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with uniform mass transfer is obtained. The velocity field

is found for either suction or injection but the related solu-
tion for the energy field is subject to an energy balance at

the exposed surface and is therefore valid only for injection.
This latter solution is equally applicable to certain species
fields as well. The present results along with those pre-
sented previously for the two-dimensional case permit a com-
parison of the effect of injection on boundary layers over two-

dimensional and conical surfaces.

I. INTRODUCTION T

In a previous pa.perl the present author and K. Chen provide
an analysis of the laminar compressible boundary layer with uniform injection
on a two-dimensional surface. The velocity field is applicable to uniform
suction as well but the related solutions for the energy and species conserva-
tion, since they satisfied energy and mass balén.ce conditions at the exposed
surface, apply only to the case of injection. This is perhaps the more inter-
esting case from an applied point of view. It is pointed out there that a sim-
ilar, indeed formally identical, solution can be carried out for the flow on a

cone with uniform injection, i.e., (DV)W = constant. It is the purpose of this

'P. A. Libby and K. Chen, Phys. Fluids 8, 568 (1965).
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note to present the numerical results of this companion study; there appear
to be no previous analyses of this case. The presentation can be made rather

succinctly by referring to the previous paper and by pointing out the differ-

ences in the two analyses. 2 : A p o

II. THE VELOCITY FIELD

For a cone the cylindrical radius r = x sin GC = ax where GC
is the half-angle of the cone and x is the coordinate along the surface of the
cone. The solutions are again found in terms of the transformed boundary

layer variables s, m but for the present case
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The solution for the velocity field is again carried out in terms of the mod-
ified stream function F(s,7n) defined by Eq. (4) of the previous paper, sub-
ject to the same initial condition, to the same condition at 7 — oo, and to the
same no-slip condition at the surface 7 = 0. However, the final boundary
condition at 71 = 0 is now altered; for the case of uniform mass transfer, i.e.,
for (pv)W = constant, the equation relating the v-velocity component to F(s,n)
. leads in the case of the cone to
1/3 -2/3 ,,2/3, 1/3 J3/2 1/6
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compared to F(s, 0) < s for the two-dimensional case. As in the previous
analysis, it is convenient to introduce a new nondimensional, independent var-
iable, which is denoted here by a separate symbol X so as to distinguish it

from the previous, independent variable, €(s); let

1/6

x={1s (3)

2The notation of the previous paper is carried over without change;
only new quantities are, therefore, defined here.




where x > 0 for suction and X < 0 for injection and where the { 1 factor
is defined by the right-hand side of Eq. (2). Note that if the mass transfer
rate (pv)w/peue is specified, if the properties of the external stream in
terms of De’ pe, ue are known, and if the geometry of the cone in terms
of o is known, then X = X(x) so that the solutions in terms of X can be

directly related to the station along the cone defined by x.

Now consider F to be a function of X and 7. The final equa-

tion and conditions are then

F + FF - 3KF F -F F =0 4
mm mm - X3NEpE = By Erm) (4)

subject to the conditions

Fn(o’ n) = Fb(n)’ Fn(X’ 0) = O’ F.n(X’ Q)) =1

F(x,0) = X

The skin-friction coefficient, a quantity of applied interest, is now related

to F and to X by the equation
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As in the previous analysis the solution to Eq. (4) is found in

the form

Qo
Fx,m) = Fglm) +) X" N_(m) . (e

n=1

Substitution of Eq. (6) into Eq. (4) leads as previously to an array of equa-

tions of the form
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which is subject to the conditions

N!(0) = N! () = 0

it
—

Nn(O) =1, n

=0, n=22

The right-hand sides, i.e., the Rfll), for n =z 2 depend on the previous

functions in the array.

The first five functions Nn(n) have been found numerically.
The crucial values for generating these functions in detail are Nr"l(O); ac-
cordingly, these have been listed in Table I. In addition the ''velocity pro-
files'" are usually of most graphic interest so these have been given in
Fig. 1. Also of interest is the variation of (F‘nn)w with ¥X; this is shown
in Fig. 2 for four and five terms in the series. As in the previous case
the value of X < 0 for which (F‘rm)w =0, i.e., the "blow-off'" value, al-
though of conceptual and perhaps of applied interest, cannot be determined

by the present analysis. This completes consideration of the velocity field.

Table 1. Initial values of Nn('n) functions.

Hi
n Nn(o)

0.9039

0.2504
-0.1068

0.04038
-0.07963
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111, THE ENERGY FIELD

Under the same assumptions relative to transport properties

of the gas used in the previous paper, the equation of energy conservation




in terms of the ratio of stagnation enthalpies g = hs/hS e and of X and
7 is

-F g)=0 . (8)

g x x®n

m + an - (x/3)(an
As previously it will be assumed that only the case of injection
(x < 0) is of interest and that the convective heat transfer from the gas to
the exposed surface is absorbed by the coolant in passing from the coolant
chamber where its enthalpy ratio is g to the exposed surface where its
enthalpy ratio is 8y ~ gw(x), to be determined. On physical grounds it is

anticipated that gw(O) =1 so that the initial and boundary conditions are

g(x, o) = g(0,7m) =1
(9)
(4/3)(-XNey,- 8.) = (gp),
The boundary condition at 1 = 0 represents the heat balance condition for
the present case of a cone. It is perhaps worth noting that if in addition to
the convective heat load there exists a uniform additional thermal load, e.g.,
due to radiation, then this heat balance condition still prevails but with a re-

dcfined B which accounts for this added load.

The solution of Eq. (8) subject to the conditions of Eqs. (9) is

found in the form

gx;m =1+(g_-1 ) x" G_(n) | (10)
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where the Gn('r)) functions are given by an array of ordinary differential

equations

" v ‘ ' - =
Gn+FOGn (n/3) FQGn 0, n=1
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and are subject to the conditions



G (0) = -(4/3) G__,(0), n=2

(4/3)’ n=1

Again the Rflz) functions are known functions of the previous Nn and Gn

functions.

The first five Gn solutions have been obtained numerically;
for their reproduction by straightforward numerical integration the values
of Gn(O) and G;I(O) are listed in Table II. For gréphic displace the dis-
tributions of Gn(n) are shown in Fig. 3 while the distribution of wall enthalpy

in the form (1 - gw)(l - gc)-l as given by four and five terms in the series

is shown in Fig. 4.

Table II. Initial values of G_(n) functions.

n G;I(O) Gn(O)

1 1.333 -2.465
2 2287 -1.645
3 2.193 -0.2046
4 0.2728 - -0.1205
5 0.1607 -0.1214

Iv. CONCLUDING REMARKS

In conclusion perhaps several remarks will be pertinent. As
in the previous paper the concentration field, in terms of species mass frac-
tions in cases with no gas-phase reaction and of element mass fractions in
cases with such reaction, is given by the solution for the energy field pro-
vided, é.s is physically reasonable, a mass balance at the exposed surface

is imposed.




It is perhaps of interest in applications to compare ¢(s) and
Xx(s); for this purpose consider a wedge and a cone under flow conditions so
that P, “e’ u, are the same in the two cases and let (ov)w/oeue be com-
mon. Then at equal distances from the leading edge and from the apex, i.e.,

at the same station x, it can be shown that

e(s)) = 312 x(s)

where Sy and s, are the values of s for the wedge and cone, respectively.
In addition, the total mass added through the porous surface from the apex

of the cone to the generic station x per unit length of perimeter at x | is
one-half that added from the leading edge of the cone over the same x-wise
length per unit length parallel to the leading edge. If Figs. 2 and 4 are com-
pared, respectively, with Figs. 5 and 9 of the previous paper in terms of
these considerations of the wedge and cone, it is found that the skin-friction

on the cone is altered less by mass transfer and the wall enthalpy on the

cone with injection is higher than on the wedge.
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