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A computational: technique is sketched, useful,; for example, in ln%
the comparative study of. various quadrature methods. Infinite
Jacobian matrices aré constructed having the pfope:ty that the
eigénvalues of successive leading submai:rices are the ze;:os -of .
successive orthogonal polynomials (or, if desired, their deriva-

tives of any order). Symmetric and unsymmetric formulations are

coefficients for the polynomials. The determinants of leading
—gubmatrices of a matrix related to the above can be used to
evaluate such ;iolynomials,without calculating coefficients. In

phrticular, Christoffel numbers can be so calculated efficiently.

The methods apply to .any Stum sel;uence. GJ)}M
N66-20871 |
{ACCESSION NUMBER) (THRW) h G PO P R l CE s

0

FACILITY FORM 608

(PAGES) 77 CFSTI PF"CE(S) 3

(NASA CR OR TMX OR AD NUMBER) (CATE'ORYI |
Hard copy (HC) / JO

Microfiche (MF) é’b

ff 653 July 65




g
;

MATRIX METHODS FOR CALCULATING ZEROS,
COEFFICIENTS, CHRISTOFFEL NUMBERS, AND

DERIVATIVES OF SOME ORTHOGONAL POLYNOMIALS™

H. A. Luther+ and J. M. Nash**

Introduction

It is known that a recursion relation exists involving any three :
consecutive orthonormal polynomialQ of a given class. This relation can
be used to build a Jacobian matrix whose successive ieading submatriées
have as eigenvalues the zero#,of thesg-polynomials. This same matrix
may be used to yield the coefficients of the polynom;als in monic form.

In the case of Jacobi, Be:gite and Laguerre polynomials, the con~
cept extends simply to the derivatives of the polynomials.

More than one such matrix can be determined. A symmetric form
caﬁwﬂé devised,rﬁﬁus permittiﬁg; for examplé;"the use ofrtﬁermethod of
Jacobi for finding eigenvalhes.- An unsymmetric form can bé:fpund
better suited for findihg»tﬁe Frobenious normal formuaﬁd Betfet suited
for evaluating the»polynomials1by a determin;nt-methoé-later explained
in detail.

The scheme can be applied to any Jacobian matrix, and thus to

any sequence of Sturm functions. It seems well adapted to a comparative
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study of quadrature and series developments for Jacobi polynomials.

The General Case for Orthogonal Polynomials

Let pn(x), n > 0, denote the orthonormal polynomials. Then (see

1], p. 41)
(D o 'pn(x) =(Ax+B)p _,® -C p_,x

where An > 0 and cn > 0. Let kn denote the coefficient of the term of

highest degreé in pn(x),. Then
(2) : pn(X) =k qn(x)
where qn(x). is monic. Also, ‘sincel qn(x)~ and"-'qn_l(_x) are monic,

k =A k
n n n-

1 Thus

) . a0 + (0 - x)q_ () +E q_,0x) =0

where D_ = -Bnléhiand E = cn/(Au__“1 A). E_ 1is positive, q,(x) 1s one,
and we interpret-q_l(x) as zero.
Now let M be the (inflinite)itri:i‘ia'gbnalmat_rix ,[mij] such that

m,, =D vE, ..

11- 1° mi’1+1 - ﬂ:l-!-l,i =B 2 It may be displayed as

D, VE; O 0 ---]
Y&, D, /B3 0 ---|
-(4) M=| 0 VE; D3 VB, =---

0 o E D, =---

- - - - - e -
b a——d

Let the corresponding characteristic functions be Fl(x), Fz(x), etc.

" Then as a -Jacobian matrix (see [2], p. :3Q). 4t 1s known -that by ‘taking -



F =1, F_, = 0, the functions F (x) satisfy
(5) F(x) - (0 -x)EF _,(x) +E F _,(x) =0.
. Thus
) %:!
(6) q (x) = (-1)" F (x) .

The matrix M is known at least for the case of Legendre polyno-
mials (see [3], p.127). _Its‘more general use for the derivatives in
the tﬂree following sections may have been unobserved.

Next let N be the (idfinite) tridiagonal matrix [nij];such that -
n,, =D 1 -E It may be displayed as

11 - P10 %44 T S Mi41,4 T Raa1e
p; 1 0 0 =---]
E; Dy 1 0 ---
¢)) ' 0 E3 D3 1 ---
77777 0 0 Eq Dy - -—

Matrix N has, for 1ts-1éading submatrices, the same characteristic
functions as (4). Either (7) or (4) may be used with the method of
Danilevskii to find the characteristic functions involved. It will be
seen that for this purpose (7) leads to a simplified procedure of inter-
est. Moreover, if x 1is a number for which a polynomial value is
desired; the determinants of the -leading submatrices of N - va prove
econopical. : |

The three following sections give necessary details'for-the poly-

nomials of Jacobi, Hermite and Laguerre. Theée‘sections-atg independent -




of each other and of the remaining sections.
Final sections discuss the evaluation procedure, in particular
Christoffel numbers, then the simplified Danilevskii procedure, then

the computation of eigenvalues.

We consider the polynomials of Jacobi-as defined by (see [1], p.61).

n
(8) P:(.G'B)("’ - (llnl)Z( )(7T (0 +8+n+ 1)(7T (a +v +—j)(x—1)"z v
g=1 . j=1
. v=(

A direct consequence of (8) is the well-known differential,relation

A familigr recurrence relation is

2(a + 8 + 2n)(a + L +n+ 1)+ 193 2N (" 8 (x)
(10 + (a4 B+ 20+ 1)[B-a(atB+ 3o + 8 + 20+ 2)x12, %8 (x)
+2(a+ B+ 2+ 2) (¢; F (8 + we (8B -0,

It 19 seen that po(""B)(x)' -1, 7, B = [(a+B+2Dx+0a- 812
We define P_§a’8)(x) to be zero. By requiring that a and B be each
greater than minus one, not only is P1<a’8)(x) not constant, but the-
polynomials form an orthogonal set, relative to the~weigh£,fuﬁction
a-x%a+ x)B, over the~1ntetv§1:[-l,.1]. |

In (10) replace n by n - my.a by a + my 8 by B + m: The result is -




2(°+8+2n)(a+e+n+m+1)(n-m+1)pni;"‘“’3"“)()

+(@+B+2n+1[B-a)B+a+2m)-(a +8+2n)(a+8+2n+ 2):]? (“‘""'B'“”)(x)

+2@+8+2+2)( +0)(8+ 0P ‘“““ B""’”(x) -0.

From (9) it is seen that

= P(“ ) (x) = 27(a + 8 + 0 +1) — (0.4 8 +n+mP_ (mw)(x) .

Combining these gives
(@) ()

2(c + B+ 2n)(a+B+n)(a+B+n+1)(n-m+ l)D P

+(@+B8+2n+1)(a+B+n)[(B-0a)B+a+2m

(11)
- (a+ 8+ 20)(a + .8+ 21+ 2)x]0® P_ (@:8) (9
+2@+8+22m+2(a+B+a+me+n)(B+md” P (“ B(x) =0 .
1f wé now let
-m ;%
f =2 (o + B 4+m+ 1)
. o 1=1
(12) f ot = Ep@+t 8+ +1(a+ 8+ 20+2)

[2( -m+ 1)(a +8 +n +1)]

pm Pn(a,B)(x) -f an(a,B)(x)

for n >m > 0, and choose;foo = 1, the polynomials an(u’s)(x) are
(a,B) - _ (a,B) -
monic. We have (x) 1 and chéose_to set Qm,mél (x) = 0. The

recurrence formula of '(11) then becomes
: !
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Qm(aae)(x) + [J (G,B) xlqmﬂys)(x) + K (G’B) Qm(.::,IB)(x) =0

Jmf;‘;) = (B8 -a)(a+B+2m)/[(a+ 8+2n)(u+8+2n+2)]

(13), -
nf;g) = 4@+ m(B+o)(o+8+a+w)n- )/

[a+8+2n) (@+B8+2n+1(a+8+2n-1],

Here n > m > O.

For application of final results, it is remarked that (12) yields

. n
14) fm-:zu [7T1(u +8+n+ 1}/(a-m! .
i= .

Relation (13) has the form of (3).

The Pblynomials of Laguerre

them it is known that (see [1], pp. 96-98)

n'Ln,(_a) x) + (x+1-2n - c;)Ln__(_(;)_(x) +M+a- l)LnSZ) (x) =0
(15)

Lo(u)(x) =1, L (a)(x) =g+ 1-x, a> -1»..

1

It can be observed that the coefficient of =" m-Ln(“) (x) =-(-1)%/n! ..
It 1is also known that"
(@) o -1 (a4l)
(16) D Ln (x) = Ln-l (x) .
In (15) replace n by n -~ m and a by a + m. The result is
(G'hn) (x)

@-wp @™+ x4 1-20-a+wL

+(@+a- 1L “‘*“"(:) -0.




By (16)
" L_ (@) (x) = (- H® L (‘”‘“)(x) .

These last .two in combination give .

m 'a'
@-w"t Y@+ ar1-o-mem” Fo

an
+ (n+a- 1)p" Lnfg)(x) =0 .

Now let _gmy.(-l)n/ (n-m)! and ,defineAS_;m(?)v(xg) by
(18) " Ln(f)(x) -8 Smgé)(x) .
Relation (17) becomes

Sm(la)(x) +(2n+a-1-m- .x)Smf:Zl(x)

(19)
+(+a-1@-m- 1)3( ) ) (0 =0.

(:)1 (x) is im:erpreted as zero. Clearly the

Here 0 <m <n -1 and §
polynomials Sm(!o)(x) are monic.

It is seen that (19) has the form of (3).

The Hermite Polynomials -
From [1] we find the Hermite polynomials characterized by .the

recurrence formula.
(20) Hn(x) - 2x Hn_l(x) + 2(n - l)Hn-_z(x) = 0

and the relations Hé(x) =1, Hl(x) = 2x. It 1is also known that (see

(1], p. 102)




(21) D Hn(x) = 2n Hn_l(x) .

thus Dm,Hﬁ(x) - Zmn(n -1) —— (n -m+ l)Hndm(x).. When n is replaced.

by n-m in (20) and the result combined with the relation just ébove, we

have -
m m -
(n - m)D Hn(x) -2nxD Hn_l(g)
(22)
+2n( - D" H_,(x) =0 .
Now let hmn - 2" n(n-1) -— (n - m + 1) and define Imn (x) by
(23) . b () Tm_(x? = n““. »Hn(x) .

When this is used in (22) there results

o) _ (o) & T(n -
\ay A&m’n_l\ 7 BN . s 7 m_’n_Z‘ L
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 This is valid for n - 1 >m>0, 1f T m,m-1 is interpreted as zero. It

is observed that T (x)-l, so that T (x) is monic.

Evaluation of Polynamials and Christoffel Numbers

Polynomial evaluation can of course be accomplished by use of the
polynomial itself; the technique following uses»instead.the~matrix
N - x I directly (see (M).

It is first of all clear that, except for a possible sign change,
the deFetminants of the leadingAsubmatfices of N - va are the values
gh(xv) of the pplynom;alé-ofu(3). We choose to rewrite the matrix

N - va as




a;; 1 0 0 0 ----]
a;; 4z 1 0 0 ----
0 asg az3 1 0 ----
0 0 a3 ay, 1 - - .-
0 0 0 agy &s55 ;,— ; -

L~ = - = - T T T

Note that ~aj; 1is gl(xv). Now multiply column twe by aj;; and subtract

from column one. The result is

[0 1 0 0 0 =-==-]
as;' aj; 1 0 0 - -
az)’ a3 az3 1 0 --=--

0 0 ays3 ayy 1 - - -
0 o0 0  ag, ass - ---
- - - e e

It is seen that -az' is qz(xv). If we continue in this fashion, next
ubing‘a21f' times the elements of the third colum@ to gubtract ‘from the
first, we build in column one the negatives of QI(XQ):AQZ(Xv)-.da(XV)-
etc. | | '
In practice, of course, there 1s no need to destroy any of the
matrix N, nor ig there need to estahlisﬁ the zeros. All cdmpuﬁétions
can bé done in terms of-a.cblymh appen&ed to N, and results left therein
so that in the f}nal gtégg.the negaﬁ;ve of qi(gv) is the ith row of this .
col&mn. | | |

1

If the coefficients kj are known~(aé§’(2§]; énd:if~xv is a zero -




of qn(x), then (see [1], p. 47), the Christoffel number Av is given by
n ) ,

-1 2

i=0

If a (finite) series involving the polynomials is under consider-
-ation, and if its value, or that of é derivative thereof, be desired for
some x , a similar technique can be employed.

In place of column manipulation to establish the values gn(xv),

row manipulation may be used. This is equally effective.

Polynomial Coefficients and Series Coefficients

Consider the use of a matrix of the type of N, together with the
Method of Danilevskii (see [2], pp. 251-260) to find the coefficients
of the successive polynomials. For simplicity, the matrix-is rewritten

0 b3z b33 1 0 - - - .

0 0 byz byy 1 ===

To begin with, x - b;; is the monic polynomial q;. Now multiply on the

right by the matrix P; = [ ] where §,, unless 1 = 2 and j = 1,

1P14 1Py ™ °43
in which event the value is -b;;, and on the left by its inverse.
Pl' [1rij] where lrij : Gij;unless i=2 and j =.1, in which event

the value 1s b;;. The result is a matrix .
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byy' byy' 1 0 0 ~---
b3;' b3z bij 1 0 =--
0 0 byz  buy 1 ---

and the mohic polynomial q, is x2 - boa'x - byy'.

In general, at the kth step we postmultiply by Pk and premulti-
ply by.Pk_l to obtain Q1. Pk = [kpkj] where kpij "Gij unless

1=k+1, j <k, in which event is the negative of the (1, )

kP13
bla [ r
k k1]

i=%k+1, j <k, in which event

} where = § . unless

K1y 1
is the (i, j) entry of the:

éntry of the current matrix. P
K 13
current matrix. In the reeulting matrix, the first k + 1 entries of

the (k + 1)th row, with signs reversed, give the coefficients.of
G4 in ascending order. -
There is, of course, no need to construct the matrices Pk and
Pk-l, since all required members are simply obtained from the current
matrix.
The above procedure is well adapted to finding the coefficients.
of powers of x in a finite series of such polynomials. At each step

one needs only multiply the polynomial coefficients by the . appropriate

series coefficient and keep a cumulative total.

Polynomial Zeros

The zeros of the polynomials are the eigenvalues of successive

leading submatrices. Thus several techniques are ‘available for finding
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the zeros.

It was found that Jacobi's method, using a straight sweeping
technique, was adequate for experimenting with different families of
Jacobi polynomials.

A varfation was tried, wherein the Jacobi technique was applied -
to the various leading submatrices in turn (a cascading scheme) anq
then moving on tb the next submatrix. This was found to lose accuracy,
so that as finally programmed, each set of zeros was found by returning
| to the original matrix.

Rutishauser's method mighﬁ have been employed. In addition, be-
cause the matrix is tridiagonal, special techniques are available (see.
[2], pp. 283-284).

An Example

The "mixed" cases of Jacobi polynomials seem of interest.

Here a = 1/2, B = -1/2 or a = -1/2, 8 = 1/2. It is not difficult to

show that Pn (x) -7(-7-1)n ?n Because of this,
knowledge of one case only is sufficiept. However,'both cases were
treated computationally and results co;pared.

It is a simple matter to calculate -‘exactly the polynomialg of

lower order. For a=1/2, 8 = -1/2, the monic polynomial of order 10

) ‘10 , 1 9 _ 9 8 _ 7 1, 6 21 5 _ 35 4 _ S5 .3 15 2
is x + 2 x 4 x x + % x + 32 b 4 64 x 32 x +‘E§3-x +
5 1

512 '~ 1024 °

The results following are for a = 1/2, B = -1/2 and were computed,
using single-precision arithmetic, on the IBM 7094. These and other

computations indicate that through n = 10 the coefficients .can be
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considered correct to seven significant figureé (for n = 10 there were
a few exceptions - one can be found fo? the polynomial exhibited above).

The zeros were checked in two ways -~ by evaluating the monic
polynomials directly and by using the determinantal evaluation explained-
above. The twe methods agreed nicely. In no instance did a functional
value have a size in excess of 3 x 10-7.

The polynomial coefficients listed below are in order of decreas-
ing exponent.

For n = 1, 4, 7 and 10, the number -1/2 is a zero. - This serves"

well enough to indicate the accuracy of the polynomial zeros.

n = 3. Coefficients are 1.0, 0.5, -0.49999999, -0.12499999.

Zeros are —0.90096878;,—0.22252091; 0.62348974.

n =4, Coefficients are 1.0, 0.5, -0.74999999, -0.24999999,
0.062499999. '
Zeros are -0.93969247, -0.49999993, 0.17364815,

0.76604433.

-0.18749999, 0.031249999.
Zeros are -0.95949273, -0.65486056, -0.14231480,

0.41541492, 0.84125329.

‘n = 6, Coefficients are 1.0,,0.5;—1.249999?, -0.49999999,
0.37499998, 0.093749998, -0.015624999.

- Zeros are -0.97094148, -0.74851047, -0.35460476,
0.12053664, 0.56806450, 0.88545575. |
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n = 7. Coefficients are 1.0, 0.5, -1.4999999, -0.62499999,
0.62499996, 0.18749999, -0.062499996, —-0.0078124997.
Zeros are -0.97814722, -0.80901659, -0.49999978,

-0.10452841, 0.30901686, 0.66913024, 0.91354505.

n =8, Coefficients are 1.0, 0.5,-1.7455555, -C.
0.93749993, 0.31249999, -0.15624999, -0.031249999,
0.003906249?.

Zeros are -0.98297261, -0.85021662, -0.60263427,
-0.27366286, 0.092268316, 0.44573813, 0.73900845,

0.93247172.

n =9, Coefficients are 1.0, 0.5, -1.9999999, -0.87499997,
1.3124999, 0.46874998, -0.31249997, -0.078124997,
0.019531249, 0.0019531249.

Zeros are -0.98636077, ~0.87947316, -0.67728116,
-0;40169515; -0.082579298, 0.24548535, 0.54694776,

0.78913999, 0.94581668.

‘n.=-10. Coefficients are 1.0, 0.5, -2.2499999, -0.99999996,
1.7499998, 0.65624997, ~0.54687494, -0.15624999,
0.058593743, 0.0097656245, -0.00097656245.

Zeros are -0.98883024, -0.90096820, ~0.73305130,
-0.49999968, -0.22252079, 0.074730041, 0.36534072,

0r62348928,i0.82623820, 0.95557211.
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