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FOREWORD 

This report summarizes work carried out a t  the Electronic Systems Research 

Laboratory of Purdue University i n  the Communication Sciences area during the 

period July 1, 1965 through December 31, 1965. The research reported herein 

was supported i n  f u l l  or i n  part  under MASA Grant NsG-553. 

C. D. McGillem, Director 
Electronic Systems 
Research Laboratory 
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J, C. Hancock 

CO~~uraIC!ATION SCIENCES 

E. A. Patrick 

1, 14ixtures and Parameter Conditional Mixture 

In  the l a s t  Semi-Annual report we defined a parameter-conditional mixture. The 

type of the mixture depends upon the a p r i o r i  knowledge used i n  i t s  construction, By 

approaching nonsupervisory problems through f i r s t  defining mixtures, we are able t o  define 

precisely different  nonsupervisory problems and the a p r i o r i  knowledge they u t i l i ze ,  For 

example, the mixture defined i n  Pt. 4 p, 3 can be used t o  apply histogram concepts t o  the 

nonsupervisory problem. The mixture defined i n  Pt,  4 p, 2 corresponds t o  the " c l a ~ s i c a l ' ~  

nonsupervisory problem, The mixture defined i n  Pt, 5 p, 4 ar i ses  when more than one class  

can be active on the same sample, 

A mixture r e su l t s  when a vector X can be parti t ioned W ways, nl, n ..., n If ,  fo r  
2' we 

v 
exam~?le, X = [xs )E-v+l with a single pattern class  active causing each X s there are W = M 

ways the pattern classes could be active t o  cause X. If, as another example, X = Xs with 

a single pattern class  active causing X there are W = M  ways the pat tern classes could s 

be active t o  cause X. Since the part i t ions are mutually exclusive and exhaustive, 

where F(X) i s  called the mixture c. d, f.,  F(X 1 n ) the r t h  partition-conditional c. do f ,  , and r 

P ( ~ C  ) the r t h  mixing parameter, r 

When we speak of a family of gaussian c, d. f. ' s  or a '  family of BluPtinomial c. do f. 's, we 

have i n  mind the nature of the parameters which characterize the family. It i s ,  therefore, 

appropriate t o  define a parameter-conditional mixture c. d, f ,  F(X 1 B) constructed using the 

family [F(X 1 nr, B,)] o f  r t h  par t i t ion,  parameter-conditional c. d. f. 'so To do th is ,  define 



Since (x, 5) , (x, x2), . . (x, %) are mutually exclusive and exhaustive events, 

Wow, the  r t h  partition-conditional c.d.f, i s  characterized by B r3 

and since B contains ~ ( z , ) ,  

Thus, (4) becomes 

I f  we are given F(x), W, and the family { F ( X ~  I, B then when can B be uniquely 

found? Or, put another way, given P(x), when does F(X) = F(X~B) have a unique solution 

for  B? The answer i s  t ha t  B can be uniquely found when the class of parameter-conditional 

mixtures i s  ident i f iable ,  suff ic ient  conditions for  which are  given i n  Eef, 1, 

I n  the  foUowing sections we proceed t o  r e l a t e  Eq, 7 t o  nonsuper~~isory problems ar i s ing  

i n  practice,  

2, X = X with Single Class Active 
S 

Let X = X with one of M pat tern classes possibly active. Then W = M and Eqq. (7) 
S 

becomes M 

r-l 

This parameter-conditional mixture, Eq. (%), ar i ses  when samples XI, X Z 3 . .  . , X are n 

pasamete~-conditi0~1a%1y independent, 



3. v Samples- Paramet ex-Condit ionally Dependent 

Let X = with a single pat tern class active causing each sample Xs. Then 

W = &lV. Equation (7) becomes 

A mixture of t h i s  form ar i ses  when making a decision on sample X i f  Xn, givenn and Br, n r 

i s  s t a t i s t i c a l l y  dependent on the  previous (v-1) samples. The dis t r ibut ion f@unction of 

n-l and B, can be expressed as Xn, conditioned on (Xs)n-v+l 

v v-l. 
where n denotes the  rth par t i t i on  for  samples Xn o+19e. .,Xn, and I denotes the  r t h  r e.. 

par t i t i on  for  samples Xn - V+19e esXn,lo 

Thus, when the  v samples are  s%atis t ical%y dependent, a p r i o r i  knowledge must; include 

1 B , ~c ) ] of multidimensional p"%;h part i t ion,  parameter-conditional the family { F ( { x ~ I ; - ~ * ~  , 
@,d,%.'s, the dimension 0% each member increasingas v increases, Ftxrthemore, the number 

of terns  f n  t h i s  mixture grows as v imereases. 

Let X = Xs = Xs , X ,.,., Xs with class  w. active for  a l l  v samples, %e parameter- 
1. s2 v 1 

conditional mixture c.d.P. F(xS I B )  i s  

M 
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This mixture does not grow with increasing v as did the  previous mixture because the 

statist icaL1y dependent samples a re  sqe rv i sed ,  The a p r i o r i  knowledge used t o  construct 

t h i s  mixture is  knowledge of M, the  f&ly, and the fact  t ha t  Xs = (Xs 1; with one pa t te rn  
k 

class  active fo r  all saanples, 

We f ind i n  Ref, l t h a t  t h i s  type of mixture a r i ses  when applying the  histogram concept 

t o  nonsupervisory problems. By taking v samples a t  the  s th  observation with pat tern class  

w. active, the  class  of mixtures may be ident i f iable  whereas it would not be with only one 
1 

sample taken, 

X = Xs with Interclass  In%erference 5. - 
Let X = X with any number of M classes possibly active caasing Xs, a s i tua t ion  we 

S 

w i l l  c a l l  interclass  interference, The a p r i o r i  knowledge also includes knowledge of M, 

the family, and t h a t  a class  wi i s  active on the  s th  sanrple with probabili ty Pi. Since 

a class wi i s  e i the r  active or  not fo r  each sample Xs, there  are  zM mutually exclusive 

and exhanstive ways tha t  the  s th  sample can occwceu, %us the  parameter-conditional 

mixture c.d. f. F ( X ~  \B) is  

8 

6 ,  lfwo Possible Sets of Mixing Parme%ers 

Let X = X and a single class  wi active for  Xs. The a p r i o r i  howledge includes s 

knowledge tha t  M = 2, the f amfly i s h o r n ,  and %ha% there are  two possible se t s  of mixing 

parameters defined as ToUows : 

It i s  known %hat e i ther  Pl or  (l-pl) is equal t o  P; Pl = P with probabili ty Q; and 

(l-pl) = P with probabili ty (l-Q). Since the events P1 = P and (imp1) = P are  mutually 

exclusive (assume P f $1, the parameter conditional mixture c.d. f .  i s  



( ~ - Q ) C ( ~ - P ) F ( X ~  I w ~ , B ~ )  9 pF(xs I w ~ > J ~ ~ ) I  
where 

B = (Q> P, Bl' B2) 

Def i ne 

Fl(xs IB) " pF(xS 1 5 2 ~ ~ )  + (l-p)F(xS Iw2~J32) 

F ~ ( x ~ I B )  ( l - ~ ) ~ ( x ~ l y > ~ , )  + ~ ~ ( x ~ l w ~ " 2 , ~ )  

Equation (14) then sirrrplifies t o  

Ws I @  = q ( x s  l ~ )  + ( ~ - Q ) F ~ ( x ~  lB) 0 5  1 
A s  the  problem i s  formulated, Q i s  e i ther  1, or  0 since only one of the two se t s  of mixing 

parameters i s  active at a given time, Thus, (15) i s  a parameter-conditi onaB mixture with 

one zero mixing pwaneter,  The suff ic ient  csapditions given i n  Ref, 1 require a l l  mixing 

parameters %o be greater than zero but l e s s  than one, We, therefore, cannot conclude 

sufficien% condi%ions for  iden%ifiabiE%%y i n  %his present problem, 0x1 %he other hand, 

the fac t  t ka t  one of the mixing parameters has value l? i s  a p r i o r i  knowledge, and thus 

should not impose greater constraints on the class  of resul t ing pm-meter-conditional 

mixtures for  ident i f iabf l i ty .  This shows %he need fo r  a study of fdentffiabi$i%y when 

a mixture has one o r  more mixing parameters of value zero, and corresponds t o  the  

n o n s u p e r v i s o ~  problem with an own nmbes 0% pat tern classes M, 

7 ,  Given a Set of Families 

J Consider now a situakion where there are  R possible families, F - [P (xs 1 w ~ ~ B ~ ) ) ~  
5 - 

J = 1 2 2  !Phis might correspond t o  a problem where the  class-condi%ionaS. c o d o f ,  depends 

upon some parmeter ,  for example phase, which changes f ron  sample t o  sample, and takes on R 

possible values. O r S  it sight correspond $0 a problem where %%be noise s%atis%ics change 

from sample t o  sample, being represented by one of' R possible c , d o f , q s ,  We w i l l  now assme 

tha t  the samples a re  c lass i f ied  but %ha% the  fruniales ace not. That is,  l e t  X = X with wi 
S 



known active causing Xs, and the j th  family active with probabili ty Q. .  Then 
J 

F ( x ~ )  = 1 Q. F ~ ( X ~ ~ U ) ~ ) ,  w. known 
J I. 

Thus the probabili ty d is t r ibut ion  of X i s  given by a mixture c.d,f, even though the  
S 

samples a re  classif ied,  I n  t h i s  case, %he f a l i e s  active i n  causing the  s q l e s  a re  

unclassified. 

1. Patrick, E, A., "Learning Probabili ty Spaces fo r  Classification and Recognition of 
Patterns with or  without Supesvisio~z,'~ Ph.D, Thesis, Pardue University, November, 
1965. 



B. COGNITIVE S I G W  PROCESSING 

J. C. Hancock 

W. D. Gregg 

1. summary 

This report i s  a summaw of the research on tansuper-vised signal pat tern recognition 

l under the above t i t l e  performed since the second semi-annul report  with the following 

progress t o  date: 

(1) A time ser ies  malog of the mUltimriate "distance s tat is%ict '  discussed 

1 previously has been developed for  successively tes t ing  the ( i + l ) s t  vector observation 

against the i t h  vector observation for  s t a t i s t i c a l  s imilar i ty  of c lass  parmeters .  A 

computer simulation of a noisy signal pat tern f o m t  subjected t o  the "separation test" 

demonstrates quite r e l i  able resu l t s  fo r  signal t o  noise r a t io s  (defined below) down t o  

-4. 5db. 

(2) An asymptotic form of the &yes decision boundary as constructed from unsuper- 

vised or  unclassified vector samples has been developed. The ef fec t  oP no preclassifieation 

or  supemidmappears  a s  a b ias  %n the asymptotic e r ro r  probabi%ftyg and for  s i g m l = t o -  

noise r a t io s  l e s s  than 0 db, the asymptotic e r r o r  probabili ty for the model considered is 

on the order of two t o  four times greater than tha t  of the known parameter Beryes matched 

f i l t e r .  

2. A Pr io r i  Mode 

The a prior% mode consists of the separation of the observed ~ e c t o r s  in to  two 

classes on the basis  of statist%c&lb s imi lar i ty  and combination t o  p r 0 ~ i d e  a p r i o r i  

€2 s ~ m t %  glo9 g2 o' 8, of the class  parameters. A time ser ies  analog (of ~ q .  (1);I)salls f o r  a 

l inea r  combination of the elements of L, zi+lj t o  be tes ted  against a threshold for  

s imilar i ty  or  dis-similarity about the mean. Maximization of the distance function wi th  



- &. "? C 

respect t o  & by the Schwarta inequality for probability has 

and for the anti-polar case, gl = -g2, 

yielding a minimax decision rule 

The hypotheses are: (a) Ho, that the i t h  and ( i+l ) th  vector observations are both 

from w or  W and (b) HI, tha t  one vector observation i s  from q while the other 1 2' 

one i s  from w . mr the anti-polar case, (see n g ,  lb, Ref. 1 )  the corresponding 
2 

computer-simulated sampled no% sy sf gnal pattern for a 8KR of 3db f s i %lustrated i n  
2 

Hg. lee* SlYR for white noise i s  defined as  I '2' /02 For equal class covarimces, 

the time s lo t  (vector) samples can di f fer  only i n  the pulse shapes (mean vectors El, 

B ) . The a pr ior i  estimates of the elements of the vectors, gx, f12, as  a function of 
-2 

the nunber of time s lots  observed are il%ustsated i n  figs. Pa, b, c, and *for one 

computer simulation exper&ment. The parameter values are extracted from the noisy 

signal pattern (dx ture )  without any pre-classiffcation or  supemision and without any 

a priori  knowledge of the signal parameters, Various computer simulation experiments 

are i n  progress i n  order t o  establish and confirm bounds on dynamic performance. 

3. Classificrttion Mode 

The development of asymp%otic form of the unsupemised Byes decision boundary 

proceeds as  follows. The parametric Byes formulation of the classfffcation mode 

(3 provided by an against an a pr ior i  distribution P([B]), with parameters 6 8 

*Refer to page 12 of %his report for pa& a, b, c, d and e of" EL@;. 1. 
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- 

a pr ior i  mode, yields the decision rule 

where for equal r i sk  

exld 

A 
A o = P2/q; {el - (gl9g2,g)j 9 = noise Covariance Matrix (6) 

Ebr the multivariate gaussian case, assuming no pre-classification of Zi, the formal 

expression2 for P(ZI{B]) can be factored in to  

The bi-polar and off-on signal pattern models can be treated simultaneously by introducing 

the a priori  information about the populations as  

The substitution of (7 )  and (8) into the numerator and denomfi3gttor of (61, f"ollawea by 

a factoring and completion of the s q w e  with respect t o  the &, of the exponents i n  

the integrand and integration, yields for ( 5 )  a ra%io of a series of Pearson Type VIE 

terms, @,go 

The elements ('IQiN are quadratic forms composed of combinations of the observed 

vector samples. The decision boundaries for  the bi-polar and off-on cases are obtained 

by taking l i m  X ( T , ~ I Z )  as B - -1 and 0 respectively. A subsequent application of the 
k 

law of large n w e r s  t o  the sequences of observations i n  each term of (9) has 



where the (g)eiL are quadratic fows  with parameters comprising the asymptotic values 

of the sequences of observations i n  the terms. Thus i n  

for the bi-polar case, k = -1, l e t t i n g  \ = e n  Am, the asymptotic expression for  the 

"unsupervi sed decision boundaryrP i s 

which has the saae f o m  as the  known parameter decision boundary 

Since Z i s  the t rue noise covariance matrix and 1 i s  the asymptotic form of the 

( 5 )  W 
matrix i n  the discriminant function coefficients d i f f e r  i n  (12) and (13) 

For n = 2 (two samples per t h e  s lo t ) ,  

The presence of (14) in. (12) tends -t;o "color 'hhi te  noi se  and not exac%ly whiten 'koloredt' 

noi se with the ef fec t  of biasfng the probability of classif icat ion e r ro r  away from tha t  

of (13) . This difference 3. XI probability of classiff  cation er ror  can be expressed as 

where f(x)  i s  the gaussian P.B.F. Ifor square b$-polar pulses of amplitude c i n  white 



with the subscripts 1 and 2 in (15) associated with the + and - signs in (16) respectively. 
An illustration of (15) is shown in Ffg. 2 as the class probability weighted sum of the 

shaded areas. Both 1 h 1 and icl increase with SRR and thus 
A 

~ i m  ihil-fhil -+ O; SHE " (C/o>2; i = ~ $ 2  (17 1 
sm -+ ca 

with the effect that the probability of error for the asymptotic unsupervised decision 

boundary approaches that for the known parameter decision boundary as SI$R becomes large. 

A comparison for a particular case appears in Table 16. 

a: 
1 (~,=~/8, p2= /8, Square Anti-polar pulses) 

~m(db) Pe (Known ~aramater ) % (~symptotic ~nsu~ervised) 
Case Case 

1 ., Hmcock, Joe, and Gregg, W ,D., "Cogn%%fve Signal Processi ng", Purdue Universi ty 
School of Eaoectrical Engineering, Second Semi-Annual Research Summary, Jabo-July 
1965, pp. 15-22, Section 5.1. 

2. Rao, C.R. Advanced Statistical Me%hods in Biometric Research, J. Wiley and Sons, 
New York, N .Yo, 1952 . 
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C, ADAPTIVE DE!PECTION WITHOUT SYNCHRONIZATION 

J. C. Hancock 

T. L. Stewart 

1. Introduction *8 

The detection theory area of the communication sciences has been concerned with 

the classif icat ion and recognition of signals i n  the presence of noise. In  the general 

M-ary detection problem, the signal sequence i s  constructed from a family of M possible 

waveforms. The detection problem then consists of determining, i n  each signal interval ,  

which of the M possible waveforms was tr8nsmitted. Disturbances t o  the transmitted 

signal which prevent correct ident i f icat ion of the signal a r e  of two general types: 
1 

1) Additive disturbances characterized by an additive noise term a t  the receiver.  

2 ) Multiplf cative disturbances whf ch d i rec t ly  a l t e r  the transmitted waveshape . 
The receiver structure fo r  detecting deterministic signals i n  gaussian noise has 

been extensively studied. 2 9 3 9 4  These techniques a re  heavily dependent on the ava i l ab i l i t y  

of complete a pr io r i  information on the transmitted signals and on the e f f ec t s  of the 

disturbgnces. Generally, the receives must know the waveshape of a l l  possible transmitted 

signals and t h e i r  exact a r r i v a l  times. Recent work has been concentrated i n  the areas 

of supervised and unsupervised detection methods. 59697 I n  these cases, incomplete 

knowledge of the signal waveshapes i s  assumed and the receiver must adapt t o  the  ac tua l  

transmitted waveshape. 

.A part icular ly trovblesome problem i n  the area of adaptive detection, and a lso  i n  

*he conventional detection case where the signal parameters are  completely known, i s  

tha t  of locating the a r r i v a l  time of the transmitted sequence. Lack ~f synchronization 

gives poor or  e l se  completely meaningless performance i n  the cases mentioned previously* 

Uncertainty i n  determining the signal baud can occur i n  several ways. An unknown time 

delay i n  the channel r e su l t s  i n  a synchronization e r ro r .  Special techniques f o r  

obtafnfng synchronization have been developed, i . e . ,  sending synchronization pulses 



or  e lse  synchronizing codes; however, there i s  s t i l l  uncertainty due t o  the presence 

of noise i n  the received data, 

This srtudy i s  devoted t o  the adaptive detection problem, with the lack of time 

synchronization a s  a Arndamental assumption. Of major concern i s  the establishment of 

a receiver structure tha t  w i l l  ~Zmultaneously adapt t o  the unknown signal parameters 

and unknown synchronization. It i s  also assumed tha t  no auxiliary synchronization 

symbols are transmitted. Since implementation of the more sophisticated detection 

techniques i n  use today necessarily involves d i g i t a l  processing, it w i l l  be assumed 

tha t  the data presented t o  the receiver i s  i n  d i g i t a l  form. The model for  the system 

i s  shown i n  Figo 1. 

x(t> 

Fig. 1 
I 
Noise n(t) 

Every T seconds, the transmitter selects  one of e f i n i t e  se t  of waveskape ei(t), 

I 
- 

1 - < i 5 M. The channel a l t e r s  the transmitted waveshape such tha t  ~ ( t )  = h(t ,b)  Bi ( 5 )  ds. - 
Noise, n(t), i s  added, and the resultant signal ~ ( t )  i s  presented t o  the receiver. The 

receives must now decide which of the M possible signals was sent,  

2 .  Approach 

!€'he receiver is  presented with a sampled time sequence, x(tl), x(t2),  x( t3)$.  . . . . 
The duration or  baud length i s  known a t  the receiver; however, the receiver does not 

know the instant  of t h e ,  ti, tha t  the signal sequence begins. Assume tha t  the  signal 

i s  characterized by N time samples. Index the first N samples by Tl, T2, ..., TN. It 

i s  clear tha t  for the conditions assumed, one of these points, Ti, i s  the correct reference 

time for  the sequence. The time ser ies  w i l l  be parti t ioned in to  bauds of length N and 

the symbol 5 will designate the & baud. The symbol Zk w i l l  be used t o  deBignate the - - 
observation sequence 5, $,...,Xk. The problem is  t o  pick which of the possible Ti i s  - - - 



the correct reference time. This w i l a  be done by choosing the Ti that maximizes the a 

posteriori probability 

t h  After the k--- baud i s  received, it can be shown that  

Therefore, P(T = 
Ti/ ), canbe c o m p u t e d f ' r o m ~ ( ~ = T ~ /  i f ~ ( a /  - T  =: ) 

Ik, 5-1 
PI- 

zk- 1 - Ti, Zk-l - 
can be determfned 

If the signal vectws, 8 are known, then I?(%/ 
3' 1 and Hej /  ) can - -T = Ti?zkel, e j  -- T=TL9Zb1 -- - 

be determined. If the vectors 8, are unknown, then an i terat ive scheme must be used t o  
J w 

determine these functions. Iterative soIu%$ons t o  t h i s  problem have been developed. 59637 

Thus, an i terat ive approach exists  for the adiaptive detection problem without 

synchronization. The solu%Lon i s  optimum. i n  the sense that  st esch decisfom instant, 

the reference time i s  chosen that  minimizes the r isk.  In  addftfon, the proposed method 

provides a means of osynchronization for the conventional detection problem without using 

any additional synchronLzation signale- JX@;tnres 2, 3, 4, and ~ % l I u s t r a t e  computer 

simulations of the proposed technique for various 'asstpmptions on the signal and noise. 

+ + A l l  shown on page 1 7  and 18 of t h i  s reporto 
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Binary Case, Known Signal; P(T) - Average of 20 Experiments 
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Most of the results concerning the transmission of information via  dfgftal com- 

ntuxtcation systems are based on certain assumptions concesning the channel environment. 

In particularj the channel s t a t i s t i c s  are usually assumed known so that  the problem 

of Finding optimum detector structures can be solved, a t  leas t  i n  princip$e, by the 

methods of s t a t i s t i c a l  4nference. When adequate a priori  infomation concerning the 

channel enviromnt  is not available, however, the standard decision theory formulation 

of the detection problem i s  not applicable. Under these circumstcurces, it i s  reasonable 

t o  consider receivers capable of extracting knowledge of the channel conditions directly 

from the infomation bearing signals as they emerge fscm the channel. System that  

attempt t o  measure the unknown properties of the channel, and use these measurements 

i n  the processing of the received data, are sometimes termed "adaptive. " Mote, however, 

that  it i s  not really necessary t o  learn the properties of the channel character%stics, 

Since the purpose of the binary receiver is t o  make decisions as t o  which of two signals 

is present i n  the received data, %he receiver %reed only learn how t o  d % s % i ~ i s h  between 

the signals - i .e . ,  the dis t iag~~ishing features of %he two types of received data. Both 

theoretical and exper%rme&ata% investigations of %his abpt%ve receiver approach t o  the 

problem of cammua%cating through tmknm channels a m  presently i n  progress* 

CE S X G ~ S  

P. A. Wintz 

Correlation detection is an opthum. strategy for  detecting signals i n  noise 

for  various combinations of c r i t e r ia  of goodness and a s s ~ t i o n s  concerning the 

observed data. A simple correlator i s  shown i n  RLg. 1. The input waveform x( t  ) 

consf sts of a d e t e ~ n i s t i c  signal s(%) of T seconds duration plus a random perturbation 



n( t )  called noise. The reference waveforn y ( t )  also consists of a d e t e m h i s t i c  s i a  

r ( t )  of T seconds duration plus a random component m(t) 8180 called noise. Ord%mrily, 

both n ( t )  and m(t) are assumed t o  be gaussian random processes. The output of the 

integrator z ( t )  i s  s ap l ed  a t  t - T, and the s t a t i s t i c  z(T) used i n  the deci sf on process. 

Hence, the average performance of the correlation detector depends on the  s ta t i s t i cs  

of the variate z (T) An attempt t o  determine the probability law governing z (T) 

T 
input waveform: x( x ( t >  ~ ( t >  dt 

0 

reference wgsvefom:: y ( t )  = r ( t )  9 n( t )  

directly from 

leads t o  severe mathemtical Ufficubties. Eowever, by ernployirig an appropriate 

s e t  of orthonormal basis functions [ t i  ( t  ) 1, the required waveforms can be approximated 

by f in i te  dimensional vectors which, in turn, can be used t o  write 

21g 28 

= C x~~~ = 1 (sj + nJ) (r, + mJ) 
j =% j =l 

The problem of determining the probability 1 .a~  governing Z(I) and/or z has already 

been fnvestl%gated for  some special cases. Rowever, no results for the case of unequal 



signal-to-noise rat ios i n  the input and reference channels have been reported in the 

published l i tera ture* The s t a t i s t i  cs of z(2)  and/or z for  t h i  s case are important 

since, i n  most practical situations, it l s  possible t o  obtain a reference waveform 

of considerably higher slgnal-to-noise r a t i o  than the input waveform. Another w o r t -  

ant case, not previously considered, i s  that  of non-identical signals i n  the two 

channels, i.e., r ( t )  f s ( t ) .  This situation may ar ise  due t o  imperfect time synchroniza- 

tion, e .go, r ( t )  = s(t-a),  or when it is  necessary t o  estimate s ( t )  from previously 

received data and an unbiased e s t h a t e  is  not available. The characteristic function, 

probability density m c t i o n ,  and the probabilfty distribution function for the random 

variable z have been computed for the general case, subject only t o  the follow2ng 
2R 0 

2x v r, 
L G restrictions: both signal vectors have f i n i t e  energy, i .e ., L s < -, -L r j  < =; 

the random variables n , j = l , . 1 . 2 2 N  form a s e t  of 2R mutually independent gaussian 

random variables of identical variances, i .e . , n ) (x-5) = 0: S jkj the random 
3 J 

variables m form a se t  of" 2 1  mutually independent gaussian random variables of 
3 

2 identical variances, i .e . , (m -K) (%-TI = P Sjko BBote, however, that no loss of 
3 J 

generality results  from assuming that  both the n and m have zero mean and unit variance. 
j j 

For an unbiased correlation detector the probability of a decision error i s  simply 

the probability that  the correlator output Sfoers not exceed zero, i .e ., 

It has been shown that  

where 
2 N  

3. 2 
= - 1 (sj + r = average of the energies of s ( t )  and r ( t )  ='a 2 j 



2N 
Ec = 1 s r = cross energy of s ( t )  and r ( t )  . 

j j 

Note that  p e r f o m c e  of the correlator does not depend on the waveshapes of the 

signal components i n  the two channels. All wageform pairs sgt), r ( t )  having the 

same average and cross energies perfom equozlly well. Pt is &so interesting that  

2 the correlator output does not depend on the two signal energies 1 s and 1 r j  , J 
but only on the i r  average. 

The probability of error  PE i s  easily evaluated formrlms values of N, LC, 

and $a on a dlgftal  computer. Fig. 2 i l lus t ra tes  the dependence of PE on N, %, 
and Ec for  selected values of these parameters. Xed, consider the case of identical 

signal components, but different sign&-to-noise rat ios i n  the input and reference 

channels. 3br th i s  case 

If we l e t  E represent the signal energy, i .e . , 

then 

L = @  
C 

In  Fig. 3,$E i s plotted vs. E for selected v&ues of @ and I. 
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P. A. Wintz 

R. A. Markley 

mis project i s  concerned with a water tank s W a t o r  of randody the-varying 

c o m c a t i o n  channels. Hydrophones are used t o  connect the t r a n s d t t e r  and receiver 

t o  the "channel" just as  antennas are used t o  couple transmitters and receivers t o  

atmospheric channels. The advantage of the water tsnk s W a t o r  is due t o  the effective 

scaling of path lengths, antenna beam widths, e tc ,  by a factor that  allows the channel 

t o  be contained within the laboratosy. Henee, experinents under controlled laboratory 

conditions are possible. For example, the r a t i o  of the velocity of electromgnetic 

S radfation i n  f'ree space t o  the velocity of sound i n  water i s  approximately 2 X PO ., 

Therefore, distances, wavelengths, delays, e tc .  are scaled by th i s  factor. We find 

that  kilometers are scaled t o  centimeters and tmsducers (antennas) of a few centimeters 

diameter produce beam widths of a few degrees a t  megacycle frequencies. Although 

the attenuation of sound i n  water increases with frequency, the path lengths are short 

enough that  signaling at megacycle frequencies requires a transmitter power of 

approxinately 100 mfLL%watts. The kink, incidtentally, is lined with sound-absorbiw 

mater%al so that  reflections from the sides of the tank are not a problem. 

By adjusting var iou~  parmeters, the channel characteristics can. be adjusted t o  

fit the user 's needs. Placing the transmitter and receiver transducers facing each 

other a t  two points i n  the tank. res&Lts i n  glaz arrangement that  produces a strong 

specular component., The t rans i t  time can be adjusted by changing the distance between 

the transducers. Scatter components are easily introduced by releasing a i r  from 

nozzles a t  the bottom of the tank. The sca-Lter component introduced by the a i r -  

bubble-water interfaces can be controlled by regulating the a i r  nozzles. 3br example, 

the strength of the scatter  component depends on the number of bubbles, wh9.k %ts 



spectrum depends on the size of the bubbles. The specular component can be removed 

completely by a sl ightly different arrangement of the transducers. FOP example9 a 

scat ter  path can be simulated by placing the transd~cers side by side a t  one end of 

the tank with the a i r  nozzles infr<)gt%of them. The spread of the multipath structure 

(range of delays) can be adjusted by changing the distances t o  the closest and a r t h e r e s t  

nozzles. This arrangement also allows for one or more specular components (fixed 

paths of different lengths) t o  be introduced by inserting one or  more reflectors a t  

selected dfstances from the %raneducers, The strength of the specular component 

relative t o  the scatter  component can be adjusted by adjusting the size of the fixed 

reflector relative t o  the number of bubbles. Finally, doppler shi f ts  can be introduced 

by maPrPng the medium relatLve t o  the transducers* Products of maximum doppber sh i f t  

(cycles/sec) times maximum delay (seconds) on the order of 5 can be obtained. 

Peripheral equfpment already constmcted includes a transmitter, receiver, and a 

dtevice for measuring the s t a t i s t i c s  of the channel output. The receiver contains a 

l inear envelope detector tha t  can be switched either i n  or out. The "gta t is t i  cs" 

circuit  employs two Sclhmfdt triggers with sli&t.ly different f i r ing levels followed 

by a logic circuit .  The logic circu;%t determines the fraction of time the waveform 

spends i n  the window between the two fir ing levels and presents th i s  information as 

a reading on a counter* By changing the %M: level  of the input signal a fraction of time, 

histogram of' the a i  gml amplf tude (or envelope mplitude) is  easily constructed. 

The guPdue Channel simulator is avst$%&ibPe for use by any interested person. It 

is  emected that  some users w i l l  attempt t o  s ~ ~ a t e  real- l i fe  channels, 

Other users w i l l  use the siml.aton" as a convenient source of perturbed signals 

t o  tbs t  adaptive receivers designed t o  operate efficientby for a variety OF channel 



III. SIGNAL DESIGN 

CATION S Y S m  SUBJECT TO P m - L  I CE 

J. C.. Lindenlaub 

In order t o  experimentally determine the effects  of intersymbol interference 

phenomena on the performnce of d ig i t a l  communication systems, two experimental models 

of binary d ig i t a l  communicstfon systems subject t o  in%ersyabol in%erference are being 

developed. The two models are 1 )  ns, laboratory model a d  2)  a computer simulation 

model. cmhe purpose of these models i s  t o  investigate the degradation i n  probability 

of e r ror  i n  matched-f%lter type d i g i t a l  conmun%cation systems when con%roUed amounts 

and types of intersymbol interference causing distort ion are introduced* Methods of 

reducing the ef fec ts  of such distort ion can a l so  be iwest iga ted  with these systems* 

Computer Model 

The digit81 computer simulation model i s  designed t o  simulate the foUowing system: 

The program includes a counter t o  detect and comt the de%ect%on errors  made by the 

systemo The actual computer program i s  based on the following block &Lagram. 
Frequency B m % n  Computa%$on 

1 Output 



The computations made on the signal a s  it passes through the system are done with 

frequency domain specificcations--the magnitude and phase functions associated with the 

signal 's  Fourier transform. This was done since it was desired t o  speciw channel 

f i l t e r s  which may not be representable a s  f i n i t e  lumped-parameter or  simple distributed- 

parameter c i rcui t s .  lhus the spectrum of the signal portion of z( t ) ,  zl(t), i s  computed 

asnd transformed in to  samples of the appropriate tke-domain signal component a t  the input 

of the decision device. B e  noise process i s  most eas i ly  s imla ted  by the use of time 

samples derived from pseudo-random number generation on the computer. This i s  followed 

by convolution of the time samples with the impulse response of the matched f i l t e r  t o  

produce the noise component of the input t o  the decision device, 

This computer sfmulation model i s  presently being used i n  an investigation of 

binary two-phase synckrPmoWsystems and binary unipolar AM systems. b%n each case a 

raised cosine spectrum for  the transmitted signal i s  used and an ideal  matched f i l t e r  

for  t h i s  receiver i s  employed a t  the receivero 

Laboratory Model 

The laboratory model comunfca%ioaa system was designed according t o  the following 

block diagram 

Signal 
Source 2 Seauence &no 

This model was b u i l t  with transistorized electronic circuitry,  and operates with a 

center frequency of 455 kc. The system presently operates with unipolar AM square 

pulse moddcation. It can be modified t o  operate aa an B K  or  PSK system. The signal 

spctmun i s  shiaped a t  the transmjit%fng amplifier by a single-tuned RLC c i rcui t .  The 



approximate matched f i l t e r  consists of a single-tuned W%C circuit  followed by an 

envelope detector. The error detector makes logical comparisons between the output of 

the pasudo-random sequence generator and the output of the decision device, o3nd 

produces two se ts  of pulses for input t o  the counter, one se t  indicating false alarm 

errors and the other indicating false dismissgLa. errors. 

m th  of the comtnuniceztion system models described above allow probability of error  

psrfozmance t o  be determined for  a wide range of channel distortion f i l t e r s  and modulation 

schemes for varying signal-to-noise rat ios.  This enables the study of the effects of" 

intersymbol interference under the influence of controlled amounts of signal d%stortion 

and noise powere The digi ta l  computer model u t i l izes  a more ideal representation of the 

signal transmission and detection processes, and allows somewhat more freedom i n  the 

specification of the nature of the channel distortion. ghe laboratory model u t i l izes  

.a more practical representation of the signal tmsmissfon and detection processing 

found i n  existing systems, 
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R *  O P T E W 1  FlAITEFOM AND 'RECEI'irEFB FOR C H A m S  W I T H  MEMORY 

J. C. Hancock 

E. A ,  Quincy 

A 

1. Statement of the Problem 

The specific problem considered i n  t h i s  research i s  the optMzation of entire 

binary communication systents, i.e. joint optfmization of the transmitted pulse wave- 

forms and the receiver when the chamel response i s  time-invariant and known. Also, 

the channel is  assmed t o  exhibit sufficient memory such that  intersylgbol interference 

results a t  the receiver. me cr%terion of sp2limlity considered is m i n h ~ ~ t l  average 

probability of detection error. For recent l i tera ture  pertinent t o  t h i s  problem, see 

Refs. 1,2,3, and 4. 

Figure 1 shows a, model of the binary cormnunfcatfon system considered i n  th i s  

research. The additive noise i s  assumed stationary, gaussian with zero mean and 

covariance $3 = I!JX such that  the noise samples are  assumed t o  be s4~ t i s t i c a l l g .  in- n 

dependent with variance f o r  nofse w e r )  IT, Also, the received signal i s  assumed t o  be 

representable by a f i n i t e  sum of weighked basis furactions such that  the weighting 

coefficients form a M-dkuensional vector deno%ed by a bar beneath an upper-case l e t t e r ,  

Binary Commun%esation System Model 
2. Assmptions 

The follmfng assumptions were aployed i n  th i s  research2 

1) - El is zero-mean gaussfaa with f~iIe,penaent samples, 

2) z( t )  Es representable by X nnwnberas, - Z 
3) h(t )  i s  the-invariant,  k n m  and exhibits M bauds of maaosy; i.e., an input 



pulse of duration T is stretched t o  (w%)T a t  the oatput, 

4) Skgnaliq sate i e  1 /~ ,  

5 )  Receiver synchron$zed t o  tmnsmftter. 

6) Receiver has zero-memory with observation period [o, (Ht l )~] .  

An ideal approach t o  th i s  gwoblem is ho derive the Bayes receiver frm the Madm 

Likelihood Ratio, A(x), fo r  arbitrary transmitted signel wavei'0~~88, sl(t) and s2(t),  of 

length I and an arbitrary the-variant  charnel with bpulse  response k r ( t ) ,  Then, 

the average probability of error Pe would be derived f o r  th i s  receiver* The resulting 

functional, Pe, would depend on the signal prametersr energies E9 a l l  possible 

cross-correlations g o 9  the two desired signal wavefome, with a l l  possible combinations 

of received waveforms of overlapping pllses. would also depend on the noise p e r  

H and tlae channel bpulsa  response h(%). However, these quantities would be f f xed 

fo r  any given problem. Eermee, we can denote the probability of error by 

W i t h  an explici t  expression available fo r  5, it would then be a matter of ap@Jv"%w 

v a r i a t i ~ n e l  techniques t o  minimize % with respect t o  the transm%tted waveforms, with 

posslble physical cons%min%s applied, f o e o ,  

!Phis woad produce the ogt;bm waveform f o r  a specified chame9, 

The approach used i n  %his research differed frcmm %he ideal above since an 

explici t  f o r  $ i n  hems of signal panmeters couad not be obtained. Emever, the 
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integral  i n  (1) was numerically integrated; and by plotting a family of curves, the 

ef fec t  of the pertinent signal parameters on % was obtained. The two significant 

s igaal  - m e t e r s  obtained f o r  bipolar signals and M=lwere Eo and .El,%;i. e., the energy 

out of the channel 
2T 

and the head-tail cross-correla%ion energy 

The f W l y  of curves showed t h a t  Min was equivalent t o  Max Eo, with constraints on 
s 

the energy in to  the charnel and. on the head-ta%l cross-correlation enero ;  -Lee., 

El = s 2 ( t ) d t  = constant 
0 

Hence, the optimum wavefarm was obtained from the following expression. 

Bayss Receiver 

The gesaembi zed, zero-mgm~a~y, non-linear &yes receiver (maximum 

likelihood m%io) was derived for M bauds of channel memory a& o h m  t o  be 

and 
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o r  the equivalent modified likelihood r a t i o  i s  

where 

5 .  Average Probability of Error f o r  Bayes Receiver 

General Case 

The average probability of error,  Q f o r  the general receiver described i n  Eq. 

(12) was formulated and shown t o  be 

kR where F(W ) are ganssian m d t i - m r i a t e  densi t ies  and the regions of integralion are: - 



For this special case,% i n  (16) reduces t o  

2 2 

The expressf on i n  (3.9) was amerf eally integrated on the cmpxter to  y i  eld 

where 

The sketch i n  Fig. 2 shows the aependence of Pe on these pra3neters. 

1. Mo inte~symbol. inter- 
' e  



From Ffg. 2, we note tha t  the nonlinear Byes  receiver is not very sensitive 

t o  changes i n  pht and i t s  performance i s  very close t o  tha t  of no intersymbol inter-  
E 

ference. Also, we note tha t  for  a fixed +, Pe i s  a monotonic increasing function 

of phtj and for  a fixed p and N, Pe i s  a monotonic decreasing M c t i o n  of Boo Hence, h t  

we would l ike  t o  maximize Eo and minimize pht for  a fixed energy in to  the channel. 

Since, $ k function of pht we conclude tha t  we should maximize % fo r  a f ix id  

energy input and fixed p h t  ' 

6. Signal ~ e s i g n  

Problem 

In the previous section we concluded tha t  the signal design problem is  t o  

where 

and hl, A are Lagrangian multipliers. 
2 

The signal i s  t~ansmit ted  on (-T,T) and obserued on (-T, 3T) for  M = 1 i n  order t o  

take &vantage of the symmetry. Eq. 24 can be rewritten as 

where a 

K ( ~ ; , T )  = [ I A ( ~ )  1 2 e3w(t-r) df 

,El) 

- -A2 ST [I-I(x-T) h(x+2T - t )  + h(x-t) h(x+2t-r)& (29) 
-T 

and h ( t  ) i s  the channel impulse .response. H( f )  i s the mur ier  transform of h ( t  ) . 



General Solution 

By applying a first variation t o  s ( t )  i n  (28), the solution f o r  the optimw s ( t )  

was obtained i n  terns of the following Fredholm integral  equation of the second kind: 

T 
~ ( t )  = k S B(T) x ( t ? ~ ) d ~  ( 30) 

-T 
where 

and 

where 

RC - Lowpass Charnel Solu'bion 

FOP t h i s  p r t t c u l a r  channel 

Substituting ( 33) in to  (29) and (29) i s t o  (301, an expressi on was sbkined which can 

be differentiated twice with respect t o  t t o  o'bbikl 

2 
s u u  (t) + a ( A - l )  s ( t )  = 0 

Itence, the form 02 the soXution f o r  the WC chamel i s  

where 

and A and s are  determined by stabstitutEng (36) back in to  the fntegral (p), 



COMMUNICATION SCIENCES 

1, Quincy, E.A., 1st Semi-Annual Research Sumrhary, "Digital Communication System 
Optimization for Channels with Memory", School of Electrical Engineering, Purdue 
University, JwDeceniber 1964, page 33, Communication Sciences, Section 4. 

2.  Tufts, D.W. and &on, J.R., "Intersymbol Interference and Estimation of Mgital 
Message Sequences", International Conf . on Microwaves, Circuit Theory and Information 
Theory, Summaries af Papers, Part 3, Information Theory, pp. 55-56, Tokyo, Japan, 
September 1964. 

3. Tuf'ts, D.W., "Nyquieli ' S  Problem - The Joint Optimization of Transmitter and Receiver 
in Pulse Amplitude Modulation, " Proc. of IEEE; March 1965, pp: 248-259. 

4. Tufts, D.W., and Shnidman, D.A., "Effect of Correlated Data and Colored Noise on 
Error Probability and Mean Square Error in PAM Data Transmission," IEEE Int'l. 
Conv. Record, Part 7; March 1965, pp. 227437. 



SIGNAL SELECTION FOR TELEMETRY CHCANMElsS 

I n  the  telemetry problem, a waveform x ( t )  i s  t o  be transmitted i n  such a fashion tha t  

the  received waveform x*(t) is  a scaled repl ica of x( t ) .  It i s  assumed here tha t  a d i g i t a l  

transmission scheme is used, That is, the  waveform x ( t )  i s  "sampled"; the  samples are  

quantized; the  quwtized samples are associated one-to-one ~ 5 t h  a se t  of transmission 

waveform; and the  receiver decides which one of these possible waveforms was transmitted, 

The received "sampZes" are  then used t o  prodlace the  reconstmeted wavefom x,(t). There 

are three sources of error,  F i r s t ,  there i s  the  i n i t i a l  approximation error,  denoted by 
2 

Ea, which i s  the  error incurred by describing the  waveform by a f i n i t e  number of samples. 

2 A quantization error, denoted by E i s incurred by quantizing the  samples. Another 
q9 

source of error  i s  the  error  due t o  incorrect decisions made a t  the  receiver, which we 

2 
c a l l  channel error,  and i s  denoted by E,, 1% would be convenient, as it i s  sometimes 

2 
erroneously assumed t o  be, i f  %he t o t d  error, E , were represented by 

I n  t h i  s repor%, we show conditions andew which Eq. (1) i s  val id fir a p a r t i c d m  

error  criterion. If  x ( t  ) i s  the  original  waveform and xx(t) the  reconstructed waveform, 
2 

we define E t o  be the man-integra-squme error  between x(%) and x,(t), i .e , ,  

I where E denotes expecta%io%s and f is  time i n t e m a  O Y ~ T  which x(%) i s  defined, We asswe 

tha t  x ( t )  i s  a sample fkmetion from a random process with a countable basis. The 

"samples" here are  taken to be the  generalized Fourier coefficients 5 , .a of the - N 

expansion g ( t )  - 1 ai%(t), where the Di(t) are  an axbitraxy s e t  of orthonormal (over I) 
ill. 

basis functions, The approximation error  i s  %hen given by 



2 Now, i f  the  i. are  chosen t o  minimize E a -- J x(t)$(t)dt; and for  t h i s  best se t  of ai, a a3  k 
I 

(4) 
I 

for  any choice of r e a l  numbers b 
1 
i '  

We assume i n  the  sequel tha t  the  approximation i s  

3F 
done op tha l ly .  Denoting the  received samples by ai, the  reconstructed waveform xx(t)  

has the  form N 
3F 

x,(t) = 1 aiDi(t) 0 

Now i z l  

I N 
Adding and subtracting the  term 2 = C a,& ( t )  inside the  brackets i n  Eq. (7), we have 

However, RPom Eq, (4) , the %as$ $em i n  Eqo ( 9 )  5. s zer~, Then, using the  ortho- 

normality of the  gQl, ( t  ) , we have 
-3. 

We denote by the  quantized version of a%. Then 



I n  the  l a s t  % e m  i n  Eq ( lo) ,  we add and subtract the  term hi so tha t  

* 
Now, a. differs  from 6 .  only due t o  incorrect decisions of the receiver, so t h a t  

1 1 

Equation (10) then may be m i t t e n  as 

Wow, i f  the  l a s t  t e r n  i n  Eq, (16) were zero, the  t o t a l  emor would indeed be the  sun of the  

approximation error,  t he  quantization ~ X T O ~ ,  and the @hamel error,  

We now concentrate on a sbg1e  term 

and, for  simplicity, dPop the  subscripts, To compeete Eq. (l~), we need the joint density 

~ c t i o n s  p (a,h), p2(a,a*), p3(bra*). !l%e quantization scheme used here i s  the  usual 
1 

one where the number xi is transmitted (or rather  a waveform corresponding t o  xi) 

whenever z < a < z 
i - 2+13 so tha t  

is the  probabili ty density function of the sample a, Wote tha t  the  type of transmission, 

noise chazacteristics, and receiver s t suc tme w e  completely arbitraz-y; The effect  of 

all these factors  i s  described by the  conditional probabili ty matrix [P, .] where the 
lJ 

element P i s  given by 
i j 

'i 
=  rob [a* = x . / t  c xiJ 

J 
and i s  the probabili ty tha t  a transmitted point xi i s  interpreted a t  the  receiver as x 

j0 



For ease of notation, we w i l l  denote by p .  the  junction which i s  equal t o  p(a)  for  
J 

z < a < z  and i s  zero elsewhere, and c a l l  
j - - j f l  

We f ind a f t e r  some straight-forward calculations tha t  the various probabili ty 

density f'uncti ons a re  given by 

p3(8, a*) C C FP. .S(&x,) 6(a*-x ) 
4 4  L ~ J  j 

Equation (17) may be expanded ( ~ m i t t i n g  subscripts) t o  yield 

Denoting 
- 

rjf' ,(,),a by apj , we f ind t h a t  
,.. 

- 
Era$] = c X, ap, 

- 
~r%a*]  : C x C a p . ~ . .  

i i 
pi J J 1  

2 2 
Now it can be shorn t h a t  the  optimum (minimizes ~ [ a - g ]  ) choice of the  xi i s  

ob%ained when 
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- 2 
Substituting x iK for  api i n  Eq. (25) yields Eq. (26) so tha t  Era&] - ~ r h ]  0 whenever 

the  x. are chosen optimally. Also, substituting Eq- (29) in to  %. (28) yields Eq- (27) * 
1 

Hence, ~[ga*]  - ~[aa*]  = 0 whenever the quantization i s  done optimally, so tha t  

whenever both the  approximation and the quantization are optimally performed, No 

assunrption regarding the  independence of the  "quantization noise" and the  "channel noise" 

i s  made nor required. Equation (30) neither -lies t h i s  independence nor (what i s  more 

important) i s  implied by t h i s  asswrrption. 

Results concerning tradeoffs between approximation, quantization, and channel error,  

together with waveform selection and finite-time coding, w i l l  be presented at a l a t e r  date. 
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IV* PHASE LOCK LOOP STUDXES 

J. C. Lindenlaub 

J. J. Uhran 

The overall  purpose of t h i s  investigation i s  t o  study the threshold properties of 

a phase lock loop using various phase detectors. So far,  the investigation has been 

res t r ic ted  t o  the first order case. The resul t s  are being extended t o  higher order 

systems t o  determine if the hierarchy of improvements s t i l l  results. 

The second semi-annual report showed the relat ive improvements tha t  could be 

obtained by changing the form of the phase detector fo r  a first order phase lock loop, 

S t i l l  many aspects of the threshold problem remain unresolved. Therefore, as  an a id  

t o  continuing the study, an e ~ e r h e n t a l  phase-lock loop system has been b u i l t  and i s  

being used t o  observe the threshold properties of the systems considered. Results 

from the first-order system using a sine comparator, sbown schematically i n  Ffg. 1, 

w i l l  be reported here. The addition of an analog divider t o  t h i s  system forms a 

tanlock receiver, Ffg, 2 .  

S ta t ic  and dyaamic t e s t s  made on the components and the ent ire  1st order system 

of Ffg. % indicate tha t  the physical plant conforms t o  the theoretical model, mg. 3, 

i n  the regions of in teres t .  

The phase detector has a s t a t i c  characteristic very close t o  the desired cosine 

function, Ffg. 4. The VCO has a large adjustable gain factor, p, li near over 5$ of 

the @enter frequency '450kc A typi ca l  gain curve of" the VCO, combined with a large 

resis t ive divider, m, f s shown i n  Ffg. 5 .  The combined gain--mg--is 2.&kc/volt. 

When the system of Fig. 1 i s  synchronized t o  an unmodulated carrier,  the doc .  

control voltage, eo, should be proportional t o  the offset  frequency A UI a s  i n  Eq. 

(1) , whi l e  the 



maximum offset  frequency, A %x9 i s  proportional t o  the input signal level  A a s  i n  

Eq. (2) .  Figures (6) and (7) are typical plots  

of these equations for  our system, Both m and B were fixed for  the above situation. 

A thorough investigation of the system has been undertaken since it has been shown 

t o  conform t o  our model. Some of the preliminary conclusions are summarized i n  the 

following three sections. It should be noted tha t  both the carr ier  and modulating signal 

are sinusoidal while the interference i s  band-limited, white, gaussian noise. 

A, Frequency Modulated Carrier--No Noise 

(1) Provided the signal r a t e  i s  within the loop bandwidth, signal breakup or  

dis tort ion i s  caused by the frequency deviation, not the signal ra te ,  lke maximum 

deviation i s  approxhmtely equal t o  the open loop gain when A m = 0, If A w f 0, 

the maximum deviation i s  proportion@tely reduced. 

(2)  The rms signal output w i l l  increase l inearly with deviation u n t i l  breakup 

occurs. A t  tha t  point it w i l l  begin t o  decrease i f  deviation i s  increased a s  shown 

i n  E g o  8. mi s ef fec t  w i l l  d s o  appear at threshold i n  the presence of noise . 
(3)  'Bze plot  of the output signal 8s. frequency %nd%cates the shape t o  be the 

same as  expected from g3, small signal l inear  an&rlysis, with the 3db point occurring 

a t  .the open loop gain. 

B. Fimd Carrier--White Noise 

(1) Within the equivalent noise bandwidth the output spectrum i s  parabolic for  

high car r ier  t o  noi se r a t i  o (c/N) 

(2) The t o t a l  output power varies l inear ly  w i  t h  C/N i n  db . 
( 3 )  Mot evident i n  the t o t a l  output power i s  an additional noise component with 

a s p e c t r a  width approximately equal t o  the inverse of the sync time. mfa component 

appears a t  threshold and i s  due t o  the system randomly losing sync and causing 
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spikes i n  the output. When the noise i s  measured only i n  the information band, 

thfs  component has a significant effect.  
.. 

C. JMquency Modulated Carrier--Whits Noise 

(1) The standard demodulation curves are shown i n  3ii'fg. 9 for two cases of moduletion 

index. They are sfmflar t o  the standard dfscrfmfnator curves, It should be noted 

that  the threshold i s  due t o  two simultaneous effects: (a) a large increase i n  

noise due t o  the sync spikes, and (b) a sharp decrease i n  signal power as  discussed 

above. 

A model of the phase-lock Poop i s  being %rmulated t o  more adequately explain 

the threshold effects.  It shouldbe noted that  for the enalog signal case, the output 

information i s  practically useless below threshold unless, it i s  extremely redundant. 

However, i n  the case of d igi ta l  signals, where a probability of error criterion i s  used, 

operation might be quete useful below threshold for data mtes  l e s s  than the loop 

band*dth. 



s,(t) 

Bo( t )  

Sync. Detection 

Fig. 1 



COMMUNICATION SCIENCES 

+LC( normalized D.C. outpt  

Shift due t o  s a d  unbalanced voltege which is saneelled out. 

Plg. 4 

r 
4 66 +8 +lo volts (D.C.) 
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