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PREFACE

This report is divided into three separate sections, each covering

a different phase of the research grant.

In Section I, "Optimal Feedback Control of Nuclear Reactor Systems,"

Optimal Control Theory is applied in order to derive analytical expressions

for compe_sating reactivity control which minimizes an integral quadratic

performance index containing system errors and control motions. Various

linear and nonlinear reactor models are analyzed. Analog computer studies

show the effect of quasi-optimal feedback control in minimizing system

errors caused by internal disturbances.

In the second part of this report, '_odeling with Liapunov Function,"

the Second Method of Liapunov is used to analyze the behavior of high-order

control systems. This is accomplished by finding a lower order model whose

response closely approximates the response of a higher order system. The

model is developed by "matching" the surfaces described by Liapunov functions

of the system and the model. In particular, a second-order model and a third-

order model are developed which providegood results for all systems inves-

tigated. The second-order model is shown to be similar to the model obtained

using phase margin techniques; and of greater importance, the third-order

model is shown to be a better approximation to systems than the phase margin

and the second order models. Thus this method serves to extend the practical

usefulness of the Second Method from mere stability analysis to relative

stability analysis (response of the system) and synthesis. Future effort

will be directed to the problems of finding nonlinear models for nonlinear

systems and specification of the accuracy of the model.



The third section, "Linear SystemDesign Using State Variable

Feedback," deals with the problems of the design of optimal feedback

systems for linear system subject to quadratic integral performance

criterion. In particular, two specific problems are attacked - the

regulator problem and the servomechanismproblem. In the regulator

problem, the optimal design is shownto be a weighted constant feed-

back of all state variables. For the servomechanismproblem, the

solution consists of a regulator plus a linear prefitter system.

Methods are presented for both the exact and approximate solution of

both problems. Future work will be involved with the finite interval-

of-control problem and the very important case when all of the state

variables are not measurable.
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SECTION I

OPTIMAL FEEDBACK CONTROL OF NUCLEAR REACTOR SYSTEMS
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ABSTRACT / _ _ _

Linear optimal feedback control theory is employed

for the synthesis of several nuclear reactor models.

Optimal feedback control theory is presented from the

viewpoints of three commonly used techniques in modern

control theory, namely: the calculus of variations, Pon-

tryagin's maximum principle, and Bellman's dynamic

programming. For the synthesis of linear nuclear reactor

control problems, these three methods all yield identical

optimal feedback controllers. For the synthesis of non-

linear nuclear reactor models, approximation techniques

based on either the maximum principle or dynamic program-

ming are required, and the two methods yield different

results.

The purpose of this study is to derive analytical

expressions for a compensating reactivity control which

minimizes an integral quadratic performance index contain-

ing system errors and control motions. First-order linear

and non-linear reactor systems are analyzed in order to

present as many facets of the optimal synthesis problem

as possible using simple examples. Higher-than-first-order

nuclear reactor models are analyzed for optimal linear and

quasi-optimal non-linear cases. Analog computer studies

show the effect of quasi-optimal feedback control in

minimizing system errors caused by internal dynamic

viii



disturbances. Time-varying feedback gain programs were

determined by _eans of the digital computer for two differ-

ent non-linear reactor models. The examples in this work

demonstrate the usefulness of optimal feedback control

synthesis for nuclear reactor systems.

ix



Chapter 1

I_TRODUCTION AND OUTLINE

Introduction

In recent years a number of investigations have been

carried out for the determination of optimal controls for

nuclear reactor systems (3, 8, ll, 15). In the period since

World War II, new mathematics of automatic control theory

have been developed at a rapidly increasing rate. Linear

control theory proved to be unsatisfactory for many types

of dynamic control systems, which contain characteristic

nonlinearities. Describing-function and ohase-plane tech-

niques were developed for non-linear systems. With the

advent of analog and digital computers, very complicated

control systems can be evaluated through indirect simula-

tion. Most recently, time-domain control-system synthesis

has begun to play a very important role in automatic control.

To the engineer, the time-domain formulation is a realistic

framework in which to work and affords a wider range of

problems which may be handled.

This thesis is concerned primarily with the problems

of optimization of feedback control systems. The mathematics

of optimization in automatic control are probably the most

notable contributions to control theory of any. The idea

of optimization is surely not new and stems directly from

1
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the classical mathematics of the calculus of variations.

However, the application of mathematical optimization in

automatic control is a significant divergence from the

methods discussed in the previous paragraph. Optimization

theory attempts to yield a system controller which exactly

incorporates all of the control system design constraints

directly without the need for trial-and-error system analy-

sis. The recent theories of optimization used most frequent-

ly in control system design are those of Pontryagin (10) and

Bellman (I). Both of these theories give necessary and

sufficient conditions for the optimal control of linear

dynamic lystems and as expected the resulting controls are

identical. For non-linear systems Pontryagin's maximum

principle gives necessary but not sufficient conditions for

the optimal control. On the contrary, however, Bellman's

dynamic programming approach gives both necessary and

sufficient conditions for non-linear optimal control systems

also. For other than linear systems with unbounded control

regions, these theories involve sophisticated and complex

computational techniques.

The application of optimization techniques to

reacter dynamics is new and almost all studies in this area

have been published since 1961. One of the very first

studies of optimal processes in nuclear engineering was

done by Rosztoczy (11,12). Since then, other studies have

been continuously forthcoming. The general trend in all but
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a few of these studies (5, 6) has been to obtain an open-

loop optimal control, for specific reactor systems, using fix-

ed performance criteria. In other words, the resulting control

law is satisfactory, only (a) if the reactor model exactly

(mathematically) represents the fixed physical reactor,

(b) for one set of initial conditions, and (c) where no

disturbances occur. Due to these practical restrictions

the usefulness of such a control is questionable.

Thus a practical need is established for a closed-

loop feedback control. In this work, the optimization

methods of Pontryagin's maximum principle and Bellman's

dynamic programming are applied to a wide range of reactor

kinetic problems to determine optimal feedback controllers.

The primary effort is to establish a compensating reactivity

feedback controller which minimizes, in an optimal sense,

deviations of the instantaneous reactor states (for example

neutron density and delayed neutron precursor densities)

from the desired or nominal states. Linear and non-linear

reactor systems are considered. In those cases where the

reactor dynamics considered are non-linear, approximate

methods of determining the optimal feedback control are used.

The resulting controller is nearly optimal, hereafter

termed "quasi-optimal", and increases in component com-

plexity as _reater accuracy is required.

The usefulness of optimal feedback control for

nuclear reactors of all types is demonstrated in this

work. Current optimal control theories are developed to
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the extent that both deterministic and statistical control

systems can be handled (4). Statistical control systems

are characterized by uncertainties in measurements and/or

sporadic fluctuations of the physical states of the system.

At present only a limited class of problems can be evaluated

using statistical, or stochastic, optimal control theory.

Only deterministic, or exactly measurable, state variable

systems are considered here.

Outline of the Thesis

There are essentially two distinct parts in this

work. Chapters 1, 2, and 3 are of an introductory nature

and chapters 4, and 5 contain examples of optimal feedback

control theory applied to specific reactor systems.

Chapter 2 discusses the mathematical theories of

optimal processes necessary to formulate and ultimately to

solve the feedback controller equations. Brief discussions

are contained in this chapter on the calculus of variations,

Pontryagin's maximum principle, and Bellman's dynamic

programming. Only generalizations, including necessary

and sufficient conditions for optimization, are discussed.

In chapter 3 the specialization of optimal control

theory to the feedback control problem is considered.

Discussions of such topics as the selection of appropriate

performance criteria, control system stability, weighting

factor selection, and control system constraints are

included here. In addition the distinction between finite



5

and infinite control intervals are discussed. Most of the

background material necessary for actual evaluation of the

control system is contained in this chapter. Of greatest

importance are the approximation techniques required when

applying the maximum principle or dynamic programming to

non-linear systems: i.e. in non-quadratic error criterion,

feedback-control synthesis.

A number of linear and non-linear first-order

reactor dynamic examples are presented in chapter 4. The

emphasis here is to demonstrate and compare, in a simple

way, the techniques developed. An effort is made to reveal

the complexity of the synthesis problem even for first-order

systems, thus giving some insight into the complexities of

higher-order, non-linear systems. All reactor examples in

this chapter are based on a steady state desired power level

(neutron density) and an infinite control interval. It

is felt that optimal feedback control for ordinary power

reactors, operating in the steady state, is demonstrated

in this chapter.

In chapter 5 optimal feedback-control theory is

extended to reactor-dynamic systems of order greater than

first operating in other than the steady state condition.

First, a linear example of a reactor with delayed neutrons is

presented. The purpose here is to obtain constant fixed

optimal feedback gains for a reactor with six groups of

delayed neutrons that can be used for any reactor
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straightforwardly. A comparison is made with a one de-

layed neutron group model. Next, Pontryagin's maximum

principle is applied to obtain a quasl-optimal control

for a non-linear reactor model which undergoes a power

increase from 10 to 50 kilowatts in a finite time. Finally,

a quasi-optimal feedback control is determined for the

startup of a nuclear rocket engine. In this example two

control variables are optimized, discontinuities in nominal

controls are considered, and a finite control interval is

used. Analog computor simulation studies show the effec-

tiveness of quasi-optimal control clearly.



Chapter 2

OPTIMAL CONTROL THEORIES

Introduction and Notation

In this chapter the various theories of mathe-

matical optimization are presented as the basis for optimal

feedback control system design. Three separate methods of

functional optimization are described; the calculus of

variations (2), Pontryagin's maximum principle (10), and

Bellman's dynamic programming(I).

The similarities of the calculus of variations

and the maximum principle are many. The calculus of

variations, however, is more restrictive than the maximum

principle in the types of variational problems that can be

handled. The maximum principle extends the classical mathe-

matics of the calculus of variations to include solutions

of problems with algebraic inequalities. Both theories

have been proven to be necessary and sufficient conditions

for optimization of linear problems and require the in-

direct solution of multi-polnt boundary-value problems.

For non-linear problems both are a necessary,

but not sufficient, condition for optimization. The basic

theorems of the calculus of variations are first discussed.

The maximum principle is briefly outlined later, with the

main differences clearly emphasized.

7
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In 1957, Bellman (1) formulated the theory of

dynamic programming. _,_ereas the maximum principle and

the calculus of variations are classified as indirect

theories, because the solution of two-point boundary-

value problems are required, dynamic programming is

classified as a direct method of optimization. In the

discrete form of this approach a single problem in N

variables is transformed into N problems, each in one

variable, and a direct search for the optimal "policy," or

solution, is required. Conceptually, this is a far easier

task than the solution of a multi-point boundary-value

problem. However, the number of computations required for a

final solution roughly increases exponentially with the

order of the problem, greatly restricting the solution of

any sizable problem. One very important aspect of dynamic

programming is that equality or inequality constraints

on the problem reduce the regions of search for the op-

timal policy and in principle simplify the solution.

This is in direct contrast with the maximum principle.

The generalized optimization problem can be

expressed fairly simply. Since dynamic control systems

are the only type of problem considered here, the nota-

tion and presentation is kept in accord with recent

control and nuclear reactor literature.

In control system design, the mathematics of the

device to be controlled are usually given. This
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mathematical description is called the dynamic process.

In this work the dynamic processes are nuclear reactors.

The inputs of the dynamic process are termed control

variables and are designated by the quantities u1(t) ,

u2 (t), ..., u M (t), but in specific reactor examples

the quantity _(t), control reactivity, is sometimes

used. The dependent variables, or outputs, are termed

the response variables ql(t),q2(t),..., qQ(t). These

response variables may not always represent the physical

variables of the dynamic process, but in all cases are

functionally related to these variables. The actual physical

outputs of the dynamic process are termed state variables

Xl(t), x2(t), ..., XN(t). In the dynamic process of a

reactor described by six or more groups of delayed neutrons,

where only the neutron density is measurable, the response

variable would be the neutron density and the state var-

iables would be the neutron density together with all the

delayed neutron precursor densities. The minimum number of

state variables which completely describe the dynamic process,

a set of first-order ordinary differential equations, is

equal to the order N of the system.

The optimal control problem is then defined as

the problem of controlling the dynamic process in such a

way that the performance of the system is optimum accord-

ing to some specified functional performance criterion.

Not only must the control optimize the performance criter-

ion, but it must do so without v_olating any of the physical
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constraints to which the dynamic process is subjected•

Using column vector notation, the control, response,

and state variables are represented as

u1(t) q1(t) xl(t)

_(t) = u2(t) ; 1(t) = q2(t) ; _(t) = x2Ct) (2-1)

@ • •

u_Ct ) qQ(t) xN(t)

In general the differential equations describing

the nuclear reactor dynamic processes are non-llnear with

time-varying coefficients and can be represented as

= _(t)= _[N(t), _(t),_ (2-2)
dt

which is identical with the set of first-order differential

equations

xi(t) = filx(t),u(t),t I i = 1,2,...,N (2-3)

The physical design constraints, or saturation

constraints, on the control and state variables of the

dynamic process are

u(t)EU(t) and x(t) a X(t) (2-4)

where the notation _(t) _ U(t) designates that the vector

_(t) lies within, or on the boundary of, the closed region

U(t) of the control vector space•
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V/hen the dynamic process is linear equation (2-2)

can be specialized by the notation

__(t) : A(t)xCt) + B(t)u(t) (2-5)

If the dynamic process is linear, saturation does not occur

and equations (2-4) are eliminated• The time-varying

matricies A(t) and B(t) are written in the form

A(t) =

B(t) :

all(t) a12(t) ... alia(t) _

a21(t) a22(t) ... a2N(t)

aNl(t) aN2(t) ... aNN(t)

b11(t) b12(t) ... blM(t)

b21(t) b22(t) ... b2M(t)

bNl(t) bN2(t) ... bNM(t)

(2-6)

The performance criterion, that must be satisfied

for optimal control, is of prime importance and must be

selected carefully and realistically• The instantaneous

performance criterion, em, is calculated in terms of the

function

era(t) = hL (t),u(t),t] (2-7)

The total system performance over the present and future
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time, t <._F_ T, during which control effort is applied to

the system is found by integrating equation (2-7)

e(t) h [a(_) ,U(Z') ,_] d_ (2-8)

The response variables are always functions of the physical

state variables and equations (2-7) and (2-8) are rewritten

emCt) : H[xCt),uCt),t]

and e(t) H _ _ (2-10)

(2-9)

Calculus of Variations

Three problems were responsible for the develop-

ment of the calculus of variations (2). The brachistochrone

problem is the simplest and involves determining a curve

between two fixed end-points such that a particle sliding

along the curve under the influence of gravity travels

between the end-polnts in minimum time. From this problem

evolved the basic conditions for the minimization of a

functional equation with no constraints.

The problem of geodesics is concerned with mini-

mizing a functional equation subject to a finite constraint.

For example, it may be desired to find the curve of minimal

length lying on a given surface Joining two fixed points on

that surface.

Finally, the isoperimetric problem is concerned

with finding a closed curve, of given length, such that
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the enclosed surface area is maximum. This is the mini-

mization of a functional, subject to an integral constraint.

The basic equation that gives the necessary condition

for a maximum, or minimum, of an integral functional is

the Euler-Lagrange equation. Equation (2-10), here repeated,

is an example of the integral functional considered in this

study.

ft Z]dT (2-11)e(t) = _ ,

In deriving the Euler-Lagrange necessary condition, equation

(2-11) will be used in a modified form. Equation (2-2)

relates the control vector, _(t), to the state variable

vector, _(t), and its derivative, _(t). In other words

_(t) = _[_(t),_(t),_ (2-12)

and upon substitution equation (2-11) becomes

e(t) = FF (t),i(t), Idr (2-z3)
L J

The problem of minimizing this performance index

is the problem most frequently treated and is equivalent to

the brachistochrone problem when _(t) is a first-order

vector, i.e. the scaler x(t). In order to simplify the

derivation of the Euler-Lagrange equation, a first-order

process is considered initially.

=ft T Ix (T), x (T) ,T]dT
e(t) F (2-14)



The minimization of equation (2-24) is performed

by first assuming that the state variable is

14

(2-15)

where x*(_) is the function that actually minimizes equation

(2-14). Here Otis an arbitrarily small quantity and _x(_)

is considered to be an arbitrary and unrestricted pertur-

bation. The derivative of x(_) is written

(2-16)

Since C_ is arbitrarily small the performance index is

perturbed infinitesimally about FIx*(_),_*(_),_ ]. If F

and its derivatives with respect to x(_) and _(_) are

continuous, the instantaneous performance criterion is

expanded in a Taylor series such that

F[x(_),_(_),_] = F[x*(_r),_*(_),_] +_{_F[x*(_)._*(_)._1_x.(_) _x(_)

+ _F[x*(_),_*(_).T]B_.(_r)_x(_ +0(2 {''') + "'"

(2-17)

where _2 is multiplied by all second partial derivatives

of F* with respect to x* and i* and where the notation

_F[x*(_)._*(_),b] is equivalent to

_x*(_)

_F[.x* (_) ,_* (_) ,_]
_x*(_)

-- aF[x('c),_(_) ,_]
_x(_)



If the above series converges uniformly, the performance

index can be written

<T[e(t) : e*(t) OC _x(_z) BF_x*(T),_*(_),_]
x*(_)

(2-19)

+ _(_)a F[x*(_),_*(z),_]__* (_) }d_ + 0C21...} +...

where e*(t) is the performance index evaluated at x(T)=x*(_)

which minimizes e(t).

The first necessary condition for a minimum is

15

_e(t) I = 0_OC 0C= 0
(2-20)

when _x(W) is an arbitrary function. The result of this

condition applied to equation (2-19) is

x*(_) a _*(r) (2-21)

Integrating the second term in this expression by parts

ft T S_(_) a F[x*C_)°_*C_),Z]dZ

(2-22)

+ _x(T) _F[x*(_')._*(_),_]
_±*(z)

Equation (2-21) now becomes



T= T' ' _ t*I_) _: t

16

(2-23)

If the integrand of equation (2-23) is finite at T = t and

= T then the contribution at these end-points is due only

to the 2nd term. This is the so-called transversality

condition

_xCfl_) _)F[x*CZ),:_*Cqr)o'l:]l'g= T
__ -" 0

±* (_) _ = t
(2-24)

Since

(2-23) must vanish independently of Sx(Z) on the interval

t_T. This is the Euler-Lagrange necessary condition

Sx(_) is arbitrary, the Integrand of equation

for optimality.

x* (r) d-_L-J_*(_)
(2-25)

The appropriate boundary conditions are required for

explicit solutions of equation (2-25). If these boundary

conditions are specified as x*(t) and _*(t) or as x*(T)

and _*(T) the solution is the common initial-value or one-

point boundary-value problem. If, however, they are

specified as x*(t) and x*(T) or as x*(t) and _*(T) then

the solution is termed a two-point boundary-value problem.

The initial state of the dynamic process is always

fixed as

x_t) = x*(t) (2-26)



which requires that _x(t) = 0 for the transversality

condition of equation (2-24). The minimizing function

x*(T) must have a flxed-polnt boundary condition, and

because Sx(t) = 0, from equation (2-24)

Sx(T) BF[x*(T) ,x* (T) ,T] = 0

17

(2-27)

If this fixed-point boundary condition is

x(T) = x*(T) (2-28)

then Sx(T) = 0 and equation (2-27) is satisfied automatical-

ly. If, however, x*(T) is free to assume any finite value

then the so-called free-point terminal-boundary condition

results and

F[x* (T) .x* (T) .T] = 0 (2-29)

because _x(T) is arbitrary.

In order that the instantaneous performance index

be a minimum value, one additional condition must be satisfied.

This is known as the Legendre condition and is

B2e(t) _ 0 (2-30)

 o(z oc= 0

This is seen to be equivalent to the minimum of a function

given by differential calculus. The application of this

condition to equation (2-19), extended to include the product

of OC 2 times the 2nd derivative terms, gives



T

_x*(_}_

_x* (_)a_*(_)

18

(2-31)

+ S_(t) 2 a2F[.x*(_')._*(z)."t]"ld't":_o
J

A sufficient condition for satisfying equation (2-31)

everywhere on t_ _T is a positive integrand for any

x(_) and gx(_). A positive integrand is ensured when

_)2F_x* (t'),X* ('I_),'t']

_x* (t)2

,a2Fix*(z),_*(z),z]
_* (T)_ x*(r)

_)2 F[ x* l_I "x* ('_)'_]_)x* _)_c*(r)

0

(2-32)

The sufficient condition of equation (2-32) is very

restrictive and it is difficult, if not impossible, to

test a given performance criterion for sufficiency. For

these reasons some authors (7) tacitly assume that the

Euler-Lagrange necessary condition of equation (2-25) is

both a necessary and a sufficient condition for minimi-

zation. Functions which satisfy equation (2-32) are given

the term, strictly convex functions.

There are many solutions of the Euler, Lagrange

equation which are integrable, but one such problem is of

special interest in the solution of the exact non-linear

optimal control for first-order dynamic processes. This



solution will be considered here because of its frequent

application to the non-linear problems of chapter 4.

If the instantaneous performance criterion, F,

depends on x(t)and _(t) only and is independent of t,

the following solution results.

F = F[x(t),_(t)]

The Euler-Lagrange equation can be shown to be

aF[x*(_)._*(_:)] - a2F[x*(_)._*(_)] _(_)

a_* (7)2
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(2-33)

(2-3_.)

When both sides of equation (2-34) are multiplied by the

function _*(t) the Euler-Lagrange equation becomes the

exact derivative

(2-35)

Consequently, the Euler-Lagrange equation has the first

integral

- _*(r)aF[x*Cz),_*C'c)]t=" C
a ±* (_) J

(2-36)

where C is the constant of integration.

optimal solution for _*(T) is

Thus the exact



_ F[x* (_) ,_.

_* ('_)

2O

(2-37)

Equation (2-12) relates the optimal control of this first-

order dynamic process to the above equation.

The generalized extension of the calculus of vari-

ations to Nth-order dynamic processes is presented in terms

of Lagrange multipliers. The results directly follow the

previous development. The problem is left in terms of

minimizing the original functional equation (2-10), here

repeated,

ft T H[x(T) ,u(T) ,_] d_e(t) = (2-38)

which is subject to the constraints of the dynamic process

_(t) = _[_(t),_(t),_ (2-39)

This is the so-called isoperime_ric problem with

integral constraints and is reformulated in terms of a

constrainted performance criterion, which incorporates

both equations (2-38) and (2-39). It is written here in

terms of the Lagrange multipliers

=_t T [x(_) _(_)_(_),Tld_ec(t) Hc _ , ,

where _(T) is the Lagrange multiplier vector.

Lagrange multiplier for each state variable.

ed instantaneous performance measure is

(2-_.o)

There is a

The constrain-
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(2-41)

From this equation it is seen that the value of the con-

strained performance criterion is equal to the original

performance criterion when the Lagrange multipliers,

_n(_) (n = 1,2,...,N), are chosen such that the terms inside

the braces vanish.

The conditions for a minimum are developed as

before _;ith the inclusion of the perturbed optimal control

variables and perturbed optimal Lagrange multipliers.

xi(T) = x_(T) +OC i 8xi(T) I (2-42)

xi(%) = x_(T) +0( i 8xi(T) i = 1,2,...,N (2-43)

ki(i_) = _'i(Z) +X_ i _i(_) (2-44)

: u_(z)_+ _j _uj(z) j = 1,2,...,M (2-45)uj(_c)

where M represents the number of control inputs to the

dynamic process. Now the constrained performance criterion

Hc is expanded in a Taylor series about the optimal value

Hc*. At this ooint all arguments of the functions are

5.roboct'. for co,_.cis,.;:3ec_'_.

N {0Ci _xi _Hc* +°Ci _xi_

M

+ _I _Cj3uj_Hc* +

(2-46)
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All perturbations are treated independently and the conditions

for a minimum are

_ec(t) = 0 ; _ec(t) = 0 ; dec(t) = 0

Bog i B _ i B _j (2-47)

where these derivatives are all evaluated at _=_=_= 0.

_Wnenthese conditions are applied to equations (2-40) and

(2-46) the result is

_tT_xiF_Hc*l+LL-_ij _xi[_Id_ = °

ft S;_F_o_l_ = o

i = 1,2,...,N

i = 1,2,...,N

(2-48)

(2-49)

It T _ujFBHc* ] d_: = 0 J = 1,2,...,M (2-50)

L u--FJ

Integrating the second term of equation (2-48) by parts

and combining the results with the first term the result is

The result, as in the first-order case, is a set of Euler-

Lagrange equations and transversality conditions corresponding

to each of the N state variables. They are summarized as



xi_Hc* I t= T

_=tI
= 0 i = 1,2,...,N

and 0 i = 1,2,...,N (2-53)

In addition an Euler-Lagrange equation results for each of

the N Lagrange multipliers and M control variables for

arbitrary perturbations. Equations (2-49) and (2-50)

give these necessary conditions as

i = 1,2,...,N (2-54)

and _Hc* = 0 j = i,2,...,M (2-55)

For the fixed-point boundary conditions of

x_(t) = xi(T) (2-56)

the perturbations _xi(%) are zero and equation (2-52) is

automatically satisfied. However, for the free-point

boundary conditions where x[(T) are allowed to assume any

finite value at this end-point the boundary conditions are

*(t) = xi(t) ; _(T) = 0x i
(2-57)

From equation (2-55) the optimal control is seen to be an

algebraic relation and when substituted into the differential
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equations of the dynamic process and the Lagrange multipliers

give a set of 2N first-order differential equations subject

to the boundary conditions previously specified.

The calculus of variations can treat problems with

movable boundaries, extremals with cusps (discontinuities

within t _T_T), and others, but the conditions outlined

here are basic to any of the variational problems of this

method.

Pontryagin's Maximum Principle

The primary limitation of the calculus of variations

in controltheory is that the theory, as developed, is not

suitable for solving problems where control, or state,

variable saturation occurs. Pontryagin and his co-workers

have extended the methods of calculus of variations to

include such problems. Briefly the equations of Pontryagin

will be outlined here using the Hamiltonian formulation.

The Hamiltonian function H' is related to the

constrained instantaneous performance criterion of equation

(2-39) and is stated here

H'[_(_),_(_),_(T),_] = n_0= _n(_)fn[_(_),_(_),_ ] (2-58)

where _o(T) = 1 (2-59)

and Xo(_) = fo[X(_),u(_),_] = H[x(_),u(_),_] (2-60)

Thus H' is very nearly Hc of equation (2-39) but does not



include the derivatives of the state variables.

conditions for a minimum are

The
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_H' = _[ i = 1,2,...,N (2-62)

and BH' = 0 J = 1,2,...,M (2-63)

These equations are seen to be equivalent to the Euler-

Lagrange equations of the calculus of variations. Equation

(2-63) is the result where saturation of the control variables

does not occur. If the control vector must remain on or

within a closed region of the M-dimensional control space

U, the minimization process with respect to the control vector

is written

H'* = min H, rxC,_),ua-),x(,_),-_l
u(T)6U tJ- - --

(2-64)

Using the definition of H' the result of this minimization

gives the following conditions for optimality

BH'* BU_ = _H'* _u_ = 0

i
(2-65)

* = 0 when u_ is not on the boundary of U,since BH'*/Duj

_ * is on the boundary of Uand Bu /_x i = _u /_Ai = 0 when uj



The variables hi(t) in Pontryagin's maximum

principle are sometimes termed Pontryagin variables, or

adJoint variables, but are seen to be identical with the

Lagrange multipliers of the calculus of variations.

In the special case where the dynamic process and

the instantaneous performance criterion are time-invariant

the Hamiltonian is independent of time and is written

_H'*

such that

=0

26

(2-66)

and the Hamiltonian is seen to be the constant of integration

H'* = C (2-67)

Also, in this case, the following condition for optimal

control results

_ BH'* = 0 J = 1,2,...,M (2-68)
J

since _H'*/b u_ = 0 for u_ not on the boundary of U and

_ = 0 for u; on the boundary, because of the time Invar-

iance of the process.

The determination of the optimal control for a

first-order dynamic process with control variable saturation

is a relatively simple exercise. This is demonstrated in

the several first-order examples of chapter 4. In addition,

when no _eight is placed on control effort in the performance
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criterion, i.e. the performance criterion is not an explicit

function of the vector _(_), bang-bang control generally

results as the optimal for the case with saturation.. Un-

fortunately for higher-than-first-order dynamic processes

where saturation occurs, the determination of the optimum

control is a far more difficult problem to cope with. This

is because differential equations, rather than algebraic

relations, must be satisfied at all of the switching times.

Dynamic Programming

Dynamic programming, as stated, is important in

control theory for two reasons. Problems with control

variable saturation are solvable, and the solution of the

two-point boundary-value problem is not required. Control

saturation can be handled since the assumption of unrestrict-

ed control perturbations is not made. The two-point

boundary-value problem is eliminated bya flooding procedure

where the optimal control signal is constructed point-by-

point. Merriam (7) has stated this flooding procedure as

follows:

" ... Dynamic programming embeds the solution to

the optimization of the control system for a

particular state of the dynamic process into the

optimization of the control system for all possible

states of the dynamic process...."

Thus one N-dimensional problem becomes N one-dimensional

problems for all initial states and the appropriate optimal

control is chosen from the resulting solutions.
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In the derivation of the dynamic programming

equations, again a first-order dynamic process will be used

for simplicity.' The functional desired to be optimized is

that of equation (2-14), here repeated

=_t T ,%]dTe(t) F Ix(T) ,_(T) (2-69)

The initial concept in dynamic programming is that, rather

than determining the optimal state variable x*(T), the

minimization is determined by finding the optimal x*(T).

Thus a class of solutions is obtained and the particular

x*(t') is determined from the initial state and the value

t' by the relation

x*(t') = x(t) _*(T)dT
Jt

(2-70)

From this last equation it is seen that F then is simply

a function of x(t), t and _, so that equation (2-69) is

written

ftT Fm[X ),te*(t) = (t , T] d1[
J

(2-71)

and thus the minimum value of the performance criterion

is only dependent on x(t) and t.

e*(t) = E[x(t),t]

The function E then can be called the minimum performance

criterion, and is restated as

(2-72)



EIx(t),t] = min fT
x(_)_t

FIx(_),_(_),_1dW
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(2-73)

When the derivative is restricted to remain in a given

region, which is the case of control saturation, equation

(2-73) is written

EIx(t),t 1 = min )ft Ts¢-c F (2-74)

From this equation it is seen that the boundary condition

on the minimum performance criterion is that

Using equation (2-74) the minimization problem can be

restated as

(2-75)

min I_t ,T [x(_), _:(_) ,TI d_E E[x(t' )t'l}
x(z) _ s(w) F - , = o (2-76)

The integral within the braces can be broken into two

separate integrals;

min .rC t '+8
x('c)es(_-

(2-77)

- E[x(t'),t']l = 0

Now using the definition of the minimum performance criterion

equation (2-77) becomes
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I/t' +_[xc__,_c__,_]_'_+_.[x_,+__'._lmin

_(T) E S(T) ' (2-78)

- E[xCt'),t']} = 0

Equation (2-78) is the discrete form of the dynamic pro-

gramming condition for optimality and is frequently used in

this form. The continuous form of this equation is derived

by letting _ approach zero. When this happens the terms in

the braces are written

t' +S

/, F[x(_)_(T),T]d_ = _-F[x(t')_(t'),t'] +_2.{. }' ' "" (2-79)

E[x(t'+_),t'+S] - E[x(t'),t'] =_.dE[x(t').t'] + _2._..olat, (2-80)

and the minimum performance criterion condition is

_. Stain IF [x(t' ),x(t' )t']
_(t' )ES (t')

+ dE[x(t' )ot']

dr'

Since

where

is arbitrary although small, this final condition,

-_0, is simply

m..inx(_)ES(T){F[x(T),x(T),_] + dE[x(Z),_]}=0dqr

(2-82)

where the variable t' has been replaced by T .

total time derivative of the second term,

Taking the

_.E[xC_),z]= _E[x(t),_] + _(_) _.[xC=),Z]
dT B_ Bx(_)

(2-83)
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the continuous dynamic programming necessary condition for

a minimum performance criterion is

minx(1_)ES(_){F[x(_),x(q_),_] + _¢(_r)_E[xl_I._]}=-_x _E[x(_)11_]_&-

since _E/_r is not dependent upon _(I:). The sufficient

condition for a minimum is that the performance criterion

is a continuous, strictly convex function of x(1_) and is

represented

_2_(_)z {FIx(1_)'_(1_)'_] + x(1_) _E[x(_)'Ir]_=_x(_)

(2-85)
b2F [x(IZ),x (_) ,IzJ >0

The extension of the necessary _,_^^_a4"4_.. o _o ay_Amln_......

programming to the Nth-order dynamic process is here carried

out in vector notation. The minimum performance criterion

is defined as

EIx(t' ),t I

= min _t Tu(T)_U (T)
!

dZ (2-86)

with the boundary condition ELx(T),T _ = 0. The continuous

form of the minimum performance criterion is here seen to

be equivalent to equation (2-82) and is

min {H[x(T),U('_),_] + dE[x(T),_Jt = 0u(t)eu(t) - - dt
(2-87)
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The total time derivative equivalent of equation (2-82) is

eE[x(_),_]- _E[x_C_I,Z]
d_ _

N

+ i_' _i('_) aE[x('_),'Z] (2-88)
=i 'x_(_)

and the condition for minimum performance which corresponds

to equation (2-84) is

N

rain _ HIx(_)'u-(T)'_l + _--I
u(Z')6U(_) -

= - _E[x(t-),'t]
_)'_

. I]

(2-89)

In the dynamic programming formulation the term

BE/_ xi is equivalent to the Lagrange multiplier, hi, of

the calculus of variations and Pontryagin's maximum prin-

ciple. From equation t_ an_-u_) it is not _rd to _erstand

why the discrete formulation is most frequently used to

find the minimizing control for higher-than-first-order

dynamic processes.



Chapter 3

DESIGN OF OPTIMAL FEEDBACKCONTROLSYSTEMS

!ntroduct_on

In this chapter the application of the optimal

control methods of the previous chapter are applied to the

problem of designing an optimal feedback controller. The

general performance criterion for this work is an integral-

square-error criterion weighting perturbations of both state

and control variables from the nominal values of these

variables. In various other applications of optimal control

theory to nuclear reactor processes, the methods of the

previous chapter were used to find the nominal state and

control variables, but in this work these trajectories are

assumed to have been previously determined.

The first consideration is the selection of the

appropriate performance criterion, henceforth referred to

as an error criterion. In this section is discussed such

topics as control saturation constraints, selection of the

weighting factors, and the incomplete measurement of the

physical state variables.

Following is a section on the synthesis of the sub-

class of linear dynamic processes. The feedback controller

as determined by either the maximum principle or dynamic

programming are identical for linear systems, and only the

33
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dynamic programming format is used. The general properties

of linear optimal control systems are outlined specifically

in this section. A discussion is also included on the

stability of the linear optimal control system.

Finally, the synthesis of non-linear control systems

is discussed. Here techniques for determining quasi-

optimum feedback control systems are presented. Dynamic

programming and the maximum principle are discussed sepa-

rately for quasi-optimum feedback control because significant

differences arise. Primarily, the maximum principle yields

a quasi-optimum control which approximates the optimum

control equation by a Taylor series expansion about the

nominal trajectories. Dynamic programming, however, approx-

imates the minimum error function (performance criterion)

by a Taylor series expansion about the nominal trajectories.

The differences in the two methods are not obvious _ priori.

Thus non-linear quasi-optimal feedback control synthesis

should be evaluated by both of these methods to determine

which is better for the problem at hand. Examples in chapter

4 demonstrate that the choice is not unique and that general-

izations concerning system performance are somewhat difficult

to assay beforehand.

Feedback Control Design Considerations

The first consideration in the design of any control

system is the selection of an acceptable performance criter-

ion. For the feedback controller evaluation some measure of
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the errors relative to the nominal variables of the dynamic

process is required. Hence, a suitable performance criterion

is an error criterion. In some problems this criterion might

be specified only at a single point in time. For example

it might be desired to minimize errors in the terminal

Such an error criterionvalues of the state variables.

would take the form

N

e(t) = _--1 Fi[x_(T)- xi(T)]
(3-1)

where the functions Fi are arbitrary, but would naturally

consider only the magnitudes of the errors. Acceptable

choices of Fi might be

F(y) = lyl; F(y) = y2 ; F(y) = y2n (3-2)

An error measure that is equivalent to equation (3-1) is

the impulse error measure

where S(_-T) is the unit-impulse function or the Dirac

delta function. The upper limit is considered the time

where control effort terminates.

A somewhat better error criterion, would be to

minimize the accumulated errors for the entire control

interval. Such a controller, in the true sense, is a

feedback controller such that all xi(t)_x_(t) for all

real time. Thus the error__are weighted over all future



time starting with the present.

a system is

N rT .

e(t) =  lJt _i(T)Fi[x_(=)-xi(%)] d%
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The error criterion for such

.4.

where the _i(_) are weights assigned to allowable state

variable errors. They are here termed state variable

weighting factors.

In addition to minimizing state variable errors,

it is usually desirable to minimize control variable errors

also. It was stated in the section on the maximum principle

that when control effort is not weighted in the performance

criterion the optimal controller is a bang-bang controller.

Such control is not always satisfactory, and when nominal

control curves are available a _vn-_ys_m _ _,,4_

such that uj(t)_u_(t) for all time.

The error measure of equation (3-4) is now modified

to include control variable errors

NrT

e(t) = _--lJt _i(%)Fi[x;(_)-xi(_)] dT

(3-5)

where the functions

weighting factors.

In this work quadratic-error criteria are used

exclusively. There are several distinct advantages for

_j(T) are termed the control variable
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using such criteria. Firstly, large errors are penalized

more heavily then smaller ones and this is desirable.

The criterion can easily be chosen to be a strictly convex

f_nction of the errors, since the square terms are always

positive definite, which is a basic condition for the error

measure to assume a minimum value. Most importantly,

however, the resulting optimal feedback controller is linear

for linear dynamic processes and the resulting quasi-optimal

controller using the maximum principle is linear for non-

linear dynamic processes. A form of this quadratic-error

criterion is

e(t) = _1 *ii(_)[x_(T)-xi(T)]2dT

+
M T7f
 13t _J J (T) [u_ (T)-uj (_)S 2d_

(3-6)

The conditions _ii(_)_ 0 and _jj(T) _ 0 are imposed so

that the integrand is positive and strictly convex. In

equation (3-6) cross-product terms between two different

state variable errors, or between state variable and control

variable errors, are not included, because they usually are

meaningless in the design problem. Equation (3-6) is the

basic error criterion used in all of the present examples.

Some dynamic processes require a large number of

state variables for an accurate mathematical description.

Unfortunately, the measurement of all of these variables

may not be possible. For example in nuclear reactors
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systems the direct measurement of delayed neutron precursor

densities is not possible. These variables are required,

however, for the feedback controller to be optimum. When

incomolete measurement arises the most satisfactory means

of obtaining these states is on-line computation of those

not measured. This requires that at least one of the

physical states be measured. Power level, for example,

is a measurable state in the reactor and all precursor

densities can be determined from this state.

Because of the frequent need to calculate the

precursor concentrations in reactor kinetics, the on-line

computer for these is evaluated here. The description of

the simplest reactor with delayed neutrons (16) is

6

=Pn -/gn + _ l,c, (3-7)

and ci =_i n - lici i = 1,2,...,6 (3-8)

where n is the reactor power, a state variable, /O is the

total reactivity, a control variable, and c i are the pre-

cursor densities. The parameters /3,/3i, li and _ are

characteristic of the given reactor dynamic process and the

type of fuel utilized.

_i = delayed neutron yield of ith precursor-group
per fission

6

/3i = total delayed neutron precursor yield
per fission
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and

_i = decay constant of the ith precursor group

= the neutron lifetime of the reactor.

39

Equations (3-12) relate the state variables of precursor

densities to the reactor power level and are linear differ-

ential equations. The transfer function of each group, with

reactor power as an input, is

i = 1,2,...,6 _3-9)

The equivalent electrical analog with the same transfer

impedance is represented in figure 1. The transfer function

of the electrical network of figure I is

Vci(S) : R2i/(Rli + Rzi) (3-10)

Vn(S ) (R2i/(Rii + R2i))RliCi s + i

The output voltage Vci(t) corresponds to [c i(t)-c i(0)] when

Vn(t) corresponds to [n(t)-n(0)] and the following equalities

hold;

R2il(R_i + R2i) : _i/_ ;%i

SllCi :_/I i

(3-ii)

(3-12)

Figure 2 is a schematic of the reactor plant with this type

of on-line computer.

The selection of the weighting factors _ii(T) and

_j(T) can generally be specified by the performance
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Schematic of Reactor with On-Line Computer
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requirements, or constraints, of the overall dynamic process.

The selection is not unique, and some alteration may be

required of the initial choices. The more difficult the

design problem in general, the more important the selection

becomes if the design requirements are to be met.

A purely heuristic method of selecting the weight-

ing factors is presented here in terms of elementary concepts.

The instantaneous error measure is written

N

.c_ : (::_,_c_Cx_c_-_c_]_
M

(3-13)

The weighting factors are then determined on the basis of

maximum allowable errors. For example, the maximum

allowable state variable errors at any point in time

contribute equally to the error measure, since it is desired

to minimize the integrated sum. This is stated as

¢_c_ fSx_C_Al_,_ _ _,_,...,_._
kSx,C_AJ C3-,"_

The _xi(_)MA are then

_x_c_: Cx_c_x_c_]max allowable (3-15)

The same logic may be applied to the control errors



_j (T)= [Sul(_.)MA]2

L_ uj (Z)_A]
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_1(_) J = 2,3,...,M

(3-16)

where _uj(T)i_ A = [u* (_)-uj(T)] max available (3-17)J

The maximum allowable and available errors are subject to

the design performance specifications.

In addition the total contribution due to maximum

allowable state variable errors in the error measure should

roughly equal the total contribution due to maximum avail-

able control errors in order to minimize the error criterion.

Using this relation

N M

_j(T) _uj2 (T)MA (3-18)

When equations (3-14) and (3-16) are considered equation

(3-18) is equivalent to the following relation

_NN(T) = M [_U I(_)MA] 2_ _;xN(t")MA] _11 (_')
(3-19)

Finally, if _I(T) = 1, all other weighting factors

are uniquely specified by this procedure. Probably, however,

the maximum errors do not all occur simultaneously and the

equations are somewhat unrealistic. The equations indicate

that the weighting factors are time-varying, but they can be

treated as constants when _xi(_)MA and _uj(_)MA are set

equal to their largest values during the control process.
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In some instances it is desirable to weight the

terminal state variable errors more heavily than at any

other time in the control interval. This is _ccomplished

by impulse weighting of the type considered in equation

(3-3). If this is necessary, the weighting functions for

the state variables become

_ii(T) = _ii (T) + _i,T_(I_-T) (3-20)

where _i,T is the impulse weighting factor for the ith-

state variable error at the terminal time. Impulse weighting

has the same effect as increasing the duration of the control

interval.

In the design of feedback control systems, control

and state variable _tIJ_t_ _ _h_ _ m11_* _* _= _r4 _1 _@_A

The error criterion of equation (3-6) does not take into

consideration saturation constraints which are sometimes

termed "hard" constraints. A simple procedure is available

(7) to incorporate these constraints into the error criterion

of equation (3-6). This is a technique whereby hard con-

straints are replaced by mathematical relations, termed "soft"

constraints, that heavily penalize values near the limits of

saturation. However, in this work soft constraints have not

been considered.

When reactivity is the control variable in a nuclear

reactor, the resulting dynamic process, as indicated by

equation (3-7), is non-linear. This might lead one to
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believe that only non-linear synthesis should be considered

for nuclear reactor processes. However, Kllger (5) has

introduced a technique which transforms the non-linear

dynamic process into a linear one very simply. The non-

linear dynamic process can be written alternately as

_(t) = A(t)_(t) + _I_(t),_(t),_ (3-21)

where the first term on the right represents all the linear

terms in the state vector _(t) and the vector _ represents

the nonlinearties and the control terms of the dynamic

process. A pseudo-control vector is then equated to the

vector b

_'(t) = _Ix(t),_(t),tl (3-22)

and the resulting dynamic process is linear.

For a nuclear reactor described by the equations

+ _c (3-23)

= ___n- _c (3-2_)
L

the pseudo-control variable would be

u' (t) = z_(t)n(t) (3-25)
£

Since n(t) is a measurable state, the actual control

reactivity is obtained by multiplying u'(t) by the measurable



quantity _/n(t). This necessarily requires that a small

auxiliary component be introduced into the control system

to carry out this operation. Figure 3 is a schematic of

the control system for equations (3-23) and (3-24).
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Synthesis of Linear Systems

In this section the optimal feedback controller

equations are developed for dynamic processes which are

described by equation (2-5), here repeated

x_(t) = A(t)x(t) + B(t)u(t) (3-26)

where A($) an_ _($) are glven by equation (2-6). _i_

variational problem is to minimize the error criterion

of equation (3-6) subject to the linear dynamic process of

equation (_ ox _,,e

(2-89) is used here. The error criterion is repeated here

N T

e<t>=ft
M T

;,ft
(3-27)

The development of the optimum controller equations can be

presented in a concise way using vector-matrix notation•

Equation (3-27) rewritten in vector-matrix form is

e(t) = X_*-x_]T_T)[x_*-x ] + [U'-u]T_[u_ "- d_
(3-28)
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where the time arguments have been dropped for conciseness•

The superscript T indicates matrix transpose• The weighting

factor matrices -r_ and _ are diagonal of form

11(_) o

o _22(T)

0 0

0

,.• 0

•-. _NN (_)

(3-29)

and 0 0 1)/_/'22('l") ... 0%If (3-3o): . .

0 0 ...

Using the dynami_ _ ...... 4._ _.... * ^_ eq ''_ (_-_9) In

vector-matrix form, the necessary condition for a minimum-

error controller is

min I[x*-x]T(_[x*-x] + [u*-u]T'_[u*-u]u(_-)tl.- -J --

- = - _E (3-31)

where F_EIT=_r _ "" _E1 _3-32)
LaXj Lax_ "_2 Nj

The optimal control vector is determined when the partial

derivative with respect to _(t) of the term within the

braces of equation (3-31) is taken



] + =o_ - L__J_
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(3-33)

- - L_J

where the superscript o designates the minimizing control.

Substituting equation (3-35) into (3-31) the condition for

a minimum is obtained.

- 11 o--i
[x._xl T$ ix._x B T _,,,-I_T F-- _L_J _ L_J

The problem now is reduced to finding EIx,_ ] • The solution

is obtained by assuming that the mathematical form of EIx,'g 1

is a quadratic function of _(T) with time dependent co-

efficients. The assumed solution is then substituted into

equation (3-36) and shown to be the correct solution under

certain conditions.

The assumed solution is

where k(T) is a scalar function, and

(3-36)

(3-37)

(3-38)

(3-35)

Performing this operation the optimal control vector is

where __T = x_TAT ÷ u_TBT (3-34)



and

K(T) = KT(T) =

kli (_r)kl2 (T)•..kIN(T)

k12 ('r)k22(T)..•k2N(1:)

@ • •

kiN (_:)k2N (_)''" kNN (T)
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(3-39)

From equation (3-37) the necessary partial derivatives of

equation (3-36) are

B___= -2_k(_)+ 2kx (3-_0)
_x

and BE = k(t)-_kT(r)x-x_T_k(_) + xTK(_)x (3-41)

%t

Substitution of equation (3-40)and (3-41) into (3-36)

gives the necessary condition in terms of k(_),k(_) and

K(_). The result is

x-x2 ÷

+ xTKB_-IBTk--k_TB_-IBTh + xT_x-kAx + x_TKBu_*- k_TBu_*

+ x__AT_+ u_.T__ xTATk__u.TBT_k= _& + xT__+ _Tx_ xT_x

(3-42)

The vector _(r) can assume any arbitrary value and thus,

in order for equation (3-42) to represent a minimum, the

coefficients of the powers of _(_) on the left must equal

the coefficients on the right. These conditions result in

first-order differential equations which describe the

k parameters•



and

_&- _x.T_x_.- k_%T-1_k__2k_T__*

-_ =_X_* - KB_-IBTk + A Tk + KBu_*

-K = KA + ATK- KB_-IBTK +_

(3-4_)

(3-45)

The boundary conditions for the equations are

found from the boundary condition for the minimum error

criterion. The error functional E is given by equation

(2-86) such that

EIx(_'),T' ] = min _ T H[x,u,_] d_
- u_(-_)J'_, - -

(3-46)

and from equation (3-28) the identical relation is

E[_(_' ),_'] = _ e(_' ) (3-47)_ )

Thus the boundary conditions are determined from the

condition

_[_I,_]_o c3-4_

or, if equation (3-20) is utilized as the state variable

weighting function, impulse weighting of the terminal error

implies

o

where



I'T 0 ... 0

0 _2,T ... 0

0 0 "'" _N,_
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(3-5o)

From equation (3-37) the boundary conditions of equations

(3-43), (3-44) and (3-45) are seen to be

kCT) =

k_(T) = _TX_*CT)

and K(T) = _T

or they are all zero if equation (3-48) holds.

to demonstrate that equations (3-43), (3-44) and (3-45)

imply the following relations:

(3-51)

(3-52)

(3-53)

It is easy

_(w) = K(r)_*(w) (3-54)

and k(_) = x_*T(r)K(_)_*(T) (3-55)

and hence only the solution of equation (3-_5) is required,

and is here repeated

- I_ = KA + ATK- KBI_-IBTK + (_ (3-56)

K(T) = _T"where

Equation (3-56) is termed a matrix Riccati differ-

ential equation• The solution of these simultaneous

differential equations for greater than a second-order
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dynamic process requires rather sophisticated digital

computer programs or analog computer solutions. For time-

invariant dynamic processes, the matrices A and B have

constant elements, and equation (3-56) is non-linear with

constant coefficients.

Equation (3-32) gives the optimal control vector.

Utilizing equations (3-40) and (3-54) the optimal control

is expressed as

Thus the optimal controller consists of the nominal contrnl

vector, plus a feedback element that weights linear per-

turbations in the state variables from their nominal values.

The term _-IBTK(_) is the optimal feedback gain and is seen

to be time-varying. Figure 4 is a schematic of the optimally

controlled linear dynamic process.

It is worth noting here that the solution of K(T)

does not require prior knowledge of the nominal state and

control vectors. An equation similar to equation (3-56)

must be solved when the approximation technique of Pontry-

agin's maximum principle is applied to non-linear system

synthesis. However, the matrices A(t) and B(t) are time-

varying functions determined by x_*(t) and u_*(t) and are

different than the corresponding matrices for equation

(3-56). The main advantage of the linear optimal feedback

controller then is that, once equation (3-56) is evaluated
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and the gains are determined, this controller holds for

any nominal set of values the dynamic process may undergo.

The question of stability of the control system

often arises. It can be easily shown that a linear optimal

control system based on the error criterion of equation

(3-28) is asymptotically stable in the large for certain

feedback conditions. The system will be considered stable

if _(t)-__x*(t) as t--CO. A new equilibrium vector re-

presenting the state variable error is defined

5#

a(r) = _(w) - x*(_) (3-58)

Utilizing equations (3-34) and (3-57) the newly defined

dynamic process is

The solution of this equation is

_o tz(t) = exp IA-B_-IBTK(T)I dTz(0)

or in eigenvalue notation

Xpfotz(t) = e 0(_)dT z(0)

(3-59)

(3-60)

(3-61)



_(_) is the diagonal matrixwhere

i(_) o ... o

o 02(z) ... o

o o ... ON( I

The elements _i(T) are found from

J_(%) - A + B_-IBTK(%) I
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(3-62)

= 0 (3-63)

/%_
and for stability all _i(T) must be less than or equal to

a stable linear dynamic process this condition is auto-

matically satisfied, since K(T) is determined for a strictly

convex error criterion•

The Riccati matrix equation (3-56) reaches its

steady state value as t-_::, and K _-0, and K(z) is a matrix

of constant elements• When K = 0 the determinant of equation

(3-63) can be rewritten•

+ K-IATK 0 as t -,- _ (3-64)

Thus, if the system matrix A corresponds to an unstable

system without feedback, stability can be regained by

proper selection of the matrix _. Due to the dependence

on _ and A, this selection is not obvious a priori•of K

It is possible for unstable control systems to

result if the terminal control time T is too short.
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Asymptotic stability is only guaranteed where control

effort is applied until all _i(t) become and remain

negative semi-definite. For this reason the terminal time

T should be chosen long enough that the feedback gains of

equation (3-56) have begun to settle at their steady state

values. If T is sufficiently long that the gains approximate

their steady state values during most of the control interval,

the steady state solution of equation (3-56) is sufficient.

In this case the feedback gains are constant with respect to

time which is desirable.

S_n5hesi_ of Non-Linear Quasi-Optimal Control Systems

If either the dynamic process is non-linear or the

performance criterion is non-quadratic the preceeding

development does not hold. Closed-form expressions for the

optimum control equation in non-linear problems cannot be

analytically determined except for some simple examples.

Therefore, approximation techniques must be used. In this

section the control system is assumed to operate in a small

region about the nominal state and control vectors x_*(t)

and u..*(t). This immediately sets the requirement that these

vectors must be known beforehand to design the quasi-optimal

feedback controller.

The synthesis problem is then to find a suitable

approximation of the optimal control vector

u°(t) = P[x*(t),t] (3-65)
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in terms of the measurable state vector _(t). Two methods

of obtaining the approximation are currently used. The most

obvious is a Taylor expansion of the optimal control vector

about _x*(t) confining the system to operate in a suitably

small region• This is represented by

S x*(t)

(3-66)

where

3x_*

B P1 B P1 B P1

xi _ x 2 _ x N

P2 3 P2 ... 3P2

_i 0 _2 _ x N (3-67)

Another method is the use of a similar approximation for the

error function, EI_(t),t I , instead of the optimumminimum

control equation•

These two methods are developed here using the

maximum principle approach for the first and the dynamic

programming principle for the latter• Later it will be

shown that it is not easy to decide which quasi-optimal

control yields the better controller unless each has been

evaluated separately•

First, the maximum principle approach is considered•

The dynamic process is represented by the set of non-linear



first-order differential equations
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(3-68)

It is desired that the system operate in a small region

about the nominal trajectories and the perturbations are

represented

Su(t) = u(t) - u_*(t) and Sx(t) = x(t) - x_*(t)

(3-64)
The resulting piecewise linear differential equations

describing perturbations from the nominal variables are

time-varying of the form

_ "_x(t) = B f_[x*(t),u_*(t),t] _x_(t)

x_*(t)

+ B f[x*(t),u*(t),t] _u(t)

_) u_*(t)

(3-70)

or S'_x(t) = A(t)_x(t) + B(t)(_u(t) (3-71)

where A(t) is the system matrix and B(t) is the input

matrix. Both are now direct functions of x._*(t) and u_*(t).

The quadratic performance index is written

e(t) = 21_ftT{_xT(_x , _uT_IJ_u}d_
(3-72)

and the system is now subject to the constraints of equa-

tion (3-70). The Hamiltonian function then is

H'(r)

(3-73)
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The necessary conditions of chapter 2 are applied to find

the optimal control equation for S_, and the adJoint

variables _(t). These equations are

a_u_

H - + :8

The optimal control equation becomes

(9-74)

(3-75)

(3-76)

__(t) = K(t) _x(t) (3-77)

where K(t) is a matrix of tlme-varying elements and can be

found from equation (3-75)

- K(t)_x(t) - K_x_'(t) = $_x + ATKSx (3-78)

The optimal control equation (3-76) is now written

Equation (3-71) describing the dynamic process becomes

Sx_ = [A - B_-IBTK] _x (3-80)

Substituting equation (3-80) into (3-78)

-[K + KA - KB_-IBTK]_x = [_ + ATK]_x (3-81)



Since _ is arbitrary the above equation is rewritten

- K = KA + ATK- KB_-IBTK +_

This is seen to be the Riccati matrix equation (3-56)

of the previous section. The difference, however, is that

the matrices A(t) and B(t) are here explicit functions of

the nominal vectors _*(t) and_u_t). The optimal feedback

control of equation (3-79) demonstrates that the feedback

gain, -_-IBTK, is no_ a function of the nominal variables

also. Figure 4 of the previous section is the schematic

for the controlled dynamic process of this approximate

method.

From the transversality condition at the terminal

time, __(T) = 0, and since S_(T) is arbitrary the boundary

equation (3-82) is K(T) = 0, or K(T) = _Tcondition for

if impulse weighting of the terminal errors is required.

The second method of quasi-optimal control is

developed using the dynamic programming format. The

dynamic programming equation for a minimization for the

non-linear problem is

E_," 1 + rain (HIx,u,% 1 + _T B E[_,%] } = 0" u - -

where the Hamiltonian is defined

(3-82)

(3-84)

6o

(3-83)



The minimum value of the Hamiltonlan is represented
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_,.:m_nu(___IH'_x'u'_
and equation (3-83) is written as

"_Erx,_ ] + H'*[x,T] -- 0 (3-86)

The approximation procedure is new applied to

equation (3-86) by making a Taylor series expansion of

both the minimum error function and the Hamiltonlan function

about x_*(t). The results of this approximatlen procedure

are presented here without the complete derivations (7).

An arbitrary pth-degree expansion of the minimum

error function is

N N N

_ _ _o_Xn_._ _n =1 n =1 n =1
knln2xnlXn 2

N N

+... + _2 nl_=I "'" np_=l knl'''npXnl'''Xnp

_[__,:]--_-
(S-87)

The minimum pth-degree Hamiltonian is represented

_ )_u _x ..

The approximate form of equation (3-86) then is

_Ep[x,T] + H_* + {(p+l)St-degree terms in Sx_ - 0

_T

=0

(3-88)

(3-89)



The power series expansion of H_* can be written

N N N

HP* = H_ + 1_ H_lXnl +l_n=1 n =1 n2_-1 H_ln2xnlXn2

_" @ @ @

N N

+ _ ...np__ H_ xn ..Xnpn 1 1 1 np 1"
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(3-90)

where the H* functions are

I NHn I. nj = --_ _JH_* _ _. _J+I_* x*•" n_÷i
3Xn 1... 3Xnj nj+l--1 bxnl ..._ Xnj+ 1

.. ... ...x n
(p-J)! nj =1 1 x J+1 x--_x*

_xnl •.. _ Xnp
(3-9_)

The function Ho is computed when J = 0 in equation (3-91).

Substituting equations (3-90) and (3-87) into

equation (3-89), the result, when the common coefficients

of _ are collected, is

IK + H_I - 2 _ I_1 - 1H_llXnl +
n1=1

N N r

÷2 Z-- = 1 l"''nP + _b
p n 1 np= 2 1

@ @ @

(3-92)

...np] Xn1""Xnp = 0

Finally, equation (3-92) is valid for all _ when

- H o (3-93)
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= - _ H_ J = 2,3,..,p ¢3-95)and l--.nJ I. --nJ

The boundary conditions on the above equation are

(3-96)

When the operations of this method are carried out,

equations (3-93), (3-94) and (3-95) are generally non-linear,

containing time-varying functions of x*(T) and u_*(T).

ing..... _, ..... ,,_ _v,,,_u_u_._i diffiuuities oi solv

the k parameters, this method is a very flexible synthesis

technique for quasi-optimal non-llnear control. Where

non-quadratic performance criteria are used, this technique

is superior to that of the maximum principle.



Chapter 4

FIRST-ORDER NUCLEAR REACTOR SYNTHESIS

Introduction

In this chapter several first-order reactor dynamic

processes are considered, to introduce and demonstrate the

application of optimal feedback control. The considerations

of the previous chapter are applied to three separate first-

order mathematical reactor models. Both linear and non-llnear

..... m

determine the mathematical form of the compensating control

reactivity which minimizes the integrated errors of reactor

power and control reactivity.

The nominal power for all cases is chosen to be a

constant steady state value of n*(t) = no . This is necessary

present reactor dynamics during transient operation. The

majority of the work is based on an infinite control interval

i.e. T = co . Saturation constraints are also considered.

For each model a comparison is made between the

control reactivity determined by linear synthesis, exact

non-linear synthesis, and the quasi-optimal methods of

non-linear synthesis discussed in the previous chapter.
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Linear prompt Neutro n Reactor Synthesi_

The model chosen here to represent the nuclear

reactor dynamic process neglects delayed neutrons and any

intrinsic reactivity feedbacks. It is mathematically

described by

n(t) = (4-1)
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where n(t) is the state variable, reactor power level,

_(t) is the control reactivity, and _ is a characteristic

neutron generation time of the system. If /O(t) were a

The technique of Kliger is used here to obtain a linear

system. The pseudo-control variable is

u(t) = p(t)n(t) (4-2)

such that equation (4-1) now becomes

n(t) = u(t) (4-3)

The desired quadratic error index for this example is

(t) = In(T)-nol2(_T +/tT{_>in _2 21(_)-nol + u(T) d% (4-4)e

In equation (4-4) the control weighting factor, _, is chosen

to be unity. Also, the control error is merely u(_) since,

when n(T) = n o , the steady state value, the control reactiv-

ity is, /o(_) = 0, and thus u*(_) = 0. Equation (4-4)



minimizes errors in the control, /J(t)n(t)/£, and is

related indirectly to minimizing errors in/_(t) only. In

the non-linear examples of this chapter the term u(T) 2 in

equation (4-4) is replaced by p(T) 2.

The necessary condltlon for a minimum, in the

dynamic programming format, is given by equation (3-39).

For this problem it is written
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{_In 12 + u(T) 2 + u(T) _E)
bE = - min (_:)-n° (4-5)

The control which satisfies this equation is determined by

setting the partlal de_Ivat4v_ _4_ __ _ ,,t_ ..... I _^

zero and solving for it. The result is

u(_) =- _1 _,E[n(,'_),_'] (4-6)
2 _ n(_)

and equation (4,5) becomes,

_-_" • I. uj

_ I r_12 _ _ I,,._,-,_
" '"

As demonstrated in chapter 3, the solution of this equation is

EIn,T 1 = k- 2kln + k11n2 (4-8)

Equating coefficients of the powers of n to zero after

substituting this solution into equation (4-7), the following

equations result:



= k_ - _ no2

and 1_11 = kll 2 - (_ (4-11)

As mentioned in chapter 3, only equation (_-11) need be

evaluated, since k I = k11no, and the boundary condition due

to impulse weighting at _ = T is

k11(T) = 9_T

The solution of equation (4-11) is

The resulting feedback control then is

U(_) = _tanhI_f_(T-_)+ tanh -1 _lEno-n(%)l

times the linear deviation of the power from the nominal

steady state n o . This is qualitatively as expected, for

when n>n o negative control is applied to return the power

to steady state, and for n_n o positive control is applied.

Impulse weighting is seen to have the effect of increasing

the control period. This effective control period is written

Tef f = T + ml tanh -1 _____T (4-15)
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The selection of _ is determined by the method

outlined in the previous chapter. With _= 1, the weighting

factor is determined from the equation

Bo ]= (4-16)

[_nMA] 2

Suppose, for example, that the maximum allowable deviation

in power is the fraction P of the steady state value no

and that the maximum available control is limited by a
i

period constraint on the reactor. The period constraint for

this model is written

_0m = (_/n)ma x = ( _(t)/_ )max (4-17)

and the maximum available control becomes

Uma x = _Omnma x
(4-18)

Using the considerations that

_nMA = P no

and nma x allowable = (l+P)no

(4-19)

(4-20)

the weighting factor is found to be

(4-21)

' is a weighted maximum allowable inverse period.where oJ m



69

A plot of the feedback gain, represented by equation

(4-13), as a function of t/T, for several values of _T, is

presented in figure 5. The maximum value of _T' is

_Tmax =_F_ = '_m" Where _T = _u_, the gain kll is a

constant for all time. For @T_=O_'m the gain kli is seen to

be a function of AOm T, which is approximately equal to the

number of relaxation times for which control effort is

applied. The terminal value of the gain is seen to be a

direct function of the factor _T/OD_.

The optimal reactor power response is given by

equations (4-22) and (4-23) for the cases where

_T <0_m and _T = _Dm respectively

n(_) = n O + [n(0)-no] cosh[aJ_(T-_) + tanh-l*T/CUm] (4-22)

cos'h["almT + tanh-I _T/'_]

and. n(T)- +
I. u.!

where n(0) is the initial perturbation at t = 0. Substituting

these relations into the optimal control equation (4-14), the

control is represented as an explicit function of time.

For

U(T) =l_l_l sinh[_ (T-T)+ tanh -1 _T/_ll [n(0)-no] (4-24)

or for _T =
i

cOm

U(T) : -aJ_l [n(O)-no] e- (4-25)
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The corresponding optimal reactivities for the two

cases are
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p(T) = - _J_In(0)-nolsinhI_Om(T-_)+ tanh-l_T I *

{n° c°sh[ _umT + tanh-I --r_T]
u/m

+

(4-26)

or for T = °°m

-2 m
= &Jmr (4-27)

no e

[n(o)-no']
+ 1

All of these equations correspond to the problem

where the terminal state is not specified (the free-point

_z_na±-oounaary-value proolem;, in _ne case where She

terminal power level is fixed at n(T) s no this constraint

maybe incorporated into the Hamiltonian by the use of a

Lagrange multiplier. The Hamiltonian is written

H = _[n(T)-no]2 +u(T) 2 + Au(z) +u(T) _.= o
-gw

(4-29)

The optimal control equation becomes

2u(_) + A+ aE = 0
_)n

(4-30)



The solution is assumed to have the form

E = k - 2kln + klln2

It is necessary to solve:

_ _ = <_no2_ ¼ _2 + ;_kl _ k12

- i I = (_lSn o - _,kll - klk11

--y--

- _ll= @- kll 2

with the boundary conditions

k(T) = k I(T) = kll(T) - 0
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(4-31)

(4-32)

(4-33)

(4-_)

(4-35)

Here impulse weighting is not required, due to the fact

that the terminal error is constrained to be zero in the

Hamiltonian. Only k I and kll are required to find the

- o + (1.sechI / '(T-T)]

The value of the Lagrange multiplier is found by

combining equations (4-30), (4-36) and (4-37) with the

boundary condition that n(T) = no. The result is
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°

From equation (4-30) the value of the optimal control for

a fixed-point boundary condition is then

or in terms of the period limitation

The power level response as a function of time is given

by the relation

n(_) = n o + [n(O)-no] sinh [0j m (T-T) 1 (4-41)

[ ]

and the optimal control reactivity is

n,.sinh cO'T + rn(o)-n_l slnhr__'(T-'_)l

Figure 6 compares the optimal power level response

of equations (4-22),!(4-23), and (4-41) for the fixed-polnt

and free-point terminal-boundary conditions. Figure 7

compares the optimal reactivities corresponding to each of

these responses.

If the control interval is allowed to approach

infinity the solution of the feedback gains are obtained

from their steady state solutions. Only the free-point
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condition is considered. This is seen to be identical with

I
the free-polnt case where _T = Q)m as expected. Equations

(4-23) and (4-27) correspond to the optimal power level

response and the feedback reactivity in this situation.

The dashed extensions to the curves of figures 6 and 7

represent these conditions.

Thus far the question of saturation has not been

considered. In other words, under certain conditions the

maximum inverse period could be exceeded with the feedback

control systems already determined. In first-order examples

the treatment of saturation is not difficult for the

infinite interval solution. In this case, as pointed out

in chapter 2, the minimum Hamiltonian is a constant. The

optimal control is the control which remains in the admls-

sable control space and maintains a constant Hamiltonlan.

The result for this case is

=

n('c) ;_ (l-,-l-')n o

(1-P)n o< n('t) _ (l+P)n o

Uma x ; n(%') '_ (1-P)n o (4-43)

The corresponding optimal reactivity is

- (l+P)no/n(T)

(l+P)n o

n(T)

n(T) _ (l+P)n o

(l-P)no_ n(x) _ (l+P)n o

n(T) < (l-P)n o

(4-44)
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Figure 8 is a plot of the optimal reactivity for a maximum

allowable perturbation in power of _50%, i.e. P = 0.5, as

a function of n(_)/n o.

In this rather highly oversimplified example of a

nuclear reactor model a great deal of insight to the problem

of optimal feedback control synthesis has been gained. It

is not difficult to see that the extension to higher-order

examples, or even flrst-order non-linear problems, could be

a cumbersome task. Most of the design considerations have

been demonstrated in this example.

NQn-Linear Prompt Neutron Reactor Synthesis

The previous example will now be used to demonstrate

the techniques of quasi-optlmal control for non-linear

dynamic processes. In this case, however, reactivity is

considered as the control variable. The reactor model,

here repeated, is

_(t) = P(tln(t) (4-t$5)

The quadratic performance index is chosen to be

e(_) = _T[n(T)-no]2 + ftTI_[n(_)-no] 2 + _(_)2} dT

Note that reactivity errors are weighted directly here.

In this, and all first-order examples to follow,

the problem will be confined to an infinite control interval

where T = oo. This is not necessary for non-linear control,
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but when a reactor is operating in the steady state, it is

usually desirable to do so for extended lengths of time.

In such cases the control interval is much much larger than

the characteristic time constants of the system.

For this example then, the exact non-linear optimal

control is solvable using the results presented in equations

(2-32) through (2-36). The error criterion becomes

= ®HEn,p]d (4-47)

From equation (2-36) the optimal value of the time derivative

of the reactor power is

n*CT) = H - C = _*_T)n*l_ 1 (4-48)

When the control interval is infinite, the terminal value

of the power level is equal to the nominal value, no , and

p(_) = 0. Thus the constant of integration C vanishes as

seen from equation (4-47). The derivative at any time is then

_(T) = H (4-49)
_:/_

where H = _ -no

using the definition of _(_) in equation (4-47).



Taking the partial derivative and solving for n(_)
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n(T) = _ n(_)[n(_)-no]'_- I (4-51)

I
The exact optimal reactivity for the infinite interval control

then is

_(_) = _[no-n(_) ] (4-52)

In this special case, the optimal feedback reactivity is

a linear function of the deviation of the power from the

nominal value.

Thi_ is a very simple control to synthesize, but

in order to demonstrate quasi-optimal techniques, the

methods of Pontryagin and Bellman are applied and equation

(4-52) is used as a basis for comparison. First, Pontryagin's

maximum principle is considered.

The perturbed state and control variables for this

_ _'_

_(_) = _(_) and _n(T) = n(T) - no (4-53)

The linearized differential equation that describes small

perturbations about the nominal values of n = no and _ = 0, is

Sn = no _e (4-54)

and the constrained Hamiltonian is

Hc = _n 2 + 8_ 2 + An O_@ (4-55)

2



The necessary conditions for a minimum are

8O

and
JHc- - =

(4-56)

(4-57)

Now _(_) is assumed to be of the form

,,l(z-)= k('r)n(Z') (4-58)

and k(_) is found from the relation

- I_(I") =- 2@ + k(If)2n92

2Lz
(4-59)

The steady state solution is required for the infinite

interval problem and thus

Z o

(4-60)

Combining equations t_-56_,

optimal reactivity of the maximum principle is

_->o J ant (4-6u) un_ _i-

(4-61)

This is seen to be identical with the exact optimal

control of equation (4-52). _is is as expected, since the

maximum principle yields a quasi-optimal control which is

truncated at the first-power of _n(_) and equation (4-52)

is linear in _n(_).
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Since either the exact or the maximum principle

give identical synthesis controllers, it would be unnecessary

to consider a quasi-optimal control based on dynamic program-

ming. However, in this example additional results are found

using dynamic programming. Also, in order to demonstrate

the technique, this controller is evaluated for any arbitrary

pth-degree expansion of the minimum error function. Equations

(3-95) through (3-103) gives the required format of this

technique.

The pth-degree expansion of the minimum error function

is

Ep = ko - 2kln + k2 n2 + ... + _ kpnP (4-62)
P

The pth-degree Hamiltonian is

_ = _In(_)-nol 2 + _(T) 2 + P(_n(_)I_n]

The control which minimizes _@-b3J is

(4-63)

Thus minimum Hamiltonian is

H_* = _[n(T)-no] 2 - _[_n_ 2

= Hi + H_ n + H_ n 2 + ... + H* nPP

(4-64)

(4-65)

(4-66)
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For the infinite interval problem the kj functions

are all equal to zero and thus H_ are all zero also. The

H_ functions are defined by equation (3-99).

For a first-degree expansion of p = 1

E 1 = ko - 2kln (4-67)

and

_1 = kln (4-68)

--/-

H_* = _(n-no)2 - n2kl 2 (4-69)

It is not necessary to find the H* function, because the
o

feedback control does not depend on it. The value of k 1

is found from

H_ = 0 = [ BSnH_*"
n=n o = [2 4)(n-n O) -

2nkl 2]

--_Jn=no

Thus k I = 0 and _I = 0 for all time.

For the second-degree expansion

(4-70)

E2 = ko - 2kln + k2n2 (4-71)

_2 = kln - k2n2 (4-72)

and Hi* = _(n-no)2 - _ [kl2-2klk2n + k22n2 ] (4-73)

The equations necessary to evaluate the gains k I and k2 are

-_2_n o + 3klk2no 2 + 4k22no 3 = 0 (4-74)



and __2_ + k12 _ 6klk2n ° + 6k22no 2 =

From the above equations it is seen that

k I = k2n o

and the solution is

k I =,_"Vt_ " and k 2 :_'l/'@/n o

The quasi-optimal control then is

p2(_) - -_r-_-Fn-n21
L noJ

0
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(4-75)

(4-76)

(4-77)

(4-78)

It can readily be shown that the general expression

for the reactivity for the pth-degree expansion is

=no.It (In=)°]nono
The weighting factor _ is determined to be

, : [._.l _

(4-79)

(4-80)

Here a maximum reactivity is assumed to be the constraint

rather than a period constraint, because the error criterion

directly weights reactivity. EQuation (4-79) is now written

_p(_) = P_x [1 - n____ - (1 - n(T))P]no no (4-81)
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A comparison of the quasi-optimal reactivity of

equation (4-81) for several degree expansions with the

exact optimal reactivity (also the maximum principle) is

indicated in figure 9. These curves indicate the regions

of validity of the quasi-optimum control. For odd-degree

expansions, equation (4-81) is not valid for perturbations

greater than twice the nominal value, becuase positive

reactivity results. For even-degree expansions the approx-

imate control deviates far from the optimal for deviations

greater than 2no, and become very large negative. The

range of validity is restricted to

0 _ n(_)_ 2no

The equal signs are not included, becuase for these values

unstable transitions occur, at least for odd-degree expansions.

In the range of validity, convergence to the optimal is

_4_.._ e_ _ m__ve exoansion.

Whereas this example illustrates that an unstable

control is achieved from the dynamic programming approach,

the other non-linear examples in this chapter show that the

quasi-optimal control of dynamic programming is not only

stable, but superior with respect to accuracy. Not only

is the dynamic programming example undesirable with regard

to accuracy, but the complexity of the feedback controller

is greater than for the maximum princlple. Figure 10

illustrates the controllers for equation (4-61) and (4-78).
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Linear Delayed Neutron Reactor S2nthesis

The reactor dynamic process chosen here includes

an intrinsic negative feedback mechanism representative

of the delayed neutron effect. Steady state operation is

assumed, and the pseudo-control variable, u = _n/_ , is

us ed. This model is represented

n(_) = u(_) + _/3 [no-n(_') l
L J

The error criterion chosen is

 '(oe 12
e(t) = n(_)-n o + u(W)2}dr

87

(4-83)

(4_8z_)

The necessary condition for a minimum control is written

_E + min I_[n(_)-nol 2-_g u(_) + u(_:)2 + eu(_:)+/S_Ino-n_ (_')]I _E3= 0

(4-85)

The optimal control is determined from equation (4-85) to be

u(r) = - I B E (4-86)

2 _n

and the solution, as before, is

E(n,_) = k2(_)[n(_)-no]2

The gain k 2(_) satisfies

1(2("¢ ) = k22('t') + .._ k2('t") - (_

(4-87)

(4-88)

The steady state solution is sufficient and thus k2(_) = 0.



The result is

÷#,.2+¢
7 l_T
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(4-89)

and the optimal feedback control, from equations (4-86),

(4-87) and (4-89), is

u(_)- -K_ __(_)2 +¢][no_n(_)]
(4-90)

Here again, _ is determined from the period constraint and

the maximum allowable deviation in power, nma x = (l+P)n o.

= U2maX

(Pno)Z

(4-91)

For this case Uma x is written

A - /8 (no-nma x)
Umax : I_Imax,, nmax T

= n°[ (l+P)&Om + _I

(4-92)

The amount of control reactivity to maintain n = 0 for an

impulse in power of (l+P)n o is roughly /Oma x : P_. Thus

CO m : /Oma x = p/S (4-93)

Substituting equations (4-92) and (4-93) into equation

(4-91) the weighting factor is written

qb : (4 + 2P + p2)_._.2
_2

(4-94)
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The optimal feedback control for equation (4-90) is then

written

u(_)- Pmax r_/5+2P+#
LP [ -I] [no-n(£) ]

(4-95)

' _"_(P)[ no - I](_(T) = OO m n-_

'' = (P + I) (4-99)where _(P) = O0 m

-Jim I

Equation (4-97) is seen to be very similar to the reactivity

for a prompt neutron model of equation (4-44) if _ is

equivalent in both models. With delayed neutrons the

feedback reactivity differs by a factor here defined as

_(P). Equation (4-97) is rewritten

(4-98)

Figure 11 is a plot of _(P) versus P and shows that it

never deviates by more than 20 per cent from unity. This

indicates that the linear optimal control for prompt neutrons

only, very nearly represents the optimal control when delayed

neutrons are considered regardless of the value of /3 . The

(4-97)

A new variable, corresponding to a weighted inverse period,

is introduced by

u(_) = _' [no-n(_) ]

The optimal feedback reactivity is

]

(4-96)
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only variables that need be specified are the minimum reactor

period and the maximum allowable deviation in power.

An important result here is that the measurement of

reactor power is the only state required, eliminating the need

to calculate precursor densities. Such a feedback controller

appears ideal for steady state operation of power reactors

where internal noise and small external fluctuating loads

occur. Boiling water, pressurized water, or even SNAP reactors

are examples of this case.

Non-Linear Delayed Neutron Reactor Synthesis

Here, again, the model represents the effect of

delayed neutrons, but the error index weights errors in

reactivity separately, rather than the control pn/_ . This

is the non-linear synthesis problem requiring the quasi-optimal

techniques already demonstrated. The dynamic process is written

= Plt_n(_ + /3[no_ni_)] ( -I00)

In this section it is demonstrated that dynamic

programming quasi-optimal control of 2nd-degree is superior

to the maximum principle. It is also demonstrated that a

2nd-degree Taylor expansion of the exact optimal control

equation (the maximum principle is a ISt-degree expansion)

yields a region of unstable control, whereas no limitations

result from dynamic programming.



The error criterion for this study is

e(t) =_t@oI_[n(T)-no]2 + _(T)2}d T

92

(4-1oi)

In the infinite interval problem the exact optimal control,

using the results presented in chapter 2, is given by

_ n o (4-102)

The weighting factor _is determined from the reactivity

constraint. If P is the maximum allowable fractional

deviation in power, then P_ is roughly the maximum compen-

sating reactivity required to maintain n = 0. Thus

and the optimal reactivity is

(T) = _II - no...._.]I 1 -_/1 + n(_i 2 ]

L LL_C i J L ' L_O_ J

( -Io3)

(4-1o4)

The maximum principle quasi-optimal control, and a

2nd-degree Taylor expansion of the optimal control equation,

are directly obtainable from equation (4-104). The maximum

principle quasi-optimal control equation is

n o

and the 2nd-degree expansion gives

(4-1o5)
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n o no_ J

The dynamic programming approach of approximating

the minimum error function has been carried out for three

separate expansions, namely; P = 1, 2, and 3. The results of

these expansions for the infinite interval problem are present-

ed here without the associated mathematical details. The

three resulting quasi-optimal reactivities are

P1 = 0 (4-1o7)

: E - IEn -n Jno
and p3(T) = /_I(___)n__ +no (3-2_/_} _no_

Figure 12 is a plot of equations (4-104), (4-I05),

(4-106), and (4-108). Here, the comparisons are indicated

between quasi-optimal control and the exact non-linear control.

Several features are demonstrated in this figure. In the

region where n/n o is less than unity, the maximum principle

control deviates significantly from the exact optimal, but

the 2nd-degree dynamic programming control is very nearly

identical. Furthermore, a control based on a 2nd-degree

expansion of the exact optimal renders an unstable system

for n/n o less than (1 - 1/8). The higher-degree dynamic

programming controls converE_ rapidly to the optimal.
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Therefore, in this example dynamic programming

yields a more nearly accurate quasi-optimal control. The

maximum principle does not produce an unstable control system,

however, and is less complex to synthesize. In this case

also, the exact optimal control given by equation (4-104)

would be very complex to synthesize in contrast to the exact

non-llnear control law for the prompt neutron model.

Thus, in selecting the appropriate quasi-optimal

controller, the choice remains between control system

complexity and desired system performance. From the two

non-linear examples presented, it is evident that each

control problem is unique and generalizations are not easily

made. It can be said, however, that no state-determined

quasi-optimal controller is less complex than one obtained

from the maximum principle.

Another Non-Linear Reactor Model

which is non-linear and includes an additional intrinsic

feedback reactivity. The purpose here is to demonstrate

that the optimal (or quasi-optimal) compensating feedback

reactivity is capable of maintaining a steady state operating

reactor even when the intrinsic reactivity may be positive.

The non-linear model chosen incorporates a power

coefficient of reactivity into the model of the last section.

The model is

= _n + _(n-no)n + ____(no-n ) (4-110)

-2-
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where OC(n-n o) is the reactivity due to a perturbation in

power. The control variable is /o . In order to compare the

optimal control of this model with that of the previous

section the same quadratic error criterion is chosen, and

here repeated

E =<_{_ [n(T)-no]2 + p2(_)}dt
(4-iii)

The exact non-linear optimal control which satisfies the

above error criterion is determined to be

/O = _[1 - ___qo]I1-I_ n_no

2 n + n 2

(4-112)

Equation (4-112) reduces to the optimal control given by

equation (4-104)of the previous section when __OCno = 0,

13 ..........

equation (4-112) for several values of Ogno/_ , both posi-

tive and negative, as a function of n/n ° . As expected, for

positive feedback (_no//_ greater than zero), relatively

more compensating control effort is required than for

negative feedback.

For negative feedback the system is more stable than

the model where no feedback occurs and is of little importance

here. For positive feedback, however, the problem is more

interesting. The quasi-optimal controls for dynamic
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programming using a second-order expansion, for the maximum

principle, and for a second-order expansion of equation

(4-112) about n = n o are given in equations (4-113) through

(4-115) respectively. A comparison of these equations with

the exact optimal for 0Cn o =_ is illustrated in figure 14.

/DDp = _[S- 1 +_$2 " 2S + 2"][ n_O - n2]_ (4-113)

(4-115)

- ,,:,n)]_s2 _ 2s+ 2

where S = o(n o (4-116)

It is seen that the second-degree dynamic programming

(4-114) and (4-115) deviate quite far. The second-degree

expansion of the exact optimal, given by equation (4-115), is

seen to yield an unstable system for n less than no/2.
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Chapter 5

HIGHER-ORDER NUCLEAR REACTOR SYNTHESIS

!_tToduction

The application of both linear optimal, and non-

linear quasi-optlmal, feedback control synthesis for three

higher than first-order nuclear reactor dynamic processes

is studied in this chapter. Each of these problems, when

extensively evaluated, would comprise a large study. However,

each problem is concerned with a different aspect of reactor

control, and many facets of the control problem are _emon-

strated in the combined studies.

A linear reactor model, described by prompt-neutron

multiplication together with delayed neutron feedback (with

no other intrinsic reactivity feedback), is first considered.

Optimal feedback gains are determined for the infinite-

interval control problem. A one group model is used to show

approximately how sensitive the equations required for a six

group model are to changes in reactor lifetime.

Next, a synthesis of a nuclear reactor power transfer

from l0 kilowatts to 50 kilowatts for a non-linear reactor

process with intrinsic feedback reactivity proportional to

power, is evaluated. A slightly different control variable,

namely rate of control reactivity, is chosen. This is the

first example where a finite control interval is used. The

100
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nominal trajectories for both state and control variables

are chosen to minimize the control energy during the transfer.

Finally, start-up of a nuclear rocket engine is

syntehsized. Several different aspects of a control prob-

lem are introduced in this example. A binary control system

is needed for rocket engine synthesis. In addition to a

reactivity control mechanism, the flow rate of liquid

hydrogen propellant is also a control variable. The nominal

control trajectories have discontinuities at three different

switching times. The resultin_ quasi-optimal time-varying

feedback gains are also discontinuous. Analog and digital

computer synthesis is demonstrated for this problem.

These studies are by no means complete. However,

they do effectively indicate some of the considerations

required for higher-order synthesis. These are fairly

realistic problems, although they are considerably simpli-

fied for this work. For example, in most situations measure-

ment errors and large fluctuating loads may be incurred.

Stochastic optimal control theory would be needed for an

adequate evaluation (4). Generally the point-reacter-kinetics

model is too simple to represent the overall reacter perform-

ance during dynamic operation. Kliger (6) has studied the

optimal space-time-dependent reactor synthesis problem and

the optimization methods presented in this work apply straight-

forwardly to this case. In some cases the transient response

of the system may be more important, from a performance
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standpoint, than the accumulated errors. Frequency-domain

control synthesis can easily be incorporated in such instances.

The ultimate usefulness of optimal control theory

will be decided on the basis of how easily the synthesis

problem can be evaluated. In higher-order non-linear

problems many special techniques must be utilized in the

construction of the controller. For example, special

digital or analog computer programs are required for the

solution of the gain equations. A great many approximation

techniques may be required. However, most of these limita-

tions are surmountable and generally a satisfactory quasi-

optimal control system results. Fortunately, a large amount

of flexibility is possible with the techniques of time-domain

synthesis as evidenced in this work.

Delayed Neutron Reactor Synthesis: S__ixand One Grou R Models

In order to introduce the application of optimal

- - -- _ ........ t__ ......... r •

reactor example is chosen first. The reactor process in

this section is described by a seventh-order dynamic process

including state variables of reactor power level, and six

is used.delayed neutron groups. The pseudo-control _n/_

The mathematical model is

6

u- +  iCil=
(5-I)

ci = /3in- _ici i = 1, 2, ..., 6

(5-2)
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In this case a feedback controller is desired that

minimizes errors in both power level and precursor densities

from their nominal values. The infinite control interval

error criterion may be written

_t_( i_e(t) = ,n_(_)-n*(_)] 2 + @ci[Ci(_)-c_(_)]2
=I J

me solution to the linear optimal control problem

is given by the Riccati matrix equation in chapter 3. The

necessary system and input matrices for the dynamic process

are

A

-/_/._>,_

_2/_

_3/J

/_51Z

),2 _3 _4 _,5 _6

- >,2

- _3

-_4

- _5

-_6

B ...

1

0

0

0 (5-4)

U

0

0

and the weighting factor matrices are for state and control

variables are
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with _= 1

0

3

q c4
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(5-5)

(5-6)

The matrix of feedback gains is symmetric and written

kll

K = KT- .

L•

k12 k13 k14 k15 k16 k17

k22 k23 k24 k25 k26 k27

• k33 k34 k35 k36 k37

• . k44 k45 k46 k47

• . . k55 k56 k57

.... k66 k67

..... k77

(5-7)

The Riccati matrix equation is here repeated:

= -ATK - KA + KB_-IBTK - (5-8)

For the infinite-interval problem the steady state

solution of equation (5-8) is required• Thus a non-linear

algebraic equation in the param3ters kij must be solved•

The feedback gains are seen to be sensitive to the specific
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reactor parameters /3, /3 i, hi and _ . The mo_t sensitive

of these parameters is the assumed mean neutron lifetime

of the reactor system, _. The parameters _, /3 i and _i

are functions of the type of fuel utilized and overall weight

that delayed neutrons have in the neutron generation cycle.

The numerical values of these variables are generally known

fairly accurately and errors in the solution due to these

variables are never great. The neutron lifetime _, on the

other hand, is difficult to determine for dynamic operation.

Zero-power-reactor frequency-domain studies are generally

used to determine this quantity, but if many non-linear feed-

back effects are present, the value of _ may be in error by a

large factor. If_is not known accurately, however, statisti-

cal control theory should be used and a basic barrier to the

problem is encountered.

The feedback gains are seen to be independent of

the nominal states of the system. Thus, once the steady

state solution of equation (5-8) is computed for a given set

of reactor parameters, a feedback controller built of constant

gain elements is sufficient for all operation no matter

what nominal control and state variables are required.

The optimal feedback control equation is

6

u = u* - kli(n-n*) - i_=1 kl(i+l)(Ci-C_ ) (5-9)

and the optimal feedback reactivity is
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6

k11(n-n*)- i_'=1 kl(i+l)(Ci-C_ )] (5-10)

For adequate performance the selection of weighting

factors is very important for this seventh-order process.

These must be determined from the performance requirements.

Equation (5-10) indicates that an auxiliary device is

required to convert the pseudo-control to a reactivity

control. The schematic of the optimal feedback control

system is that given in figure 4 of chapter 3.

An indication of how sensitive the feedback gains of

the dynamic process are with respect to the mean neutron life-

time _. can be obtained from a one group approximation of

the six group model. The approximate dynamic process is

n = u - /3___n+ _c (5-11)
l

The abbreviated error criterion is

e(t) = _nIn(T)-n*(_)12 + ,cIc(_)-c*(_)12

(5-13)

The system matrix and the input matrix are respectively

A = and B =

L -I
I:l (5-I_)
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kll = 2___ (_11 - k12) + kll2 - _n (5-15)

where the kij are typical elements of the symmetric matrix

k11 k12 1

K = KT = (5-18)

k12 k22

The steady state solution of equations (5-15) through

(5-17) is obtainable analytically. Only kll and k12 are

required for the optimal control equation, which is

u(T) = u*(%) - kll[n(_)-n*(T)] - k12[c(t)-c*(T)] (5-19)

The solutions for these gains, with _ = 0, are

] )kll---[_-+ _ + --z_+ _ 2 + 2 k_n + Cn (5-201

and k12 =

+ 2/_ + (_n] _}

(5-21)

Since the gains are analytical functions of the

generation time, a quantity that represents the effect of

perturbations in _ can be introduced here. This function is
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termed a sensitivity function and Is defined by the equation

Sy(Z) = £Y(Z)/.V{Z) (5-22)
 x/x

In this case y(z) corresponds to k11(_) , x corresponds to _ ,

and _x corresponds to _ . Thus

y = k11, z =_ and x =_ .

The sensitivity function associated with kli is

(5-2:})

This function expresses information concerning the changes in

stability of the control system due to the non-exact determina-

tion Of the mean neutron lifetime. It also indicates in

what way errors are introduced if _ is a variable parameter

during the dynamic operation. Figure 15 illustrates the

the weighting factor _n" The values of_ and _ were

arbitrarily set equal

/3= 0.01 and = 0.1 sec -1 (5-25)

Several qualitative features are indicated in this

figure. For values of _ in the range typical of most

reactors, namely ]0-9_ 10 -3 second£, the gain is a very

sensitive function of neutron llfetime. It is easily seen

from equation (5-20) that as _-_0, k11-_, and figure 15
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indicates that, depending on the value of 9_n, this may fall

in the region of prime importance in nuclear reactor control.

From this figure, a very good idea of what _n should be to

reduce gain sensitivity may be obtained. Qualitatively,

the greater the value of _n (or A on the figure) the less

sensitive kll is to perturbations in _ . Zero sensitivity

is desirable since this indicates that the gain kll is

approximately constant with respect to _ . The transition

is seen to occur over apprcximately two decades of values

of _, and _n snoald bc chosen such that the appropriate

approximate mean neutron lifetime falls near the end-point

of this transition where S_0. The gain must not, however,

exceed physical limitations of the controller and this will

place a constraint on the weighting factor _5n. The smallest

_n which most nearly satisfies these considerations should

be used.

_vnthesis of _eactor Power Transfer

The problem of optimal power transfer of a TRIGA

type nuclear reactor was studied by Rosztoczy (11, 12). In

his study the optimal state and control variables were

dete:_ined so as to minimize control rod energy while trans-

ferring the reactor power level from 10 kilowatts to 50

kilowatts in 0.47 seconds.

A bare thermal reactor, with an intrinsic feedback

proportional to reactor power and one group of delayed

neutrons, was used. The reactor kinetics are described by
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A = /On - OCn 2 - /gn + _c (5-26)

6 = _/gn- _c (5-27)

where OC is greater than zero, and _n represents the

power-feedback reactivity. Prior to the transfer process,

the reactor is assumed to be in the steady state with the

initial conditions

n(0) = n o = lOkw, c(0) = co = /3no (5-28)

IA

The problem is to increase the power level to

50 kilowatts while minimizing

//e(t) = [ _ (_C)]2 dZ (5-29)

• h_ _ me eh_n_ _9 _etivltv. _. i_ en_ered to be a

control variable and /0 is considered a state variable in

this work. Thus the dynamic process is described by equations

(5-26) and (5-27) together with equation (5-30):

= u (5-30)

Figures 16, 17, and 18 show the open-loop optimal

(or nominal) state variables, /o* and n*, and the open-loop

control variable, /_*, for this problem. Constant accelera-

tion control is required for minimum energy.
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To synthesize this problem a closed-loop controller

is determined to minimize the quadratic error criterion of

equation (5-31).

=foT=0"47_e(0) _n _n(_)_n. (_)] 2 + _ [_(_)__. (_)] 2

Note that no effort is made to weight precursor density errors

in this problem. This does not mean, however, that there

is no need to measure this state variable. This only

indicates that no limit is placed on precursor density errors.

In this study a quasi-optimal feedback controller

is found using the maximum principle. The linearized model

describing perturbations about the nominal trajectories is

represented

I f11(_) _ f13 (T) I 0

Lo oo

where Sx(T) = [x_(_)-x*(_)] = n(_)-n*(_)] (5-33)

c ('_)-c* (r) I

ec  -e-czlj

and _u(_) = uCT)-u*(_) (5-34)

Also,

f11(_) = [(0"('I:') - 2_n*(_) - /_]/,_ (5-35)
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and f13(_) = n*C_)l_ (5=36)

The Riccati matrix equation (3-82) must be solved for this

problem• The time-varying _ain matrix K(T) is

K=KT=

kll k12 k13

• k22 k23

• • k33

(3-37)

l_qe resulting quasi-optimal feedback control is

u(_) = u*(T) - k13[n(_)-n*(T) ] - k23[c(_)-c*(Iz) ]

- e c l] c -381

The differential equations that result from the expansion

of the Ricatti matrix equation (3-82) are found to be

2 _ 2 [fllkllkll = ki3 + _ki2/_] - _n (5-39)

k13 = kljkjJ - fljkll - fllklJ - /3k2J/%

(5-40)

(5-41)

2 2kk I + _k (5-42)22 = k23 - 2 - k22

k23 = k23k33 - f13k12 - _k13 + _k23 (5-43)

The boundary conditions for equations (5-39) through

(5-44) are given by the relation
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(5-45)K(T=0.47) = [0]

where all elements of [0] are zero.

Figure 19 illustrates the (time-varying) feedback

gain programs of k13, k23, and k33 as a function of time for

weighting factors of

_n = 10-6

_c = 0

= 25

sec-2kw-2

sec -2 (5-46)

and

and for assumed reactor parameters of

-1

(5-47)

06= 10 -5 kw -I _ = 0.1 sec

_= 0.0064 n*(O) = 10kw

= 10-3 sec n*(T) = 50kw

T = 0.47

The digital computer was used to get the solution o_ snese

gains (13).

In practice, time-varying feedback gains are not

desirable. The synthesis problem of this example was

simulated by means of an analog computer. Simulation of

the time-varying gains on the analog computer can be

accomplished either by direct solution of equations (5-39)

through (5-44) along with the simulation process, or by

reproducing these gains with function generators. The

first method requires more computer components than were
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available for this work. The latter method has the disad-

vantage that any changes in initial conditions or weighting

factors require reprogramming of the function generators.

For the simulation study of this example, the time-

varying gains of figure 19 were averaged over the control

interval by the simple relation

fo 0"47 ki3(_)d_ki3 = i = I, 2, 3)

These constant gains are easily programmed on the analog

computer with coefficient potentiometers. This further

quasi-optimal approximation permits easy simulation for

many different average gain settings.

In analog computer synthesis the model and the

"physical plant" are simulated simultaneously, rlh_o nearly

identical sets of dynamic equations are programmed; one

generating the nominal control and state variables, the

other contaminated with external noise, fne con_amlna_ea

system is driven by the nominal control program and, because

of the noise, deviates from the nominal trajectories.

The output error vector is computed, multiplied by the

quasi-optimal feedback gains, and added to the nominal control

variables. The result is a linear quasi-optimal feedback

controller.

Figure 20 shows the results of this analog computer

simulation. Three different conditions are illustrated for
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are:

(a)

(b)

and (c)
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These conditions

nominal open-loop trajectories

open-loop contaminated state trajectories

the effect of closed-loop quasi-optimal control

on the contaminated trajectories.

The closed-loop constant gain settings for figure 20 were

and

1.1 x 10 -3 (kw-sec)-i
k13 =

k23 = 7.1 x 10 -5 (kw-sec) -1

k33 = 15.3 (sec -I)

From figure 20(c) it is seen that constant gain feedback

control can compensate for the noise to within one percent.

Constant gains were found to give adequate perform-

ance when the amplitude of the noise remained below a

certain saturation level, where the system would become

....*_ _^,,_To_ _ ,_ _ w_ _nar_ased. so was

the point at which compensation was exceeded. The simplicity

of using constant gains, in most instances, outweighs the

difficulties of constructing a time-varying quasi-optimal

controller.

Nuclear Rocket Engine Start-u_ Synthesis

The dynamic behavior of a nuclear rocket engine with

a bleed turbo-p_mp or a topping turbo-pump propellant drive

is approximately represented by the set of non-linear

differential equations (8, 9)



and

_= /3n

-2-

Mc "E"T

n + ic

- 1o (5-51)

(5-52)

where the system state variables are n(t), c(t), and T(t),

and where

n = power

c = space-average (one group) precursor density

T = space-average core temperature

Pt = total reactivity

Mc = mean effective heat capacity of reactor core

T T = heat-exchanger thermal time constant

Equation (5-52) represents the heat exchange equation which

is coupled with the neutronics through core temperature and

propellant flow rate in the form of reactivity. This total

reactivity thus consists of the control rod reactivity u i,

a control variable, the propellant density reactivity

_p, and the temperature reactivity _T:

_t : uI + 8p_ + g_p (5-53)

where _PT --cT T(t)

and S_p - CpU2Ct)/VTCt)

(5-54)

(5-55)



123

Here u2(t) is the propellant mass flo_1 rate, also a control

variable. Thus two control variables are required for

dynamic operation. Usually the constants in equations

(5-54) and (5-55) are CT_ 0 and Cp_ 0. Finally, the heat-

exchanger thermal "time constant" is not a constant, but

depends on the propellant flow rate:

_T = (bu2)-i (5-56)

where b is a constant of proportionality at rated design

flow rate.

For this reactor model, Mohler (8) has determined

a set of nominal optimal open-loop state and control variables

which minimize propellant consumption during the start-up

operation. The reactor system is subject to the following

constraints

and

Ua__ u2(t)__ ub

n(t) __ nma x

T (t )__ Tmax

-_ _ tot __ T/S

=oc

(5-57)

where _ is a positive number greater than 1.

Figure 21 shows the nominal state variable trajec-

tories for core power and temperature with_= 1.6. Figure

22 shows the nominal control variable trajectories for this

case. The nominal control trajectories are seen to be
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discontinuous functions of time. Maximum total reactivity

is initially applied in order to perform the start-up

operation in a minimum time. The first switching time, ta,

occurs at the point where the rate of core temperature rise

reaches its maximum value. At this time, control-rod

reactivity is programmed such that T remains at, but does not

exceed, its maximum value. Beyond ta, both reactor power and

temperature increase linearly with time. Figure 21 indicates

that both temperature and power reach their design values

simultaneously at tf while the propellant flow rate is

maintained at its minimum value throughout the control

period. Actually, if the nominal open-loop controls of

figure 22 were used to drive the model of equations (5-50)

through (5-52), core power would not reach its design value

when temperature does. An additional switching time, say

tb, would occur very near the terminal time tf where a

short-duration control is applied to bring the power to

its design value simultaneously with the design value of

the temperature. However, a feedback controller designed

to minimize errors in the state and control variables is

used here to eliminate this switching time. Table I gives

the hypothetical design parameters of this study.

As in all previous examples the desired optimal

feedback controller minimizes errors in state trajectories

and control motions. The error criterion is
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HYPOTHETICAL NUCLEAR ROCKET ENGINE PARAMETERS

Maximum Reactor Power, nma x

Minimum Propellant Flow Rate, u a

Design Propellant Flow Rate, U2d

Design Maximum Average Core Temperature, Tma x

Propellant Inlet Temperature, T(0)

Mean Effective Neutron Lifetime,

Effective Delayed Neutron Frac_ion,/_

Design Propellant Reactivity, _(tf)

Design Temperature Reactivity, _@T(tf)

Effective One-Group Delay Constant,

Effective Core-_ss Heat Capacity, Mc

Maximum Core Temperature Rate of Rise,OC

First Switching Time, ta

Terminal _witcning Time, _f

2260 Mw

4 lb/sec

130 lb/sec

3400 °R

120 OR

3 x 10 -5 sec

o.0065

0.0065

-0.0065

-1
0.10 sec

ll40 Btu/°R

1800 °R/sec

0.08 sec

i.o6 sec
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e(0) = _n[n(T)-n* + _T[T(T)-T*(T')I 2 (5-58)

Here again, errors in precursor density are not considered.

A quasi-optimal feedback controller based on the maximum

principle is again evaluated. The linearized dynamic

process describing perturbations of state and control

variables is represented by

1/I,.,Ic 0
1[a13 (_) b11(Z') b12(_)

0 _x + 0 0

a33(t) 0 b32 (_)

_u

(5-59 )

where

gx = I E ul!c and g u = 8 u2

ST

(5-60)

and a!l ("E) = [U_' + OTT* + CDU2* -/5]/,i_
L

(5-61)

= - CpU2*n*

a13 (T)ICT I_* _ ,]/,_

(5-62)

a33(T) = - bu2*

b11(T) = n*/_

bl 2 ("g) = Cpn*/g'_"_

b32(T) = - bT*

(5-63)

(5-64)

(5-65)

(5-66)
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The Riccati-type differential equations that must be solved

to determine the time-varying feedback gains are

klI = Ak112 - 2Bkllki3 + Cki32 - 2allkll - 2/_k12/_

- 2k131 o- Cn

(5-67)

k12 = Akllk12
- Bkllk23 - Bki2k13 + Ck13k23 - _kll

(l-all)kl2 - _k22/_ - k2j/Me

+

(5-68)

2 + Ck13k33 - aljkil
k13 = Akiiki3 - BkilkJ3 - Bk13

- (a33 + all)kl3 - _k23/_ - k33/Mc

2 2Bkl + Ck232 2 _ k12 + 2 _ k22
k22 = Akl2 - 2k23

k23 = Ak12k13 - Bkilk33 - BkiJk23 + Ck23k33 " al3ki2

_ % k13 - (a33 - %)k23

(5-69)

(5-7o)

(5-71)

k_x = Ak1_ 2 _ 2Bk13k33 + Ckqq 2 - 2a13k13 - 2a33k33 - _T

(5-72)

_ere

A(Z) = bll 2 + bi2 2

Y1 V/'2

(5-73)

and

B(_) = - bi2b32

F'2

C(_) = b322

_2

(5-74)

(5-75)
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The equations that describe the quasi-optimal feedback

control variables are

Ul = u*-i _--bll [kll(n-n*) + kl2(C-C*} + k 13(T-T*)]

and

÷k13(T-T )]

+k33

13o

(5-76)

(5-77)

Fi&ulre 23 is a plot of the time-varying feedback

gains associated with the nominal trajectories of power and

temperature for the two control variables. The switching

time at tb_ tf is included and the value of _"= 1.60 is

used. The gains were obtained from digital computer

solutions of equations (5-67) through (5-72) (13). The

gains for the precursor density are not illustrated; they

have the same general shape as those illustrated. For the

gains in this figure, the following relations hold:

kln = kll (T)bll (I:)/_//"

kiT = kl3(_)bll(i_)/_//"

_2n = [klz(_)b12(_:) + k13(_)b32(_')]/_"2

k2T = [k_3(_)b12(=) + k33(t-)b32('_)] /y/_

(5-78)

(5-79)

(5-8o)

(5-81)
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The weighting factors used to determine these gains were

computed using the techniques presented in chapter 3.

They are:

_= 1

_=4x10 -4 (sec/lb) 2

_n = 2.5 x 10 -10 (Mw -2)

_T = I°-I° (oR)-2

(5-82)

Simulation of the rocket engine start-up problem

using quasi-optimal feedback control synthesis was programmed

for the analog computer (14). As in the previous example,

time-averages of the gains of figure 23 were used to

The average gain settings forfurther simplify the study.

most of this study were

kln = -lx10 -6

klc = -3x10-9

klT= 2x10 -6

k2n = -2x10-5

k2c = _6x10 -8

k2T = 5x10 -6

(Mw-1)

(Mw-1 )

(OR)-1

(lb sec -1 Mw-1)

(lb sec -1 Mw-1)

(lb sec -1 °R-l)

(5-83)

Here again, both the model and the "physical plant" were



133

simulated together. The entire feedback controller was

constructed of analog components. In the actual tests of

KIWI nuclear rocket engines and the ROVERengine the nominal

variables, including controls, po_er, etc., are in fact

simulated via the analog computer.

Figure 24 shows the contaminated open-loop control

variables used in this study. Figure 25 is a plot of the

resulting open-loop power trajectory and shows the effect

of closed-loop feedback control for the gain settings of

equation (5-83). In figure 26 the average core temperature

for open-loop and two closed-loop conditions are shown.

The feedback effect is obvious. The gain vectors _i are

given by the equation

k i =

kln

klc

klT

I_

_2n

k2c

k2T

(i = I, 2)

The figure illustrates that the greater the norm value of

the vector _i the better the compensation. The norm is

defined as

II _II=
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and is representative of the length, or magnitude, of the

vector in the six-dimensional gain space. The gain vector

_2 corresponds to the values of equation (5-83).

In this example, as evidenced from the figures,

quasi-optimal control appears to give adequate compensation.

The actual control synthesis problem, however, is non-linear

and very much more complex than in this example. More

extensive simulation is required to investigate other

configurations. Dynamic programming might give a better

performance controller. It is felt, however, that the

usefulness of this technique is substantiated here.
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The sole purpose of this work is to develop a

technique by which lower order models can be obtained for

linear control systems. This technique is based entirely

on Liapunov V functions and thus serves to extend the

usefulness of Liapunov functions from strict stability

analysis to relative stability analysis. Previously_

Liapunov V functions could serve only to determine the

stability or instability of a system by considering the

nature of the surface described in the state space by this

V function.

With this modeling technique_ relative stability

can also be determined by observing the behavior of the

model, Using this technique_ models u__ a.L_.... ......-_^_ _ h_

developed for a given control system, u[ parzlcuxax

interest in the field of analysis are the second and third

order models,

For systems with no zeros the second order model

and the phase margin model are shown to be approximately

equivalent. This is a highly interesting result since the

models are based on two entirely different philosophies--

one is developed in the time domain and the other in the

frequency domain.

viii
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The third order model developed from Liapunov V

functions is a better approximation to high-order systems

than the phase margin and second order models. It is

conceivable that a fourth (or higher) order model would

give an even better approximation but the amount of work

necessary to obtain this model makes it impractical°

Unfortunately i systems with zeros complicate the modeling

process. While the method is still valid and workablel

difficulty arises in interpreting the results of the

method. Chapter 5 discusses this problem.

 JXo,"-
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CHAPTER i

INTRODUCTION

Introduction and Statement of the Problem

In the present state of the art, the most success-

ful and widely used methods of analyzing linear control

systems are fabricated on the frequency domain. Such

methods are phase margin, M-peak, M-circles, and root

locus.l Recently however, considerable interest has been

shown in finding a method which is entirely dependent on

the time domain and in particular the Second Method of

Liapunov.2, _ 6, 7

One such method considers upper and lower bounds

7
placed on the LiaDunov V function:

V[x(O)] e-_l t < V [x(t)] < V [x(O)J e-_2 _

When _ = _I = _2 and _ is a linear combination of the

eigenvalues of the system, then equality holds. Unfortu-

nately, analyzing the system with V [_(t_ = V[_(O)] e -St

is essentially equivalent to finding the exact solution of

the given system and hence this method, while interesting,

is of little value. Further_ if _i and 5 2 are not combina-

tions of the eigenvalues, then the bounds may be too loose

to give a good indication of the system behavior. Another

1
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approach proposed by Rekasius utilizes a model as an

optimum system to measure the performance of higher order

systems° However_ the use of this method has not been too

successful,

Thus all of the existing methods based on the Second

Method have been particularly disappointing. This paper

presents a new method which_ it is hoped_ will fill the gap

that now exists. This method determines a model which is

an approximation to a completely specified system. The

model can then easily be analyzed to determine the response

of the system.

To find this lower order model_ a method of fixing

the free parameters of the model must be found. Such a

method already exists which used frequency information; it

is called the phase margin model (Appendix B). By matching

frequency and phase margin at crossover of a second order

model to that of a given system_ the model is completely

specified and can be used to determine the behavior of a

given system. Compensation of a control system is accom-

plished by picking a phase margin model with the desired

characteristics (phase margin and crossover frequency_ for

example)_ and then adjusting the parameters of a compensa-

tion network to give a system with the same phase margin

and crossover frequency as the model. In effect_ the

system which yields the desired model has been found.
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Contrary to the phase margin technique which

utilizes frequency domain information I the method offered

here depends only on time domain information. In fact_ the

method operates directly on the differential equation

describing the given linear system and yields a lower order

differential equation as the model. This method is called

the V surface modeling technique; and_ as its name indi-

cates_ it utilizes Liapunov V functions.

The first advantage of the V surface model over the

phase margin model might be esthetic_ in that the model is

entirely dependent on the time domain where the performance

of any system must be finally analyzed and not on the

artificial frequency domain. Second, the method is readily

applicable to digital computers. Third_ while the phase

margin techniques can yield only a second order model_ the

V surface modeling technique yields a second order model

which is similar to the phase margln model and also any

higher order model.

In particular the third order model is investigated

in some detail_ and is shown to give better results than

the phase margin model (and the second order model).

Finally_ it may be of some interest that Liapunov functions

may be used in the analysis and synthesis of linear control

systems and not merely in determining their stability.
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1.2 Outline of the Work

In the following discussion_ this V surface modeling
J

technique is developed for various types of systems and

then compared to the existing phase margin technique.

Chapter 2 is a brief introduction to the concept of the V

surface modeling method and gives the general procedure for

finding a kth order model of an nth order system (k <n).

Chapter 3 deals exclusively with second order

models. A second order model is developed in Section 5.1

along the lines suggested in Chapter 2. Unfortunately this

model_ while perfectly feasible and workable_ has a dis-

advantage in that a matrix must be transformed into its

diagonal form. To eliminate this problem Section 5.2

offers another slightly different method for finding second

order models. This latter method is used in Section 5.5 to

find the second order models for five third order systems.

The results of these examples show that the second order

model and the phase margin model give almost equivalent

models and Section 5.4 attempts to show how the phase

margin model and the second order model are related.

Because the second order model gives only fair

approximations in some cases_ a third order model is found

in Chapter 4. This model is developed in Section 4.1 along

the lines suggested in Chapter 2 and is used in Section 4.2

to model two fourth order systems. The third order model

is seen from these two examples to closely approximate the
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actual system and to give much better results than either

the second order model or the phase margin model. Through-

out Chapters 2 through 4 it is assumed that the systems

treated contain no zeros.

Section 5.2 of Chapter 5 suggests possible schemes

to handle systems with zeros as well as suggesting other

areas for further research° Section 5ol is a brief summary

of the modeling method and its results.



CHAPTER 2

THE GENERAL MODELING TECHNIQUE

In this chapter_ an intuitive basis for the

modeling technique is first offered and then the general

procedure for finding a kth order model of an nth order

system (k<n) is developed.

An nth order unforced system is completely speci-

fied by its characteristic equation if its open loop

transfer function G(s) has the following form:

R=0 _ al ,

G(s) G(s) = n-S+'_I s(sn'l+an s . • • +a_s+a 2 )

The characteristic equation of this system is

-- dn-£x dx
dnx e andtn_ 1 + . . . + a2_- _ + alx = 0
dtn

dn-i
dx x the differen-

Defining x = Xl, _ = x2_ • dtn_ 1 = Xn_

tial equation can be rewritten as

Xl = x2

x2 = x3



x3 = x_

Xn-i = Xn

Xn = "alXl - a2x2 -- • • • -- a x
n n

In vector matrix form the phase variables take the form

m

u

x I

o

x 2

n

-- m

0 1 0 • • • 0

0 0 1 0

-a I -a 2 -a
n

i

x 1

x 2

x
n

= Ax (2-2)

Thus the unforced system is completely defined by _ = Ax

when the system is in the form of Eq. (2-i). When the

system has a different fnrm: then the system matrix A does

2

ferent set of variables other than phase variables must be

used to describe the system.

The Liapunov function for an nth order system is

defined as

2 2 2
PlIXl + 2PI2XlX 2 + P22x2 + . • • + PnnXn = xTpxV(t) -w

where x is the state vector and P is a symmetric matrix•



If the system is linear and autonomous and described by

x" = Ax, then

dv d
d--_ = _ (xTpx) = xTpx ÷ xTpx

m m m _

8

= xTATpx + xTpAx = xT(ATp + PA)x

and V(t) = -x.TQ__x where Q is a symmetric matrix. The

elements of _ can be found when _ and _ are given. At a

particular instant of time, V(t) is equal to some numerical

value (say V(t) = K) which is determined from the x!s
1

(i = i_ 2_ o • • n) by V(t I) = xTpx = K. The value of x
m m

which gives V(tl) = K is far from unique I in fact I upon

plottinE _Tpx = K in the state space (Xl_ x21 . . • x n as

coordinates) I a surface is obtained_ any point of which

gives an admissable value of _. Fig, 2-1 shows this

surface (curve) when n = 2° For a positive definite or

semi definiL_ --Q,._t._ _.._..-_.... ____ v._ eh_..... -nrface must obey

certain requiremenEs. _ rn_ _y_., _ .... _'L-&" th_._ th_

V surface is open (hyperbola for n = 21 etco)_ and if the

system is stable then the V surface is closed (ellipse for

n = 21 ellipsoid for n = _i etc.). Historically I the

stability of a control system was determined by whether the

Liapunov V curve was an open or closed curve (surface for

n = 3_ hypersurface for n>3).

But) no indication of relative stability of the

system was obtained by regarding the closedness (openness)
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/i _ _'11

_. V = P11X_1+2 P12XlX2+

I

I

FIG. 2-1

V SURFACE (CURVE) FOR

SECOND ORDER SYSTEM

A
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of the V surface. Such an indication can be obtained_

however_ by considerin E the shape of the V surface. It is

intuitive that if two systems have nearly identical

responses_ then their V surfaces must have very nearly the

same shape and orientation for the same V. Furthermore} if

the V surface of two control systems have exactly the same

shape and orientation for the same _ then they must be

identical systems; since there is term wise equivalence

between the two expressions for V_ the P matrices must be

the same and since _ is unique for a given _ then the two

A matrices must be identical. Thus a measure of the

relative stability oI a system can be obtained by comparing

its V surface with the V surface of a system (model) whose

relative stability (response to a step input) is known. If

the two curves are closely matched_ then the two systems

can be said to have the same behavior.

It is obvious that the model should be of iowa, _

order than the given system_ since the best model of the

same order as the given system would be the system. A

model of higher order would be meaningless. In addition_

the model should be of low order (second or third) in order

to be easily analyzed.

The objective is to find a model of lower order

than the given system. Since a model of kth order has a

V surface in k space_ and the nth order model has its V

surface in n space it is obviously impractical to attempt
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to match the V surfaces since k <no However_ if two

systems have identical responses_ then their V surfaces

must be matched in k space as well as in n space. Thus to

obtain a kth order model of an nth order system the

procedure is to match the V surfaces in k space. See Fig,

2-2. The kth order system_ which gives the matching V

surface in k space_ is called the model_ and its response

hopefully gives a good approximation of the actual response.

For an nth order system the V surface in n space

for a particular V = -xTQx is given by

xTpx 2
V = -- _ = PllX_ ÷ 2P12XlX2 + .... + PkkX k + . . .

2

+ PnnXn

The intersection of this surface in k space is given by

V 2 2 kTpkxk
= PllXl + 2Pl2XlX 2 + • • • + PkkXk = x

where x is a vector o_ _ne _x,_ k _i_.,_.LL_ vf t:._

vector and P2 is the upper left hand k by k submatrix of

the n by n P matrix. It is important not to confuse x k and

2 2
x i. x i is the square of the ith component of the vector

k
x .
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I
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For the kth order model the V surface for the same

is given by

xTMx 2 2m I 2V = = mllXl + 2XlX2 + . . . . mkk_ k

To match the two V surfaces it is necessary that

mll = Pll

m12 = PI2

mkk = Pkk



k(k+l)
But these are 2 conditions which must be met by a kth

order system with only k variables; an impossible feat. It

is possible} however_ to perfectly match the shapes of the

two V surfaces (they will not have the same orientation) by

rotating the axes around until all cross products are

eliminated. The diagonal terms of the two transformed

matrices may then be set equal to determine the k parameters

of the kth order model (see Fig. 2-3). One criterion of

the "goodness" of the model is how well the orientations of

the V surfaces match. Obviously many different models can

be found by using different V's. If the modeling technique

is a good one_ then the model and the given system should

have much the same response_ and thus the V surfaces should

be closely matched for any V. Therefore} the choice of a

particular V should not affect the model too much, The

ultimate choice of a V should be based on the amount of

work that must be expended to find the model.

A step by step procedure to find a general kth oraer

model for an nth order system is then:

I) Pick one V for the two systems.

2) Determine M (V = xTMx) for the kth order model and

£ (V = x__Tpx) for the nth order system for this

3) Take the upper left hand k by k submatrix of P for

pk.

4) Eliminate cross terms in pk and M by a suitable

change of variables to rotate the axes,



V

V

CURVE OF MODEL

= m11x2+ 2 m12xlx2+ m22x2

= n11z12+ n2 A 4

% /
\

\

_%, \ /
\ /

\

1_5

\

TWO SPACE INTERSECTION

OF THIRD ORDER V SURFACE

v-P11#i•2P1#1x2+p22#

FIG. 2-3

\

SHAPES OF CURVES

MATCHED WHEN

_1=R1
n22= r22

GEOMETRICAL ILLUSTRATION OF

THE MATCHING TECHNIQUE



5) Adjust the parameters of the kth order system to

match the diagonal elements of the transformed

matrices.

16

In the following chapters the second order model

(k = 2) and the third order model (k = 3) are investigated

in detail. Some examples are worked to show the applica-

tion of the technique_ and the results are compared to

those obtained by phase margin techniques.



CHAPTER 3

THE SECOND ORDER MODEL

The generalized procedure for finding a kth order

model offered in Chapter 2 is now applied to the second

order case (k = 2). As seen in Section 3.1} a certain dis-

advantage (rotation of axes) results using this procedure

and thus an alternate method is given in Section 3.2.

Several examples are given in Section 3.3 to illustrate the

method and to show how well it approximates the actual

system. This second order model is also compared with the

phase margin model and it is very satisfying to note that

the two are approximately the same for all cases investi-

gated.

3.1 The Second Order Model--Method I

To obtain a suitable second order model for a

system I first a V must be chosen for both the model and the

given system. Since the V should be applicable to both the

model and the system_ it should depend only on variables

which are defined for both systems (x I and x 2 for a second

2 2
order model). Thus in general V = qllXl + 2ql2XlX 2 + q22x2.

The V curve (ellipse) for the second order model then

becomes V = xTMx where

17
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JX = _ M =

X

Ii II m121

12 m22J

is obtained from the matrix equation ATM + MA = -q__,where

A is the system matrix of the second order model_ and

Q

m

qll q12

q12 q22

The V curve for the given nth order system is V' = xTpx

where

x 1

x 2

X _" • p

i m

Pll PI2 " " " Pln

PI2 P22

is obtained from the matrix equation _A'Tp-- + __PA = -_'_

where A' is the system matrix of the given system_ and

Q! =

-qll q12 0 . . • O"

q12 q22 0 • . • 0

0 0

0 0 o . • 0
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Notice that the double use of x 1 and x 2 for both

the system and the model specifies that the first two

variables of the system and the two variables of the model

must be the same; i.e._ they must have identical meaning

for the system and the model. In this instance_ for

example_ x 1 and x 2 are the output of the system (or model)

and x 2 its first derivative.

The 2 space intersection (intersection in Xl_ x 2

plane--an ellipse) of the

V' = x2Tp2x 2 where x 2

curve

x 1

x 2

in n space (V' = _Px) is

p2 =

-- m

Pll PI2

P12 P22
m

To match the curves V' and V_ set the expressions for these

t_o C,!rvA. equal and equate like terms,

mll = Pii

m12 = PI2

m22 = P22

The elements of p2 are fixed by the Eiven system and VI and

the two parameters of the model must be adjusted so that

the elements of M match the elements of p2. But it is

impossible to satisfy three equations with only two variable

parameters. Therefore_ the curves V' and V cannot be

exactly matched. It is possible however to match the
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shapes of the two curves while ignoring the orientations of

the two ellipses. This is accomplished by matching the

major and minor axes of the ellipses.

Under a suitable change of variables I it is pos-

sible to rotate the coordinate axes and eliminate cross

terms. For V = xTMx then_ it is possible to find some

transformation _ = B__zzsuch that V = _zTBTMBz*---- where _N = _--BTMB

is a diagonal matrix.

N -"

The major and minor axes are given by 2 _V/n22" and 2 _V/nll"

(see Fig. 2-3)- Similarly for V' = x2Tp2x 2 there exists a

transformation x = Cy such that V' = __ Cy = where

R = c_.Tp2c is a diagonal matrix o

R "_-
n

To insure that the final ellipses have the same size_ set

V' = V (this does not affect the shape of the ellipses).

Then the major and minor axes are given by 2_V/rl{ and

2_V/r2_. To match the shapes of the two curves I set the

major and minor axes of the two ellipses equal or_



2 %/V/n 11' = 2

2 _/V/n22' = 2 %/_'/r'22'

21

The necessary condition to match the axes is that nll= rll

and n22 = r22 or _N = _R" It is now imperative to determine

exactly how this rotation of axes is to be accomplished.

For the quadratic form u Tsu_
J

U1u= , S =

U

ii s12

_12 s22

find the change of coordinates _ = B v_

D

bll b12

b21 b 22

such that uTsu = vTBTSBv = vTTv where T = BTsB is

diagonal matrix.

a

T _.

E

tll

0

0

t22

The requirement on this coordinate transformation is that

it be orthogonal (distance preserving); therefore the

transformation change must be a rotation of the coordinate
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axes. From Fig. 3-1 it is seen that B must be of the form

h _.

m I cosO sinO 1

sin@ cos@J

and the next step is to find 0 and the elements of _.

T = BTsB =

T _-"
i

jcosO sinO Sll s12 cosO

L_sino cos0 Ls12 S22 sin@ cos

SllCOS20 ÷ 2Sl2COSO sinO + s22sin20)

](cos@ sin@ (s22-Sll) + Sl2(COS 20 - sin20))

(cos@ sin@ (s22-Sll) ÷ Sl2(Cos2@ - sin20)

(Sllsin20 - 2Sl2COSO sinO + s22cos20))

Therefore_

t_. = s_.cos20 + 2s._cosO sin@ ÷ s_sin2@

t22 = Sllsin2@ - 2Sl2COSO sin@ + s22cos2@

(3-l)

also_

t12 = 0 = cos@ sin@ (s22-Sll
) + S (cos20 - sin20)

12

Sll-S22

( 2 )2cos@ sin@ = Sl2(COS2@ -

Sll-S s
( ! _ 22)sin20 = 12cos20

sin20 )
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I
I

I

/
/

/

Ul

23

m

U = .I;;_

Ul= b11v1+ b12v2 = cosev 1* sinev 2

u2= b21_÷ b22v2=-sine_ +cosev 2

sine]_ Icos8 e

L-sine cos
B= , _IBI=B T= ose -sine7

ine cose j

ROTAT ION OF

FIG. 3-1

T H E COORDINATE AXES



sin2@ 2s12
,. = tan20 =

cos20 Sll-S22

2_

2s12
or @ = 1/2 tan-l( , )

Sll-S22
(3-2)

With these formulas it is possible to transform _2 into its

diagonal form R since all elements of p2 are constants and

the angle of rotation @ can be obtained immediately.

However I the elements of M are not constants_ but functions

of the variable parameters of the model, and the angle of

rotation is not readily available. For example_ consider

M for qll = I.

M is obtained from the matrix equation ATM + MA = -q where

is the system matrix of the model.

0 1

A -"

-a I -a 2

From part 1 of Appendix _, M turns out to be

1
M =

-- 2ala 2

(al +a2) a 2

a 2 1



To transform M into its diagonal form N__Eqso (3-1) and

(3-2) are used. The elements of N then become:

(al+a_) 2@ _2a2 i

nll= 2ala 2 cos * 2ala 2 cos@ sin@ ÷ 2ala 2

sin2@

25

n12 = 0

n22 =

2) 2a 2
(al+a2 sin2@ - ----=-- cos@ sin@

2ala 2 2ala 2

1

+ 2a'la 2 =os2@

where

2a 2
8 = 1/2 tan -I ( _ )

al+a2-1

Thus @ is given in terms of the parameters of the model

and since these parameters are unknown_ @ is not known.

Therefore_ the procedure of matching nll= rll and

n22 = r22 must be one of trial and error; unless} of course_

is already in diagonal form and no translormazion is

2
needed. Such is the case when V = -x 2 (q!l = q]2 = O_

q2_ -'- - --

S

m

m

a 1

2a'-"_ 0

0
1

m

2a 2

where a I and a 2 are the variable parameters of the system

matrix A.



Therefore I

or

A -"

0

-a 1

al/2a 2 = rll and i/2a 2

a 2 = i/2r22

a I = rll/r22

1

-a 2

= r22

The procedure for finding the second order model

for an nth order system is summarized in the following

steps:

26

(3-3)

T

i. Pick = -x_ =-x_-Q_x (q22 : l) and solve for _, an

n by n matrix I from the matrix equation A'Tp + PA' =

-Q where A' is the nth order system matrix°

2. Take the upper left hand 2 by 2 submatrix of P for

p2.

3. Rotate the coordinate axes of the state space usi,_g

Eqs.O-l)and0-2)to find the diagonal form £.

rll 0

R ---

_@

0 r22

Adjust a I and a 2 (parameters of the second order

model) to satisfy relation(3-3> The model is now

completely specified by A.
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0 1

_=

-a I -a 2

A convenient measure of the quality of the model_

i.e. 9 how well it approximates the given system_ is given

by the angle of rotation O. This angle shows how closely

the orientations of the two ellipses match. When @ is

small (@ <i0°, for example) the model is a good approxima-

tion to the given system. As @ increases the model

becomes progressively worse. The disadvantage of this

method is that the p2 matrix must be transformed into its

diagonal form. While this operation can be readily per-

formed it is desirable to find a method which is more

applicable to digital programming.

_.2 The Second Order Model--Method II

If the model obtained in the previous manner is a

good one, then for any V (not just _ = .X22) the V curve of

this model should closely match the V curve intersection of

the nth order system. It is conceivable that a slightly

better model could be obtained by matching the curves for a

different V. Another way to find a model would be a method

which attempts to match the curves for more than one _;

ioeo_ using some criteria_ this method would attempt to

match V curves for two different choices of V (say 91 = -x_

V2 - 2and = x2). Such a method would attempt to give a
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compromise between the model obtained for V1 = -x_ and the

model for V2 = -x_ (or any other choices for V). Hopefully

such a model would give a better approximation than the

other two. One such method uses, as its criteria, the

matching of the products of the major and minor axes of the

o

two ellipses obtained for two different choices of Yo From

Fig. 2-3 notice that the major and minor axes of the V

• i

curve are given by 2_/V/rll and 2%/V/r22' (or 2%/V/nll and

2_/V/n22' for the V curve of the model). The product of

these two axes is Prod° = _V/(rllr22 )I/2. But, rllr22 is

the value of the determinant I___ and therefore, Prod° =

_V/IR A 1/2 This R was obtained by an orthogonal trans-

formation of the coordinate axes _ = Cy; giving V as

TcT-2 cV = xTp2x = Z -- _ _Y = _ TRy

where R = cTp2c

and II_ = Ic'P_Cl IcrllP2lICl = ic_.... o.

But since the transformation is orthogonal, then C -I =

or cTc I. Therefore, IRI 111 IP21 = IP5 and Prod.

 v/ip211/2. Similarlyforthemodelthe productof the

major and minor axes is Prod. =  v/IM_i1/2o

2 2 ) (3-_)Set IMI = IP21 (mllm22 - m12 = PlIP22 " P12

The axes product is now matched for a particular V. Since

the model has two variable parameters, it is possible to
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satisfy two such conditions as Eq. (3-_) for two different

choices of Vo Two convenient V's are V1 = -x_ (qll = i)

and V 2 = -x_ (q22 = i). For V1 = -x_ £i is obtained from

£'T_I + £I &' = -_i' where an is the nth order system

matrix_ and _i has qll = i. The second order model has

m

2

al + a2 1

2ala 2 2a I

1 1

2a_ 2a I a 2

m

2
and M 1 = i/(_ala 2)

where a I and a 2 are the variable parameters of the system

2 by 2 submatrix of Pl )

i/_ala2o = (3-5)

For V2 = -x2 (q22 = i) P2 is obtained from A'-P 2 + P_' =

-_2 where _' is the nth order system matrix and _2 has

q22 = io The second order model has

and IM,_

M2 =

= al/(%a §)

B

aI
0

2a 2

o
1

m

2a 2



Setting IM2] = ]P_l

submatrix of P2 )

(_ is the upper left hand 2 by 2

2 _.

al/_a2

30

(3-6)

Eqso (3-5)and (3-6)can be solved simultaneously for a I and

a 2

al = (ip221 /ipl_ )1/2

a2 = i/(161P__l 9] ip221 )l/_

(3-7)

The major and minor axes products ar_ now matched

_1 2for = -x I and V2 = -X_o The step by step procedure to

find the second order model using this method is as

follows:

i.

2.

and a
2"

= 2 ¸
Pick V1 -x I and find £i (_= #_I_ )

Pick 0 2 = -x_ and find _2 (4 = _T_2_)

T_ke the upper !ef_ hand 2 by 2 submatrix of _l and

_2 _2

Find I_[ and I_I and use EqSo (_-7) to find a 1

The model is now completely specified by

A@

A =

0 1

-a I -a 2

This model may or may not be better than the one

obtained by matching the curves for one V. The one
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advantage it has over the other method is that no rotation

of the axes is required; it is simply necessary to find

P I2 and p2--2" For this reason the latter method is more

readily programmed on a digital computer (it is easy to

a single subroutine to give IPI21 and IP221 ). A dis-find

advantage of this method is that there exists no basis for

determinin E how good the model is except by actual com-

parison. In the previous method the angle of rotation @

gave this information. Because of its ease of application

the last method is used in the examples to follow.

3.3 Examples of the Second Order Model

In this section_ five third order systems are

modeled with the second order model and the phase margin

model. The first example is worked out in detail to

illustrate the procedure; the results of the other four

_mples are given to show how the models compare with the

_ ---; _+_ +h_ three.given systems, _u_ -y_,,._ _

the procedure is exactly the same_ and in a later section

two fourth order systems are modeled with second order

models, To aid in the hand calculations_ an appendix is

added at the end of this paper giving tables for finding

the P matrices for systems up to fourth order. _ To model

higher order systems a computer is recommended° The five

examples in this section were chosen as representatives of

the five different types of third order systems of interest:
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i. Two complex conjugate poles and one real negative

pole far out on the axis (see root locus plot_

Fig. 3-2),

2o Two complex conjugate poles and one real negative

pole closer to the imaginary axis (Fig, 3-3)-

3, Two complex conjugate poles and one real negative

pole close to the imaginary axis (Fig, 3-_),

_o One real negative pole close to the imaginary axis

and two complex conjugate poles farther from the

imaginary axis (Fig, 3-5),

5, Three real negative closed loop poles (Fig° 3-6),

The results of all five examples are given in

Tables 3-1 to 3-5_ and the transient responses of the given

system and the second order model to an initial condition

of Xl(O) = 1 are shown in Figs, 3-7 to 9-11,

Example 3-1 (Findin_ the model for a third order system..)

Given the third order system G(s)_ find the second

order model and the phase margin model I and compare the

transient responses of each to the transient response of

the system for Xl(O) = I.

R=0 x1( 

G(s) = s(s+a}(s+b} = s(s+l}(s+lO}

First find the differential equation describing the system

from the block diagram°
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x = open loop poles of the system

I_= closed loop poles of the system

X f_ r

[]

r

FIG. 3-2
CASE 1

r J r

FIG. 3-3
CASE 2



FIG. 3-4
CASE 3

FIG. 3-5

CASE 4

3z_

X F

FIG. 3-6

CAS E 5



xl(s)

-Xl(S)
= G(s) = I0

s3+lls2÷lOs
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"_ + II_ + i0_ : -lOx

defininE_

x I = x

x2 = Xl = _

x3 = _2 = _

the differential equation can be written as:

x3 = "lOXl - 10x2 - llx3

x2 = x3

or _ =

21 = x 2

x21 =

0

x 3

0 1 0 I Xl
0 0 1 x 2

!

-zo -lO -ill x 3

e. _ -- .... 1,_% -- I

The system Cranslen_ respu,._ _ _I • _' _ ..... 1 ....

x2(o) : x3(O) = o is:

= A'x

xl(t) = 1/92 e -lO'llt + 91/92 e -'_St cos.89t

+ .618 e -'_%5t sin.89t

Now find the second order model and its transient

response for Xl(O) = i. (Refer to the procedure at the end

of Section 3o2.)
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Pick V = -x_ = ixTqx__-- then for the third order

system

[!oo1Q1 = O O

o oj

Using part 2 of the appendix and the system matrix

A' for A (a I = IO_ a 2 = I0_ a 3 = Ii) thent

2210 1210 100 1

L loo 121 11J

2. Pick V---x 2 ---x__TQ_x, then

[o o o1
q-z- Io 1 oI

' Lo o • oJ

I Using part 2 of Appendix A_

1 FlO lO ol
II

, L o ,i LI
I upper left by 2 submatrix for

3. Take £2,the hand 2

then_

I F_..__l F_o _ol
2 1 2 1I _-_=_ / /, _-_.== / /

L__ _J L _o _j

36



4. = (1/200)2((221)(134) - (121) 2 ) = 1.5/4

= (1/200)2((110)(131) - (10) 2 ) = 1o43/4
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Using Eqs. (3-7) to find the parameters of the

system.

a2 : 1/(161Z_I 1_21_1/4= .825

The system matrix for the model is thus

u

m

0 1

-.972 -.825
m

It is convenient to choose the model in the form of

_2,__ k =h_rA _(S) is the open loop
_M TM - s(s+al ....

transfer function of the second order model.

x,(s)

kFor (s) = s(s+a) the system matrix is

A
u

Therefore i k = all a = a2 and
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C_ .972(s) =
sCs+.825)

k

For a second order system of the form s(s÷a)- _ the

transient response for and initial condition

Xl(O) = 1 can immediately be written as:

xl(t) = e-a/2tcos-1/k-a2/_% +
-a/2ta/2 e

Vk-a2/_

sin_'k-a2/_%

For k = .972 and a = .825

-'413tco s 0
xl(t) = e .896t + 461e-'413tsin.896t

Now find the equivalent phase margin model (see

Appendix B). The phase margin model is simply the second

order system with the same phase margin and crossover

frequency as the given system. Tnerezore_ the pro=_d_

will be to find the phase margin and crossover frequency

_e ........... + =h_h IG_)_ = i) of the Eiven system, and

then adjust the parameters of the second order system to

give these same values°

lO

The given system is S(_U2) = jW(jW+l}(9+i0) and

the phase margin and frequency when IG(j_)l = 1 are

t42:.785 and P.M. ffi_/2-tan'l.919.

Now find the second order system of the form

k
which crosses over at u3 = °785 and at an angle of

,)_(j_+a)

@ = -_/2-tan-l.919



G (ja') =_e
k

_ k

j_O{_ +a)- = (a2+0_2) i_ _.(_K/2_tan.lCO/a)

= IZ(-_/2_tan'l • 919)

tan-lUJ/a = tan'l.919

a = .9-_19 = -7__85
•919 = • 85/t

-- k

.785(.73+o616)i/_ = 1

k = .91

therefore_

_9

G (s) =e

The transient response to Xl(O) = 1 is

xl(t) = e-.427t

cos.Bs_t + oSOe-._27tSinoBS4t



TABLE 3-1

RESULTS OF EXAMPLE 3-1
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Given

System

System System Response xl(t)

J

10

s(s+l)(s+lO)
1/92e -IO'llt + 91/92e''_45tcos.89t

+ .618e-'445tsin.89t

Second

Order

Model

.972
s(s+.625)

e-'_13tcos.896t + •_61e" "413t sin. 896t

Phase

Margin

Model

e-'%27tcoso85_t ÷ .5Oe'°_27tsin.85%t

System

TABLE 3-2

RESULTS OF EXAMPLE 3-2

System Response xl(t)

Given

System

i0

s(s+l)Cs+3)
,,._ -3.89t _ e_l -.055t 1.6 t

+ .381e-'O55tsinl.6t

Second

Order

Model

Phase

Margin
Model

a.7_
s(s+.121)

2.5
s(s+.125)

"'O61tcosl le'-O61tsinle .6t + .038 .6t

e-'O63tcosl.58t + .039e-'O63tsinl.58t



TABLE 3-3

RESULTS OF EXAMPLE 3-3
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Given

System

System

1

s(s+l) 2

System Response xl(t)

i

.178e -1"76t + .822e-'12tcos.656 t

+ .625e-'12tsin.656t

Second

Order

Model
e-'125tcos.736t + .170e-'125tsin.736t

Phase

Margin

Model
e-'135tcos.689t + o196e-'135tsin.689t

TABLE 3-4

RESULTS OF EXAMPLE 3-4

System System Response xl(t)

s(s2÷Ss+9)

-t -2t -2t

Second

Order

Model

i

Phase

Margin
Model

.817
s ( s÷1.585 )

.9 )7
s(s÷l.735)

e-°793tcos.%33t ÷ 1.83e-'?93tsino433t

e-'867tcos.429t + 2.O2e''867tsin._29t



TABLE 3-5

RESULTS OF EXAMPLE 3-5

_2

System System Response xl(t)

GivenSystem s(s+ )(s+4) + 3"9_e-'7t'3°OOe-t + °06e-4°3t

Second -.62t - 62t
Order -_9_ e cos.308t ÷ 2.01e " sin.308t
Model s(s+l.24)

Phase .502 -.66t
Margin e cos.276t + 2.38e'°66tsin.276t

Model s(s+l.31)



_3

2

II

v

÷

v

(I ÷

v

I!

/



0 _ n
__ z



_5

II

LO

X

÷
ul

V

II

_E
_9

ill

v)
>-
(/)

\
./

/

0

LLI

0
:E

O)
!

er)

LL

Z

>

W
1

LL W

0 r,-

Iii
_) /
Z LLJ

a_ 0
V)
w _-
n- Fl

Z

Z
I,I

V)
Z
<[
r,-

Z
W

_0
>-
_0



÷

÷

v

o0

oO

÷
111
v

u_

_6

I

Z cn

W W

W
I X

Q

!

w
b. Z W

0
o. 0

Z

I,I



cq

÷

V

÷

V

II II

× q

!

b_

_7

I
Z
W

W
-- d

w

W

Ix.
or,-

0

ILl
_Z) "-J
Z m

0 a
a. 0

Ill
r" C3

Z

Z
I,I

z 2_
V) W
Z

P" >_
_- V)



_8

Upon studying the results in the tables it is

immediately apparent that the phase margin and second order

models are very similar for each example. This amazing

fact makes the V surface modeling approach a very satis-

factory one, Further insight into this similarity is

given in Section 3o_. Since the models give nearly the

same response I only the response of the second order model

is compared to the response of the given system in Figs.

3-7 to 3-11.

Cases 11 2_ and 3 (Figs, 3-7_ 3-8_ 3-9) really

belong in one main category, They are all underdamped

third order systems whose real closed loop pole is further

from the imaginary axis than the complex conjugate poles.

See the root locus plots in Figs, 3-2_ 3-31 3-4° The

only major difference between the three cases is the

importance (relative distance from the imaginary axis) of

this real pole. In Case 1 the pole is so far out from

the imaginary axis that it has very little influence on

the system behavior, Therefore_ it seems likely that the

closed loop poles of the model should closely coincide

with the complex conjugate poles of the system. Such is

the case and as expected the models give excellent approxi-

mations for this example. But as the pole moves in toward

the imaginary axis it asserts greater influence on the

system behavior and it is not so obvious where the closed

loop poles of the model should be. Actually the closed
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loop poles of the model move only sliEhtly away from the

systemWs complex conjugate poles as the real pole moves in

toward the imaginary axis and because of the mountin E

influence of this real pole the models steadily decrease in

accuracy as the pole achieves dominance (Figs° _-8_ 2-9).

Upon looking at Figs, 7-7 to 7-9 it is seen that while the

second order model has a similar frequency and damping

factor_ it becomes more and more out of phase with the

actual systemls response as the real pole achieves more

dominance, This phase difference results in the model

havinE a greater overshoot and a faster rise time than the

third order system, It might be possible that this could

be related to the anEle of rotation @ discussed previously.

In Case _ (Example 3-_) the previous situation is

reversed. Now the real pole is closer to the imaEinary

axis than the complex conjugate poles and therefore the

real pole is the dominatinE pole. Looking at the root

locus plot of this Case (Fig. 3-5) it is not at all

obvious what form the closed loop poles of the model will

take, Interestingly_ the model is a sliEhtly underdamped

system, Upon inspection of Table _-_ the second order

and phase marEin models do not seem to match the"third

order system at all_ but upon plotting the responses in

Fig° 3-9 it is seen that the second order model is a very

Eood approximation to the given system°
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Case 5 is concerned with third order systems with

all real closed loop poles. Inspecting the root locus

plot for this Case (Fig. 3-6) it seems that the closed

loop poles of the model should be real and closely coinmide

with the dominant real closed loop poles of the system.

It is surprising however that this is not the case at all.

Both the second order and phase margin models give nearly

the same underdamped system. Upon plotting the responses

of the second order model and the given system in Fig. 3-II

it appears that this slightly underdamped system is a very

_ood approximation to the actual system after all--an

amazing result.

It should be apparent from these examples (espe-

cially Examples 3-1_ 3-2_ 3-3) that the accuracy of the

model is greatly dependent on the relative positions of the

closed loop poles of the given system. In systems of order

_reater than three the accuracy of the model is even morv

dependent on the location of all of the closed loop poles.

An obvious way to increase the accuracy of the model to

meet the demands of higher order systems is to give the

model more closed loop poles by increasing the order of the

model and_ therefore_ a third order model is developed in

Chapter 4. Before proceeding with the third order model t

however_ it may be interesting to see why the second order

model and the phase margin model are so similar.
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2,4 Finding Phase Margin. by MatchinK V Curyes

The phase margin model was found by matching its

phase margin to that of the given system (also its cross-

over frequency), Interestingly enough_ it turns out that

one of the conditions determining the second order model

(the model obtained by matching the axes products of the

ellipses) fixes the phase margin of the model; I_1 =

2
al/4a 2 uniquely determines the phase margin of the model

and nothing else. This is true because for any second order

a 1

system of the form ,s(s+a2 ) the phase margin is given by

a I = Ca_ where C = cot@Vl + cot2_'and _ is the phase

margin 6

Proof:
a 1

c (jw) =

G_i alat crossover (jcO) = _)(_¢O+a) = l/(-_ + l(_)

(_ is the pbo-e margin)

a_

.t

2 2)1/2
(_ +a 2

1 #.

L(-7_/2 - tan -_W/a2) = IZ._-,_ _ _)

-_/2 - tan-l_/a 2 = -_ +

tan-l_/a 2 = K/2 -

(_)/a 2 = tan(_/2 - ¢) = cot@

tO = a2cot _
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al =(_/_j2 + a_'

2 2 2'a I = a2cot_ a2cot @ + a 2

2 ;a 1 = a2cot(_ 1 + cot2@

or a I = Ca_ where C = cot(6 _/1 + cot2_ '

cot¢ Izk+ cot,2_ '
2 2Iz_l = al/_a_ = Ca2/_a2-- 'Therefore I

and IP_.221completely specifies the phase margin of the

model° Since the phase margin model and the second order

model are similar it follows that ]P_I must give a good

indication of the phase margin of the nth order systems

Example (_-6) Referrin E to Example 3-1 in Section 3,_ note

that the actual phase margin of the given system is

= _ + @ = X/2.tan'l.919

n , - • 0 I. I.O•= 90- = ".=•x I

= 47.4 °

Now using I_I to find the phase margin of the second order

model (Example 3-1)

cote i + oot2¢= _I£_I= _c _ = 1.43

cot2O(1 + cot2_) = 2005

cot2g = 1oO07



cot_ -_ 1.003

= 45.1 °

_5.1° isquiteoloseto_7._°an_thusl_l dossse.mto
give an accurate indication of the phase margin of the

given system.
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CHAPTER

THE THIRD ORDER MODEL

_.i Development of the Model

As seen from the results of Chapter _ the second

order model and the phase margin model give much the same

results. In fact_ it appears that the second order model

is approximately equivalent to the phase marEin model.

While the models are good approximations for many systems_

in some cases more accuracy (a better model) may be

desired. Obviously I a better model would be a third order

model# and although it would be harder to analyze than a

second order model_ it should certainly give better

results° Third order models find little use in modelinE

third order systcms sin_e the best third order model is the

given third cruet sy_£_., it_&If I...... a -rdar models must

suffice). But_ third order models are practical for higher

order systems where second order models may not Eive

accurate results° Models of order higher than three are

questionable_ since then the analysis of the model would

become too difficult for the possible gain in accuracy.

It is tempting to extend the latter method for

finding second order models (the method of matching the

products of the major axes) to third order models° The

5_
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V surface (ellipsoid) o£ the third order model is Eiven as

V = xTMx where 9

X
m

x 1

x 2

x 3

mll

m12

ml 3

m12 m13

m22 m23

m23 m33

The V curve of the nth order system is Eiven by V = _PX

where _

X

x I

x 3

o

x
n

_J

; P =
M

Pll

PI2

P13

@

Pin

P22 P23

P23 P33

@ @ •

The V curve intersection of the ncn -OX tl_A _j _ w .....

section of the nth order V curve in three space--

ellipsoid) is Eiven by V = x3Tp3x 3 where x 3 is a vector

of the first three components of _ and _3 is the upper left

hand 3 by 3 submatrix of _.

x 3 =

l

x I

x 2

x 3

; p3 =

Pll PI2 PI2

PI2 P22 P23

P13 P23 P_
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To match the axes products for a particular F, it

is necessary and sufficient, by extending the reasoning in

Section 3.2 to third order, that IMI = 1[31 • To completely

specify the model it is necessary to satisfy three such

relationships for three different choices of V. As before,

= 2 V =-x2a convenient choice for these V's is VI "Xl) 2 )

and V3 = -x2_" The expressions for --IM"(i = 1)2)3) can be

obtained from part 2 of Appendix A or from ATMi --i---- + M A = -Q i

where A is the system matrix of the third order model.

O 1 0

A = 0 O l

-- _-a I -a 2 -a_

' QI =

- ]1 0 0

0 o Oj0 0 0

iO001,q--a : o i o Q-3 = o

n 0 0 0
[=.- . ,_ -

•,i #_

"A'g _l

Then, IMll =
8(a2as-al )2

a 1

IM_31

8(a2a3-al )2

4
8(aEa3-al )2

Or, I Mll IM3) j M21 2= ; but this condition is not met

in general by higher order systems. It is, therefore)

impossible to match the axes products of the curves for
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these three choices of V, Another V must be chosen so that

no conflicting requirement results• At present this choice

is not apparent and therefore the first method is used for

third order models (matching V curves for a particular V),

The process for matching V surfaces in three space

(ellipsoids) is exactly the same as for two space, Again_

it is impossible to match the two V surfaces term by term_

2

since there are six such terms to match (V = PllXl +

2 2) with only
+ 2Pl2XlX 2 + 2Pl3XIX 3 + P22x2 + 2P23X2X 3 + P33X3

three variable parameters° Therefore_ the coordinate axes

must be rotated tot both V surfaces_ to eliminate the cross

terms leaving only diagonal elements• The diagonal terms

of the two transformed matrices may then be set equal to

determine the three parameters of the third order model°

This rotation is even harder to accomplish in the third

order case than the second order case_ because there are

........... +arms to eliminate instead of only one.

Also_ the elements of the M matrix (V = x._TM__xxis the V curve

of the third order model) are not constants but functions

of the three variable system parameters and_ therefore_ the

matching of diagonal terms must be a procedure of trial and

error--not a very satisfactory result. An attempt is thus

made as in the second order case to find a V that immedi-

ately gives M in diagonal form°
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Given V = -xTQx_ try to find Q so that V = xTMx

gives M in diagonal form. Q and M are related by the

matrix equation ATM + MA = -Q where A is the system matrix.

n

_ m

qll q12 q13

q12 q22 q23

q13 q23 q33

roll

= m12

. m13

m22 _i23

m23 m>3

A -_

i

0 1 0

O O i

-a I -a 2 -a 3

Equating the elements of the matrices (ATM + MA) and -Q_

the following six equations result.

I. -2alml 3 = -qll

•

-alm23 + mll - a2ml 3 = -q12

3. -alm33 + m12 - a3m13 = -q13

4. 2(m12 - a2m23 ) = -q22

- _) - azm33 + m22 - a3m23 -q23

2(m23 - a3m33) = -q33

Solving these simultaneous equations for the elements of

M in terms of the "q's" and the "a's_ " the off diagonal

elements of M turn out to be:

qll

ml3 =

m12 =

2 2 2

a2a3qll + alq22 + ala2q33

2al(a3a 2 - a I)

- 2ala2a3q13
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m23 =

2 2

a3qll + ala3q22 + alq33

2a 1 (a3a 2 - a l)

- 2ala3q13
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The only way to make m13 zero_ is to set qll = O.

m12 and m23 to be zero_ it is necessary to satisfy

To force

2 2 2

1. a2a3qll + alq22 + ala2q33 = 2ala2a3q13

2 2

2. a^qll3 + ala3q22 + alq33 = 2ala-ql-33

• 2al(a3a 2 - al)>O

4. _ positive semi definite or positive definite

If it is possible to satisfy these conditions I q13_ q225

q33 must be functions of al_ a29 a 3. In other words_ _ is

a function of the parameters of the model--an unfortunate

result since these parameters are tulknow_l. Therefore_ the

• _xTQxprocedure of matching the V surfaces for *_4_,,_ v =

must again be a process of trial and error w±_iL _,,_

inary step being a guess of V or Q. It is apparent that q

must have elements which are known constants and not

functions of al_ a2_ a 3. With such a _ m12 and m13 can

never be made zero. m13 can be made zero however by

setting qll = O. Two such _'s are
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1 1Q-I= 1 ' Q-2= 0 0

0 0 1

and
The resulting M must still be transformed to its

diagonal form. Rather than doing this an approximation

scheme is used to match the two V surfaces: choose V so as

to eliminate as many cross terms as possible; transform the

p3 matrix (V = x3Tp3x 3 is the V surface intersection in

three space of the nth order system) to eliminate the same

cross-terms that are missing in the M mat_-ix (in a sense_

these cross terms have now been matched); force the

diagonal elements of M and the transformed p3 matrix to be

equal ignoring the remaining cross terms. This approxima-

tion is shown to be good or bad by regarding the remaining

_ +h_ aiaeonals are matched If thecross terms zLuw _,,_ ...... _

cross terms are slat±a, x,_ , " - _ =nn_Yimation is a

good one. If the cross terms are not at all similar then

the approximation is not good. At the very least this

approximation procedure gives a starting place for the

trial and error process of matching the shapes of the V

surfaces exactly. Usually_ however_ if the resulting

third order model is to be any good at all_ the V surfaces

xTMx and x3Tp3x 3 should be closely oriented to begin with_

and therefore the cross terms should closely match when
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diagonal terms are made equal. Conversely_ if the V

surfaces are not oriented in the same direction when their

shapes are exactly matched_ then the model will not be a

good representation of the system anyway and p3 and M will

not be similar. In other words I the approximation will be

bad but the exact model would have been bad anyway. Thus

the approximation process is used to find the third order

model° As stated before, the choices of V which eliminate

the most cross terms of M are V = -x_ and V = -x_. Both

choices for V result in the XlX 3 term being zero. It is

necessary_ therefore_ to transform x3Tp3x 3 to eliminate the

XlX 3 term. Recalling the procedure for eliminating cross

terms in Section 3.1_ a suitable change of variables is:

Yl = c°s@xl + sin@x3

Y2 = x2

y_ = -sinOx I + cos@x 3

or, Z = B.--_.x3, _ =

B -I = B T =

ces@ 0
i

-sin@ 0

x3 ffztherefore_ _ =

ces@ 0
1

sin@ 0

sin@

0

cos@



and

R

R

V = x3T_3x 3

cos@ 0 sin@

0 i 0

-sin@ 0 cos@

Pll PI2 PI3

PI2 P22 P23

PI3 P23 P33

cos@ 0 -sin@

0 i 0

sin@ 0 cos@

(PllCOS2@ + 2Pl3COS@sin @ + P33sin2@)

(Pl2COS@ + P23sin@)

(sin@cos@(P33-Pll) + Pl3(Cos2@ - sin2@))
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(Pl2COS@ + P23sin@)

P22

(-Pl2sin@ + P23cos@)

(P33-Pll PI3 2_

(-Pl2sin@ + P23cos@)

(Pllsin2@ - 2Pl3COS@sin @ + P33COS )2@

But r13 must be zero, therefore,

r13 = sin@c°s@(P33-Pll) + PI3 (c°s2@ - sin20) = 0

i/2(Pll-P33)sin2@ = Pl3COS2@



tan2@ = 2PI_
.

PlI-P33

o = l/2ta. -z( 2PI,3 )
Pzl-P33

The other terms of the R matrix are:

2@
rll = PllCOS + 2P13COS@Sin@ + P33sin2@
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(Z_-l)

r12 = Pl2COS@ + P23sin@

r22 = P22 (_-a)

r23 =_12sin@ + P23Cos@

r33 = Pllsin2@ - 2Pl3COsOsin @ + P33COS2@

Using Eqs. (4-1) and (4-2) it is possible to transform the

£3 matrix to R to eliminate the PI3 term. Since V : -x_

j" _-c an _ e_ix with simpler expressions for the diagonal

terms than does V = -x_, V = -x_ is used as a basis to find

the model. From the tables in part 2 of Appendix A for

= -x_, _ becomes:

M = 1

-- 2(a3a2-al )

a3a I a I 0

a I (a_+a 2 ) a 3

0 a 3 1

where al _ a2 _ a 3 are the variables of the model.

the diagonal terms of _ and 2,

Equating



a3a 1

2(a3a2_al ) = rll

2

a3+a 2

'2(a3a2_al ) = r22

6_

1

2(a3a2_al ) = r33

Solving these three expressions for al, a2, a3,

2

a 2 = r22/r33 - a 3

a._ = r ll/(a3r3_ (4_3)

(r22/r39_a _ - a_ -(1/2r3)a3 = rll/r33

The step by step procedure for determining the

third order model is:

i. . 2 ZQ_Pick V = -x 2 = - 2x and solve for --P" an n by n

matrix_ from the matrix _Liv.. " 'Tn _ Da w = _O

where A' is the nth order system matrix (use tables

in part 3 of the appendix for fourth order system)°

e Take the upper left hand 3 by 3 submatrix of P for

p3.

3o Rotate the coordinate axes of the state space to

_e

eliminate the PI3 term.

Solve for al_ a2_ a 3 (parameters of the third order

model) from the Eqs. (_-3). The model is now

completely specified by_



A

m

0 i 0

0 0 1

-a I -a 2 -a 3
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Obviously, the work needed to find the third order

model is much greater than that needed for the second order

model; the P3 matrix must be transformed_ and then a non-

linear algebraic equation must be solved to find a]. Hope-

fully_ the result of this additional labor is a better

model.

4.2 Examples of the Third Order Model

In this section_ two fourth order systems are

modeled with the third order model. The first example is

worked in detail and the results are given for the second.

This model is compared with the second order and phase

margin models in Tables 4-1 and 4-2.

Example 4-1 (Findin$ the third order moae± fu_ _ _ .... *_

order sTstem)

Given the fourth order system G(s) find the third

order model and compare its transient response to that of

the system for Xl(O) = i.

R = 0

G(s)

Xl(s) G(s) = 6

_ s(s+l)(s+2)(s+_)



First find the system matrix _' from the block diagram.

Xx(s) 6

-Xl(S) _ 's + 7s 3 + 14s 2 + 8s + 6
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oo#@

x + _'+ i_ + 8£ = -6x

Defining

x = x 1

= x I = x 2

o@

x = x 2 = x 3

@@@

x = x 3 = x4

then the differential equation can be written as_

x4 = -6Xl - 8x 2 - 14x 3 - 7x 4

Then the system matrix A' becomes

k _ _-

m

0 1 0

0 O 1

0 O 0

-6 -8 -it

0

0

1

-7

The system transient response xl(t) for Xl(O) = 1 ,

x2(O) = x3(O) = xq(O) = 0 is:x

xl(t) = .31e-3t_.16e-3 "6t + .85e-2tcos.72t

+ .74e-'2tsin. T2 t
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Now find the second order model and its transient

response for Xl(O) = 1 (refer to the procedure at the end

of Section 4.1).

i. Pick V =-x2z = -xTQx,_____then for the fourth order

system

Q2 =

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

Using part 3 of Appendix A and the system matrix

_' (a I = 6, a 2 = 8, a 3 = 14,

1
P2 = 2(_26)

a4 = 7) £2

540 294 42 ( )

294 1610 686 ( )

42 686 351 ( )

( ) ( ) ( ) ( )

becomes

m_,_.-o eh_ uooer left hand 3 by 3 submatrix of P2 for

d

= 2(_26)

540 294 42

294 161o 686

42 686 351

• Eliminate the PI3 term by rotation of axes using

Eqs. (4-1) and (4-2). R becomes_



1

548 431 0

431 1610 610

o 61o 342

--.

w

.643 .505 o

•505 1.89o .716

o .716 .402

.
Now solve for al) a2) a 3 (variable parameters of

the model) from Eqs. (4-3).

1.60_

a I = a3

a 2 = 4.71 - a_

4.71a_ - a4- 1.244a3 = 1.605
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Solving the nonlinear equation)

a3 = 1.90

a 2 = i.I0

aI = .845

) M =
m

.643 .340 o I

l•340 1.890 764

0 .764 1402 J
Actually there are two real roots for a3) but

_3 - -._nn _'_'r'_ _n --Mmatrix whose off diagonal

elements most closely match those of P_. The third

order model becomes)

A "

i o o10 0 i

-.845 -i.io -1.9o

Choosing a model in the form _(s) = k
s(s2+as+b) )



V

then k = a I = .845

a = a 3 = 1.90

b = a = I.i0
2

69

q .8_5and (s) =

s (s2+1.90s+l.lO)

For the initial condition Xl(O) = i_ xl(t) becomes_

xl(t) = .232e-l'54t+.768e-'182tcos.72 t

+.68e-'182tsin.72t

To find the second order model and the phase margin

model the procedure is exactly the same as in Example 3-1,

and therefore is not repeated here°

From the results in Tables 4-1 and 4-2 notice that_

as with Lhird order sy_tems_ the phase margin and second

order models are _i,,,v_L th ..... _nr both examples; they

each give the same fair approximation° The third order

model_ however_ gives a very good approximation to the

given system as seen from Figs. 4-1 and 4-2_ and perhaps

this is the best justification of all for the approximate

method used in matching the V surfaces. Looking at the

figures it appears that while the second order model can

give the same frequency and damping factor as the given

system_ its response lags the system response. The third
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order model_ however_ can give the same frequency_ damping

factor_ and also the same phase as the system--a result of

three adjustable parameters instead of two.

This concludes the discussion of the V surface

modeling technique. The final chapter summarizes the

method and its results and suggests further areas for

further research.



TABLE 4-1

RESULTS OF EXAMPLE 4-1

71

System System Response xl(t)

Given

System

6
s(s+l) (s+2) (s+_)

-3t .6t+ .2t• 31e -.16e -3 .85e- cos.72t

+.74e-'2tsin.72t

Third

Order

Model

.8/*5

s(s2+l.9Os+l.lO)

.232e-l"54t+.768e-'182tcos.72 t

+.68e-'182tsin.72t

Second

Order

Model

-.176t
e cos.71t+.249e-

.176t
sin.71t

Phase

Margin

Model

-.198t .31e-.198te cos.638t+ sin.638t



TABLE 4-2

RESULTS OF EXAMPLE 4-2
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System System Response xl(t)

Given

System

lO

s(s+l)2(s+lO)

•307e-l'82t_Oe-9"99t + .693e -°O95t .

cos.738t+o533e-'O95tsin.738t

Third

Order

Model

.832

s(s2+l.71s+.82)
.206e-l'53t+.794e-'O9tcos.733t

+.615e-'O9tsin.733t

Second

Order

Model

-53_
s(s+.197)

e-'O99tcos.725t+.136e-'O99t.

sin.725t

Phase

Margin
Model

.485

s(s+o216)

-.ioSt
e cos.688t+.157e"

sin.688t

.108t.
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CHAPTER 5

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

5.1 Summary

In this paper_ the Second Method of Liapunov was

used to develop a method for obtaining a model for high

order control systems. This was accomplished by matching

the surfaces described in the state space by the Liapunov

functions of the model and the system. In particular_ the

second and third order models were found for systems

without zeros and shown to be good approximations to the

given systems.

The second order model was seen to be very similar

to the model found from phase margin techniques. The

second order model_ however_ was obtained directly from

time domain considerations (Liapunov V curves in state

space) and may be more appealing in that sense, Also this

method of modeling is easily programmed on a digital

computer although the model can be found by hand calcula-

tion using the tables in Appendix A for up to fourth order

systems.

Of further interest_ a third order model was

obtained using these techniques which gave an even better

approximation to the given system than either the second

75
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order or the phase margin model. Higher order models are

of course possible_ but their usefulness in analysis may be

limited by their own complexity.

As with any approximate analysis procedure_ it is

desirable to have some means of determining the accuracy of

the analysis and often this is not possible except by

direct comparison with the actual solution of the system.

With the V surface modeling technique_ however_ one indica-

tion of its accuracy is how closely the V surfaces are

oriented when their shapes are matched.

5.2 Susgestions for Further Research

This thesis exists to introduce an approach which

as of now appears promising. The paper merely points out

the fact that the behavior of a control system is related

to the shape and orientation of its V surface. It is not

meant to be a final co**_lusivc answer to the problem of

modeling and much work yet remax,L_ L_ L_ dz_n _, _m_ nf

which is suggested below.

First of all there is the problem of systems with

zeros. This problem exists because the phase variable

formulation of the system matrix _ is not unique when zeros

are allowed. 2 As seen from Eq. (2-2), the use of phase

variables results in an A matrix which is dependent only

on the characteristic equation of the system. When the

types of systems considered are limited to the form of
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Eq. (2-1)_ then the characteristic equation uniquely

determines the system. But when the systems can have

zeros_ the characteristic equation does not uniquely

determine the system; ioe._ the A matrix can represent

many different systems with the same characteristic equa-

tion. The use of phase variables still results in a valid

model_ but difficulty arises in interpreting the modells

matrix. Since the matrix defines only the characteristic

equation of the model_ it is impossible to know whether the

model has a zero or the value of this zero. To make the A

matrix unique a new set of variables must be used to

describe the system. These variables must obey certain

rules° Of course they must yield an A matrix which is

unique for any type of system. Also_ for the matching of

V surfaces to have any meaning_ the space containing these

surfaces must be identical for the model and the system.

i,, vth:r :r_- %he first k variables of the system must be

identical to the k variables of the model_ where k is the

order of the model. Finally_ the method of choosing the n

variables of an nth order system should be consistent for

all types of systems. If such a set of variables exists_

then formulas for the model can be developed as in Ohapters

3 and _.

As mentioned previously_ when the modeling method

is dependent on phase variables_ it is still valid even

when the system to be analyzed contains zeros in its open
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loop transfer function. The resulting A matrix is valid

but it specifies only the characteristic equation of the

model. By some additional work it may also be possible to

determine the exact form of the model. One way which seems

to give reliable results is to observe the effect that the

zeros have on the characteristic equation. For an nth

order system of the form

+__G(s)

G(s) =

n-i

Cn--Sl + " " " + c 0

s(sn-l+b s n-2
n-i + " " " ÷b2S+bl)

the characteristic equation is

n 2 )+sl(bl+Cl)+cO = Os +(bn_l÷Cn_l)sn-l+ . . . ÷s (b2+c 2

When G(s) has no zeros_ then only C o appears in the

characteristic equation. When one zero is present_ then

: _.^-+_ +h,..... term. For two zeros__i _s pres I_ _ c 2 is present

:- *_ +_m. One way to deter-
in the s term _,_ _i _ ....... c

mine the zeros of the model then is to make the effect of

the zeros on the characteristic equation the same for both

the model and the given system. For example_ if the given

2

system has two zeros_ then c 2 is some proportion of the s

term and c I is some proportion of the s term° To specify

the zeros of the model_ set c 2 and c I in the same propor-

tion in the model's characteristic equation as they were in

the system's characteristic equation. Unfortunately such a



scheme works only when the order of the model is one

greater than the number of zeros in the given system.
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For

systems of higher order it is not at all clear what should

be done and some other method must be developed.

Another interesting question is whether some

physical meaning can be given to _he difference in the

orientations of the two V surfaces when their shapes are

matched. Remember that the modeling technique involved

the matching of the shapes of the surfaces while ignoring

their orientations. The modeling process was said to be a

good one when the two surfaces were oriented in the same

direction and worse when the angl@ between them increased.

Throughout Examples 3-1 to 3-3 (underdamped third order

systems) it was apparent that matching the shapes of the V

surfaces matched the frequency and damping factor of the

model and the given system. However the responses of the

model and the given system were not matched with respecL

to phase and the model tended to bead the system more and

more as the approximation became worse (Figs, 3-7 to 3-9).

It would be interesting if this phase difference could

somehow be related to the difference in the orientations of

the two V surfaces. Then the behavior of the system would

be known exactly by adjusting the phase of the model's

response,

While the general modelin_ technique of matching V

surfaces for one choice of V is an acceptable method for
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determining models_ it has one big disadvantage--the proc-

ess requires that matrices be transformed into their

diagonal form. It is not hard to transform 2 by 2 matrices

into their diagonal form but this process is much more

difficult for 3 by 3 matrices. The work is further

complicated when the M matrix cannot be obtained in

diagonal form by a proper choice of V. Such problems were

encountered in the development of the third order model.

It would indeed be fortunate if an alternate method could

be found for the third order model as it was for the second

order model. This alternate method involves taking the

determinant of a matrix--a relatively simple process. This

approach was tried on third order systems by matching the

¢
determinants for

-i = -Xl_ 2 -xe, _ -x 3. As was seen_

these choices for V gave conflicting requirements on the

parameters of the model° Perhaps different choices for

would zive nonconflicting conditions accurately determinlng

the model. At present these choices are not apparent.

While this work was approached from the point of

view of analysis_ the techniques developed can also be

applied to the synthesis or compensation of control systems.

In analysis the system is completely fixed and the model is

completely free. The alternate problem of synthesis has

the system free and the model fixed. Usually the system

cannot be completely free and only one or more parameters

are adjustable. The problem now is given a desired model_
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adjust the free parameters of the system to give a V

surface which most closely matches the V surface of the

model. In this context the model is actually the desired

system. Such an application could employ a search tech-

nique using a digital computer to match the V surfaces.

An alternate and perhaps more useful approach to

the problem of synthesis is the utilization of compensating

networks. First the model is obtained for a given fixed

control system. Then instead of directly compensating the

given system_ a network is used to compensate the model.

Hopefully_ this compensating network has the same desired

effect when it is also used with the given system.

Last_ because the modeling method is independent of

the frequency domain_ this technique also suggests itself

for use in analyzing nonlinear systems. With nonlinear

systems however_ the V surfaces do not necessarily form a

_+_M _et but may vary in shape in different regions of

the state space. Thus the linear models to this nonlinear

system are valid only in regions of the state space

containing V surfaces of similar shape. In another region

of operation a different linear model is needed_ as

expected. In addition_ it does not seem unreasonable to

attempt to find nonlinear models for nonlinear systems.



APPENDIX A

TABULATED [ MATRICES FOR GIVEN _ MATRICES3

P (V = xTp x) forThe following tables give --i -- --i--

_i (_ = -T_i_)" _i is chosen with qii = 1 and all other

elements equal to zero. The system matrix is assumed to

be given in terms of phase variables.

0 1 0 • • • 0

0 0 1 ....

A -"

Part I.

-a I -a 2 -a 3 • . . -a n

(Second Order System)

Q1 = .°1
0 0

' P1 =
1

2ala 2

m

2)
(al+a 2

a 2

a 2

1

Q2

0

0
O]
1

a I

0

0

1
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APPENDIX B

FREQUENCY DOMAIN MODELS

It is possible to obtain a second order model of

any order system by matching certain frequency domain

characteristics of the model and the system. One such

method matches the phase margin and the frequency at

crossover of the two systems. The resulting model is

called the phase margin model and it is used quite exten-

sively in the analysis and synthesis of systems, Usually

phase margin techniques are not associated with a model

even though the existence of such a model may be indirectly

assumed. For example_ in designing or analyzing control

systems phase margin is used as an indication of the

behavior of these systems. From eYperience with second

^ ---_4 ^,,i _ valueorder systems_ a phase margin uL _v .... _ .....

indicates that the higher order system will have a certain

response. In other words it is assumed that the higher

order system will behave similarly (have the same over-

shoot) as the second order system which has the same phase

margin. This second order system therefore can be thought

of as a model of the given control system. When the

crossover frequencies are also matched the model and the

given system have similar rise times. The second order

86



87

system which matches both the phase margin and crossover

frequency of the given system is termed the phase margin

model. The procedure to obtain the phase margin model is

to find the phase margin and crossover frequency of the

given control system and then adjust the two variable

parameters of the model to yield these same values. An

example illustrating this procedure is contained in

Example 3-1.

Another method of modeling is based on the root

locus technique. The model consists of the dominant closed

loop poles of the given system and the remaining poles are

ignored, A second order model_ for example_ consists of

only the two most dominant poles° To obtain the model it

is necessary to find all of the closed loop poles of the

system--a difficult task when the order of the system is

high and some poles are complex conjugates.
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ABSTRACT

Modern, time-domain methods are used to discuss

the control of linear, constant-coefficient systems with

unconstrained control effort. Two rather general Per-

formance Indices are used to define two related problems,

the Regulator Problem and the Servomechanism Problem.

The Regulator Problem uses the Performance Index

Jr = f__x'Qxdt.

O

The solution to the Regulator Problem requires a control

structure which contains an inner loop for each of the

state variables in the problem formulation. It is shown

that this structure permits control over the closed-loop

poles of the optimal system and cancellation of unwanted

zeroes, but no new zeroes can be added. Three methods are

given for computing explicit optimal control systems for

specific examples, the parameter optimization problem is

reviewed and discussed in relation to the Regulator Problem,

and =_ method is given for introducing zeroes into the

Regulator Problem.

Index

The Servomechanism Problem uses the Performance

= _o= r- 2Js [( -c'x)2 + u ]dt.
O

The solution to this problem consists of two parts, the

prefilter and the regulator. The prefilter shapes the

reference input signal before that signal is applied to

the regulator portion of the optimal system. The

regulator is found by solving the Regulator Problem.

vi



CHAPTER I

INTRODUCTION

The most familiar problem in automatic control

is the control of linear, constant-coefflcient systems

with unconstrained control effort. The conventional

approach to this problem utilizes Laplace transform

techniques to convert the differential equations of the

system into algebraic equations. The resulting trans-

formed equations are often displayed pictorially in

block diagram form, and the most widely studied block

diagram is the single- loop, unity-ratio configuration.

Methods based upon use of the Laplace transform are

generally referred to as frequency-domain techniques.

This thesis uses modern, time-domain methods

to discuss the familiar linear control problem mentioned

above. The time-domain approach requires a system

description in terms of first-order differential equa-

tions obtained directly from the differential equations

describing the system. In keeping with conventional

methods the results of a time-domain design may also

I
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ultimately be described in terms of a block diagram. /

The design results in a configuration differing markedly

from that resulting from the use of frequency-domain

technique s.

Design specifications for use with frequency-

domain methods of design are quite diverse; e.g.,

bandwidth, per cent overshoot in response to a step

input, and velocity error constant. In any given prob-

lem, specifications may be given in both the time domain

and the frequency domain, in the time-do_min approach

to system design all performance requirements must be

embodied in a single specification called the Performance /

Index. Two rather general integral Performance Indices

are used in this thesis to define two related problems,

the Regulator Problem and the Servomechanism Problem.

The Regulator Problem uses the Performance Index

O0

Jr = J _x'Oxdt (i-i)
0

The solution to the Regulator Problem requires that the

uncompensated system be given an input which is a linear

combination of the state variables of the system. This

result specifies the structure of the optimal control
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system as one with an inner loop for each of the state

variables in the problem formulation. Utilizing this

structure, it is possible to show that the use of state

variable feedback allows the designer to control the

locations of the poles of the system and to cancel

unwanted zeroes, but no new zeroes can be added. Three

methods are given for computing explicit optimal control

systems for specific examples, and the limitations of

each method are discussed. The parameter optimization

is defined and the relationship between this problem and

the Regulator Problem is explained. An attempt is made

to relate the Regulator Problem to conventional frequency-

domain design, by showing how zeroes can be introduced

into the Regulator Problem.

The Servomechanism Problem uses the Performanc_

Index

Js " r - _c'x)2_ + dt

The solution to the Servomechanism Problem is closely

related to that of the Regulator Problem. It consists

of two parts, the prefilter and the regulator. The task

of the prefilter is to shape the reference input signal

(t-2)

/'

!

/

j,

i
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before the signal is applied to the regulator portion of

the optimal system. The regulator is found by solving

the Regulator Problem, and as a result of this obvious

connection between the two problems, results obtained

for either problem apply, in part, to the remaining one.

Throughout the thesis, a variety of techniques

for obtaining explicit numerical solutions is presented.

In the interests of both clarity and brevity, full use

is made of examples.



CHAPTER II

SYSTEM DESCRIPTION AND DESIGN OBJECTIVES

In this chapter notation and system representation

are discussed, controllability and observability are de-

fined, and the design of linear systems is cast into

the framework of the modern state variable approach to

optLmal control theory.

The physical systems considered here are those

which can be adequately characterized by a set of ordinary

linear differential equations with constant coefficients.

Systems having no input, or forcing function, (autonomous

systems) as well as those having a sca!ar input (non-

autonomous systems) are studied. It is assumeo tna_

these differential equations have already been written.

In the state variable approach to the design of

linear systems, the differential equations of the systems

are replaced by a set of first-order differential

equations of the form

= Ax + bu

-- -- -- (2-1)

.X = C'_x

5
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where x is an n-vector, the state of the system

A is an n by n matrix of constants, the system matrix

b is an n-vector of constants, the control vector

u is a scalar, the control function

y is a p-vector, the output of the system

C is an n by p matrix of constants

Frequently the output y will be a scalar instead

of a vector; in this case, the matrix C is replaced by

the vector c and y becomes a linear combination of the

state variables,

y = c'x (2-2)

The notation indicated above is used throughout.

Underlined lower-case letters refer to vectors, and the

elements of the vector are denoted by single subscripts.

Lower-case letters that are not underlined indicate

scalars or constants. Upper-case letters refer to

matrices, and the elements of the matrix are denoted by

the corresponding lower-case letter with double subscripts.

If F is an arbitrary matrix, then F' is its transpose;

if F is square and nonsingular F-I denotes its inverse.

The square matrix F is called symmetric if F' = F, and

positive definite ,/positive semidefiniteJ if x'Fx is



a positive definite

of x; i.e., one which is always positive

except at x = 0, where it is zero.

pos it ire semide f initej function

__non-negat iveJ

The concepts of "controllability" and

"observability" introduced by Kalman (1963) are needed

for a reasonably general discussion of linear systems.

Although of fundamental importance from a mathematical

viewpoint, these concepts are sufficiently general that

they are usually not a major concern for physical systems.

Thus it is sufficient to give brief definitions and ex-

plicit criteria for determining whether the system of

equations (2-1) represents a completely controllable and

completely observable system.

A system is completely controllable if all state

variables in the representation (2-1) can b_ affected

by some suitable choice of the control function u(t).

An equivalent mathematical statement is

rank (b, Ab, . . , An-lb) --n (2-3)

The expression in parentheses in (2-3) is an n by n

matrix whose columns are the vectors b, Ab, . . . , An-lb.

A system is completely observable if all the state variables

of the system contribute to the output of the system during



a finite time interval.

statement is

rank (C, A'C,

An equivalent mathematical

• , (A')n-Ic) = n (2-4)

gives

sx(s) --Ax(s) + bu(s)

y(s) = c'x(S)

Solving the first equation of (2-5) gives

x(s) = (sl- A)'l_bu(s) (2-6)

Substituting (2-6) into the equation for y(s) and forming

the ratio y(s)/u(s) gives the desired result; namely_

y(s)/u(s) = c'(sl -A)-ib

In order to put the design of control systems

on an analytical basis, a criterion of performance or

(2-5)

If the matrix C in (2-1) is replaced by the

vector c, then the resulting system is completely con-

trollable and completely observable if and only if the

numerator and the denominator of the transfer function

c'(sl - A)-Ib have no common cancellable factors (Leake

1964, p. I0). The transfer function given above is

merely the overall transfer function y(s)/u(s). This

can be verified as follows. Taking the Laplace transform

of (2-1) under the assumption of zero initial conditions
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Performance Index is introduced. The Performance Index

is usually an integral selected by the designer as the

best single means of judging the behavior of the system.

Once the selection of a Performance Index has been made,

the problem is converted to one of applied mathematics,

with the object being to minimize the value of the chosen

integral.

For example, a possible choice for a Performance

Index is the familiar integral of the squared error,

J = ! !c(t)- r(t) 2dt = _i e(t)2dt (2-7)

O _ O

By integrating the square of the difference between the

desired output r(t) and the system output c(t), the

Performance Index attempts to characterize the accuracy

of the control system. The best system is the one which

causes the Performance Index to be minimized; referring

to (2-7)_the best system is the one whose output is as

nearly equal to the desired output as design freedom

permits.

The two basic problems considered in this thesis

are those of finding control functions u which give the

minimum values of one of two particular types of



Performance Indices. The designer is presented with the

set of equations (2-1) and is asked to find the control

function u that minimizes one of the following two

Performance Indices:

I0

,77̧

---- l -- U_Jr 1 (x'O_ + )dt (2-8)

O

Js i i( r c'x) 2 + u2'= J -__ dt (2-9)

O

These two problems, known as the Regulator Problem and

the Servomechanism Problem are defined more precisely

and considered in detail in the ensuing chapters.



CHAPTER III

THE REGULATOR PROBLEM

In this chapter the first of the two problems

introduced at the close of the previous chapter is de-

fined, its general solution is studied in terms of the

structure of the optimal system, and three methods are

presented for obtaining specific solutions to the design

problem. The relationship between the Regulator Problem

and the parameter optimization problem is discussed and

a method for introducing zeroes is described.

The following statement of the Regulator Problem

is adapted from tP_t of R. J. Lenke (1964, pp. 4-5):

Regulator Problem For tne sys_=,, _= ij .'L._

x(0) represents a set of nonzero values of the

state variables at t = 0, find a continuous

control function u such that the system is

transferred from its initial state x(0) to

the origin of the state space in such a way

that the Performance Index

Jr = I (x'O_ + u2)dt

O

(3-1)

ii
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is minimized. The matrix Q is symmetric and

positive definite or semidefinite.

A pictorial interpretation of the Regulator Problem

is shown in Fig. i. The figure shows a block labelled

"controller" having as its inputs the state variables

and an as yet unspecified vector function r(t). These

two vectors are combined to produce the scalar control

function u which transfers the state of the system to the

origin while minimizing (3-1).

The central theorem relating to the Regulator

Problem, proved in Kalman (1964), is presented below.

Theorem I Assume that (2-1) represents the

equations of motion of a completely controllable

system and define a Performance Index

T
/ ").

J(T) - .._ Cx'0,.x + u-)dL tq-P_
o

where the matrix Q is symmetric and positive

definite or semidefinite. Let P(t) = 7T(t;T,0)

be the unique n by n symmetric matrix solution

(where the parameters T and 0 correspond to

the upper and lower limits in (3-2))of the

matrix Ricatti differential equation
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U

= Ax + bu x

controller

Fig. i Pictorial Interpretation

of the Regulator Problem
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dP
dt - PA + A'P - Pbb'P + Q (3-3)

satisfying the boundary conditions

P(T) = _T(T;T,0) = O. (3-4)

Then the optimal control function for the Regulator

Problem exists, is unique, and is given by

u° = -x'Pobb = -k'x (3-5)

where

Po = lim ,'-_[(0; T, 0) (3-6)
T ---+. r,q,

and

k = mob (3-7)

In addition, the minimum value of Jr is given by

O

Jr = x' (0)Po_x(0) (3-8)

Furthermore, if the system is completely

observable as ,,o11 _._ completely controllable

and if the matrix W In - =,.C _ _, _

placed by CC', Po is positive definite and

the resulting optimal system is asymptotically

stable.

Theorem I states that complete controllability

is a sufficient condition for the existence of a solution

to design problems which use Performance Indices of the

form (3-1). For systems which are also completely
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observable, the theorem assures the designer that he will

wind up with a compensated system which is stable.

The theorem also shows why an output equation

(y = C'x) is included in the system equations. The output

equation arises as a result of writing the matrix Q as

Q = CC' (3-9)

In the usual design procedure the designer decides on

a positive definite or semidefinite matrix Q; and as an

aid to his intuition the resulting quadratic form can

be written as

so that Jr becomes

Jr =

2

: : l!yll (3-1o)

i '_ 2 2
(H YI! + u )dt (3-11)

O

The equation (3-4): where the elements of k are

referred to as the " leeomack _u=_f ..... " ........ o:

the fact that the optimum control function for the

Regulator Problem is a linear combination of the state

variables. This is a highly important result, as it

specifies the form of the optimum system. To illustrate

this consider the following example:

Exam Ple I

It is desired to compensate a system having the

following uncompensated overall transfer function
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y(s) : lO(s ÷ 2_

u(s) (s + 4) (s + 3) (s)

where y(s) is the Laplace transformed output and u(s)

is the control function. A block diagram for the un-

compensated system is shown in Fig. 2(a). Note that the

system is non-autonomous, since it has an input u. If

the design were carried out by using a Performance Index

of the form (3-1) and the state variables shown on the

figure, then the compensated system would have the

appearance of Fig. 2(b). In Fig. 2(b) an input r has

been added to keep the system non-autonomous.

The numerical values of the feedback coefficients

for Example i are as yet unspecified since no procedures

for calculating the k i (feedback coefficients) have yet

been given. However, the overall transfer function for

the compensated system is ea_ii_ oc_n te __e

y(s) -_ 10Cs t 2)
r(s) (k 3 + l)s 3 + (5k 3 + 10k 2 + 7)s 2 +

+ (6k 3 + 20k 2 + 10k I + 12)s + 20k I

so that by proper choices for kl, k 2, and k 3 any three

desired pole locations can be obtained, but the zeroes

remain unchanged. This complete control of the pole

locations and lack of control of the zero locations is
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r = u

j s+2 I
s +4

x3

J I0

s+3

a) Uncompensated System

r

l i
K I],_i!J

Y

b) Compensated System

Fig. 2 Compensation Using State

Variable Feedback
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a general consequence of compensation by state variable

feedback (Brockett 1965).

That the first part of the previous statement is

true may be seen by considering a more general system with

the overall transfer function

2
y(s) _- Cn sn-I + Cn _Isn - + . . + C l

u(s) sn + ansn_ 1 + . . + al

(3-12)

Representing the system in phase variables the equations

of motion become

X

0

0

-a] -a 2

1 0 . 0 01
I

0 I . . 0 0

• X + U

0 0 i 0

-a 3 -a n i

k J- L._ /

y = Cl _2 _3 " n I --
L

The assumptions of controllability and observability

assure that any single input, single output system has

this unique phase variable representation; see Kalman

(1963).

Suppose that the characteristic equation associated

with the desired pole configuration is sn + rnsn-I + ...+ r I.
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If the control function u £s set equal to -k'x with the

k i defined by
(3-14)

k_ = r I - al, k 2 = r 2 - a2, ...,k n -- r - an n

then in the autonomous system each -a i in the system matrix

will be replaced by -a i - ( r i - ai) or -ri, and the over-

all transfer function will have the desired pole configuration.

Thus the use of state variable feedback gives the designer

both complete control over the pole locations of the system

and the means by which unwanted zeroes can be cancelled.

In the above system representation it is clear

that no new zeroes can be added by using state variable

feedback. Brockett (1965) shows that this is always the

case; namely, for a completely controllable and observable

system usin_ state variable feedback, no new zeroes can

be aaa_d.

In one sense it is unfortunate that no zeroes

can be added since the most common forms of linear com-

pensation (lead, lag, and lead-lag) require at least one

zero in the compensator. In another sense, however, zeroes

are not necessary because for a given Performance Index

of the form (2-6) Theorem I guarantees that the designer

can always get the best design by feeding back all the

state variables. However, if a zero is included in the
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forward transfer function, as with a lead or a lag

network, then the pole of the lead or lag compensator

will cause an increase in the order of the system. It

is entirely possible, indeed probable, that the value of

the Performance Index for the optimized n + 1-order system

may be less than that for the optimal n th order system.

A means for introducing zeroes into the Regulator Problem

is given later on in this chapter.

There are three method3 fer finding the elements

of k, the coefficients of the state variables in the

expression for the optimal control function in the

Regulator Problem.

Method I

Method II

Mprhod III

Solution of the Ricatti Equation

Kalman's Equation

Bode Diagram Design

Method I Solution of the Ricatti Equation

The first method for calculating the feedback

coefficients requires the solution of (3-3) in Theorem I

for the unknown symmetric matrix P. Once P is known, Po

is found by calculating the limit in (3-6) and then the

feedback coefficients are obtained from (3-7). The

difficult step in this procedure for finding k is in
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obtaining a solution to the nonlinear Ricatti differential

equation. Even for second-order systems the matrix dif-

ferential equation is difficult to solve (Leake 1964),

and so numerical techniques must be used, although

numerical solutions are not shown here.

An algebraic matrix equation which can be used to

find Po is also available. By (3-6) Po is an equilibrium

state of the Ricatti equation; accordingly, by setting

dP

d--_-- 0 in (3-3)

Po A + A'P o - P bb'P + Q = 0 (3-15)
O'--- O

Hand solution of (3-15) is tractable for second-order

and even thlrd-order systems. The equation is difficult

to solve by numerical techniques because it is a set of

nonlinear equations and _hus th_ solutions are not unique,

Kalman (1964) shows that (3-15) has a unique solution

which is identical to the solution of the Ricatti dif-

ferential equation if the system is completely observable

and Po is positive definite.

Example 2

Consider the design of the first-order system

X = -X + U
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through the use of the Performance Index

' x 2 u2J -- ) ( + )dt.

O

The Ricatti differential equation is

dP

dt
= PA + A'P - Pbb'P + Q

which in this first-order case is the scalar equation

_ dp = (-l)p + (-l)p - p(1)(1)p + i
dt

= -2p - p2 + 1

along with the boundary condition

p(T) = vr (T;T,0) = 0

Using the technique described by Leake (1964) the

analytical solution to the above equation is

p(t) =
exp(-42(t-T)) - exp(_2(t-T))

(¢2 + _)=_-,_t-=,) (_ !)_×p(;2(t-T))

Po = lim exp(_F2T) - exp(-_T)
r-_oo (_f2 + l)exp(_2r) + (_- l)exp(-_P_T)

= - 1

From (3-7)
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Using the algebraic Ricatti equation for this example leads

to a quick solution. The equation (3-15) becomes

-2Po - po2 + i = 0

and the unique positive definite solution is

po = _- i

Method II Kalman's Equation

Kalman (1964) has found an algebraic equation

which can be solved directly for the feedback coefficients,

without first finding the matrix Po" This equation offers

some computational advantages over the algebraic Ricatti

equation; moreover, it is a frequency-domain equation

and thus provides a link between conventional and modern

control theory.

_o_.,__e_,,=_nn._.__.... of Kalman's Eauation starts with

the algebraic Ricatti Equaalon (3-15), L=w_ .....

-Po A - A'P o = CC' - P bc__b'P . (3-16)O

Adding and subtracting sP o gives

+ (-sI - A')P o = CC' - P bo_b'P o. (3-17)Po(Sl - A)

Let t ing

_(s) = (sl - A) "I (3-18)

and multiplying (3-17) from the left by b'_'(-s) and

from the right by _(s)b gives

(3- 19)

- b'¢'(-s)[CC'- P
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From Theorem I,

k = mobb (3-20)

so that (3-19) becomes

Transposing the second term on the right-hand side of

(3-21) and adding 1 to both sides gives

(3-22)

[I+-_'*_-_-qE_+-_'*_-_]--_+__,,,_-_c,,__b
or

,- . ..... _,_ I 2 _ _ II,_,_t_,._ _hll 2 (3-23)
I I + _ _kj,.,_,l_.u I = " ' II _ "r,-,--,--,,

This is Kalman's Equation. The matrix _(s) is called the

resolvent of A and is equal to the Laplace Transform of

the state transition matrix.

Examp le 3

Compensate the system shown in Fig. 3(a) by using

the Performance Index

J = _ (Xl 2 + u2)dt.

O

The equations of motion are

F'1 0
x: | x+ u

L 0 i

c : L 1 0j x

Using (3-18) the resolvent of A is

I I

s + i s(s + l)

_(s) =
0 I

S
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a) Uncompensated System
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\
\

i0
m

8

I
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s+l
x I

b) Compensated System

Fig. 3 Block Diagram for Example 3
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4
,,_+(lO0k22- 20kl+l) uJ 2+100k 12+200klk2+100k22

4 + r_)2
vJ

and

1 + I c'_(j'_)b I 2 = _j4 + _O2 + I00
- - _ 4 +_02

For (3-23) to hold for all _O the following equations must

ho id :

2

100k 2 - 20k I = 0

2 2

!00k I _ 200kik 2 + lOOk 2 = !00

Solving the above two equations yields the numerical

values for the feedback coefficients,

k I -- .640, k 2 = .360

The compensated system is shown in Fig. 3(b).

Method III Boae ulag_am D=oZ&,L

This third method for calculating the feedback

coefficients makes use of a special case of Kalman's

Equation; namely, the case in which the matrix C in

(3-23) is replaced by the vector c, so that the Performance

Index becomes

_ 2
J = ! (x'cc'x _- u )dt (3-24)

O

]= (ClX I + c2x 2 + ... + CnXn)2 + u2 dt (3-25)

O
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Besides the assumption that Jr is of the form given in

(3-25) it will also be necessary to assume that the fixed

I
plant contains at least one pure integration.

The block diagram of Fig. 4 is useful for discussing

Method III. From the diagram u = ro - k'x. With this

substitution in (2-1) the system equations become

= Ax + b(r ° - k'x)

= A_ *br o (3-26)

y = c:x

where Ak = A - __bk' The input to the block labelled

G(s) is u(s), while the output is c'x(s), giving

G(s) = c'x(s)

u(s)

= i'_(s)bu(s)

u(s)

Similarly, the transfer function H(s) is given by

.(s) = k'×(s)

c'x(s) (3-29)

and the negative loop gain, A(s), is given by the product

of (3-28) and (3-29),

i. This is more restrictive than need be; in more

precise terms, it is necessary to assume that G(s) has

high gain at low frequencies and low gain at high

frequencies.
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r o
+

kIx

G
_= CIX

Fig. 4 An Aid in Understanding Method III



A(s) = G(s)H(s)

= c'(_(s)b • _k'_x(s)
c'_x(s)
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= . k' (s)bu(s)

= _k'_)(s)b (3-30)

The overall transfer function y(s)/ro(S), designated

M l(s), is found from (3-26) to be

Ml(s) = c'¢k(s)b (3-31)

where _k(S) = (sI- Ak)-l.

Substituting (3-28) and (3-30) into Kalman's

Equation (3-23), gives

11+ A(jo_) I 2 = i + IG(jco)l 2 (3-32)

as the equation which determines the .._Iv=_..... v_ _h_...__1_m_nt._..........

vf k.

In the design procedure using Method III three

properties of (3-32) are used. These properties hold when

G(s) has at least one integration.

a) for small _J, Ii + GH(j _J) I " G(jo_)

b) for large _J, Ii + GH(j,,))I - 1

c) when G(jvJ) = I, [I + GH(j_J)J =_"

The design Procedure consists of using the Bode diagram

of G(j_ ) and the three properties above to obtain a



good approximation to

The steps are

Step 1

Step 2

I + GH(j_), and then finding k.

30

Sketch the Bode diagram of G(j_).

For values of _d less than the unity

crossover frequency of G(j_0) ,

match the Bode diagram of I + GH(J _ )

with that of G(j_O).

Step 3 For values of cO greater than the unity

crossover frequency of G(jcO) ,

make the Bode diagram of I + G(j_)

be constant at the value I; this can

be accomplished by using a Butterworth

polynomial of the same order as the

.... _t-.,A,=, nF _-h._ :l,-,n_ of th_ Rode

2
dla_ram of G(i _J) at crossover.

Step 4 By using the results of the previous three

steps form an approximate expression for

1 + GH(s) and equate it to the true

analytical expression to evaluate k.

This procedure is illustrated in the following example.

2. Choosing the characteristic frequency of the

Butterworth polynomial as the crossover frequency assures

that at crossover the Butterworth polynomial has a magnitude

of _, so that property (c) will be satisfied.
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Example 4

Consider the uncompensated system

G(s) = 1438

s(s 2 + 3.25 + 3.56)

whose phase variable representation is

m

0

0

0

I

0

-3.56

y = 1438x I

0 0

i x+0

-3.2 I

i U

The Performance Index according to (3-25) is

Jr = S °° [(1438xi)2 + u2_ dt

O

To carry out Step 1 write

G(s) =
404

s( + 2(.846)
-t , on s + i)

J.40 L.O_

_nllnwin_ Rteo 2

the low frequency part of 1 + GH(s) is given by

1438

s(s 2 + 3.2s + 3.56)

For frequencies greater than the crossover frequency
C

Step 3 requires that I i + G(j_)H(j_) I be i; therefore

a third-order Butterworth polynomial is chosen, namely

i (s 3 + 2 _ s2 + 2 _2s + _ 3)
C C C
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i00
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I
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__ i + GH(j_)• L
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II0_ 100 i000.... G(j_)

\
\

Fig. 5 Bode Diagrams For Finding the

Feedback Coefficients of Example 4
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The quantity 1 + G(s)H(s) is then approximated by

(3-33)

1438 I s3 s2 2s 3
s-s2( + 3 2s + 3 56) " _-------_( + 2 u3 + 2 u5 +• . C C C

¢

It is now clear that II + G(j_0)H(j_)I =_when

s = j udc, since the first factor in (3-33) has a magnitude

of 1 at crossover and the second factor (the Butterworth

polynomial) has the magnitude_; thus property (c) is

satisfied.

TN_ nnalvtical expression for I + GH(s) is found

after forming H(s) through the use of (3-29),

H(s) = klXl(S) + k2x2(s) + k3x3(s)

1438Xl(S)

= k3s2 + k2s + k I

1438

(3-34)

Tnu S

.. , q3 + (3.2 + k,)s 2 + (3.56 + kg)s + k I

s3 + 3.2s 2 + 3.56s

Step 4 is carried out by finding the values of k I, k 2, k3

and _ which cause (3-33) and (3-34) to be equal. Those
C

values are

u0c =_ = 11.3

k I = 1438, k 2 = 252, k 3 = 19.3

By comparison, a digital computer solution of the Ricatti

differential equation yields k I = 1437.93, k 2 = 251.8, k 3 = 19.47.
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In Example 4 phase variables are used and as a

result the designer has no opportunity to choose the

Performance Index - he has to accept as the output of the

system a linear combination of the derivatives of x in

which the weighting factors for the derivatives are de-

termined by the zeroes of G(s). A more serious objection

to the use of phase variables is that these variables

represent successive derivatives of x I and for systems

whose order ex_u_ds ....Lwvare -^_ _,,=_=11v _v_l_ble for
LL_ _sLLj j __

use as inputs to the linear amplifiers in the inner

feedback loops of the compensated system.

Method III can be applied to some systems which

are expressed in terms of variables which do not represent

succco°siv o derivatives. The essential requirement for

the successful application of the method is that the approxi-

mate expression for i + GH(s) have the same form as the

true analytical expression. The presence of zeroes in

G(s) makes it impossible to match the approximate expression

with the analytical expression, unless phase variables are

used. When there are no zeroes present the method will be

successful for some choices of the Performance Index; this

is shown in the following example.
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Example 5

Consider the same system that was used in Example 3,

in which phase variables were not used. The uncompensated

transfer function is

lO

c(s) --(s)(s _ i)

and using (3-29), H(s) is found to be

H(s) = k2s + kl + k2

I

so that

GH(s) = 10(k2s + kl + k2)

s(s + l)

The Bode diagram for G(j_o) is shown in Fig. 6. From

the diagram the low-frequency part of i + GH(s) is given

by G(s), and a second-order =,,+e_._..._,n_rh.... nolvnomial____ is

---_^;..______-___0 -_o._r h_h-freouencv behavior. Thus the

approximate expression for i + GH(s) is

I0 s2 + _ s + _ 2
i + OH(s) = . c c

----T-
(s)(s + l)

C

The analytical expression for 1 + GH(s) is

I + GH(s) = s2 + (10k 2 + l)s + 10(k I + k2)

(s)(s +1)

Making both expressions identical requires

O0 c = 3.16, k I = .652, k 2 = .348
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Fig. 6 Bode Diagrams For Finding the

Feedback Coefficients of Example 5
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These values of the feedback coefficients compare

favorably with the more accurate values given in Example 3.

In the preceding example we were able to apply

Method III, despite the fact that phase variables were

not used. The Performance Index was

OO

J = f (Xl 2 + u2)dt
o

However, if the Performance Index is

J = ;c= [(Xl + x2)2 + u2] dt (3-35)
O

then the method cannot be "'-J _ ......... _o _h_

analytical expression and the approximate expressions for

1 + GH(s) requires

s3 + 2s 2 + (10k 2 + l)s + 10k I = I0 .

(s)(s + 1) 2 _02

s2 + _cs + o0c 2

(s)(s + I)

This is not possible, as the systems are of different order.

For a further discussion of Method III see Leake (1965).

The Regulator Problem has been discussed in some

detail; next, this design problem will be related to the

parameter optimization problem. The reduced Ricatti

equation, (3-15), was used in the development of Method II.

It is also the starting point for demonstrating the con-

nection between the Regulator Problem and the design of

linear systems using quadratic Performance Indices of

the form
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J = x'Dxdt (3-36)
O

where D is a positive definite or semidefinite matrix

(Kalman 1964). Before the connection is presented, it

is necessary to discuss the time-domain procedure for

solving the problem associated with (3-36), frequently

called the parameter optimization problem.

The procedure for solving the parameter optimization

problem consists of two parts: first, the evaluation of

_-36) in terms oF the elements of D and the system

matrix of (2-1); second, the selection of those values

of the adjustable parameters (as specified in the system

matrix) that give the minimum value of the Performance

Index.

To carry out the first part L,_ ,....... _ 4.

(3-36) is set equal to a positive definite function ot x,

-V = x'Dx (3-37)

Then the integral becomes

• _x(=)
J = J -V(x)dt = -V(x)

o _x(o)

(3-38)

ffi -v(_x(oo)) + v(_x(0))

But for an asymptotically stable system, x(0) = 0 and the

value of J becomes

J = V(_(O)) (3-39)
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V must itself be a positive definite function;

that is, V can be represented by

V = x' Po_X (3-40)

where the matrix Po is positive definite and symmetric.

Taking the time derivative of (3-40) and comparing the

result with the integrand of (3-36) gives

A'P o + Po A -- -D (3-41)

After solving this set of linear algebraic equations for

Po .... " ^the elements ot t_e matrix , (3-3_) is u_=d Lu w_=

the expression for J in terms of the adjustable parameters

and the initial values for the state vector x.

The second part of the design procedure for the

parameter optimization problem consists of setting the

partial derivat: ....._v=_ v_ J wi_h resp o_ _n _h_ _djc1_table

p=_om=_=_= =_,,=1 eo xero. and solvin_ the resulting

nonlinear equations for the optimum values of the adjustable

parameters.

Theorem I of this chapter guarantees that the

optimal control function for the Regulator Problem is a

linear combination of the state variables,

u = -k'x (3-42)

where the elements of k are as yet unspecified. If (3-42)

is substituted into Jr' it becomes



co

Jr = f (x'O_ + u2)dt
0

f_(x'O_ + x'kk'x)dt

O

4O

f0o x'(Q + kk')xdt (3-43)
O --

Note that (3-43) and (3-36) are of the same form.

Substituting (3-42) into the system equations (2-1) gives

= Ax + bu

= (A - bk')× (3-44)

so that the feedback coefficients can be considered as

adjustable parameters in the parameter optimization

problem defined by (3-43) and (3-44). For this parameter

optimization problem the equation corresponding to (3-41) is

(A- b__k')'P o + Po(A- b__k')---Q-k__k' (3-45)

•,,= o.... equation can be made the same as the

reduced Ricatti equation by the roi£owln_ _L=_=. TiLog,

expanding the left-hand side, there results

A'P o k_bb'- Po + Po A " Pbook' = "Q " kk

Utilizing the substitution given in Theorem I,

k-

gives

A'P o - kk' + Po A - P_bb'P ° =-Q- kkk'

or

Po A + A'P o - Pbo.__b'Po + Q = 0
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which is the reduced Ricatti equation. Therefore,

considering the Regulator Problem as a parameter

optimization problem leads to the same set of equations

as given in Theorem I.

There is another link between the Regulator Problem

and the parameter optimization problem. In the latter, the

system being designed has a fixed form with adjustable

gains and time constants. To write the expression for

e Performance n ex, a-au , _- -o L,_ ..... j .......

a set of initial values for the state vector x. The initial

conditions usually chosen are those which make the response

of the autonomous system to these initial conditions iden-

tical to the error response of that same system to a

step input t_ko_ I_)

_nw if the fixed form of the system were that of

the Regulator Problem - with all state variables being fed

back through linear amplifiers - then the values of the

adjustable parameters (the feedback coefficients) would

be independent of the choice of initial conditions. This

suggests that for both the Regulator Problem and the

parameter optimization problem the form of the optimum

system is the same.
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Engineers familiar with conventional, frequency-

domain compensation may object to the form of the optimum

system discussed above because no new zeroes can be added

by using state variable feedback, while even the simplest

lead and lag compensators introduce new zeroes. This

objection cannot be fully refuted although there is a

way of introducing adjustable zeroes into the Regulator

Problem.

./. L JL_..L.t.LIA _,. Id A_LL _.._ "'--0 ......

Problem by putting in tandem with the fixed plant a

compensator of the form

s + z (3-46)

Gc- s+ p

In (3-46) the numerator represents the adjustable zero and

the denominator a teL,,, : ^;.-_ +_ _o _- _p_1_zable If
C

the uncompensated system is of order n, tNe compensaned

system has order n + I. In the compensated system there

are n + i state variables, n + I feedback coefficients,

and, in addition, an adjustable zero and an adjustable

pole. The best compensated system is the one which yields

the lowest value of some chosen Regulator Performance Index;

the best compensated system is specified by kl, k2, ...,kn,

z, and p.
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The computational problems posed by this method of

introducing zeroes are formidable, since the addition of

the compensator pole and zero causes the plant (the matrix

A in (2-1)) to be incompletely specified. The only feas-

able way of treating this problem seems to be to use a

digital computer to perform a two-dimensional search, look-

ing for the values of z and p that cause some given

Regulator Performance Index to take on its minimum value.

.... _.... _.^ o.... _,,- D.._l_1_m Fn_- _n gj I fIu _uJ.v,= L._,= "_'-0" .................... Y v_n va ues 0

z and p, any of the three methods discussed previously

could conceivably be used, but only Method I lends itself

to computer solution.

Although a rather lengthy discussion of the

Regu]ator Problem has been given, there are many questions

still unanswered. Some of these questions are raised in

Chapter V.



CHAPTERIV

THE SERVOMECHANISMPROBLEM

The second of the two problems introduced in

Chapter II is defined precisely below. This definition

of the Servomechanism Problem is again adapted from that

of R. J. Leake (1964, p. 14).

Servomechanism Problem Consider the completely

controllable system (2-1) together with the

Performance Index

OO

Js = J [(r-c'x) 2 + u2] dt
0

(4-i)

It differs from the Regulator

form x'O_ in the integrand

where the function r(t), the refer=no= uL d==" '

output, is specified to be one such that for some

continuous control function u, Js is bounded.

Assuming arbitrary initial conditions, find

a continuous control function u that minimizes Js"

A pictorial interpretation of the Servomechanism

Problem is shown in Fig. 7(a).

Problem in that the quadratic

of (3-1) is replaced by the square of the difference

44
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Fig. 7 The Servomechanism Problem
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between the given reference output, r(t), and the actual

output, y(t).

The solution to the Servomechanism Problem,

presented in Leake (1964), is repeated here without proof.

Theorem II Let r(t) be of the form

r(t) = rl(t)exp(- _it)+...+rm(t)exp(- Am t)

(4-2)

where % I' _ 2' "'" A m are complex numbers

with positive real parts and rl(t), ..., rm(t)

are polynomials in t. Let z denote _he paL_L_uL=L'---

solution of the differential equation

__ = -(A - bk')'z - cr(t) (4-3)

where the elements of k are the feedback

coefficients of the corresponding Regulator

Frobiem. ..... " n,,= -_nB the

---_--.I ,_,-_-',-_1 f,Tnrl'{on for the Servomechanism
v r .......

Problem for an r(t) of the form (4-2) is given by

u = ro(t ) - _k'x_ (4-4)

where

ro(t ) = b'z(t) (4-5)

The structure of the optimal servomechanism, as

deduced from Theorem II and Fig. 7(b), consists of two

parts: the prefilter and the regulator. The form of the
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prefilter depends on the reference signal r(t), so that

to calculate z(t) it is necessary to know r(t) in the

interval (0, 0o ). The regulator is found by solving the

associated Regulator Problem; this is an important ob-

servation because it implies that results obtained for

either problem (Servomechanism or Regulator) will apply,

in part, to the remaining problem.

Utilizing Theorem II and Kalman's Equation,

frequency-domain equations can be derived for the two

parts of the optimal servomechanism. For this purpose let

+

the symbol _ denote an extraction of the multiplicative

factor containing the left half plane poles and zeroes and

+
let the symbol [ ] denote the sum of those terms in the

partial fraction expansion of .L .... I^_A ..... _+_ _r_

Recall that for a completely observable system the

regulator portion of the compensated system is stable.

Using the model shown in Fig. 4 of Chapter Ill the poles

and zeroes of I + GH(s) in the equation

y(s) = G(s) = Ml(S ) (4-6)r(s) i + GR(s)

must lie in the left half plane. Now writing Kalman's

Equation as



[I + GH(s)] [i + GH(-s)]
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= i + G(s)G(-s)

(4-7)

it is apparent that

I + GH(s) = (i + G(s)G(-s)}

Substituting (4-7) into (4-6) gives

G_s_

Ml(S) - irl + G(s)G(-s)} +

+

(regulator) (4-8)

This is the frequency-domain expression for the regulator

portion of the optimal Servomechanism. Using (4-3) and

the fact that z is the particular solution of that

equation, an expression of the prefilter can be derived

(Leake 1964). The result is

i +
M2(s)

C l

r(s) [Ml('s)r(s)J (prefilter) (4-9)

=_,,=_= (A-_) and (4-97 Dresent a relatively new

.qolution to an old problem. The Servomechanism Problem

was first solved by using Parseval's Theorem (Chang 1961);

Chang derives an expression for Ml(S)M2(s), the overall

transfer function. This older treatment, however, is not

able to distinguish between the regulator and the prefilter

portions of the system; furthermore, the older results are

valid only for zero initial conditions. On the other hand,

Theorem II shows clearly that the optimal control system
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consists of a prefilter, whose output is the filtered

reference signal, and a regulator, which utilizes feed-

back from all the state variables. The feedback coeffi-

cients are independent of the reference signal and the

system is optimal for arbitrary initial values of the

state variables.

For higher order systems the spectral factorization

required in (4-8) is an obstacle in the design procedure,

unless graphical techniques are u_=d.

find the LHP factors of

I + G(s)G(-s) = 0

.,._ ,,,.CC.S,,_,,-y t-n

(4-10)

This is a root locus problem, and as such is familiar to

engineers acquainted with conventional control theory.

.L_ vu ....... zer_,_ oF C.(s_G(-s_ the locusStarting w_uL, the -^_ .... A ____. .......

-_f the _"_= nF (4-I0_ are sketched, and the LHP factors

are obtained. It is then a simple matter to compare the

expression for Ml(S ) calculated from (4-8) with the

express ion

c(s)
1 + GH(s)

in order to evaluate the feedback coefficients.

The following example illustrates the two-part

structure of the optimal system and the use of root locus

technique s.
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Example 6

Consider the uncompensated system of Example 3,

Chapter III, where

I0

G(s) = (s)(s + i)

Let the output be x I, so that H(s) is given by

H(s) = klXl(S) + k2x2(s)

xl(s)

= k I + k2(s + I)

and Performance Index is given by

_c_ _ 2 u 2
Js = f [(r - Xl ) + Idt

O

The Root Locus Plot of 1 + G(s)G(-s) is shown in Fig. 8.

From the plot,

_l + o(_)c(-s) t + = (s + 2.3 + j2.2)(s + 2.3 - j2.2)

Substituting into (4-8) gives

c(s)
(i + G(s)G(-s)}* =

i0

(s)(s + l)
(s + 2.3 + j2.2)(s + 2.3 - j2.2)

(s)(s + 1)

10
-- 2

s +4.6s + I0

The above expression for Ml(S) is to be compared with the

expression obtained by using (4-6), namely

C I0
= 2

I +GH s + (10k 2 + l)s + 10(k I + k 2)
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for Example 5
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Equality of the two expressions for Ml(S ) requires

k I -- .64 and k 2 = .36. These values of the feedback

coefficients are the same as those found in Example 3.

To complete this example the prefilter portion of

the optimal system will now be calculated. Let the

reference output r(t) be

r(t) = I - exp(-t)

so that

r(s) -
_L 1 1

s s + i (s)(s + I)

Using (4-9)

I i0 IM2(s ) = (s)(s + I) (s2 - 4.65 + 10)(s)(s + i)

= s + .36

The overall transfer function is given by Ml(S)M2(s):

y(s) = 10is + .36)

ro(S ) s 2 + 4.65 + i0

The compensated system is shown in Fig. 9(a). If

the older method of solution in the frequency domain were

applied to this example, then the same overall transfer

function would have been found. But then the designer

would have had no aid in determining the best way of

+
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!

r --_ s + .36 + 10 I_____

.36 L

[

s+l
x I = y

a) Optimal Realization of the
Compensated System

! I I
r I (s)(s + t) I _I s + .3b

I J I

y

b) Alternate Realization

Fig. 9 The Compensated Systems
of Example 5
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implementing that overall transfer function. If he chose

to realize the optimal system as Fig. 9(b), for example,

then his design would be optimal only for zero initial

conditions, whereas Fig. 9(a) is optimal for any initial

conditions on the state variables x I and x 2.

It is well to note that the procedure for calculating

the regulator portion of the optimal servomechanism can be

applied to the Regulator Problem when the Performance

Index J has the form
£

Jr -- _" (x'cc'x + u 2) dt (4-11)

O

Thus the expression for Ml(S ) given in (4-8) can be used

along with the root locus techniques to find a completely

determined expression for the overall transfer function of

the Regulator Problem; this expression can then be corn-

structure of the optimal system and the feedback coeffi-

cients can be evaluated. This sequence of steps for

calculating the feedback coefficients is very similar to

Method III and has already been illustrated in Example 6.

Some insight into the relation between the Regulator

Problem and the Servomechanism Problem can be obtained by

finding the prefilter for a fixed plant with at least one
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pure integration and a step-function reference input

(Leake 1964). With an integration in G(s), (4-6) yields

the result

MI(0) = I (4-12)

Using (4-12) and (4-9), with r(s) - i/s, it follows that

M2(s)--1 Ir(S)Ml(-S)] +
r(s)

1
S •

s

= i

so that the overall transfer function of the compensated

system becomes

M(s) = MI(S)M2(s)

ffiMl(S) (4-13)

From (4-13) it can be concluded that the regulator portion

of the optlm_l Servomechanism is by itself the complete

optlmai solu=lon when Lh_ L=L===t=_= -,,[.,,..=;.. .,.= .... =.. ..........

and the fixed plant has at least one pure integration• This

is an important practical result.

While the treatment of the Servomechanism Problem

has been less complete than that of the Regulator Problem

the two are so closely related that this manner of

presentation is justified.



CHAPTER V

CONCLUSIONS

Based on the research reported in Chapter III, it

appears that the Regulator Problem has been studied

thoroughly. The effect of feeding back all the state

variables on the poles and zeroes of the system is known,

and several methods are available for calculating the feed-

back coefficients for a given design problem; the relation

between the parameter optimization problem and the Regulator

Problem is clear.

However, the d_c';s_ion of the Regulator Problem

is incomplete for sever_] reasons. First, there is no

_r_r_r_ _o=v nf n'[rk'[no t'l_e matrfx O in the exoression for the

Regulator Ferlormance Inaex. mecund, LIL= iimiL=civLIO vf

state-variable feedback are not fully known; e.g., can the

designer be sure that he will always get a satisfactory

design by feeding back all the state variables? Third,

the connections with conventional, frequency-domain

design techniques have not been established. It should

be noted that these three comments have been frequently

made in discussions of the relative merits of state

variable techniques and conventional techniques.

56
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The rebuttal to the first criticism has usually

made use of the concept of modeling. In brief, the model

is the form that the compensated system would have to

assume in order to achieve the lowest possible value of

the chosen Performance Index. Frequently, design con-

straints permit only enough freedom to achieve a value

which is greater than the lowest possible value. Modeling

is useful when the choice of the model specifies the

Performance Index, since then the designer has a means

of selecting the Performance Index. For the Regulator

Problem very little attention has been given to develop-

ment of models, perhaps because the integrand of Jr in

(3-1) becomes quite complicated when the substitution

u = k'x is made. Some work has been done for the case

poles of the optimal system approach a Butterworth

configuration (Kalman 1964, p. 58).

The second criticism - chat of the lack of knowledge

of the limitations of state variable feedback - has been

partly clarified by showing that the use of state variable

feedback allows complete control over the poles of the

system but does not affect zeroes. What remains to be

given is a more complete treatment of the techniques

/;
i
/

/
/
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for including zeroes in a meaningful way in the Regulator

Problem.

The third criticism is of particular importance

for the Regulator Problem because the form of the optimal

system is known. This structure could serve as a start-

ing point for applying, for example, the minor loop design

techniques to the Regulator Problem. The subjects of

sensitivity and steady-state error constants also remain

to b_ _o,_idered.

The Servomechanism Problem was given a briefer

treatment than the Regulator Problem because once the

latter is understood, the former is easily grasped. All

of the comments given above apply equally well to the

Servomechanism Problem. In one sense the Servomechanism

Problem has a closer appeal to automatic control engineers

since the reference input is an explicit part of the

problem. Note, however, that these engineers usually use

the response of the system to a step input as a reliable

guide to the merit of the design; for this particular

reference input the Servomechanism Problem reduces to the

Regulator Problem, as was shown in Chapter IV.

In conclusion, the two basic problems considered

in the thesis have been carefully defined and an attempt
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has been made to treat each one as an individual problem,

to relate each one to the other, to relate both to other

design techniques, and to point out the areas where

further investigation is required.
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