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I. INTRODUCTION AND SUMMARY

In fullfilment of the Phase I requirement on NASA Contract
NAS 9-5592, a literature search has been conducted for the purpose of
investigating the properties of numerous materials, generally of the
ABO, type, with regard to their potential utilization in the preparation
of high vacuum evaporated capacitors of high specific capacitance. The
compounds investigated are those listed in "Exhibit A" of the contract.

A detailed discussion of the physical and electrical properties of each

of these materials is included in this Interim Report.

Since the phenomena of ferroelectricity, antiferrcelectricity,
and paraelectricity are intimately associated with the materials in
question, a technical background discussion of these phenomena was con-
sidered essential for the correlation of the physical and electrical

properties discussion and is included herein,

Subject to approval by NASA, the materials selected for further
study in Phase 11 are:
BaTiOQ,
PbTi0,
(Ba~Pb)Zr0,
KNbQ,

NaNbQ;,

Discussion of the bases upon which the above materials were

selected is included in this report.

[1]



IT. GENERAL PROPERTIES

A. Ferroelectric Materials (%» 24,3267, 63,90, 138,142)

The study of dielectrics and their properties is generally
concerned with the polarization or dielectric displacement that can be
induced by application of an external electric field. For most dielectrics,
the charge which may be induced is quite small for readily attainable field
strengths. There is, however, a considerable body of materials whose
polarization properties are quite different from the normal, or para-
electric, dielectrics. Not only do these materials exhibit high
polarization effects, but also differ from normal dielectrics in that the
polarization vs, electric field strength characteristic is not linear, and
exhibits a hysteresis effect. These materials are generally classified as

ferroelectric.

Historically, the term is derived as the electrical analog of
ferromagnetism, although the chemical compounds are not identical. This
is primarily as a result of the similarity of the polarization - electric
field strength and magnetism-magnetic field strength hysteresis effects,
although domain effects are also to be noted in each. These effects are to
be noted only below certain transition temperatures known as Curie points.
Above the Curie point the materials lose their ferroelectric properties
and behave as normal, paraelectric dielectrics. Although some materials
exhibit more than one Curie point (such as Rochelle salt: NaKC,H, Q +4H, 0),
they are very much the exception. The temperature range of the Curie
points for various materials of interest to us (type ABC@) is quite broad:
from approximately 13°K for KTaO; to 763°K for PbTiO,. These Curie points

are generally discrete transition temperatures for any given material,
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although some hysteresis effects may be noted depending upon the direction
of temperature change. The Curie point may also be shifted significantly
with additions of dopants, a valuable tool used in reducing temperature
coefficients of capacitance. Typically, the maximum dielectric constant

lies at the Curie point.

Above the Curie point, ferroelectric materials behave as normal,
paraelectric dielectrics, and their dielectric constant may be related to

temperature by the formula ¢ = TgT_ , the Curie-Weiss law, where € is

c
the dielectric constant, C is the Curie constant, T is the temperature of

the dielectric and T, is the Curie temperature, not to be confused with
the Curie point. (The Curie temperature is defined by the above equation
and is generally slightly below the Curie point, the transition temperature

of the crystal.)

The hysteresis and non-linearity of polarization-field strength
effects may generally be explained by consideration of the crystal
structure.‘ The materials of interest to this Contract are of the.general
form ABO, and are of ionic character. Below the Curie point of these
crystals, there exists a net dipole moment caused by a displacement or
distortion of the ions in the unit cell. Because many materials possess a
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condition is that this net dipole moment may be reversed by obtainable

electric field strengths.

The non-linear hysteresis effect may most simply be explained by
considering the effect of an applied electric field on the crystal dipole
moments, Initially, we may consider the crystal dipole moments to be

randomly oriented: there is no net polarization in the crystal. With
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application of a low electric field strength, some of the dipole moments
are reversed, slightly increasing the net polarigzation of the material.
Further increase of the field strength switches more and more of the dipole
moments. Eventually, saturation is reached and the polarization approaches

a linear dependance on field strength (see Figure 1 (9°)),

If the field strength is then decreased, many of the dipoles
switch back to thelr initial position, although many will remain aligned
with the electric field (see Figure 2 (2)). At zero field strength, the
material will exhibit a net polarization called the remanent polarization
(point D). Application of a reversed electric field will reduce the net
polarization to a point where no polarization is present (point F). The
field strenth necessary to reduce the net polarization to zero is called
the coercive field strength. Further increase of the reversed field will
complete the polarization in the negative direction (point G). Reversal

of this field strength will complete the hysteresis loop (point C).

An interesting and important phenomenon peculiar to ferroelectric
materials 1s related to the remanent polarization. If a crystal or
polycrystalline ceramic is polarized by an applied electric field at a
temperature below its Curie point, it will retain a net polarization upon
removal of the field (remanent polarization). If the crystal temperature
is raised through the Curie point, the net polarization will suddenly
decrease to zero at the Curie point (the pyroelectric effect). Assembling
these phenomena, a ferroelectric crystal may be defined as "a pyroelectric

crystal with reversible polarization."(?)

4]
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B. Antiferroelectricity (1s1759°)

Considerations of antiferroelectric materials basically involve
the same phenomenon of spontaneous polarization of individual crystal cells.
In the antiferroelectric case, however, application of an electric field
realigns the dipole moments, but the alignment is antiparallel, cancelling
the net polarization: the shift of one dipole moment is compensated by a
similar, reverse shift of another dipole moment. An increase in the field
strength eventually induces a net polarization and the material behaves as a
ferroelectric (Figure 3 (17)). Antiferroelectric materials also exhibit
changes in structure and dielectric constant with temperature analogous to
those of ferrocelectric materials. It is therefore possible to change
from an antiferroelectric state to a paraelectric state at the Curie point
and to change from an antiferroelectric state to a ferroelectric state

with application of sufficient electric field strength.
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Figure 3
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IIT.  MATERIALS

A. Bulk Properties

1. Titanates

a, Barium Titanate

(1) Pure Material

Historically, barium titanate is perhaps the best understood and
most extensively investigated of all the ferrcelectric materials. The
discovery of the ferroelectric properties of the ceramic material in
1943 was apparently made independently by several investigators. Since
that time, and especially since 1954 when single crystal BaTiO; became
available, investigations of the material in both single crystal and

polycrystalline ceramic forms have increased.

BaTiO, is quite interesting in that its crystal structures are
simple, it is quite stable at room temperature, and the ferroelectric
state may be readily investigated at room temperature. Of greatest
interest to us are its characteristics in ceramic form, although the

characteristics of single crystal BaTiO; are usually more easily under-
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The Curie point of the pure BaTiO; is 120°C. Above that
temperature, the unit cell structure is cubic (Figure kLa (90)); below
120°C, the unit cell becomes tetragonal (Figure Lb °°)) and is
ferroelectric, One of the cube edges elongates to become the crystal c
axis and the other two are compressed and become the tetragonal a axes.

The tetragonal structure is stable to the next transition temperature of

L7]



5°C, when the unit cell shifts to an orthorhombic phase (Figure Ac(ga).

The crystal remains ferroelectric through this phase; in fact, it remains
ferroelectric down to approximately 2°K.(9 This phase is stable to about
-90°C when the cell structure shifts to a rhombohedral phase (Figure hdca@).
In Figures 4a through 4d, the dotted lines represent the original cubic
cell, and the heavy, dark arrow (Pg) indicates the direction of the

spontaneous polarization of each phase.

B

| S ——

(a) - (b)

{c) (d)

Unit ocells of the four phases of BaTiO,.

{(a) Cubic, stable above 120 °C,

(b) Tetragonal, stable between 120 °C and 5 °C.

(c) Orthorhombic, stable between 5 °C and — 90 °C.
(d) Rhombohedral, stable below — 90 °C.

The dotted lines in (b), (c) and (d) delineate the original cubio cell. The heavy
arrows indicate the direction of the spontaneous poisrization P, in each phase.

Figure 4
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The variations of the crystal lattice parameters are shown in
Figure 5 (primed letters refer to the pseudocubic cell axes when this is
not the true cell).(go) The lattice constants have been thoroughly
investigated from ~160°¢(29 through room temperature,(4’3d up to
1372°C.(2@ The crystal structrues and lattice constants shown were

compiled from these works.

Production of BaTi(, is reasonablly straightforward, generally
starting with a stcichiometric mixture of either BaO and Ti(Q, or BaCOs
and 110,. These materials are sintered at temperatures ranging from
1350°C to 1A50°C,(‘5’125) yielding crystals of tetragonal structure at
room temperature. ‘lemperatures above 1460°C are tou be avoided due to
the transition of the cubic phase to a hexagonal phase at that temperature.

The hexagonal phase of BaTio, is not ferroelectric.(l)

Perhaps the most successful technique for growing single crystal
BaTiQ, is that developed by Remeika(s) utilizing a potassium fluoride flux
which 1s decanted after firing. This process produces crystal plates which
are nearly single domain. Addition of a Fey0; dopant to the flux decreases
the BaTil. -~rystal conductivity, probably by supplying oxygen to the BaTiO,.,

The Curie point is, however, also lowered by this addition.

The electrical properties of BaTiO, crystals and ceramics are, of
course, of primary concern. Although the crystallographic transitions
below 5°C and above 120°C are of considerable academic interest, the
tetragonal form remains the most important, as it is stable at room
temperature. Figure 6(13) shows the dielectric constant of single crystal
BaTiO, vs, temperature, The notations €, and €c, respectively, refer to

the values of the dielectric constant parallel to and perpendicular to the

[9]



polar axis of the crystal domain in the tetragonal phase. The dielectric
constant vs. temperature characteristics of ceramic BaTiO; are shown in
Figure 7.(142) The curve ancmalies closely agree with those noted for
single domain crystals. The published value of the dielectric constant
of polycrystalline BaTiO, is approximately 1400 - 1500 at room tempera-
ture (2 2599 although there is considerable disparity in the reported
values, depending upon the electric field strength, test frequency,

chemical purity and crystallite size of the ceramic, etc.

In the cubic phase (above 150°C) of both single crystal and
polycrystalline BaTiO,, the dielectric constant varies in accordance with
the Curie-Weiss law. For ceramic barium titanate, the Curie constant (C)
is 1.54 x 10°°C and the Curie Temperature (T,) is 118°C{*®) with only

slight differences for single crystals.(as)

At the Curie point, the dielectric constant reaches a sharp
maximum, corresponding to the 120°C transition of the crystal from the
tetragonal to the cubic phase., Other dielectric constant maxima are noted

at the other crystallographic transitions.

Experimental data on loss characteristics of ceramic BaTiQ,
show remarkable anomalies which do not coincide exactly with the
crystallographic transitions. The dielectric constant and loss tangent
over the temperature range 25°C to 350°C were reported by Roberts(ls) and
are listed in Table 1 below. {Note the considerable decrease above the

Curie point.)

(10]
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DIELECTRIC PROPERTIES OF TICON B BaTiO,
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TABLE I
Temperature Temperature
°C K tan § °C K tan &
25 1525 0.009 150 2L50  0.002
50 1413 0.011 175 1610 0.001
75 1440  0.010 200 1190 0,001
100 1750  0.014 225 993 0.002
110 24,50  0.016 250 761 0,002
115 5070  0.013 275 656  0.007
120 5070  0.009 300 572  0.016
125 L430 0,006 325 506 0,040
130 3820  0.004 350 457 0,087
140 2970  0.003
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If the charge vs. an alternating applied field on a BaTiO,
ferroelectric capacitor is displayed on an oscilloscope (technique of Sawyer
and Tower(los)), a typical hysteresis loop will be obtained (see Figure 2).
As noted previously, the appearance of the hysteresis effect is due to the
properties of the crystal dipole moments. Application of an increasing
field tends to align the dipole moments, When the field decreases some of
the aligned moments do not return to their original unaligned position,
yielding remanent charge or polarization. It will be seen, therefore, that
application of a field in the opposite direction will eventually cancel the
effects of the aligmnment by providing sufficient energy to allow them to
return to their initial state., This field, necessary to retufn the polariza-
tion to zeroc, is known as the coercive fileld. Measurements of the spontaneous
polarization show the drop anticipated at the Curie point (Figure 8(33)) due
to the transition from the tetragonal, polarized state to the cubic,
unpolarized state. The ceramic material used in the investigation had a
Curie point of approximately 107.5°C at zero voltage. Measurements of the
coercive fileld are in some disagreement, again probably due to crystalline
imperfections and impurities, Values of the coercive field at room
temperature generally range from 500(33) to 2000 V/cm.(l) The effect of

temperature on the coercive field is well demonstrated in Figure 9.(1)

x 10-8

1
]

‘M\

Coercive Field, kv/em

] . ] | 1 | | 1 ] ] 1
-I00 -80 ~60 -40 -20 O 20 40 60 80 100

0 .
20 30 40 80 [ L] 70 80 °0 100 "o

- Temperature, °C
Coercive fleld of BaTiO, as & function of temperature

TEMPERATURE IN DEGREES CENTIGRADE

Spontaneous electrical polarization Pg versus
temperature T,

Figure 8 Figure 9
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An important consideration regarding these dielectrics is the
effect of field strength on the dielectric constant as well as the effect

on the Curie point itself.

The effect of D. C. field strength on the dielectric constant
is, of course, related directly to the polarization hysteresis loop.
Technically, the dielectric constant is the slope of the dielectric dis-
placement vs. the electric field strength curve, although in this case,
due to the high value of the dielectric constant, there is little
difference between polarization and the dielectric displacement.(as’go)

A typical curve of the effect of field strength (60 cps) on the dielectric

constant is shown in Figure 10{138) The difference between the two curves

is due to the hysteresis effects,

L very interesting investigation of the effect of electric field
‘ strength on the Curile point was published by Merz.(33) With application of
a biasing field, the Curie point shifts to higher temperatures. This shift
has been measured and is shown in Figure ll.(33) Merz used this information
to test the behavior of ferroelectric BaTiO, single crystals near the Curie

point and te derive information relating to the free energy of the crystal,

The aging characteristics of the dielectric constant is of great
importance when one wishes to construct a usable dapacitor. Partington,
et, al.,(73) have noted that the dielectric constant of BaTiQ, took
considerable time to stabilize after a sudden change of the biasing voltage.
Since this effect is only temporary, it is not of as great importance as
the aging of the dielectric constant. Figure 12(*%) shows a plot of the
dielectric constant for two different materials against time. The curve

apparently remains linear on a semi-log plot, as measurements have been

[14]



taken for one year, This effect is apparently due to a loss of

permanent polarization from the ceramic and is possibly due to domain wall
shifts.(94) Interestingly, the initial, high dielectric constant may be
reinstated by heating the ceramic through its Curie point and then cooling
to the test temperature, where the aging begins once again. Thus, the
aging phenomena is a reversible characteristic. There is some evidence ®*)
to show that the aging characteristics of a material may be modified by

additions of dopants (Figure 130%)),

[15]
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DIELECTRIC AGING CURVES AT ROOM TEMPERATURE
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(2) Effect of Dopants and Impurities

The effect on the dielectric constant of departures from
stoichlometry are significant., A standard 1 to 1 ratio of BaO and
TiG, yields the dielectric maximum and tan 6 related in Figure 7. If
the BaO content is reduced, the dielectric constant curve is flattened and
lowered, and the curve of tan & vs. temperature changes dramatically

(Figure lh(l42)).

Conversely, if the Ba0O content is increased relative to the TiQ,
content, the maximum dielectric constant increases dramatically (Figure 15(142)).
Although the maximum dielectric constant behaves wildly with variations of
the constituents, the location of this maximum (the Curie point) is
remarkably stable. Unfortunately, an excess of either constituent yields
a material which is not as chemically stable as stoichiometric BaTiQ;, an

important consideration in vacuum deposited thin film capacitors.

The effect of addition of either Silica (SiG ) or Alumina (A1, Q)
on BaTiO; 1s that of reducing and flattening the dielectric constant vs.
temperature characteristic (Figure 16(83)). Although other impurities
doubtless have a considerable effect on the characteristics of the BaTiQ,,

the reports on their effect have not been found.

The addition of certain desired materials to BaTiQ,as dopants

may modify the crystal characteristics significantly.

One of the most studied of these additives is SrTiO;. The
material is not ferroelectric (its dielectric constant behaves according
to the Curie-Weiss law, however) and has a rcom temperature dielectric

constant of approximately 200,(90) and forms a complete range of solid

(18]



solutions with BaTiQ;. The addition of SrTiQ; causes a downward shift of

the Curie point of BaTiQ, and is almost linear (Figure 1761y, Figure 17
also depicts the unit crystal cell dimensions with varying amounts of

SrTi0,. The dependance of € on temperature for various SrTi0; concentrations
is shown in Figure l8ﬁ149 (The notations on each curve signify the amount

of SrTi0O, in the solid solution: S-30 signifies a mixture of 30% SrTiQ;,

70% BaTiO,.) Figure 19(1%1) shows the thermal characteristics of € and

tan & for a 10% SrTiO,, 90% BaTiO, mixture.

The addition of PbTiQ; in appreciable quantities to BaTiO,; has
an effect opposite to that of SrTiQ;: The Curie point increases with
increasing PbTiO, concentration (Figure 20).(104) The maximum dielectric
constant at the Curie point is also considerably reduced with addition of
PbTi0, (Figure 21),(76) and this propensity may be helpful in producing
less erratic dielectric constant vs. temperature characteristics. This
latter effect may more than compensate for the decreased dielectric constant.
In Figure 22,(77) the stability of tan 6 is shown for an 80% BaTiQ,, 20%
PbTiO, mixture. The addition of PbTi0, to BaTiO, decreased the resistivity

of the solid solution with increasing PbTiQ, concentrations.(7®)

with BaTiO, is much more limited than
for PbTiO, and S5rTi0,. Generally, the addition of CaTiQ; to BaTiOQ;

decreases the dielectric constant and the power factor of the solid solution
at any temperature (Figures 23 through 25(83)), but does not change the 120°C
transition temperature of BaTi(O,, although the 5°C transition temperature is
shifted to lower temperatures.(®°) The addition of CaTiQ, to BaTiQ, may
also have the beneficial affect of reducing the thermal instability of

both the dielectric constant and the power factor.

[19]
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b. lLead Titanate

The crystal structure of lead titanate, PbTiO;, is quite
similar to that of BaTiO,: cubic above the Curie point (490°C) and
tetragonal below it. The lattice constants of the unit cell through the
temperature range 0°C to 600°C are shown in Figure 26.(122)  The dielectric

constant varies with temperature as shown in Figure 2’7.(131)

Above the Curie point, the dielectric constant is governed

by the Curie-Weiss law, with ¢ = 1.1 x 10° and T, = 420°C.

Except for the transition at 490°C, no other crystallographic
transitions have been observed down to —l7O°C.(9°) One interesting
phenomenon is the apparent decrease in unit cell volume near (and below)
the Curie point. Apparently, the ferroelectric unit cell volume is
larger than the paraelectric cubic cell. This phenomenon is not detectable

in its relative, BaTiOQ;.

A discussion of the effects of the addition of PbTiO; to

BaTiO, ceramic has already been noted.
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c. Strontium Titanate

SrTi0, has been reported as both ferroelectric and as para-

(1542,103, 142, 143)  (ne peason given to

electric by various authors.
substantiate the claim to ferroelectric behavior is based on the behavior
of the dielectric constant with changing temperatures. Most observers
agree that the dielectric constant closely follows the Curie-Weiss law
down to about 50°K, with ¢ = 8.3 x 10*°K and T, = 38°K. The crystal

structure apparently experiences a crystallographic transition at 4O°K, the

unit cell being tetragonal below this point and cubic perovskite above it.

The dielectric constant of SrTi0O, at room temperature is
approximately 220, and gradually increases to approximately 20,000 at 2O°K.(1)
The behavior of the dielectric constant and tan & are shown over the

temperature range -90°C to 130°C in Figure 28.(143)

At temperatures below 50°K, the dielectric constant is lower
than predicted by the Curie-Weiss law, and tends toward a steady value of

1300 as absolute zero is approached.(l43) This lack of hysteresis effect

below 50°K is in opposition to the findings of F. Jona and G. Shirane.(l)

The primary interest in SrTiO; appears to be in its use as a

dopant for BaTiO,.

d. Calcium Titanate

Calcium titanate (CaTiQ, ) has given its mineral name to the
structural type of compound devoted to ABO;: the mineral perovskite. The

unit crystal cell structure changes from the room temperature orthorhombic

(25]



DRLECTRIC CONSTANT £’

form to a tetragonal form at about 600°C and to a cubic form at about

1000°C, The dielectric constant and tan & for a ceramic specimen of

CaTiO, are plotted vs. temperature in Figure 29.(142)  The material

is not ferroelectric and its main use is as a dopant for BaTiO;, as

noted previously.
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2. Zirconates
a. Lead Zirconate
(1) Pure Material

lead zirconate has attracted considerable attention due to its
dielectric properties: it is apparently aﬁ antiferroelectric material,
Although considerable work was directed to measuring its dielectric
properties, the first report was made by S. Roberts in 1950.(41) Since
that time, considerable interest in lead zirconate has been engendered,

especially in Japan.(l% 17, 35 100, 132 )

There are two known states of the crystal unit cell: cubic
above 230°C and orthorhombic below,(le) although the latter was earlier
reported to be tetragonal.(ga) The unit cell lattice constants vs.
temperature are shown in Figure 30.(1) Also shown is the unit cell volume
vs., temperature characteristic, which exhibits the anomalous volume change
at the Curile point transition and which has been confirmed by other

measurements.

Temperature dependence of the lattice parsmeters of PbZrO,. The
antiferroelectric phase is described in terms of peeudo-tetragonal axes a and c.
a, = cubic parameter

Figure 30
(28]



Of greater interest are the electrical properties of PbZrQ;.
Measurement of the polarization vs. electric field strength characteristics
yield data as in Figure 3. At low field strength, the polarization varies
linearly. At a certain critical field strength, labeled E,, the
characteristic becomes non-linear and a hysteresis loop develops which is
similar to that observed for BaTi(,. Consequently, it is inferred that
application of sufficient field strength (Ec) induces a ferroelectric state
which is more stable than the antiferroelectric state. This phenomenon is
due to the action of reversible, anti-parallel dipole moments, whose
energies are eventually overcome to produce a net polarization in the
crystal. In contrast with BaTiO,, an increase may be noted in the

polarization at the Curie point (Figure 31(17)).

The increase in polarization corresponds directly to the increase
in dielectric constant at the Curie point. Figure 32(22) Shows the
variations of both the dielectric constant and the loss tangent vs. tempera-
ture. Above the Curie point, the dielectric constant follows the Curie-Weiss
law, with C = 1.6 x 107°°C and T, = 118°C. Although the dielectric constant
vs, temperature slope is quite flat at room temperature, its low value will
be immediately noted (~ 100). Consequently, PbZrO, as a pure material
is of very little interest to us. However, the dielectric characteristics
of the material in solid solution with other materials is of considerable

interest.

[29]
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(2) Effect of Dopants (Solid Solution with PbZrQs )

Addition of BaZrQO;, even in small quantities, drastically changes
the characteristics of PbZrO;. Figure 33(106) illustrates the phase diagram
of the (Pb, Ba)Zr0O, system and the electrical characteristics of each phase.
The antiferroelectric state may still be noted to approximate 5% BaZrO,
concentration. As the Curie point is lowered still further by increasing
additions of BaZr0O;, a new ferroelectric phase appears. The effect of the
addition of BaZr0O, to PbZr0; on the behavior of the dielectric constant
with temperature is well represented in Figure 3&.(41) The last figure
exhibits the features of what appears to be a very desirable solid solution
for use as a capacitor dielectric., At high concentrations of BaZrQO;
(approximately 40%), the dielectric constant - temperature characteristic
is flattening, and the room temperature dielectric constant is high

(approximately 2600).
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The measured dielectric constant and loss tangent are shown

in Table II, below.

TABLE II

Table 1. Dielectric Constant (K’) and Dielectric Loss (tan §)
for Pure Lead Zirconate and Solid Solutions of Barium-lead

Zirconate
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As in the case of BaTiQ,, the dielectric constant is sensitive

to the applied electric field strength (Figure 35(41)),

|
!
L
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Dielectric constant of {Bag.;Pbo.¢)IrOa
with varying d.-c. polarizing voltage.

e e, 8

Figure 35

The effect of SrZr0O, addition to PbZr(Q; is to decrease the
dielectric constant of the solid solution. The crystal transition tempera-
tures change with increasing SrZr0O; concentration as shown in the phase
diagram, Figure.36.(1°6) With only slight additions of SrZrQC;, a new phase
appears. Above the primary transition, the unit cell is cubic and para-
electric. The intermediate phase is antiferrocelectric, and the unit cell
is apparently tetragonal. The third phase again is antiferroelectric, but
with an orthorhombic, pseudo-tetragonal unit cell.' The effect of the
SrZrQ; addition to PbZr0; is well illustrated in Figure 37.(106) The low
dielectric constant at room temperature makes this combination of

zirconates of little interest to us.

The addition of CaZrO; to PbZr0; has been reported to yield an

effect similar to that of the addition of SrZr0O, noted above.,

[33]



b. Barium, Strontium and Calcium Zirconates

In their "pure' form, the zirconates of barium, strontium

and calcium hold very little promise for our work. The unit crystal

cells of both barium and strontium zirconate are of cubic perovskite

structure, while calcium zirconate is of orthorhombic form. None of

the compounds show unusual dielectric properties and are apparently

not ferroelectric. Their main use is in the preparation of solid

solutions with PbZrQ,, as noted previously.
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3. Hafnates
a. Lead Hafnate
The characteristics of lead hafnate have been investigated by

Shirane and Pepinsky.(37) Samples for testing were produced from PbCQ,

and HfG, and fired at 1200°C, with special precautions taken to retard the

evaporation of PbO. The crystalline structure of the ceramic was

determined to be tetragonal at room temperature. The unit cell lattice

parameter variations with temperature are shown in Figure 38.(37)

The dielectric properties of PbHf(O, were evaluated: the
variation of dielectric constant with temperature is shown in Figure
39.(37) The material exhibits paraelectric properties above the Curie
point at 215°C and the dielectric constant is closely described by the
Curie-Welss law, with C = ,095 x 10°°C and TC = 50°C. Between the
transition point at 165°C and the Curie point at 215°C, the crystal is
apparently tetragonal and antiferroelectric. Below 165°C, the crystal

structure is distorted tetragonal and is antiferroelectric. The low

dielectric constant at room temperature makes this compound cf little

interest.
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b. Other Hafnates

‘ The crystal structure of the hafnates of strontium and barium
are apparently cubic and their behavior paraelectric at room temperature.
No discussions of the dielectric properties were found and it is assumed

that they are comparable to those of the girconates,

(36]



L. Stannates

The dielectric properties of stannates, as a group, have
apparently not been thoroughly investigated. Only one general report was
found which treated the dielectric and chemical properties of the
stannates.(44) In general, the dielectric constant and power factors are
quite low (Table III below), and none appear to have ferroelectric
properties, The anomalously high dielectric constant noted for NiSnO, is
quest;onable in light of the poor power factor and the high temperature

coefficient of the dielectric constant.

TABLE III

Temp. Coeff. of K,

At _25°C 1 XC ppm/°C D. F. at
MATERIAL K P.F. (25°C - 85°C, 1 KC) 85°C, 1 KC
BasnO, 17 0. 0004 0 + 200 0.0022
CasSn0, 17 0.0004 0+ 200 0.0006
Sr3n0, 15 0. 0006 0+ 200 0.0006
MgSnO, 62 0.0760 + 6,300 + 500 0.1500
Bi, (Sn0, ), 34 0.0050 + 500 + 200 0.0167
PbSn0, 16 0.0300 + 1,800 + 500 0.0390
CoSn0, 16 0.0110 +10,400 + 1000 0.1960
NiSno, 235 0.2670 +19,700 i‘looo 0.3270

There 1s apparently some interest in the utilization of the
stannates in solid solution with their respective titanates to modify the
titanate Curie points and to stabilize the reduction of the titanate

bodies during firing.




5. Niobates
a, Potassium Niobate

The ferroelectric behavior of single crystal KNbO;, was reported
by Matthias as early as 1949.(10) In the same article, he also reports
the addition of NaNb(;, KTaO, and NaTaO, to the list of materials with

ferroelectric properties.

Potassium niobate appears to pass through three crystal
modifications in the temperature range of 0°C to 500°C. The unit cell is
apparently orthorhombic below 224°C, tetragonal above 225°C and below 435°C,
and cubic above the 435°C Curie point (see Figure AO(zl)). The tetragonal

and orthorhombic phases are ferroelectric, the cubic cell is paraelectric.

The variation of the dielectric constant and loss tangent with
temperature are shown in Figure Al.(99) The dielectric constant remains
at essentially the same value from 100°C down to abcut -190°C. The
dielectric constant at room temperature is approximately 500. The

dielectric constant ancmalies correspond closely with the crystal structural

transition.
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There has been some discussion of the validity of the claim
of ferroelectric behavior of KNbO;. Shirane, Newnham and Pepinsky(el)
have, however, noted a large discharge current from a polarized single

crystal as it was heated through the transition points of 225°C and

435°C.

Above the Curie point, the dielectric constant is governed by

the Curie-Weiss law, with C = 1-2 x 10°°C and Tc = 300°C.

[39]




b. Sodium Niobate

As noted in the previous section, the first report of the ferro-
electric behavior of NaNbO; was that of Matthias.(*°) As with KNbO;, the
unit crystal cell experiences two transitions: above 480°C the cell is
cubic, below 480°C and above 360°C the cell is tetragonal, and below
360°C the cell is orthorhombic.(gl) The effect of temperature on the

lattice parameters is shown in Figure AZ.(gl)

Although several researchers report hysteresis effects for
NaNbQ,; at room temperature and below,(g% 45,99, 115 ) most feel that the
material is antiferroelectric in behavior. The effect of temperature on
the dielectric constant over the temperature range of 0°C to 500°C is
shown in Figure A3.(21) No dielectric anomalies have been reported
between room temperature and -185°C, Most importantly, no pyroelectric
effect was noted upon heating a polarized sample of NaNbQO,. The dielectric
constant also remains stable under field strengths up to 8 KV/cm.
Therefore, the reports noted show no evidence of ferroelectricity but
are conslistent with the findings of Vousden,(46) who postulated

antiparallel domains and antiferroelectric characteristics.
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¢c. Mixtures of Sodium and Potassium Niobates

The mixture of NaNbQ, and KNbO; has been studied extehsively,
both for its plezoelectric response and its high dielectric constant., (21 )
The phase diagram for the (Na, K)NbQO, solid solution is shown in
Figure Li. (21) The lattice parameters of the crystal unit cell vs. the

composition of the solid solution are shown in Figure AB.(zl)

An interesting anomaly in the dielectric constant develops at
200°C (Figure 46 (1)), This anomaly appears with only small additions
of KNbQ; to NaNbO;. In any case, the dielectric constant at room
temperature appears to be lower than .SOO. The separate examination of

potassium and sodium niobates appears to hold more promise for our purpose.
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d. Cadmium Niobate

The investigation of CdgNby O, has been carried out by three
investigators,(BA’ 8B, 11) with some promising results. The unit cell
structure has been reported to be strictly cubic, but with a low tempera-
ture Curie point transition (170°K), with an orthorhombic structure below

the transition point.

The dielectric constant at room temperature has been reported
as approximately 320 to 500 (Figure 47(¢B).  The dielectric constant
above the Curie point closely follows the Curie-Weiss law, with C = 4.6 x 10*°K

and T, = 150°C.
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Figure 47
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e. lead Niobate

The investigators of Cd,Nb, (G, have also examined the
characteristics of the related material Pb(Nb0,),. The results indicate
a ferroelectric material with a dielectric constant of 280 at room
temperature. The variations of dielectric constant and loss tangent
with temperature are shown in Figure A8.(5) Because of its relatively
low dielectric constant at room temperature and the chemical instability
of the material, the material is not felt to hold much promise for thin

film applications,
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6. Tantalates

a, Potassium Tantalate

The investigation of KTaQ, has yielded a very interesting and

very low Curie point: approximately 13°K.(22) This is the lowest Curie

point found in the literature and is apparently legitimate, as the

crystals displayed typical hysteresis effects below that temperature. The

variation of the dielectric constant with temperature is shown in

Figure h9.(22) Unfortunately, no data have been found on the dielectric

constant of KTa(O, at room temperature, although extrapolation of the curve

would indicate that it is probably below 500.

§

4700

i

ANE

Sisieniris Constest ¢ WO e  1OV/on

] !

© to 3 Red ”0 © ro ”0
=

Dielectric constant of KTaOs at low temperatures.

Figure 49

b. Sodium Tantalate

Investigation of NaTaO; has also been reported,(lo) and it

apparently displays ferroelectric phenomena up to the Curie point of A475°C.

Unfortunately, no data are given regarding the dielectric constant.

(44 ]



7. Other Materials

a. Tungsten Trioxide

Sawada, Ando and Nomuracas) have investigated the behav%or of
WO, in order to determine whether or not the material is ferroelectric,
Their investigation extended the temperature range to the Curie point at
about 710°C. Although generally high dielectric constants are alluded to,
there are none offered. Extreme difficulty has been noted in the
production of non-conducting samples, which will therefore significantly

limit its use as a dielectric.
b, Antimony Sulfur Iodide

The electrical properties of SbSI have been recently
investigated(lzz’lﬁz) and it has been found to be both photoconductive
and ferrocelectric. The dielectric properties are quite interesting: the
dielectric constant attains a value of 50,000 parallel to the needle
crystal axis, but is only 25 perpsndicular to the axis. The dielectric
constant perpendicular to the needle axis is frequency independent over
the range of 1 KC to 100 KC/sec. Figure 50(122) shows the behavior of the
inverse of the "parallel' dlelectric constant with temperature. The
minimum in the curve represents the dielectric constant anomaly at 22°C.

The behavior of the "parallel" spontanecus polarization of the crystal

with temperature is typical for a ferroelectric and is shown in Figure

51’(122)

L4

Although the material possesses a fantastic dielectric

constant, it has only been measured on single crystals and is high in
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only one axis. Consequently, the dielectric constant of a polycrystalline
material is in some doubt. Considering also the magnitude of the
temperature anomaly near the projected operating temperature of a
capacitor (22°C) the value of the pure material as something other than a
scientific curiosity is questionable. Doubtless the dielectric constant -
temperature characteristics could be modified by suitable dopants or
variations in stoichiometry, but the magnitude of such a project is

considerably beyond the scope of our work.

(46]




B. Thin Film Properties

The production of thin films of BaTi(O, for use as capacitor
dielectrics is of considerable interest. Not only are achievable packing
densities considerably higher than is possible with bulk material (due to
the smaller thickness), but vacuum deposition has the added advantage of

compatibility with integrated microcircuitry techniques.

Consequently, two different approaches to the production of thin
BaTiO; films have been noted. One technique, reported by Bursian and
Smirnova§55) is perhaps the most straightforward: the fusing of BaTiQ,
powder on a heated (platinum) substrate. Unfortunately, the film thick-
nesses obtainable ére within the range of 5u to 50u, and the required
firing temperature is of the order of 1600°C to 1700°C. Both are severe
limitations to the value of such materials as capacitor dielectrics,
even though dielectric constants in the order of L4000 to 6000 were achieved

and ferroelectric behavior was noted.

The second method is more applicable to the technology of
integrated microcircuitry: vacuum deposition. Several investigators have
reported varying degrees of success using this technique,(so’s% 53, 54, 56, 60,

B81l, 70,9

2>although Feldman appears to be the earliest to report his findings.

A major problem relating to the deposiﬁion of BaTiO; (or any
other ABO, compound) is in the propensity of the compound to dissociate
into its component parts upon heating in a vacuum. This decomposition
results in the production of BaO and TiQ, (which may be further reduced).
Unfortunately, the components do not have equal vapor pressures, and the

result is a nonuniform evaporation rate of the components. (BaO has a
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vapor pressure considerbly above that of TiQ, or its reduced oxide or
metal.) Consequently, the deposition and post-deposition treatment
techniques must not only compensate for the disparity of vapor pressures,
but also must react the components to form the perovskite structure, with

its attendant desirable dielectric properties.

Feldman(S% s8) approached the decomposition problem by attempting
to completely evaporate a charge of stoichiometric BaTiO, powder from a
tungsten filament and then recombine the separated components on the
substrate. Although there has been some controversy over this technique
due to the probability of an alloying reaction between the evaporant and
the filament, Feldman did report tetragonal structure and ferroelectric
behavior for his films. The films not only showed the typical hysteresis
effects, but also displayed a dielectric constant peak at the bulk Curie
point of approximately 120°C (see Figure 52(54)) on a plot of dielectric
constant vs. temperature, (The three curves are labeled with the post-
deposition baking procedure used.) The dielectric constant of the films
also obeys the Curie-Weiss law above 120°C (Figure 53(54)), although the
values of C and TC differed from those of the bulk material and were not
reported. The saturation polarization was 4 x 1077 coulomb/cm®, the
remanent polarization 2 x 10 7 coulomb/cr®, and the coercive force

7 x 10° Volts/cm., all lower than the bulk material values.

The material was deposited on a platinum substrate and
subsequently baked in air at temperatures up to 1200°C. This heat treat-
ment sharpened the Curie point transition, developing the crystallite size

to approximately 1000i to 50008 for films approximately 1 - 2u thick.
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Feldman also reports(ss) the unfortunate instability of the
dielectric constant with time under an applied alternating field less than
the coercive field. Figure 5h(58) illustrates the percent decrease in
dielectric constant with time at various temperatures. When the field is
removed, the value of the dielectric constant rises to approximately its
initial wvalue in a short time, indicating that there is no permanent film
damage. This phenomenon is apparently due to a change in the polarization

of the crystallites,

Moll(SI) has reported the successful deposition of ferroelectric
films of a mixture of (73% Ba, 27% Sr)TiO,, with the dielectric constant
and loss tangent characteristics shown in Figure 55&51) Moll, however,
deposited his films by two methods: flash evaporation of a powder from a
heated beryllium oxlde coated filament, and evaporation of a mixture of
BaTiO;, SrTiO;, and TiO, from an SrO coated tungsten filament. The films
were also deposited in the presence of an electric field of up to 8 KV/cm
al substrate temperatures of approximately 200°C. Dielectric constants up

to 9000 at 1000 megacycles were reported.

52 )

Green( approaches the decomposition problem by alternately

evaporating reduced BaCO,and TiO, films from tungsten filaments and then

relies on an air heat treatment to recombine the components into stoichiometric,

hopefully tetragonal, BaTiO,. The heat cycle consisted of baking the film
(deposited on platinum substrates). The substrate temperature is at room
ambient during deposition, Green does not report the dielectric constant

but does report that hysteresis was obtained.
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Sekine and Toyoda(53) reported deposition of (Ba, Sr)TiO, by
two techniques. One involved the constant feeding of a stoichiometric
powder onto a heated filament. The other method, and the least successful
in achieving high dielectric constant films,was rapid evaporation of a
powder charge from a tungsten ribbon filament which was rapidly heated from

ambient to 2200°C (5 seconds).

The powder used was obtained from BaTiO, crystals grown by the
technique of Remeikaﬁa) or from a mixture of (Ba, Sr)TiO,. The substrates
used were platinum, nickel, slide glass, fuzed quartz, mica and Al,Q,
ceramic plates., During deposition, the substrate temperature ranged from
200°C to 1200°C. Post-deposition baking in pure oxygen lasted approximately
3 to 4 hours at temperatures of 200°C to 1200°C. The density of the films

obtained was approximately 5.1 g/cc for film thicknesses of 1 - 3u.

An interesting display of the visual appearance of films prepared
by the rapid vaporization of a charge (Method A) and flash evaporation
of particles dropped onto a heated filament (Method B) is shown below in

Table IV.(SS) The "smoky" appearance of the films prepared by Method A is

TABLE IV
Method ! YA B”
. . - P
Substrate % Pt E Glass Pt ‘x Glass
Sub. Tem. (°C) l '
- - Pale purple (S) Pale purple (S) Pale brown (T) Pale brown (T)

200
300 Purplish green (S) Purple (S) Dark purple (T) Pale brown (T)
400 Yellowish brown (8) Pale brown (S) Dark purple (T) Pale brown (T)
500 Dark purple (S) Dark gray (S) Dark purple (T)‘ Pale brown (T)

7 S :7Srir;noikvy. (T) :N'l:rran;parent. )
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apparently due to the excess BaO, which may react with the atmospheric
CO, to form BaCO; or with atmospheric water vapor to produce Ba(OH), or
Ba(OH),+8H, 0. With increasing baking temperatures, the color of the

film gradually changes to a pale yellow above 500°C.

At 500°C baking temperature, there is an indication (x-ray
diffractometer) of cubic BaTiO;. In general, films prepared by the "B"
method are more highly crystallized than those prepared by the "A"
method, Figure 56(53) shows the measured variation in crystallite size
vs. post-deposition baking temperature., The variations of dielectric
constant vs, temperature for various strontiumconcentrations and
processing procedures are shown in Figure 51(53) The dependence of the
dielectric constant on the electrical field frequency is shown in Figure
58.(52)  The dielectric field strength at breakdown is reported to be in
excess of 10° V/cm. A typical ferroelectric hysteresis loop was obtained
with the films, but the remanent polarigation is considerably lower than

that obtained with ceramic specimens.

Muller, Nicholson and Francombe(so) attacked the problem of
BaTiO,decomposition in a slightly different method than those reported

above., Their technique involved simple flash evaporation of the

i

powder. The philosophy of the flash deposition technique
has been approached from two different directions: complete evaporation
of individual grains before the arrival of another grain, and evaporation
from a liquid pool of evaporant (BaTiO,) which is maintained at constant
size by the regulated addition of BaTiO; powder. The second method takes
advantage of the relatively lower scurce temperature required for melting

BaTiO, as compared with that required for flash evaporation.
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Selection of the filament was based primarily on the wvapor
pressure at 2300°C (the temperature slightly greater than that required
for vaporization of BaTiO; ) and reactivity with the evaporant. Eventually,
iridium was chosen and film contamination by the source was reduced to as
low as 2%. (Tungsten may contribute up to 10 - 20% contamination of BaTiOg

films, )

Films deposited by the latter method (boat at 2300°C) were
amorphous when the substrate was at ambient temperature during deposition.
Post-deposition heating to between 400°C and 500°C with an electron beam
transformed the structure to that of cubic perovskite BaTiO,. Upon heating
to a temperature of 600°C, crystallites of approximately 2000} size were
measured. Similar results were noted for films deposited using the
"constant pool size" technique, with crystallite size approximately 10004

to 30004.

Test capacitors were produced utilizing metal substrates as the
base electrode and evaporated aluminum counter-electrodes, and the dielectric
constants of the dlelectrics were measured using the circuit of Sawyer and
Tower.(los) The temperature dependence of the BaTiO; dielectric constant
and the dissipation factor are shown in Figure 59.(60) The importance of

. \ o« 4. 11 . , L . R K 60
post=deposlition baking Lemperature is shown in Figure 6oleo )

oL+
s 10Vl UW

different film thicknesses.

The authors postulated that the results of Mo11(5%) were due to
tungsten contamination of the dielectric and that the observed high

dielectric constant arises from surface boundary poclarization.
The results of this paper(so) were compared with those obtained

by Feldman,(54>58) with the suggestion that the two works were equivalent

[54]
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if one postulates that the crystal structure obtained by 500°C baking would
be cubic and paraelectric and that heat treatment to a temperature of

1100°C would produce results similar to those of Feldman.

The investigations of BaTiO, and PbTiO; being carried out by

(58,861, 70) incorporate a slightly

Hagenlocher, Feuersanger, et al
different philosophy than those presented heretofore in that the
deposition technique utilizes an electron beam as an energy source for

the evaporation of the bulk material. BaTiQ, component materials were
evaporated in their separate form: from BaO and TiO, rods. Their
conclusions were that BaTiQ, could be produced with dielectric constants
greater than 200, but that the dissipation factor usually exceeded 10%.

A substrate temperature in excess of 900°C was felt to be necessary for
deposition of BaTiO; and that this precluded its use in Silicon integrated

microcircuitry. Their investigation of BaTiO, was therefore terminated in

favor of an investigation of PbTiC,.

Their reasons for interest in PbTiO, as a dielectric are as
follows:

1. PbTiQ, films can be formed at considerably lower substrate

temperatures than BaTiQ,.

2. Only the desired compound PbTiQ, can be formed from the

constituents PbO and TiQ,.

3. Excess BaO in a film of BaTiO, produces an atmospheric

instability in the film; PbO is considerably less reactive.

ke The Curie point of PbTiO; is considerably higher than that

of BaTiC,.
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5, The stoichiometric Pb:Ti ratio can be controlled more

easily than the corresponding Ba:Ti ratio.

The fact that the bulk PbTiQ, dielectric constant is lower than
that of BaTiQ, has had no bearing on the thin film properties: the

dielectric constants observed are comparable.

Substrate temperature during deposition was held at 680°C,
sufficiently moderate to allow its use on Silicon substrates. Films

with dielectric constants of 200 to 450 were produced using PbTiQ;.
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IV. MATERIALS SELECTED FOR PHASE IT STUDY

Table V summarizes several of the pertinent facets of the
numerous materials investigated in the Phase I literature survey. Inspec-
tion of the table reveals that most of the materials are eliminated from
consideration for investigation in Phase II by virtue of having bulk

dielectric constants of less than 500.

Subject to NASA approval, the following materials have been
selected for further investigation in the Phase II effort of the contract
on the basis of predicted potential success as high dielectric constant

dielectrics in vacuum evaporated thin film capacitors.

1. BaTiO,
2. PbTio,
3. (Ba, Pb)ZrQ,
L. KNbo,
5. Nalbo,

A detailed discussion of each of these materials was presented
in Sections II and III. The following brief reiteration will merely attempt

to relate the above-listed materials to each other and to ennumerate some

L

4+l m Arvery o A ad s Awen nrema aryA AL Axro E
LNg eNvVislioried aGvanivages ana aissaqavanvages ©

@]

BaTiO, : It is readily apparent from the bibliography and from the pre-
ceding text that a great deal of investigation of this material has already
been performed. The basic problem is that of dissocilation when evapora-
tion in a vacuum is attempted, and this is expected to be common to all the
ABOjmaterials. Despite this propensity for partial fractionation and

change of stoichiometric ratio between source and condensed film, successful

vacuum deposition of the material has been accomplished. However, as a
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result of having a multiplicity of transition points within the nominal
temperature spectrum of operation of a capacitor, the material is prone
to extremely erratic variations of dielectric constant and hence, capa-
citance, with temperature. In addition, relatively high processing
temperatures are required, either during deposition or in a post-deposition
anneal, or both, and this aspect seriously limits its ultimate usefulness
in thin film and compatible microcircuitry applications. Charles Feldman
of Melrar, Inc. suggested in a personal telecommunication that the addi-
tion of a suitable flux, such as PbO, to the evaporated film of BaTiO,
might increase the mobility and thus enhance the probability of reaction
of the constituents. He Ppostulated that this flux could later be re-

evaporated.

PbTiO;:  This material exhibits a convenlently high Curie point and is
uncomplicated by numerous additional transition points, thus alleviating
the problem of erratic temperature-capacitance behavior noted above. In
addition, the substrate temperature requirements necessary for appropriate
recombination of the constituents are less stringent than those for BaTiO,,
thus making it more attractive from the standpoint of versatility in
practical application. Also, even though dissociation is expected to
present a problem, only PbTi0, can be formed from the constituents PbO

and TiQ,, whereas numerous compounds can be formed from the constituents
BaO and TiQ,. The above-noted advantages may well more than compensate

for its lower dielectric constant.

(Ba, Pb)7r0,: Casual inspection of Table V reveals that neither BaZrO,

nor PbZrO;taken alone appear to hold any interest for Phase II study.
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The combination of the two materials in solid solution, however, presents

a highly interesting profile. The temperature of maximum dielectric
constant can be conveniently shifted by varying the relative proportions,
as can the magnitude of the dielectric constant at any given temperature.
The extremely high room temperature dielectric constants reported (2600 for
a LO% BaZrO,, 60% PbZrC,mixture) makes a combination of the two materials
an extremely interesting prospect for Phase II study. The primary problem
envisioned in attempting to adapt the material(s) to high vacuum deposi-
tion techniques will be the fact that the addition of yet another material
will make the attainment of proper stoichiometric ratios an even more

complicated task than would be the case with a single ABO; compound.

KNbO, : This material has the advantage of having a reasonably high dielectric
constant over a wide temperature range. In addition, the dielectric constant
vs. temperature curve is quite flat over the anticipated temperature opera-
ting range of a capacitor. Since no known work has been performed on the
material with respect to adapting it to high vacuum deposition techniques,

the processing temperatures which will be required in order to obtain satis-

factory dielectric properties are unknown at the present time.

NaNbO, Sodium niobate, like potassium niobate, has a reasonably high
dielsctric constant over a wide temperature range, and exhibits a flat

dielectric constant vs. temperature curve over an even greater temperature
span. As is the case with potassium niobate, no known attempts to utilize

the material in high vacuum deposition techniques are reported.

Despite the fact that antimony sulfur iodide is reported to
exhibit a phenominally high dielectric constant under certain conditions,
it is not considered to be a likely candidate for further investigation in

Phase II.
[60]



The problems associated with not only obtaining single crystallinity in

a vacuum deposition thin film, but also achieving highly critical orienta-
tion of the crystal axes, are felt to present acute disadvantages above

and beyond those exhibited by the other materials selected. In addition,
the constituent parts, which will most certainly display a gross tendency
toward partial fractionation, are not considered to be compatible with high

vacuum technigques and equipment.

A1l of the above materials were discussed with A. von Hipple of
the Naval Research Laboratories and Charles Feldman of Melpar, Inc. Con-
versations with both of the above were general in nature and dealt pri-
marily with the envisioned problems which would be faced in attempting to
utilize vacuum deposition techniques (fractionation, high processing tempera-
tures, lack of proper stoichiometry, etc.), all of which have been covered
in some detail in this report. Both expressed interest in our §¢lection of
materials for further study, and neither knew of any vacuum deposition work

being performed on (Ba, Pb)Zr0;, KNbO,, or NaNbo, .

[61]
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