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On Signal and Noise Level Estimation in a Coherent
PCM Channel

Summarz

Joint maximum likelihood estimators are presented for the
signal amplitude and noise power density in a coherent PCM
channel with white Gaussian noise and a correlation receiver,
The estimates are based upon the correlation coefficient outputs
of the receiver. From these estimators, an estimator for the
quantity

(received signal energy) / bit ,

(noise power) / (unit bandwidth)

upon which the error probabilities depend, is derived. This

estimator is shown to be useful as:

a) A point estimator for the signal-to-noise ratio for the

higher values of this ratio (about 4 db., or greater).

b) An easily calculated statistic upon which to base data

acceptance or rejection criteria, The acceptance or

rejection levels are obtained by the use of confidence
interval curves in conjunction with word error probability
data.



Introduction

The advantages of phase-coherent PCM (and, as a special case,
PFM) communications have been widely recognized(l’z’s’u)and
utilized in the recovery of information from scientific satellites,
The optimum (Bayes) receiver for such a channel is one which
computes the conditional probability for each of the possible code
words, given the received (noisy) data word, If the transmission
of each of the possible code words is a-priori equally likely,
then maximizing the conditional probability is equivalent to
maximizing the likelihood function. If the received words (i.e.,
the signal parts of the received waveforms) are all of equal
energy, the likelihood function is maximized by choosing the
word which yields the largest correlation coefficient when corre-

lated with the received "data" word,(s’s)

A matter of fundamental importance, particularly in the
reception of scientific information from satellites, is the
reliability of the information obtained, Presumably it is better
in some instances to discard data rather than to use data for
which the probability of error is large, For a coherent PCM
channel with correlation reception, the error probabilities depend

upon a single parameter,(l’z)

H>

ST (L

-]

3

where.

T = time per bit

S = received signal power
ST = received signal energy per bit
N, = noise power per unit bandwidth,



Since, in practice, it is not reasonable to assume that either
the signal amplitude or the noise power density will be known,
the question arises: Given the observed data, what is the best
that one can do toward estimating these parameters, or, in
particular, the single quantity § ? Since the error probability
depends upon this parameter,; a sequentially updated estimate of
S (if the estimate is a "good" one) will provide the best
information upon which a decision to use or reject the data can
be based.

In the following discussion, the received data word will

be denoted by

rg(2) = Aolt) +miz) -

where (xy j(t) represents the j'th. word waveform, normalized
so that

Tw
f/)[/;(j‘) Ar = I (3)

where
T 2 +time duration of word

T X (bits per word).

A 1is an unknown amplitude factor, and n(t) will be assumed white
Gaussian noise of unknown power density. The correlation receiver

generates a set of numbers

Tw
) —ffﬂjw (2) At “*’
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We also define:

N é number of words in the code set
= number of correlation filters for an
orthogonal code.,
=z log;l (number of bits).,
M 2 number of received data words up to the

time at which the estimate is to be made.

(It should be noted that the statistics

in the following discussion will be considered
stationary — this may impose an additional limi-
tation on M in practice.)

The possibility exists of basing the estimates either on
y(t) or the set of numbers 9b ;3 - i,e.y either on the entire received
waveform or on the output coefficients of the correlating filters.,
These alternatives will now be compared.

Estimation of A and N, Based Upon y(t)

It will now be assumed that y(t) = A 4&%(t) + n(t) has
been observed for M received words. The unknowns are j, A, and
No’
B at the receiver (2B if the negative frequencies are included).

and it is assumed that the noise is limited to bandwidth

Each y(t) can then be represented (with the usual limitations) by
2BT,, samples, and each sample has a variance 0’2 = 2BNoo It will
be assumed that no a-priori information is available concerning

the three unknowns, which will therefore be treated as parameters
and the method of maximum likelihood employedo(7) The likelihood

function for the M observations is:

[ (ira) HJBW%X 2y '*_,[f %“"A%")ll}

K=1



where y, - AkQUjK =M y » the K'th. sample of n(t). Since, from

the sampling theorem,

2BTw 7;’ 2
Z/n,?:zB ML) At o)

o

:(wrelvo EXP - . [f(%—A/)@)la’/z‘L (7

or

Logl =~BTuM Log(4m8Me)+ 5 [z,cm ¢ —AT—E ]

Slw
where me éf Aa’zzt) /ﬁ{f (9)

Since, after the data has been received, Ey is a constant, it is
clear that regardless of the values of A and No’ Log L (and there-
fore L) will be maximized by choosing the values j which correspond
to the maximum ¢j's, This is of course the principle of the
correlation detector — however it is interesting to note that if
one is attempting to jointly estimate not only which waveform was
transmitted but also the signal amplitude and noise power density,
it is not necessary to use some different technique to choose the
signal waveform than would be used if this alone were required,
Since our distribution is of the form admitting sufficient
statistics,(7) Log L will have a single unique maximum depending
on A and No» which may be found by differentiation. Setting the
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derivatives with respect to A and Ny equal to zero yields the

estimates
A / M |
A = — (10)
- MZ¢K
=/
/\/}:——/——-i(E)—MT/IA\\Z (11)
© 2BRM | L\ Wk "

where ¢K denotes the set of M maximum ¢j"s (one for each observed
data word).,

III Estimation of A and N, Based Uponé_j_

Since forming Ey implies instrumentation not normally
incorporated in the correlation detector, we will consider now
estimating A and No from the outputs ¢i of the correlating
filters. M of these outputs will consist of signal level A plus
noise (and will be denoted by ¢ j), while the remainder (¢>e)
will consist of noise alone, For orthogonal codes the noise
outputs will be independent (for "white" noise), and of mean
zero and variance N,/Tw. The likelihood function for these outputs

is thus
MK, 5 MV-)
L=() *(B)* Expi-Zo > (¢5-A)+) ¢ (12
»3'=I e=|



and

M M
Lo? | :@onsr) --'Y’l—’!—loaf/\/é +:Z;vo 2AZ¢f —MAZ_Z ¢;_
i~

3"= /
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e
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/

consr) MNLOW/VWL ZAZ@ -MA Z¢ (13)

(i now indexes all of the filter outputs.)

Again, differentiating with respect to A and N0 yvields the

estimates:

//31 = 7\%—2¢K (1)
/\//\o = 747_‘_“;7[2 ¢;_MA\1] (15)

1=

where, as before, the ¢K represent the maximum correlator

outputs (one for each observed data word).



It is interesting to note the correspondence between these
estimates and those of equations 10 and 11, The difference is
that in deriving the estimates the signals were represented in
two different orthogonal signal spaces, If the dimensionality of
these two spaces is the same — i.e,, if N = 2BTy, then we would
expect our estimates to be identical. In this case, since y(t)

is completely characterized by the ¢ i components,

I N

Ey= [0t =7 ¢

A
and No from equation (1l1) becomes:

K=l K=I m=|
=S g2 MA” :
- —Iw e 17)

which corresponds to equation (15).

As an example of this equivalence, consider a PFM channel

with N possible orthogonal words., The minimum frequency difference

(for orthogonality) between ajacent frequencies is 1/2Ty CDPQSO,(z)
requiring therefore a bandwidth of approximately Bhin et N/2Ty,, or



~
N— 2Bmin. Two

resultant bandwidth is just sufficient to pass the signals, the

Hence i1f the noise is pre-filtered such that the

qbi coefficients 1in this case contain all of the information
pertinent to estimating A and N, that was contained in the entire
continuous (filtered) y(t). Furthermore, since A and N, are
sufficient statistics, none of this information is lost in

forming the estimates from the ¢i°
Maximum likelihood estimates, if they are sufficient,
guarantee the property of minimum variance, but are not

necessarily unbiassed. A (eq. 1l4) is unbiassed, but N (eq. 15)
has the expected value

A - MIV. 2 / M 2
Ny = 3| 2 EL ) — 7 KZ@(}
A= =

- I 1_/*_/0_) Lo _pppzNe|— MN-]
T MN M(A+Tw +M(N 177/ MA Tw | MN M (18)

Hence the minimum variance unbiassed estimator for No is given by

A

MN 2 A2
Ne = S| 2,8 ‘MA] "
L=]

Since the error probability depends only on \f s where

3 4 S7 - TA (20)
No No
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and since A and N, are jointly optimum in the sense previously
discussed, are easy to calculate, and are hueristically "natural"
estimators for the respective parameters, it is natural to

investigate 2

5"3 TAS _ ZMA/—/ A |
N, N 2 A
A / N ¢ 032 :Z@ A -
A= K )
M []

as an estimator for=1§ . This was done experimentally on a

high speed digital computer, and results are presented in the

form of confidence interval curves,

A
Confidence Intervals for .§

The primary object in attempting to estimate § is to
present information about the validity of the data obtained. This
may be done by the use of confidence curves such as those presented

(by way of example) in this section,

Figures 1-3 show 0,90 factor confidence interval curves for a
16 filter (4 bit) system, for 1 data word observed, 4 data words
observed, and 16 data words observed respectively (M = 1,4,16),
If a horizontal line is drawn at the value of the ordinate given
by the estimate ('§ ), the portion of that line lying between the
two confidence curves defines an interval which will contain,
with probability 0,90, the true value of § 0(8) Also, the true
value will lie, with probability 0.95, to the left of the point
of intersection with the right-most confidence curve, and with
probability 0.95 to the right of the left-most confidence curve.
The curves for a 100 filter (6.65 bit) system are shown in Figure

4 (for 1 observed data word).
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Curves such as these may be used in the following way, in
conjunction with already published error-probability curves,
(Figure 5 is reproduced, with consent of the authors, from
Reference 3.) Suppose that the four bit system is being used,
and that the noise is sufficiently stationary that it can be
assumed to be stationary over intervals of four word-transmission
times, We would then make use of the curves of Figure 2 (using
four word groups to form our estimates). If our estimate turned
out to be 0 db, or less, we know from the curves that with
probability 0,95 the true signal-=to-noise ratio is less than 1 db,
Going then to the error-probability curve ( n = 4 bits), we know
that with probability 0.95 our error frequency will be greater
than one in ten. We might desire, for example, to base our
"rejection" level on this error probability, as indicated on the
curves, If, on the other hand, our estimate was 6.7 db., or greater,
we know from the curves that with probability 0,95 the true §
will be greater than 4 db., corresponding to an error frequency
of less than one in one-hundred., Placing, for example, our
"valid data" level at this value, we have then a criterion for
labeling the data as valid, questionable, or to be rejected,
depending on the value obtained for §’ o (These levels of
course are purely arbitrary, and are indicated on the curves simply
as an illustration of how they can be used,)

‘§ s as a point estimator for § , is only good for higher
signal-to-noise ratios, as can be seen from the confidence curves,
For ,§ =2 4 db. approximately, é? is for practical purposes
unbiassed and consistent, while for the lower signal-to-noise
ratios\g is badly biassed, this bias in fact causing the
unfavorable "bend" in the confidence interval curves, However,
the fact that the estimator is poor as a point estimator for low
values of § does not interfere with the use of the confldence
curves to establish a "rejection" threshold as was done in the

preceding paragraph.
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Conclusions

The optimum "detector" for a PCM channel with white Gaussian
noise and equal a-priori signal probabilities is a correlation
detector. If it is desired not only to choose the most probable
signal, but also to calculate the most probable values for signal
amplitude and noise power density, this can be done with no
additional instrumentation (if the estimates are based upon
the outputs of the correlators), and with no modification of
the correlation detection scheme itself. These estimates, which
are minimum variance (and can be made unbiassed), are hueristically
"natural” ones and are easy to calculate. They may be used to
form an estimator 3”\ for the signal-to-noise ratio § ’
although this estimator will no longer be optimum in a minimum
variance unbiassed sense. In fact, for signal-to-noise ratios

f>/ 4 db., f is essentially unbiassed and probably very
close to optimum, while for lower values of § , the bias renders

§ a very poor point estimator for § .

The ultimate aim in attempting to estimate the signal-to-
noise ratio is to establish acceptance or rejection criteria for
the received data, This can be done through the use of confidence
interval curves, based on ? s in conjunction with already
published error probability curves., The validity of using ﬁ for
this purpose is not affected by the poor performance of f as
a point estimator at the low signal-to-noise levels. Thus, for
this purpose, f is a good choice of a statistic, as it is

easy to calculate and has a clear physical interpretation,
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