS is distributed to handle 10 logical tape units which are assigned to specific SYSuni functions. The user may alter the assignments or change the number of logical units by simple changes in the symbolic deck. The package requires IOEX for execution.

Method

Tape units are referenced by means of logical numbers which are associated in a table with SYSuni functions (SYSOUl, SYSUTl, etc.), and this table may be changed to suit the purpose of the user. All data selects (read or write in binary or BCD modes) go through a general IOEX select routine with four entries. The select routine is coded so that it may be called at interrupt time if certain conditions are met. Nondata selects are handled by a routine which in turn uses the (NDATA routine of IOEX.

Usage

Usage of the various subroutines is described later. IOS is probably most useful for special purpose tape I/O, i.e. input-output which FORTRAN II and IBJOB library routines cannot handle. Special buffering routines are comparatively easy to write using IOS.

Storage

As distributed, IOS requires about 600 cells. Storage is increased or decreased depending on two assembly parameters which are described later.

Timing

The timing depends upon the way the package is used, and on the model of the tape drives.

Checkout

Various versions of IOS have been used many hours on the 7090 and 7094. It has also been used extensively under DC-IBSYS.

Entries to IOS

A - Non-data selects
The following entries are used for non-data reference to logical tape number $N, N=1,2, \ldots$. In the calling sequences, N is the logical tape number; and except when specified differently, return is always to the location following the TIX instruction.

1) Rewind logical tape N

CALL REWTAP
TIX 0,0,N
2) Backspace logical tape N one record

CALL BSRTAP
TIX 0,0,N
3) Rewind and unload logical tape N

CALL RUNTAP
TIX $0,0, N$
4) Backspace logical tape N one file

CALL BSFTAP
TIX 0,0,N
5) Write end of file on logical tape N

CALL WEFTAP
TIX $0,0, N$
6) Set logical tape N to low density

CALL SETLOW
TIX $0,0, N$
7) Set logical tape N to high density

CALL	SETHIH
TIX	$0.0, N$

8) Skip M records on logical tape N

CALL SKPREC
TIX M, O,N
9) Skip M files on logical tape N

CALL SKPFIL
TIX M, O,N

Note: Skipping of files and records is overlapped, so computing (and I / O on channels different from the one which N is on) may go on while the skipping is done.
10) Check activity of logical tape N

CALL CHEKIO
L TIX T,O,N

If $T=0$ then control will be returned to $L+1$ only after logical tape N is inactive.

If $T \neq 0$ and logical tape N is inactive then control goes to location T.

If $T \neq 0$ and logical tape N is active then control is immediately returned to location L+l.

B - Data selects

The following routine has four entries and is used for all data transmission. An important feature of the routine is that it may be called at trap time. The calling sequence is

	CALL	XXXXXX
L	TIX	EOR,O,N
L+1	TIX	L(IOC),W,ETT
L+2	TIX	EOF,T,RTT

where $X X X X X X=$ RDSBIN for reading binary records. RDSDEC for reading BCD records. WRSBIN for writing binary records. WRSDEC for writing BCD records.

Control returns to location $L+3$.
$N=$ the logical tape number of the tape to be read or written.
$W \neq 0$ if it is desired to wait until the specified I/O operation is completed before returning to the caller.
$T \neq 0$ if only one try is desired for reading even though the record may be redundant. This feature is most useful when the program must determine the mode of the information to be read.

EOR, ETT, EOF, and RTT are trap time exits to the user's routines. Any or all of these exits may be zero. A user's exit (if present) must be to a routine which carries out the desired function and then returns by means of a TRA 1,4.

L(IOC) is the location of the first of a block of I/O commands. Up to P commands are allowed. If more than P commands are necessary then at least one of the first $\mathrm{P}+\mathrm{l}$ must be a TCH command. The I/O commands must terminate with a command which causes a channel interrupt, i. e. the last command must be a IOXT . The first P of the I / O commands are moved to storage within the select routine so the original block at L(IOC) may be modified immediately upon return from the select routine. However, modification is not allowed if there are more than P commands. IOS is distributed such that $\mathrm{P}=10$. An assembly parameter
(described later) may be changed to increase or decrease P.

Calling sequence information is also moved to storage within IOS and hence the contents of $L, L+1$, and $L+2$ may be modified immediately upon return to $L+3$.

Noise records as defined in IOEX will be accepted if there is at least one input output and proceed command preceding the last I/O command, i.e. the IOXT . Hence, tape may be erased by the two I/O commands:

$$
\begin{array}{ll}
\text { IOCP } & 0,0,0 \\
\text { IORT } & 0,0,0
\end{array}
$$

However, if only the second of the above two commands was used, then there would be a noise indication.

Permanent Redundancy

IOEX is trusted to write correctly. In reading, a redundant record (as read the last time) is accepted as correct and the user's RTT exit (if specified) is taken. The maximum number of read tries is determined by an IBSYS assembly parameter, or is one if $T \neq 0$ in the calling sequence.

End of Tape

If there is no end of tape user's exit specified and the end of tape condition is detected during writing then 2 end of files are added to the tape, a message is printed for the operators and the tape is rewound and unloaded. The machine then pauses for a fresh tape. It is assumed that the record being written at the time the end of tape is encountered is short enough to be written correctly and that enough tape is left to hold the 2 end of file marks. After the pause, a check for RTT and EOR exits is made. If a user's ETT exit is specified then it is taken without doing any of the above actions.

User Exits

EOR, ETT, EOF, and RTT, if non-zero specify entries to subroutines coded by the user. Each of these subroutines must carry out its desired function and return by means of a TRA 1,4.

An entry to a user's routine is made at trap time, i.e. when an interrupt condition occurs due to channel command trap, a redundant read or write, detection of an end of file in reading, or detection of the end of tape in writing.

On entry to a user's routine the following information is available.
a) The address of the accumulator contains the number of words read or written by the channel command just completed or in use at the time of the interrupt.
b) The decrement of the accumulator contains the logical number of the unit in use at time of interrupt.

Restrictions on the User's Routine

1) The user's routine must exit by means of a TRA 1,4.
2) For efficient I / O, the user's routine should not be overly time consuming.
3) Only one user's routine is entered for a single interrupt. The order of checking for an exit is as follows:

Reading

End of file exit (EOF) Redundancy exit (RTT) End of record exit (EOR)

Writing

End of tape exit (ETT) Redundancy exit (RTT) End of record exit (EOR)
4) Activity checking by calling cHEKIO is permissible only if in the sequence:

$$
\begin{array}{ll}
\text { CALL } & \text { CHEKIO } \\
\text { TIX } & \mathrm{T}, \mathrm{O}, \mathrm{~N}
\end{array}
$$

T is non-zero. If T is zero, and logical tape N is active, then an endless wait will occur.
5) Index registers 1, 2, the $A C, M Q$, and indicators need not be saved by the user's routine.
6) Calls to REWTAP, BSRTAP, RUNTAP, BSFTAP, WEFTAP, SETLOW, SETHIH, SKPREC, SKPFIL, RDSBIN, RDSDEC, WRSBIN, WRSDEC may be issued by a user's routine, but only for a unit on the same channel on which the interrupt occurred.
7) Storage within IOS is allocated for 8 blocks of $1 / O$ commands and parameters. The number of blocks may be increased or decreased by an assembly parameter. One of these blocks is reserved whenever a logical unit is active. It is possible (if there is not one block per logical unit) that a block will not be available when activity is required. A data-select at non-trap time causes no trouble because an automatic wait for a free block will occur. However, at trap time there may not be more than one block available and no more than one data select should be issued without insuring that there is an available block.

Restrictions 6) and 7) above may be overcome by means of a special trap time routine which may be called by the user's routine. The calling sequence is as follows:

$$
\begin{array}{lll}
& \text { CALL } & \text { ISITOK } \\
\mathrm{L} & \text { TIX } & \text { BUSY,0,N }
\end{array}
$$

Control will return to location $L+1$ if it is permissible to select logical unit N. Control is returned to location BUSY if (1) logical tape unit N is on a channel different from the one for which the trap occurred (2) logical unit N is busy or (3) there is no available storage block for I/O command and parameter storage.

On entry to ISITOK, it is assumed that the accumulator contains what it had at the time the user's routine was entered, since the logical unit number in the decrement of the accumulator is used in determining if the channel which N is on is the same as the one for which the trap occurred.

If ISITOK is to be entered more than once, then the second or greater entry may be made to ISITll rather than ISITOK and the accumulator as saved on the first call will be used.

It is always permissible to re-select the logical unit for which the trap occurs, and for this type of use there is no requirement to call ISITOK.

Assembly Parameters

There are several parameters which should be checked (and if necessary changed) by the user of IOS.

1) IOUTAB: This parameter (defined by EQU) should be set to 0 to define the first 8 logical tape units to be the same as defined in the distributed FORTRAN II system under IBSYS, and set to 1 to define the first 7 logical tape units to be the same as defined in the distributed IBJOB system.
2) CALL24: Set this parameter to 0 or 1 depending upon the way the subroutines of IOS are to be entered. Use CALL24 EQU 0 if the FAP 'CALL' instruction is desired. Use CALL24 EQU 1 if the IBMAP 'CALL' instruction is desired.
3) ATONCE: This parameter (distributed as 8) is the number of I/O command and parameter storage blocks allocated in the IOS package.
4) IOCSIZ: This parameter (distributed as 10) is the maximum number of I / O commands which are moved. The total number of cells reserved within IOS will be ATONCE* (IOCSIZ+4). This total number should not be less than 60. It is desirable that ATONCE be at least as great as the maximum number of tape units in use at any one time.

The logical tape unit table as distributed is as follows.

Logical Unit	SYSUNI (IOUTAB=1)	SYSUNI (IOUTAB=0)
1	SYSUT1	SYSLB1
2	SYSUT2	SYSUT3
3	SYSUT3	SYSUT4
4	SYSUT4	SYSUT1
5	SYSIN1	SYSIN1
6	SYSOU1	SYSOU1
7	SYSPP1	SYSPP1
8	SYSCK1	SYSUT2
9	SYSCK2	SYSCK1
10	SYSLB1	SYSCK2

The table may be modified or extended by the user.

Error Exits

The only error exit in IOS is when the user specifies an illegal logical tape number. A logical tape number is considered illegal if it falls outside the range of the assembled table or if the word in the table of logical units is zero. Also if the SYSUNI function is not attached. All errors go to symbolic location ElElEl within IOS. From ElElEl, control is sent to the IBSYS dump (SYSDMP) routine. If desired, the user may substitute his own error handling.

Use of IOS With Other I/O Routines

Since IOS uses IOEX to accomplish input-output, traps must not be disabled, and machine instructions for inputoutput must not be issued, until all pending interrupts have a chance to be processed.

FORTRAN II library routines for input-output do not use IOEX. Therefore, before using the FORTRAN II library routines for I / O, the user must delay until IOS has completed all of its operations. This may be accomplished by giving the sequence

CALL CHEKIO
 TIX 0,0,N

for $N=$ the logical tape number of each unit which has been used by IOS.

The above restriction does not apply to IBJOB.

Example 1 -- Single Record Buffered BCD Output

Write a MAP subroutine to write BCD records of length N on logical tape T. The maximum record size is M words, and the records are to be single buffered.

The subroutine to accomplish this appears below, and is used by giving the calling sequence:

CALL WRITE (DUM)
ORG *-1 OVERLAY WITH PARAMETERS
DUM PZE A,O,N
A=ORIGIN OF N BCD WORDS
Returns here

The sequence could also be specified as follows:
CALL WRITE
TIX A,0,N
Returns here
The second sequence causes the second word of the code generated by the CALL pseudo-operation to be wrong, but the return will still be handled correctly since TIX with a tag of zero is a no operation. It is assumed that the subroutine uses an IOS assembled to handle the MAP 'CALL'.

Assembly parameters (T and M) for the WRITE subroutine are defined to write the regular output tape (SYSOU1). It is assumed that $N \geqq 3$ in order to avoid writing short records which may be treated as noise.

For illustrative purposes the I/O commands are written so that short records (less than 3 words) could be written without giving a short record error message, and even to accept an $N=0$ in which case a short piece of tape would be erased. The subroutine assumes that IOS and hence IOEX will write each record correctly, and also that IOS will handle end of tape conditions.

\$IBMAP OUTPUT - SINGLE RECORD BUFFEREC OUTPUT ROUTINE--BCD MOD ENTRY WRITE			
- ASSEMELY PARAMETERS-DEFINED HERE FOR SYSOUl			
T	EQU	6	LOGICAL TAPE TO BE WRITTEN
M	EQU	22	maximum record size
- Write slbroltine			
WRITE	SXA	SAV4,4	
	CLA	3,4	$A C=P Z E \quad L, O, N$
	STD	TXI	STORE N=NO. WORDS TO WRITE
	Pax	0,4	$14=L O C A T I O N ~ O F ~ N ~ W O R D ~ R E C . ~$
TXI	TXI	*+1,4,**	COMPUTE L+N
	SXA	GET,4	STORE FCR PICKUP
	CALL	CHEKIO(TP1)	WAIT TILL LAST RECORD OUT
	ORG	- -1	OVERLAY Call generated wd.
TP1	IIX	$\mathrm{CO}, \mathrm{O}, \mathrm{T}$	SPECIFIES the tape number
	LXD	TXI, 4	$14=N$
	TXI	*+1,4, BUFFER	COMPUTE BUFFER+N
	SXA	PUT,4	STORE FOR FILLING BUFFER
	LXC	TXI,4	$14=N$
	TXL	+ 2 ,4, M	OK IF .LE. M
	AXT	M, 4	WRITE NC MORE THAN M WORDS
	SXD	IOC,4	SEt the I/O command
GET	CLA	**, 4	move the line to
PUT	Sto	**,4	THE BUFFER
	TIX	GET,4,1	
	CALL	WRSDECITIX1, TIX2,	,TIX3) GO TO IOS TO WRITE
	ORG	*-3	OVERLAY CALL GENERATED WDS
TIX1	tix	0,0, 1	T=LOGICAL TAPE
TIX2	IIX	IOC, O, 0	IOC=LOC. OF I/O COMMAND
TIX3	tix	0,0,0	
SAV4	AXt	**,4	RESTORE 14
	TRA	1,4	RETURN TO CALLER
-106	CCMMAN	NDS AND BUFFER STOR	RAGE
	IOCP	EUFFER, O,**	** = LENGTH OF RECORD
	IORT	0,0,0	CAUSES INTERRUPT
BUFFER	BSS	M	BUFFER STORAGE
	ENC		END OF WRITE SUBROUTINE

Example 2 -- Mixed Mode Input

Suppose a tape must be processed which contains both binary and BCD records, and also that the records vary in length. The maximum record length is known to not be greater than N. The logical tape number is T, and it is desired to read a record K times before calling it permanently redundant.

A subroutine (using IOS) is written to read one record into storage locations BUFFER+i, $i=0,1, \ldots . . \mathrm{P}-1$. When the record is finally read, the following information is available:

P, the length of the record is in the address of location EORS .
The mode of the record is $B C D$ if the contents of location MODE is zero.
The record is permanently redundant if the contents of location RTTS is not zero.
The record is an end of file if the contents of location EOFS is not zero.

The name of the read subroutine is READ . A typical use of READ is described by the following diagram.

"Process" in the above diagram could be any type of operations desired. The reading of a record is overlapped with computing and other I/O (on channels other than that one which T is on) operations may be performed.

One application of the above diagram would be a tape copy routine. Another application is a routine to read the system input tape (SYSINI).

The following READ subroutine has the parameters (T and N) set for reading SYSINl which consists of unblocked binary and BCD card images. K is defined as 100 and a bad record would be read 50 times in each mode before being called permanently redundant. If the record is accepted as read the last time, then it is in the opposite mode of that one which was used for the first try. If the mode is known and it is desired to accept bad records, then it would be better to define K as an odd integer.

The first try at reading a record is always in the same mode as the previous record was read the final time. MODE is assembled for the first read to be in BCD mode.

Note that the trap time user routine for handling redundancy calls READ, the same routine which is called in the above diagram. This illustrates the select routine of IOS being called at both interrupt and non-interrupt times.

The code for READ was written to use an IOS which was assembled to use the FAP type CALL pseudo-instruction.

- ASSEmbly parameters--defined here for unblucked sysivi			
K	EQU	100	max. NUMBER OF READ TRIES
T	EQU	5	lggical tape fo be reau
N	EQU	28	maximum record lengih
- MAIN READ	LINE	READ Routine	
	SXA	SAVE4,4	
	AXC	GOIOS,4	SET 14 FOR ENTRY TU IOS
	ZET	MODE	Check mode of reading
	TRA	RDSBIN	READ In binary mode
golos	TRA	RDSDEC	READ in bcd mude
	TIX	TRPEOR, O, T	TRPEUR=END OF RECORD EXIT
	TIX	IOCOM, 0,0	ICCOM = LOCATION OF I/O COM.
	TIX	TRPEOF, 7, TRPRTT	ECF EXIT,l READ,RTT EXIT
SAVE4	AXT	**,4	IOS RETURNS CONTROL HERE
	TRA	1,4	EXIT
- trap TRPEOR	TIME	USER ROUTINES--CAL	alled by select minus of ios
	STZ	RTTS END OF KEC	ECORD---IT WAS READ O.K.
	STA	EORS	Store recoro lengit
TRPEX1 TRPEX2	STZ	EOFS	CLEAR END UF FILE WORD
	AXT	K, 1	Restore the maximum number
	SXA	TRPCNT,1	OF READ TRIES
	TRA	1,4	RETURN TO IUS
TRPEOF	STL	EOFS END OF FIL	File--SET THE EOF SWITCH
	TRA	TRPEX2	
TRPRTT	STA	EORS READING ER	error--save the length
	SXA	TRPSV4,4	SAVE 14 FOR RETURN TO IOS
TRPCNT	AXT	K,4	[4 = COUNTER FOR MAX. READS
	TNX	BADREC.4.1	to badrec if caivt kead it
	SXA	TRPCNT,4	Save the reduced cuvivter
	TSX	BSRTAP,4	backspace the tape
	TIX	O, O, T	T=LOGICAL TAPE NUMBER
	CLA	MODE	FLIP THE MODE SWITCH FDR
	COM		the next read try. mode =u
	STO	mode	FOR BCD READ.
	TSX	READ,4	RE-READ IN DIFFERENT MODE
TRPSV4	AXT	**,4	Restore and return to
	tra	1,4	SELECT- ROUTINE OF IUS.
BADREC	STL	RTTS PERMANENTL	WTLY REDUNDANT--SET SWITCH
	LXA	TRPSV4,4	and return to select-. the
	TRA	TRPEXI	RECORD IS ACCEPTED THO BAD
- storage and constants			
IOCOM	IORT	BUFFER, $0, N$	Com. to read up to n wuros
BUFFER	BSS	N	RECORD IS READ INTU HERE
MODE	PZE	**	MODE SWITCH(O FOR BCD)
RTTS	PZE	**	SET NOT 0 If PERM. ERRUR
EORS	PZE	**	SET TO RECORD LENGIH.
EOFS	PZE	**	SET NOT O If END OF file.
	F R	ad routine	

A symbolic listing of the IOS package follows. The listing appears as a FAP subroutine. To obtain an IBMAP version, replace the * FAP card with a SIBMAP card and redefine IOUTAB and CALL24 to be one rather than zero.

The code CLRXIN through CHEKX overlays the storage for I/O command and parameter storage. This block of code is only entered once to set up the logical unit table and other initialization. The storage allocated by ATONCE and IOCSIZ must be at least as great as this block of code.

The SKPFIL and SKPREC subroutines of IOS provide a third example of a good use of the program.

```
    FAP
        LBL IOSOOOOI
                A. BEAM--- I/O ROUTINES FOR IBJOB OR F II MONITOR SYSTEMS.
IDENTIFICATION
    A. 7090/7094 I/0 SUBROUTINE PACKAGE FOR IBSYS UOM IOS
    B. A. BEAM, JANUARY, 1966
    C. COMPUTER SCIENCE CENTER, UNIV. OF MARYLAND, COLLEGE PARK, MD.
```

 ENTRY RDSDEC
 ENTRY RDSBIN
 ENTRY WRSDEC
 ENTRY WRSBIN
 ENTRY CHEKIO
 ENTRY SETLOW
 ENTRY SETHIH
 ENTRY REWTAP
 ENTRY RUNTAP
 ENTRY BSRTAP
 ENTRY BSFTAP
 ENTRY WEFTAP
 ENTRY ISITOK
 ENTRY ISITLI
 ENTRY SKPREC
 ENTRY SKPFIL
 -
- ASSEMBLY P A RAMETERS
*

- NAKE IOUTAB $=0$ FOR FORTRAN II (FAP) ASSEMBLY
- MAKE IOUTAB = 1 FOR IBJOB (IBMAP) ASSEMBLY
- MAKE CALL24 = O IF FAP CALL IS DESIRED TO BE USED
- NAKE CALL24 = 1 IF MAP CALL IS DESIREO TO BE USED
IOUTAB EQU 0
CALL24 EQU 0
-
* K EQU C'ALL24
T EQU IUUTAB
-

*MAX. NC. UNIIS WHICH CAN BE HANDLED AT ONE TIME
ATONCE EQU 8
-

* MAX. NC. OF I/O COMMANDS WHICH ARE MOVED
IOCSIZ EQU 10
*

YSA

SYSCK1 BOCL 155
SYSCK2 BOCL 156
SYSCUR BOOL 102

SYSDMP BOCL 115
SYSIDR BOCL 117
SYSINI BOCL 151
SYSLB1 BOOL 140
SYSLB2 BOCL 141
SYSOU 1 BOOL 147
SYSPOS BOCL 106
SYSPP1 BOCL 153
SYSTRA BOOL 100
SYSUTI ROCL 157
SYSUT2 BOCL 160
SYSUT3 BOOL 161
SYSUT 4 BOCL 162
.CHEXI BOCL 134
. MODS W BOCL 135
(ACTIV BOCL 702
(BCD5R BOOL 720
ICHXAC BOCL 724
ICOMMM BOCL 736
ICVPRT BOCL 722
iNDATA BOCL 704
(PAUSE BOCL 712
IPROUT BOCL 706
IRCHXI BOCL 727
ISYMUN BOCL 714
ITRAPX BOCL 734
ITRPSW BOCL 742
IURRXI BOCL 725

- all errcrs come here anc hence to sysdmp
-

```
EIEIEI STL
    TRA SYSDMP
```

-


```
*
*
*ROUTINE TO BE USED ONLY AT TRAP TIME---CALLED BY THE USERS TRAP TIME
&ROUTINE....ON ENTRY THE AC MUST HAVE WHAT IT HAD WHEN THE USERS
*ROUTINE WAS ENTERED.....
*
* CALLINGSEQUENC
* CALL ISITOK
* IIX BUSY,O,N GOES TO BUSY IF N IS BUSY OR WRONG CHAN.
* RETURN HERE IF D.K. TO RESELECT UNIT N
* AFTER THE FIRST CALL ENTRY CAN BE TO ISITII IN WHICH CASE THE AC
* NEED NOT BE SUPPLIED AND THE VALUE IT HAD ON FIRST ENTRY WILL BE USED.
*
ISITOK STO ISITAC SAVE AC
ISITII SXA ISNOOK,I
    CLA ISITAC RESTORE THE AC
    PDX 0,1
    II = TRAP UNIT
    CLA IOPUT,I
    ANA CHNLMS
    SLW ISITCH TRAPPED CHANNEL
    CLA 1+2*K,4
    PDX 0,1 II = UNIT IN QUESTION
    TXL ELEIEI,1,0
    TXH ElEIEI,I,IOPUT-IOUTB
    NZT IOPUT,I
    TRA ELEIEI ILLEGAL UNIT
    STE ISOKO2
    CLA IOPUT,I
    ANA CHNLMS
    ERA ISITCH
    TZE ISOKOI
        CHANNEL IN QUESTION
        DO THEY MATCH
        YES----IF ZERO
ISNOOK AXT **,I
    CLA ISITAC
    RESTORE AC
    TRA* 1+2*K,
ISITAC PZE **
ISITAC PZE **
[SOKOl
    SXA
    TSX
    TXI
    PZE 0
    BES 2#K-2
ISOK02 TIX ISOK04,0,**
    GO IO BUSY EXIT
                        ISOK03,4
                            CHECK IF UNIT FREE
ISOKO3 AXI **,4
    TRA ISNOOK
        ACTIVE-----DONT SELECT
                                    go to buSY EXIT
ISOKO4 AXT IOISIZ,I
    NZT IOCTAB+IOTSIZ,I CHECK IF I/O BLOCK IS AVAILABLE
    TRA
        YES
    IIX *-2,1,IOCDEC
                                    NOT YET
    TRA ISOKO3
ITISOK LXA ISOKO3,4
    LXA ISNOOK,I
    CLA ISITAC
    TRA 2+2*K,4
```

```
- ROUTINE TO LETERMINE If LOGICAL UNIT N IS ACTIVE
```


\bullet

```
- callinggeegueNce
- call chekio
- TIX T,O,N
CHEKIO TRA CHEK WILL BE REPLACED BY PXA 0,l
    XCA
    CAL 1+2*K,4
    PDX 0,1
    TXL EIELEL,L,O
    TXH ELEIEI,I,IOPUT-IOUTB
    NZT IOPUT,l
    TRA ElEIEI ILLEGAL UNIT
    CLA* IOPUT,1 T NOT O THEN TO 2,4 IF N ACTIVE
    PAC 0,1
    CAL 1+2*K,4
    ANA CHEKT7
    TNZ CHEKIN
    ZET 1,1
    TRA *-1
CHEKIX XCA
    PAX 0,l
    TRA 2+2*K,4
CHEKIN ZET 1,1
    TRA CHEKIX
    PAC 0,4
    TXI CHEKIX,4,2+2*K
CHEK7T PZE -1 END OF CHEKIO
```

*


```
* put actual chanNel into logical unit word
    AXT IOPUT-IOUTB,4 I4 = NUMBER OF UNITS
    CLRLP CLA* IOPUT,4
        NZT* IOPUT,4
        STZ IOPUT.4
        STA *+1
        CLA **
        ANA CHNLMS
        ZET IOPUT,4
        STD IOPUT,4
        TIX CLRLP,4,1
        AXT SELEND-INCLRX,4
        CLA SKIPX
        STO SKPI4T
        CLA NDATX
        STC NDATAX
        CLA DATAX
        STO RDSWRS
        CLA CHEKX
        STO CHEKID
        TRA CLRXIN
    SKIP CLA *+2
        TRA INCLRX
        TRA SKPI4T
NDAT CLA *+2
            TRA INCLRX
            TRA NDATAX
DATA CLA *+2
            TRA INCLRX
            TRA RDSWRS
CHEK CLA *+2
            TRA INCLRX
            TRA CHEKID
    SKIPX PXA **,4
    NDATX SXC NDATAS,4
    DATAX PXA 0,1
    CHEKX PXA 0,1
            BES SELEND-*
* END OF SELECT
```


	$\begin{aligned} & \text { TIX } \\ & \text { ENE } \end{aligned}$	$\begin{aligned} & \text { SKPEOR, 7, SKPEOR } \\ & \text { PZEO } \end{aligned}$	
SKPI4S	AXT	**, 4	-
	ZET	(TRPSW	
	LXA	SKPI4T,4	ITS trap time
	N2T	ITRPSW	
	ENB*	ITRAPX	
	TRA	2+2*K,4	
SKPRDS	P2E	0,0,SKPRIO	
SKPFLS	PZE	0,0,SKPFIO	
SKPRIO	IORTN	0,0,0	
SKPFIO	IORPN	0,0,-1	
SKPCON	TCH	$*-1$	
	BSS	IOPUT-IOUTB	STORAGE FOR SKIPPIVG
SKPEDR		AT TRAP TIME-	
	SXA	SKPTI4,4	SAVE 14
	PDC	0,4	$14=-L O G I C A L ~ U N I T ~$
	STL	SKPTUN	PUT UNIT INTO CALL
	CLA	SKPCON,4	PRF L(IO), O,NTOSKP
	STA	SKPTIO	L(IO) INTO CALL
	PDX	0,1	REDUCE THE
	TXI	* $+1,1,-1$	SKIP COUNT
	TXL	SKPTI4,1,0	FINISHED IF ZERO
	PXC	0,1	
	STE	SKPCON, 4	PUT COUNT BACK
	TSX	ROSBIN, 4	
	TXI	*+5,0,1	
	PZE	0	
	BES	2*K-2	
SKPTUN	TIX	SKPEOR, O,**	
SKPTIO	TIX	**,0,0	
	TIX	SKPEOR, 7,SKPEOR	
SKPTI4	AXT	**,4	
	TRA	1,4	
- END	$\begin{aligned} & 0 \\ & \text { END } \end{aligned}$	SKPFIL - -	K P R E C

