View metadata, citation and similar papers at core.ac.uk

|
P
brought to you by .{ CORE
provided by NASA Technical Reports Server

GPO PRICE s

. CFSTI PRICE(S) $

N66-19447
«Accwzim = ”'7” Hard copy (HC) f/ M

(PAGES) (coDE) 2 Microfiche (MF) ‘9

-

SHS )

INASA CR OR TMX OR AD NUMBER) (CATEGORY) £ 853 July 65 ‘

FACILITY FORM 602

GIIHID

GENERAL DYNAMICS

/
ASTRONAUTICS O SEPY S
— " CENTAUR ppoyer, OFFIg ’
7. hiwg ch Asa I ~
' SSEARCH Cenrem /e /
. P /\\ 4

A2136-1 (REV. 6-61)


https://core.ac.uk/display/85252645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GliD

REPORT N0. GD/A -DDG-64-021
DATE 31 August 1964
NO.OFPAGES 18 + ii

GGENERAL DYNAMICS I ASBTRONALITICS

SECONDARY STRESSES

IN TRUSSES

APPROVED BY ff ” 7 /‘&‘4 [

E. E. McClure
. ; l ,

APrOVEDBY__ 58, /v M, lop
A. H. Hausrath ™qu: 4
Chief of Stress

REVISIONS
NO. DATE BY CHANGE PAGES AFFECTED

A 700-1 (REV. 1.3




1.0

2.0

3.0

lz
o
L]

Iz
o
[ )

11

I1I

GD/A-DDG-64-021

CONTENTS

INTRODUCTION

SECONDARY STRESS CONCEPT

FIXED JOINT TRUSS EXAMPLE

3.1 Manual Solution

3.2 7090/4 Program Solution

3.3 Static Check of Program Output

LIST OF REFERENCES AND BIBLIOGRAPHY

ILLUSTRATIONS

Title

Fixed Truss-Joint Relaxed

Fixed Truss-Joint Loaded and Unloaded
Example - Fixed Joint Truss

Bar Forces and Stress Intensities
Moment Distribution on Example Truss
Fipal Joint Moments

Final Axial Loads

TABLES

Title

Geometric Properties
Computation of Angle Changes

Computation of Initial End Moments

ii

14

17

18

10

11

12



GD/A-DDG-64-021

1.0 INTRODUCTION

A widely used method for the analysis of two-dimensional fixed joint
trusses is presented in References 1-4 and is commonly called the method
of secondary stresses. In this approach, the truss is first analyzed un-
der the assumption that all members meeting at each joint are connected
by frictionless pins. Next it is)assuned that the joints of the struc-
ture are '"locked" i.e. that all members meeting at é'joint rotate through
the same angle. Further assumptions are then made: (a) that the axial

(or, "primary") stresses previously computed have negligible effect upon
P

’
member stresses from bending, and (b), that the bending (or, "secondary")
stresses have negligible effect in modifying the primary stresses. Thus,
from a computation of joint displacements followed by a moment distribu-

’ tion‘,® the secondary stresses may be found. This calculation of secondary
stresses may be iterated, and them it is seen that successive iterations
converge in an alternating manner to some true solution. The method of
secondary stresses obviates the need for solving a large set of simulta-
neous equations; but this is offset by the labor of the computation of
joint deflections and moment distribution. Moreover it seems impractical
to apply this technique to a three dimensional structure.

The availability of large computers has made it feasible to analyze

a truss (two or three dimensional) by direct application of the energy

theorems of structural analysis. For illustration, the following sample

o - S;,(,) ITEEE B T

problem (from Ref. 2) is solved by the method of secondary stresses and
by a direct method, which has been programmed and is available to all

Stress Groups at Astronautics (Program No. 2785  Report No. ERR-AN-206),

. @For an unsymmetrical loading condition, the moment distribution must be
modified to account for sidesway. See Ref. 2 page 461 for details.

1
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2.0 SECONDARY STRESS CONCEPT

For an adequate understanding of the method of secondary stresses

it is important that the mechanism resulting from the assumptions be

explained.

Original’intersection
of centroids

Figure 1 - Fixed Truss - Joint Relaxed

The joint in Figure f:as taken as a typical fixed joint in a truss.
Initially the centroids of all the members framing into the unloaded
joint of the structure are assumed to intersect. Allowing for pim joint

action at the joint the members will deflect to the shaded position and

. their centroids to the doubly deshed center line position. If the joint

is truly fixed the relative angles between each of the members can not

C)In figures 1 and 2 the rotation of the gusset is not shown.

2
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change. Only the entire joint can rotate to an equilibrium position.
Hence after the axial loads in the members have been calculated from
the pin joint analysis, the continuity at the "fixed" joint must be re-
stored. To accomplish this, the relative end deflection or rotation of
each member must be computed. From these displacements 6 fixed end mo-
ments are calculated and the members are allowed to rotate elastically
until the joint continuity is restored. The initial and final deflected

positions of the fixed joint are shown in Figure 2.

Figure 2 - Fixed Truss - Joint Unloaded and Loaded
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3.0 FIXED JOINT TRUSS EXAMPLE

The example solved by the "secondary stress" method and by Astro-
nautics Program No. 2785 is shown in Figure 3. All joints are rigid and
all external load is applied at the joints. The structure is assumed to
be geometrically and physically symmetric about the vertical member C c.
With this condition realized, one-half of the truss may be analyzed after

properly constraining the structure at C ¢, and a.

336"

A b e 3 °

¥

. y . 4 .
186klps 1186k1ps 186k1ps

4 at 300" = 1200" o

Figure 3 - Example - Fixed Joint Truss
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Figure 4 - Bar Forces and Stress Intensities
TABLE 1
Geometric Properties
L (in) A(in?) I (in*) K (in®)
BAR Stiffness
Length Area Inertia (Rel.)
ab 300 18.0 174.9 0.583
be 300 18.0 174.9 0.583
Bb 336 15.88 153.4 0.456
Be 450.4 13.68 131.4 0.292
Ce 336 11.44 78.9 0.235
aB 450.4 27.68 960.9 2.134
BC 300 26.55 922.7 3.076

+ = Tension
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The primary bar forces (pin joint analysis) are shown in the line
diagram in Figure 4; truss element geometric (and section) properties
are presented in Table I. The next step is to compute the ¥ angles
for obtaining the fixed end moments (FEM's). These V¥ angles will be

calculated by the bar chain method shown in Reference 2.
EA® = (03 - 0,) cotBy + (03 - Og) cotfa

where:

1 = angle opposite
8id

Bs = ang%i opposite
side

¢ = anglé opposite
side
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The ¥ angles must be computed in order to calculate the fixed end
moments for the 'moment distribution. The angle V¥ is the rotation of
the chord joining the ends of the elastic curve referred to the original
direction of the member. ¥ is positive when the chord of the elastic
curve has rotated clockwise from its original direction. Since the mem-
ber Cc is assumed to remain vertical after loading, the final position
of all the joints may be determined by algebraically'iu-ing the EA®'s
which gives the ¥ for each member. The EA¢'s are calculated as in
Table I1I. The ¥'s are calculated as shown in Table II and are then
used to calculate the initial end moment (see Table II1). Figure 5,
folloiing Table III, presents the moment distribution iterations. A
comparison of the final iteration and the computer program (No. 27835)

results is presented in figures 6 and 7.
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0 Ei;B =  +47.91
~19.30 EA¢aBb = +24.40
+19.30 thb = 23,51
2.91 EAﬁbBc = 4.21
+16.39
-7.12 thc z +19.30
+23.51 EA¢ch = -=10.20
-520 65;
+76016 E‘I’m = "’29050
28,25 EA¢Bcc = +29,50
'4'47.91 o
TABLE III

Computation of Initial End Moment

BAR K EV -6EKV

ab 0.583 +76.16 -266.0
be 0.583 +16.39 -57.3
-aB 2.134 +47.91 -613.5
BC 3.076 +29.50 -544.0
Bb 0.456 +23.51 -64.3
Ce 0.235 0 0

Be 0.292 +19.30 -33.8




83 [nsaJ

($842 °ON)
wwvadoad J93ndmood
WoJI3J 3J® F)uIMOm

Teutry patoaITd :AILION

GD/A-DDG-64-021

*(3urol ayy

3@ jooy ‘uorjejuatao
J03) Jaqudw 343 jo
SPUd 3y} U0 IAFTANI0[D
319% Aay) uaym 2IAT}
-tsod aaw gjuawow puy

8snJ] 3Tdwexy U0 UOTINQII}SF( JUSWON - G SINITL

(6°8%)

LEY +  ¥°L6 -
0°z + o0°2 +
L'e -

“On - h. -
b°01 +

9°LT +  9-21 +
_ I

v is - voIg -
L°¥8 +

G*8CT+ _ ¢°BLI+

gesg - 1 goz-

¥°08
8°¢c
8°¥%
LAK
8°8
6°02
4°C2
L°L9 -
c'69 +
$°68T+
99¢-

+

I +{+ )

[6S€°0 | [[ 68£°0]

......v-.fu..._o
it LR S K- JLS
T ] IS Q.EA-nvnvnvb.m
® fo o jJo o Jo o fe o L]
Bnumﬂunun.b_vnx 2]
+ 1] + 1
-3
- N o [
® o fe o °
o G © )
o
*
Q
3
~

x

“

NN\ ‘ xvvo
0 -544 N 544 @ .vzwo b,

’
- 11.7 —23.4 A
-297.8 +8,2 X
lhuc*

(2o1.0)

AN .
+324 &b +648 ’ \.(é.u.( 7
-103.1 ~206.2 x40 Y,
+ 37.0 +74 * .(00.0




v

GD/A-DDG-64-021

*UOTIUIAUOD ult® a0 ¢ *I1y
29§ °UOTINQTI}SIP JUIWOm JO
UOT}BIIIT U0 JI)J® PAaUTwVIQO

990y} 9JI® sIuUIWOW PI[OITOU(

*sjurol ayj3 3w sjuswow gglZ

weadoaxd axe sIn[eRA PA[IIT)

(ur~-dyy) sjuawoy

JUTOL [wutd - 9 oandia

8°262-

(Fo162-)

(v)

11




GD/A -DDG-64-021

(*uorsuaj ajou

-9p SdNTeA JATITEO04) °*UOT)
-nQII)SIP jUIWOM 3IY) JIIJW
P@3993J00 SpPVOT] [¥WIXY dJw
SI9Yl(Q °8)[NESI peo] [PIXY
weadoaq 9Jw wONTeA PI[IIT)

8peOT [eIXY [euUTd - 2 eandrd

Anv Anv Aﬁv
2 : q )
20 6F2

0 l9°2eg-

12



GD/A -DDG~64-021

43.4 297.8
-0,672 ')

4 <.14 1.14

-00 175

0.59 0.59 0.175 0.175

The célculation performed above shows the shears induced by the fixed
end moments and the resultant secondary axial loads induced by the fixed
condition. These axial loads are sufficiently small so that no correction
of the pin joint axial loads is necéssary.

The approximate moments oﬁtained by the first trial moment distribu-
tion are somewhat higher than those obtained from the direct approach of
the program. As shown in Reference 3 and elsewhere, each cycle of moment
distribution will give some alternating answer about the true solution.

If several cycles are carried out it would be apparent that the approxi-
mate approach converges to the answer obtained by direct application of

the Energy Theorems.

13
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3.2 7090/4 Program Solution

The following two pages present print out of the problem input data

and a summary of the essential output.

14
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3.3 STATIC CHECK OF PROGRAM OUTPUT

2 A= 279

B> v

Vertical Reaction at Node 1 (Z Direction)

R (Z Direction)

(-2.790 x 10™°) ( 10

R= 2.79 x 10%1bs.
Static Reaction (from Fig. 3)

= 279 Kips

Conclusions:
l. Deflections satisfy the boundary conditions.
2. Reactions and external loads satisfy the equations of statics.

3. Solution is correct.

17
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