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ABSTRACT 

Rowland, James Richard, Ph.D., Purdue University, June, 1966. 

On the Asymptotic S t a b i l i t y  of Feedback Control Systems Containing 

a Single Time-Varying Element. Major Professor: Zenonas V. Rekasius. 

Three contributions are  presented i n  t h i s  thesis.  The first 

contribution i s  showing t h a t  the Popov Criterion, a powerful s t a b i l i t y  

result developed f o r  feedback systems having a single time-invariant 

nonlinearity,  does not apply without modification when the nonlinear 

charac te r i s t ic  var ies  with t i m e .  

a counter-example fo r  the desired purpose. 

The damped Mathieu equation provides 

The second contribution i s  closely re la ted  t o  the first. A 

frequency domain c r i t e r ion  is developed t o  guarantee global asymptotic 

s t a b i l i t y  f o r  sys tem containing a time-varying nonlinear element i n  

the loop. The c r i te r ion ,  known as  the Improved Criterion, takes 

advantage of additional infornation re la ted  t o  the rate a t  which the 

nonlinear charac te r i s t ic  var ies  with t i m e  and represents a considerable 

improvement over previous c r i te r ia .  

The t h i r d  contribution i s  the Sinusoidal Criterion, which 

guarantees asymptotic s t a b i l i t y  f o r  l i nea r  feedback systems containing 

a single sinusoidal gain. 

Cri ter ion applies i s  not a s  large as f o r  the Improved Criterion. 

However, when both c r i t e r i a  are applied t o  systems having a s ingle  

sinusoidal gain, the Sinusoidal Cri ter ion y ie lds  a much wider s t a b i l i t y  

The class of systems t o  which the Sinusoidal 
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sector. 

Both c r i t e r i a  developed i n  t h i s  t hes i s  are  independent of the 

order of the system. The width o f  the s t a b i l i t y  sector f o r  each 

c r i t e r ion  depends upon the t ransfer  function of the i inear  plant 

and addi t ional  information about the time rate a t  which the separate 

element varies. Examples are  provided t o  i l lustrate the par t icu lar  

effectiveness of each cr i ter ion.  

Evaluation of these r e su l t s  are discussed from the point of view 

of t h e i r  importance t o  the f i e l d  of s t a b i l i t y  theory and the implica- 

t i ons  f o r  fur ther  research. 
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W T E R  1 

IEJTROWCTION 

1.1 Motivation 

The analysis and design of automatic control systems frequently 

requires an investigation of system s t ab i l i t y .  When the system dynamics 

a r e  described by a s e t  of l i nea r  d i f f e r e n t i a l  equations with constant 

coeff ic ients ,  then the famil iar  techniques of l i nea r  servomechanisms 

theory, such a s  root  locus and the Nyquist Criterion, may be success- 

f u l l y  applied t o  determine system s t ab i l i t y .  

nonlinear, some c r i t e r i a  which guarantee s t a b i l i t y ,  such as the Popov 

Criterion, may often provide useful information. However, when the 

system contains a time-varying element, the problem becomes consider- 

ably more d i f f i c u l t  and the above techniques are not d i r ec t ly  applicable. 

Even when the equations are 

There a re  numerous physical systems which contain nonstationary 

elements. These systems may have time-varying parameters because of the 

ac t ion  of a process outside the system i t s e l f  [1,2]. Wide ranges of a i r  

densi ty  around a rocket o r  space vehicle may cause time var ia t ions  i n  

cer ta in  parameters of the systems. The resis tance of a carbon micro- 

phone and the  capacitance of a condenser microphone are  time-varying 

parameters. I n  cer ta in  mechanical systems the  e f fec t ive  mass or st iff-  

ness of a component may vary w i t h  time. A pendulum whose pivot point 

i s  caused t o  osc i l l a t e  i n  a v e r t i c a l  posi t ion i s  described by the 
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Mathieu equation [ 3 ] ,  which has a time-varying gain. 

mal control systems sometimes requires a controller which possesses time 

varying parameters. 

The design of opti-  

The increased use of more complicated systems i n  space and missile 

applications has accelerated the demand f o r  new and improved s t a b i l i t y  

c r i te r ia .  However, only meager results fo r  time-varying systems are  

presently available. 

s t a b i l i t y  c r i t e r i a  for  feedback control systems containing a single t i m e -  

varying element. 

The purpose of t h i s  t hes i s  i s  t o  develop new 

1.2 Notation 

Vector-matrix notation i s  used consistently throughout the thesis.  

Some small English l e t t e r s ,  such as  b, c, and x, are  used t o  represent 

n-dimensional column vectors. The capi ta l  English l e t t e r  A designates 

an n by n constant matrix, and the l e t t e r  K i s  reserved t o  represent a 

scalar  gain constant. The l e t t e r s  V and W denote scalar  functions. 

Other scalar  constants are represented by s m a l l  Greek l e t t e r s ,  such a s  

a, f3, and y e  The letters f ,  g, and h are  used as  real-valued continuous 

functions. The transpose of a vector or  a matrix i s  shown by a capi ta l  

T T 
T superscript, such a s  x o r  A . The matrix inequality P - > 0 implies 

tha t  the associated quadratic form x%x is  non-negative f o r  all x. The 

statement that  the pa i r  (A,b) is  completely controllable means the vectors 
T 

b, Ab, ..., A"'% are l inear ly  independent. 

completely observable means the vectors cy  A c, . . . , (An-l)Tc are 

That the pa i r  (A, c ) is  
T 

l inear ly  independent. Special notation may be introduced a t  times t o  

conform with popular usage i n  the literature, but new symbols are  care- 

fully defined a t  tha t  par t icular  point i n  the thesis. 
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1.3 Definitions of S t a b i l i t y  

It i s  important. t o  define the precise meaning of the s t a b i l i t y  t o  

which later c r i t e r i a  refer.  Consider the system described by the 

vector d i f f e ren t i a l  equation 

k = h(x, t )  (1.11 
where x i s  an n-vector representing the s t a t e  of the system and h(x, t )  

is  a real-valued vector function which is continuous i n  both x and t. 

Assume tha t  the equilibrium s t a t e  xe being investigated i s  located 

a t  the or igin i n  the s t a t e  space and t h a t  

h(0, t )  = 0 f o r  a l l  t - >to. 

Moreover, l e t  the norm of x be represented by 1 1  x I I . 
Definit ion 1: 

If f o r  any given E > 0 there exists another posit ive real number 

B ( E ,  t ) such tha t  fo r  every i n i t i a l  s t a t e  sat isfying the inequality 
0 

1 I x( t J  I I < 6 

t he  t ra jec tory  s a t i s f i e s  the inequality 

I1 x(t)  I I < E 

f o r  a l l  t >to, then the equilibrium state xe = 0 is  said t o  be s table  

in the  sense of Liapunov. 

&Finition 2: 

If  the  or ig in  of the state space is  s table  and, i n  addition, every 

t r a j ec to ry  starting suff ic ient ly  close t o  the  equilibrium state xe = 0 

converges t o  x 

be asymptotically stable. 

as time -+ Q) , then the  system (1.1)-(1.2) is  said t o  e 

If the  region of asymptotic s t a b i l i t y  includes the en t i r e  state 

If the  value space, then the system is globally asymptotically stable. 
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of 6 i n  Definitions 1 and 2 i s  independent of to, then the equilibrium 

s t a t e  of the system (1.1)-(1.2) is, respectively,  uniformly s table  or  

uniformly asymptotically stable. 

An inherent deficiency of the above def ini t ions i s  t h a t  s t a b i l i t y  

i n  the Liapunov sense i s  a loca l  concept. 

able t o  insure s t a b i l i t y  f o r  small i n i t i a l  conditions, while large 

i n i t i a l  conditions r e s u l t  i n  an unstable behavior. However, the c r i t e r i a  

obtained i n  l a t e r  chapters guarantee global asymptotic s t ab i l i t y .  

This means tha t  one may be 

1.4 Liapunov's S t a b i l i t y  Theorems 

I n  18% Liapunov [4] developed h i s  theory of the s t a b i l i t y  of 

dynamic systems. 

methods. 

He investigated the s t a b i l i t y  problem by two d i s t i n c t  

The f i rs t  method, which has since met with very l i t t l e  success, 

required an expl ic i t  solution of the d i f f e r e n t i a l  equations describing 

the system behavior. The second method was based on the physical 

reasoning that  a diss ipat ive system perturbed from i t s  equilibrium 

s t a t e  w i l l  always return t o  it. To f a c i l i t a t e  t h i s  theory, Liapunov 

introduced an energy-like function which, together w i t h  i t s  time 

derivative,  must s a t i s f y  cer ta in  requirements t o  predict  e i t h e r  system 

s t a b i l i t y  o r  ins tab i l i ty .  This technique, which does not require the 

e x p l i c i t  solution of the system equations, has become known as the 

"Direct" or  "Second Method" of Liapunov. 

"he following theorems provide a basis  f o r  the  development of the 

s t a b i l i t y  c r i t e r i a  i n  la ter  chapters. 

* I  
I 
I 
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I 
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Theorem 1: 

If there ex i s t s  a real-valued continuous function V(x, t )  w i t h  

the  following properties: 

a). V(X, t )  has contiiiirolis first partial derivatives 

b). V(x, t )  is posit ive definite,  i.e. V(x, t )  - > W,(x) > 0 fo r  

all x > o and a n  t 2 0,  and V(O, t )  = 0. 
* 

4. lim V(X, t )  = fo r  all xi . 
I X i I - J  

where x for  i = 1, . .. , n represents the components of the 

n-vector x. 

i 

a). there ex i s t s  some region including the origin i n  the s t a t e  

space i n  which i ( x ,  t )  0, 

then the equilibrium s t a t e  xe = 0 of the system (1.1)-(1.2) i s  s table  

i n  the sense of Liapunov. 

The theorem fo r  asymptotic s t a b i l i t y  i s  somewhat more restr ic t ive.  

Theorem 2: 

If there ex i s t s  a real-valued continuous scalar function V(x, t )  

which s a t i s f i e s  conditions (a), (b), and ( c )  of Theorem 1, and i n  some 

region including the equilibrium state the condition ?(x, t )  < 0 is 

satisfied, where 0 < W,(x) 5 V(x, t) 5 W2(x), and W,(x) and W2(x) are 

posit ive def ini te ,  then the equilibrium s t a t e  xe = 0 of the system 

(1.1)-(1.2) is  asymptotically stable. 

* 
I n  t h i s  context, W (x) is  a posit ive def in i te  function dominated 1 
by v(x, t)* 
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If h ( x ,  t) i n  (1.1) is  not explicit ly a function of t i m e ,  then the . 
condition V < 0 may be replaced by V - < 0, where the curve V = 0 is  not a 

trajectory of the system (1.1). 

The theorems of Liapunw result i n  sufficient, rather than necessary, 

conditions for  the s t ab i l i t y  of systems. For th i s  reason, i f  a s tab i l i ty  

theorem is not satisfied,  one cannot coflclude on t h i s  basis that  the 

system is  unstable. 

conditions specified i n  some of Liapunov's theorems fo r  ins tab i l i ty  are 

satisfied. Generally, the result obtained by Liapunw theory is  quite 

restrictive. 

Instabi l i ty  can, however, be proven i f  certain other 

Liapunov theory has became more useful i n  recent years as researchers 

have discovered improved techniques f o r  selecting tentative Liapunw 

functions and for  constraining the i r  time derivatives. 

strated i n  l a t e r  chapters of th i s  thesis that  these improved techniques 

give a result which i s  less restr ic t ive than before. 

It w i l l  be demon- 

1.5 Applications of Liapunw Theory 

Although Liapunov's theorems were available even before the turn of 

the century, it has only been within the l a s t  ten years tha t  interest  

has become accelerated. 

[ 5 ] ,  Mallsin [6], k t o v  [7], and Zubov [8]. 

suggested using a Liapunov function ccmposed of a quadratic term plus 

an integral  term, 

Hahn [g]. 

also produced works on Liapunov theory. 

pertain t o  system of l a w  order, which presents a serious handicap in 

Earlier works include books and papers by Lur'e 

In particular, Lur'e 

A summary of the early results is given in a book by 

Kalnan and Bertram [lo] and LaSalle and Iefschetz [U] have 

In general, the results 
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view of modern work in the area. 

The big impetus fo r  current research using the Second Method came 

as  a result of  a s t a b i l i t y  cr i ter ion developed by an en t i re ly  different  

technique. 

breakthrough i n  the ear ly  par t  of t h i s  decade by the Rumanian sc ien t i s t ,  

V.M. Popov. 

frequency domain cr i ter ion t o  guarantee asymptotic s t a b i l i t y  fo r  feed- 

back systems containing a single time-invariant nonlinearity i n  a 

f i n i t e  sector (0 ,  K). The Popov investigation reveals an en t i re ly  new 

insight  i n to  the s t a b i l i t y  problem; the width of the sector containing 

the nonlinearity depends only upon the t ransfer  function of the l inear  

plant. Moreover, the Popov result i s  independent of the order of the 

system, which represents a remarkable advantage. 

Tiis reriewed interest in s t a b i l i t y  stems d i rec t ly  from 6. 

Using functional analysis, Popov [l2, 131 developed a 

The relevance of the Popov Criterion t o  Liapunov theor i s t s  became 

apparent shortly thereaf ter  i n  a paper by Kalman [14]. 

the  Popov Criterion pointed the direction i n  which s t a b i l i t y  work should 

proceed. 

[15] followed by showing tha t  Popov's result holds fo r  the d i rec t  control 

problem. More recently, Brockett [16, 171 has u t i l i zed  Eapunw theory 

t o  obtain even stronger s t ab i l i t y  results f o r  the single time-invariant 

nonlinearity system. 

Essentially, 

Kalman solved the indirect  control problem, and then Rekasius 

1.6 Derivation of the Popov Inequality U s i n g  Liapunw Theory 

The Popov Criterion applies t o  a system described by 

k = Ax + bf(a) (1.3) 

(1.4) T u = c x  
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where 

(1.51 

Choose as  a tentat ive Liapunov function the form f i r s t  proposed by 

Lur'e [5]. U 

v(x, a )  = xTPx + B J  f ( z )  dz 

0 

Evaluating i t s  time derivative along the t r a j ec to r i e s  of the system 

(1.3)-(l. 5 ) ,  one obtains 

b(x, o )  = xT[A% + PA]x + (2bTP + BcTA) x f ( a )  

+ @cTb ?(a) (1.7) 

Constrain i ( x ,  a )  t o  be of the form 

(1.8) 
1 t (x ,  0 )  = - [qTx - fi f ( a ) I 2  - f ( a )  [a - f ( a ) J .  

The resul t ing equations are  

T A 5  + PA = - qq 

T T  T T 2 b P + B c A = 2 f i q  - c  

1 
K y = - - Bcr, 

I n  (Lg)- ( l . l l ) ,  g i s  a real n-vector. 

sat isfying (1.9)- (1. ll) is  guaranteed under cer ta in  conditions specified 

in the following lema due t o  Kalman [14]. 

The existence of such a vector 

Lema: - 
If there exists a r e a l  non-negative number y ,  two real n-vectors 

T 
b and m, where m = flA c + c, and an asymptotically stable m a t r i x  A 

such t h a t  (A, b )  is completely controllable, then a real n-vector q 

sat isfying (l.g)-(l.ll) e x i s t s  if and only i f  the inequality 

y - Re[mT( j w I  - A ) - l  b] - > 0 (1.m 



holds for a l l  r e a l  values of w . 

The proof of another lemma which is  analogous t o  Kalman's lemma i s  given 

i n  Appendix I. 

The existence of a r e a l  n-vector q means tha t  the first term of 

t(x, a) i n  (1.8) is negative semi-definite. 

second term is non-positive. 

i s  imposed, then V(x, a )  i n  (1.6) i s  posit ive definite.  

+(x, a )  i s  not a t ra jec tory  of the  system (1.3)-(1.5). 

system i s  globally asymptotically stable i f  (1.12) holds f o r  all r e a l  w. 

Because of (1.5) the 

If the condition of complete observability 

Moreover, 

Therefore, the 

Using the Laplace transformation, one can eliminate the vector x 

from (1.3) and (1.4) t o  obtain 

k(0) = 0 

Defining the open-loop transfer function of the l inear  par t  of the system 

a s  the negative of the l e f t  hand side of (1.13), one may write 

G(s)  = - L-1 = - c T (SI - A ) - l  b 
L f a , t  (1.14) 

1 
8 
E 
I 
1 

'x(0) = 0 

Taking the derivative of (1.4) and then eliminating the vector x a s  

before, one has 

' x ( 0 )  = 0 

Equations (1-14)-(1.15) with s = j W  may be used i n  the inequality (1.12) 

t o  yield the Popov Criterion 

IC + R e [ ( l  + jtig) G ( j w ) ]  2 0  (1.16) 

which must hold f o r  a l l  r e a l  w and some r e a l  scalar constant f3 . 



If one defines 

Y ( j w )  = w I m  G ( j w )  

X ( j w )  = R e  G ( j w )  

then (1.16) becomes 

- 10 - ' I  
a 

(1.18) 

(1.19) 1 
K - + X ( j u )  - p Y ( j w )  2 o 

Using the foregoing subst i tut ions,  Popov gave a geometrical interpreta-  

t i on  f o r  h i s  cri terion. 

f o r  a par t icular  t h i rd  order system i n  Fig. 1.1, with Y( j w )  or w I m  G (  j w )  

as ordinate and X ( j w )  or R e  G ( j w )  as the abscissa. 

l i n e  with s lope 1/@ could be drawn tangent t o  and completely above the 

frequency plot. 

axis yielded a permissible value of - l /K-  

t o  various positions, one could obtain the l a rges t  value of K. 

and Gantmacher [l8] described the Popov treatment and i t s  implications 

i n  a recent monograph. 

He  defined a modified frequency plane, shown 

Thus, a s t ra ight  

The intersect ion of t h i s  l i n e  with the negative Re G ( j w )  

By moving t h i s  s t r a igh t  l i n e  

Aizeman 

Kalman also developed an "effective" procedure f o r  calculating the 

elements of the q vector and the P matrix once an acceptable value of K 

and i t s  corresponding have been determined from the frequency domain 

inequality. This procedure w i l l  be u t i l i zed  i n  Chapter 3.  

The significance of the Popov Cri ter ion has been well  expressed 

by Lefschetz [l9], who noted t h a t  Popw reduced the problem of searching 

f o r  the  individual elements of an n by n matrix P t o  the much simpler 

problem of searching f o r  a single scalar  constant @. 

1.7 Organization of the Thesis 

Following t h i s  introductory material, a counter-example i s  presented 

i n  Chapter 2 t o  show t h a t  Popov's Criterion, which applies t o  a cer ta in  



t 
OIm G (j0) 

Fig. 1.1 Geometrical Interpretation of the Popov Criterion (1.16) 
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c lass  of stationary systems, needs modification f o r  systems i n  which the 

separate element var ies  with time. 

Chapter 3 contains a frequency domain c r i t e r ion  which guarantees 

global asymptotic s t a b i l i t y  f o r  feedback systems containing a single 

time-varying nonlinear element confined i n  a f i n i t e  sector. 

Another s t a b i l i t y  c r i t e r ion  i s  developed i n  Chapter 4 f o r  feedback 

systems i n  which the single time-varying element i s  l i nea r  and var ies  

sinusoidally with time. 

Chapter 5 presents an evaluation of the r e su l t s  of the thes i s  with 

recomendations fo r  fur ther  study, 



CHAPTER 2 

THE NONSTATIONARY PROBLEM AND POPOV'S CRITERION 

2.1  Introduction 

The a i m  of t h i s  chapter i s  t o  gain more insight  i n to  the s t a b i l i t y  

of feedback systems having a time-varying element. It i s  shown t h a t  

the  Popov Criterion must be modified f o r  the nonstationary case. One 

method of modification i s  then developed i n  Chapter 3. 

Before the development o f  Popov's Criterion, Aizerman [20] con- 

jectured tha t  i f  the feedback system obtained by replacing the non- 

l i n e a r i t y  by a l i nea r  gain K where 0 < IC < K, were asymptotically 1' 1 
stable f o r  any K1, then the corresponding nonlinear system should a l so  

be asymptotically stable. I n  other words, Aizerman contended t h a t  the  

Routh-Hurwitz Criterion f o r  l inear  time-invariant systems should be 

applicable as well  t o  nonlinear systems. That t h i s  conjecture w a s  

untrue i n  general w a s  demonstrated through several  counter-examples by 

Krasovskii [21], P U S S  [22], Dewey and Jury [23], and others. The 

Popov Cri ter ion la ter  provided new insight  i n t o  the  single nonl inear i ty  

problem. 

An in te res t ing  p a r a l l e l  e x i s t s  between the foregoing and the  poten- 

t i a l  application of the  Popov Criterion t o  cer ta in  nonstationary systems. 

Suppose one considers the  case i n  which the  nonlinearity i n  the Popov 

problem is  allowed t o  vary with t i m e .  

be tempted t o  use Popov's result t o  predict  system s t ab i l i t y .  

Upon first observation, one might 

I n  f ac t ,  
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a t  l e a s t  one such attempt has actual ly  been made [24]. The statement 

of the nonstationary problem i s  given i n  the next section and then a 

counter-example i s  presented i n  the following sect ion t o  disprove the 

above conjecture. 

2.2 Statement of the Problem 

Consider the following equations which describe a feedback system 

with a single time-varying nonlinear element i n  the loop (Fig. 2.1). 

k = AX + b f(a,  t )  (2.1) 

u = c x  (2.2) 
T 

where x i s  an n-vector which represents the s t a t e  of the system, A i s  an 

asymptotically s table  n by n constant matrix, b and c are n-vectors, and 

u and f ( u ,  t )  are  the input and output, respectively, of the time-varying 

nonlinear element. The output f ( u ,  t )  i s  a real-valued continuous scalar  

function of (I and t. 

Furthermore, l e t  f ( u ,  t )  be confined t o  a sector (Fig. 2.2) i n  the 

following manner. 

o < u f (u ,  t )  < m2 fo r  u + o 

fo r  a l l  t P > 0. 
(2.3) 

f ( O ,  t )  = o 

If the  lower  l i m i t  on f ( u ,  t )  i n  (2.3) had been some value other 

than zero, then a "pole-shifting" technique [l5] could be used t o  

rearrange (2.1)-(2.2) such t h a t  (2.3) holds. 

The problem is t o  determine suf f ic ien t  conditions which m u s t  be 

s a t i s f i e d  by the linear plant i n  order f o r  t he  system (2.1)-(2.3) t o  be 

globally asymptotically stable. 

' I  
I 
D 
I 
I 
1. 
i 
I 
I 
I 
I 
1 
3 
I 
I 
1 
1 
1 
I 
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Fig. 2.1 Schematic Magram of the System (2.1) Through (2.3) 

Fig. 2.2 Input-Output Characteristic of the "h=-Varying 
EoniineaF Ziemii3 (2.3) 
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2,3 A Counter-Example 

The purpose o f  t h i s  section i s  t o  prove by means of a counter-example 

L25-J that  the Popov resu l t  cannot be applied without modifications t o  

systems having a time-varying element i n  the loop. Specifically,  a par- 

t i cu l a r  class of systems described by the Mathieu equation with a m a l l  

damping term w i l l  be investigated. Referring t o  the l i t e r a tu re ,  one can 

eas i ly  confirm tha t  t h e  members of a cer ta in  subclass of these systems 

are indeed unstable. An actual  analog computer simulation of a par t icular  

member of t h i s  subclass w i l l  provide a specif ic  example of ins tab i l i ty .  

(A) An arbi t rary application of the Popov Criterion: 

Consider the Mathieu equation with a small damping term. 

2 + 2pK + (p - 25 cos 2 t ) x  = 0 (2.4) 

where 5 > 0, p > 0, and y = p - 2k - E > 0, Both E and p are small and 

posit ive 

One can make the following ident i f icat ions i n  applying the Popov 

Criterion. 

d = -x 

I G ( s )  = 
s2 + 2 p s  -4- y 

Since CI - 25 - y = E > 0, the sector requirement (2.3) on f(a,  t )  

i s  sat isf ied.  

condition that  A be asymptotically s table  i s  a l so  sat isf ied.  

Moreover, since p and y i n  (2.8) are  both posit ive,  the 



Thus 
2 

2 2  
- 1 + R e [ ( l  + j @ ) G ( j w ) ]  = E 1 + (' - 2 )  + g3p W 

( y  - w2I2 + 4p w 
K 

I If G A ~  selects  B = - the r ight  ha.nd si6e of (2.9) becomes 
2P' 

L + r  > K > O  2 2  - K ( 7  - w2)2 + 4P 

(2.9) 

(2.10) 

Therefore, an a r b i t r a r y  application of the Popw Criterion t o  (2.4) 

apparently (although incorrectly as shown below) guarantees global 

asymptotic s t a b i l i t y  f o r  any value of K such tha t  0 < K < 

(B) Proof of instabi l i ty:  

. 

The damping tern i n  (2.4) can be eliminated by the substi tution 

- P t  x = e  y .  

The resul t ing equation is  

j ;  + ( f  - 2ij cos 2t) y = 0 (2.12 1 
where 

2 
f = C L - P  (2.13 1 

The s t a b i l i t y  of equation (2.12) is  discussed i n  d e t a i l  by McLachlan 

E, 261. Cunningham [l] also  has a pertinent discussion. 

one may refer t o  Figure 9.11, page 273, in [l] t o  see tha t  (2.12) i s  

unstable f o r  cer ta in  values of f and 5 f o r  which ($ - 25) > 0. 

In particular,  

The i n s t a b i l i t y  of (2.12) does not guarantee the ins t ab i l i t y  of 

(2.4) f o r  all posi t ive values of p. However, fo r  suf f ic ien t ly  small  values 

of p, one would expect the boundaries between s table  and unstable solu- 

t ions  of (2.4) t o  be very near those exhibited by (2.12). Hence, i f  a 

p ~ %  (E ,  j; is ci,Oseir AI - -  --.-l--f-- -0 -- ---- L-L-I ---:-- 
Lilt: 111Kl'Iu1- U I  ull UlAbbWIC I C ~ ; S U l l  of (2.2") 

and far away frun the boundary, then f o r  small values of p the  solution 

of (2.4) is  also unstable. 
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McLachlan [ 3 ]  and Hayashi [27, 281 present the s t a b i l i t y  boundaries 

which substantiate the foregoing conclusions (Fig. 2.3). In par t icular ,  

consider the system described by (2.4)-(2.8) i n  which p = 0.1, 7 = 0.17, 

and E i s  a rb i t r a r i l y  small (E > 0) .  Combining (2.6) and (2.13), one 

has 

K 2  K 
2 2 

c = - - p  + ~ = - + 0 . 1 6  (2.14) 

The f a c t  t ha t  7 = p - 26 - E, together with (2.13), implies t ha t  

(2.15 
2 f; = 2 t  + 7 - p + E = 25 + 0.16 

i f  E i s  a rb i t r a r i l y  small. This means tha t  i n  Fig. 2.3 the s t ra ight  

l i ne  (2.15) may be drawn t o  determine system s tab i l i ty .  Since 5 i s  a 

known function of K by (2.14), points on the s t ra ight  l i n e  correspond 

t o  various values of K. Therefore, s t a b i l i t y  ranges may be determined as  

0 < K < 1.24 stable  
1.24 < K < 2.70 uns t ab l e  
2.70 < K < 7.30 stable  
7.30 < K < 11.85 unstable 

As K increases t o  higher values, the system s t a b i l i t y  continues t o  

a l ternate  between s table  and unstable behavior. 

Consider the specific case i n  which K = 1.68 Therefore, ( = 1.0 

and 5 = 0.42, i.e. 

2 + 0.25 + (1.01 - 0.84 COS 2 t ) x  = 0, (2.16) 

and the system (2.16) i s  unstable according t o  Fig. 2.3. The system w a s  

actual ly  simulated on an analog computer, and the unstable solution 

(Fig. 2.4) was verified. 

the Popov Criterion i s  sa t i s f ied  by the above system. Therefore, the 

The choice of @ = - = 5.0 i n  (2.9) shows tha t  
2P 

Popov Criterion i n  i t s  present form cannot be applied t o  systems contain- 

ing a single time-varying element. 
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Fig. 2.4 A Specific Example of Instability Obtained Via Analog 
Simulation for the Damped Mathieu Equation in (2.16) 
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2.4 The Rozenvasser Criterion 

Although Popov's r e su l t  for  s ta t ionary systems does not apply i n  

general t o  the time-varying case, Rozenvasser [29] has observed t h a t  the 

inequality (1.16) i s  va l id  fo r  the nonstationary system (2.1)-(2.3) i f  

t h e  sca la r  p is  s e t  equal t o  zero, This corollary t o  Popov's work w i l l  

be referred t o  as the  Rozenvasser Criterion 

+ Re G ( j w )  > 0 - K (2.17) 

which must hold for  a l l  real w, 

because a t  the outset  of t h i s  investigation it w a s  the  only generally 

applicable frequency domain c r i te r ion  fo r  feedback systems having a 

s ingle  time-varying element. 

ing chapters w i l l  be compared with the Rozenvasser Criterion. 

The Rozenvasser Criterion i s  important 

Thus, a l l  c r i t e r i a  developed i n  the follow- 

The inequality (2.17) has a simple geometrical interpretat ion i n  

the G ( j w )  plane (Fig. 2.5). 

curve a t  i t s  l e f t  extremity in te rsec ts  the negative r e a l  axis a t  -1/K. 

This y ie lds  the la rges t  value of K. 

Example 

A ver t i ca l  s t r a igh t  l i n e  tangent t o  the 

Consider the t h i r d  order system described by 

3 = x2 

k2 = x3 
(2.18) 5 = -6x, - B2 - 6~ + f ( u ,  t )  3 

u = -xl 

where f (a ,  t )  s a t i s f i e s  (2.3)* 

values of A, b, and c may be writ ten as 

In  the notation of (2.1)-(2.2), the 



- 2 2 -  

G ( j w) plane 

Fig. 2.5 Geometrical Interpretation of the Rozcnvasser Criterion (2.17) 
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A =  [ :] ; b =  [ n] ; C =  ~~] (2.19) 
-6 -11 -6 

Using (2.19) i n  ( L l k ) ,  me can easzly o b t a k  the open-loop t ransfer  

function of the linear plant as  

1 (2.20) G's' = (s  + ij(s + 2 j ( s  + 3 j  

Using the geometrical interpretation of (2.17) i n  Fig. 2.5, one finds 

tha t  the Rozenvasser Criterion yields a maximum K of 27.95. 

obtained by amlying the Popov Criterion t o  a stationary nonlinear 

system having the same l inear  plant i s  60.0, which is  the same as  the 

The result 

Routh-Hurwitz sector fo r  the corresponding l inear  time-invariant system. 

The Popov inequality (1.16) required a corresponding f3 of 6/11 t o  

obtain the widest sector. 

2.5 Summary and Sta te  of  the A r t  

Rozenvasser appears t o  have been the first t o  have considered the 

problem of a single nonstationary element i n  an otherwise l inear  time- 

invariant system. Although his result is quite res t r ic t ive ,  it does 

form the foundation upon which the results of the following chapters are  

b u i l t .  

similar t o  (2.17). 

Recently, Sandberg C303used functional analysis t o  obtain results 

Rozenvasser's work applies t o  feedback systems having a time-varying 

nonlinearity. However, a number of s t a b i l i t y  c r i t e r i a  have been 

developed recently fo r  l inear  systems containing a time-varying gain. 

1 LL--- --- - - - - - - A -  L-- De--:---- rZ11 -l.+e<-nd Par r-rr+.nrne  ~ . v < f h  Q 
W W l l &  UlCZbC ULC L C 3 u b a  uy U V U ~ ; ~ U L U U  VIJ UUUQLUGU &VI UJUVC.-Y . . -VI -  - 
periodically varying gain and resul ts  by Narendra and Goldwyn u 2 )  and 
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Brockett and Forys [33 ]  obtained by using Liapunov theory f o r  systems 

having a general time-varying gain. 

The next chapter deals w i t h  the problem of including the scalar  

constant f3 i n  the s t a b i l i t y  inequality. 

developed by placing an additional r e s t r i c t ion  upon the r a t e  a t  which 

the nonlinearity may vary w i t h  t i m e .  

An improved cr i te r ion  i s  



I 
I 
I 
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3.1 Introduction 

Suff ic ient  conditions for  global asymptotic s t a b i l i t y  w i l l  be 

obtained i n  t h i s  chapter fo r  feedback systems containing a single time- 

varying nonlinear element whose input-output character is t ic  l i es  within 

a f i n i t e  sector (Fig. 2.2). 

which retains the  scalar  constant f3 (as i n  the  Popov Criterion) w i l l  

An improved frequency domain c r i te r ion  

be developed. 

r a t e  a t  which the nonlinear character is t ic  var ies  with time. 

it w i l l  be shown tha t  t h i s  new resu l t  represents a considerable improve- 

ment over the Rozenvasser Criterion. 

This new cr i te r ion  ut i l izes  information re la ted  t o  the  

Finally, 

The problem has been s ta ted f u l l y  i n  Section 2.2, but cer ta in  

per t inent  equations are rewritten here f o r  convenience. 

k = A X  + b f(a,  t) 
T 

u = c x  

The sector  requirement may be formally expressed as 

o < u ~ ( u ,  t) < m2 for u 4 o 

f(0, t) = 0 

f o r  a l l  

(2.3) 

- > 0. Moreover, t h e  l inearized sys-em obtained -y replacing 

r ia ,  t j  by 5 u  i n  ( ~ i j  is assumed t o  be asymptoticaiiy s iabie ,  wilere 

0 < K1 < K. 
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The problem i s  t o  determine suf f ic ien t  conditions which must be 

s a t i s f i ed  by the l inear  plant i n  order fo r  the system (2.1)-(2.3) t o  be 

globally asymptotically stable.  

3.2 Development of an Improved Criterion f o r  the Nonstationary Problem 

Consider a s  a ten ta t ive  Liapunovufunction 

V(X, U, t )  = x ( 3 . 0  
0 

T T where P = P > 0, L e . ,  x Px > 0 f o r  a l l  x f 0 and @ i s  a sca la r  

rnnqt .ant . .  Fva1i ia t . ing it.s t . i m e  d e r i v a t i v e  a l o n g  t.hp t . r R j P r t . n r i P 5  nf  the 

system (2.1)-(2.3), one obtains 

U 

0 

One may constrain V(x, u, t )  t o  be of the form 

by equating the coefficients of corresponding terms i n  (3.2) and (3.3). 
T T T A P + PA = - qq - Wlcc 

T T T T 2b P + PC A = 2 1,F q - (1 + W2) c 
1 T 
K y = - -  Bcr3 - BC b 

I n  (3.4)-(3.5) q is a r e a l  n-dimensional column vector. The necessary 

and suff ic ient  condition f o r  the existence of t h i s  real n-vector i s  
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given by the following lemma which is analogous t o  Kalman's kmma [14] 

discussed i n  Section 1.6. 

Lemma: - 
If there ex i s t  8 real non-nega+,ive nmber y ,  a real number 1, 

three real n-vectors b, m, and r, and a s table  matrix A such t h a t  (A, b)  

is completely controllable, then a real n-vector q sa t i s fy ing  the 

equations 

T A% + PA = -qqT - lrr 

exists if and only i f  the inequality 

7 - Re[mT(jwI - A)-1 b] - 1 I r (j.1 - A ) - l  b I (3= 9 )  
T - > 0 

holds fo r  all real u 

The proof of the above lemma is  given i n  Appendix I. 
T T 

If  one sets mT = pc A + (1 + W2)c , l = gCr,, and r = c, then the 

lemma implies the existence of a real n-vector q such t h a t  (3.4)-(3.6) 

are  sa t i s f ied ,  provided (3.9) holds for  all r e a l  u 

Ut the inequality 
CY 

and a are scalar  constants. 

Uti l iz ing the lemma, (2.3), and (3. lo), one may therefore prove tha t  
a29 3 hold f o r  a l l  u and a l l  t 20, where al, 

i(x, u, t) is  negative semidefinite. Furthermore, one may observe t h a t  

w,<x> 5 v(x, a, t) L w,(x) (3* l l )  
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1 - K - m3 + ~e [(I + m2 + j ~ g ) ~ ( j w ) l  

- ~ a , I ~ ( j w ) I ~ _ > o  (3.16) 

I which must hold fo r  all r e a l  w The 

2 $ 1  fo r  the system (2.l)-(2.3) ut i l ized vector-matrix notation. An 

schematic diagram given i n  Fig. 

T 

T T 
w 1 (x) = x Px 

W2(x) = x [P + BK cc 3 x 

(3.12) 

(3.13) 

Therefore, the asymptotic s t a b i l i t y  of A, the  complete observabili ty of 

(A, c 1, equations (3.11)-(3.l3), and the assumption 

l inearized sys t e m  

T * 
t h a t  every 

(3.14) T % = A x  + bK1 c x 

where 

O < K 1 < K  (3.15) 

i s  asymptotically s table  implies t h a t  V(x, u, t )  i s  posi t ive def ini te .  

The conditions f o r  Liapunov's theorem f o r  s t a b i l i t y  (Section 1.4) have 

been sat isf ied.  

Lett ing s = jw, one may use (1.14)-(1.15) i n  the s t a b i l i t y  

inequality (3.9) t o  yield the following frequency domain relat ionship 

for  s tab i l i ty .  

equivalent representation i n  terms of the plant  t r ans fe r  function i s  

shown i n  Figure 3.1. 

Although the  result i n  (3.16) i s  a suf f ic ien t  condition fo r  the 

s t a b i l i t y  of (2.1)-(2.3), one would l i k e  t o  be able t o  guarantee global 

asymptotic s tab i l i ty .  

and V(x, u, t), then one could use the following argument t o  prove 

global asymptotic s t a b i l i t y ,  where f ( u )  replaces f ( u ,  t). 

If time did not appear e x p l i c i t l y  i n  V(x, u, t )  

The asymp- 

t o t i c  s t a b i l i t y  of A guarantees that V 0 on any t ra jec tory  of the 

* 
This assumption is needed t o  allow the poss ib i l i t y  of negative values 

"of B i n  (3.1) and i n  the resul t ing theorem. 
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Fig. 3.1 An EQuivalent Transfer Function Representation of 
the System Shawn in Vector-Matrix Form in Fig. 2.1 



system since t- 
u = 0. If one 

asymptotically 
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= 0 implies tha t  u = 

sets u = f (u)  = 0 i n  (2.1), then the f ac t  t ha t  A is  

stable implies tha t  the limit, as  t + Q, of x ( t )  i s  zero. 

f(u), which violates  (2.3) unless 

Thus, for  the stationary case, the fact  tha t  V i s  positive def ini te  and 

V i s  negative semi-definite and not a t ra jectory of the system i s  suff i -  

cient t o  prove global asymptotic s t ab i l i t y  by Liapunov's theorems. 

However, t h i s  i s  not a val id  proof for  time-varying systems. 

LaSalle 1303 has proposed the following system t o  illustrate t h a t  a 

negative semi-definite V is not sufficient t o  guarantee asymptotic 

s t ab i l i t y  fo r  time-varying systems. 

1 2  

2 1 

j ,  = x  (3 -  17) 

(3.18 1 j ,  = -x - (2 + e )x t 
2 

Choosing v = $(x: + 

zero only when x is  

However, x (t) = 1 + 1 

2 

t x '), one has 

zero. 

-t e i s  a solution and the system is not asymptoti- 

= -(2 + e )x 5 0, which equals 2 2 

The only solution on x2 = 0 i s  x = x2 = 0. 

cally stable even though V is  negative semi-definite. Therefore, ? must 

be negative definite t o  prove asymptotic s tabi l i ty .  

A s l igh t  modification must be made t o  guarantee asymptotic s t ab i l i t y  

i n  the present problem. 

straining V i n  a different way. 

constraining V a s  

A negative definite V may be obtained by con- 

One may achieve the desired result by 

1 t(X, u, t )  = - [qTx - Ji; f ( u ,  t)12 - f (a ,  t )  [u - f (u ,  t)] 
2 - p [a u + a2u f (a ,  t )  + a3 f q u ,  t)  - 1 
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where pl, p2, ..., p 

dl, d2, n 

resul t ing frequency domain inequality i s  

are a rb i t r a r i l y  small posit ive constants and 

The 

n 

. . . , d are arbi t rary l inearly independent n-vectors. 

n 

which must hold for a l l  r e a l  w. The new term becomes negligible i n  a 

. . . , p may each be chosen prac t ica l  application because p 1’ p2> 

a r b i t r a r i l y  small. 

ment i s  t o  replace K in (3.16) by K where K = Kmax appears in  the 

c r i te r ion  but global asymptotic s t a b i l i t y  i s  guaranteed i n  the  sector 

n 

It i s  shown i n  Appendix I1 t ha t  an equivalent s ta te -  

m a d  

(2.3) dependent upon K. The above resu l t s  may be expressed i n  the 

form of a theorem b43. 

The orem: 

and a such tha t  there ex i s t  r ea l  numbers B, K-, al, a*, 3 
the inequality (3.16 ) 

holds for  a l l  r e a l  w, 

holds f o r  a l l  u and all t 2 0, 

the l inearized system (3.14) i s  asymptotically s table  f o r  a l l  

5 i n  the in te rva l  (0 ,  K), 

then the system (2.1)-(2.3) is  globally asymptotically s table  fo r  a l l  

K = Kma - E,  where E i s  an a rb i t r a r i l y  maall positive. constant. 
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L e t  condition ( a )  of the theorem be designated as the Improved 

Criterion and condition (b )  as the In tegra l  Constraint. Consider the 

following special  subcases of the Improved Criterion. 

Subcase I: a1 # 0 , a2 = a3 = 0. (3.21) 

Subcase 11: a2 # 0 , a1 = a3 = 0. (3-  2 2 )  

Subcase 111: ( 3 . 2 3 )  a3 f 0 , al = a! = 0. 
2 

I n  applying the theorem, the In tegra l  Constraint i s  f i rs t  used t o  

determine the smallest values of al, a2) or  a3 for  the par t icu lar  

subcase. 

f ind the largest  K. 

Then the Improved Criterion i s  used with B being varied t o  

One w i l l  observe t h a t  when B = 0, the Improved Criterion becomes 

ident ica l  t o  the Rozenvasser Criterion (2 .17) .  

best  sector for any one of the three subcases above, then there i s  an 

When f3 f 0 gives the 

improvement over Rozenvasser's resu l t ,  L e . ,  the l a rges t  value of K 

which can be obtained by using the Improved Criterion i s  greater than 

the la rges t  value which can be obtained by using (2.17) alone. 

3.3 Comparison with Previous Cr i te r ia  

kt us consider the  system discussed i n  Section 2.4 whose plant 

equations are  given by 

2 = x  1 2  

%2 = x3 

= - 6 5  - 1h2 - 6~ + f(a, t) %3 3 
(2.18) 

a = -x 
1 

where the  function f(a ,  t )  satisfies (2.3). The open-loop t ransfer  

function of the plant  may be obtained by using (1.14). 

(2.20) 1 
G ( s )  = (s  + l ) ( s  + 2 ) ( s  + 3) 

4 
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Using (2.20) i n  (3.16), one obtains the results shown i n  Figures 

In each 3.2, 3.3 ,  and 3.4 fo r  Subcases I, 11, and 111, respectively. 

case, p = 0 occurs f o r  suff ic ient ly  large values of al, a 

and the Rozenvasser sector is obtained. When e i ther  a 1, a2, or a3 is 

equal t o  zero, then K- = 60.0, which is the best  result that can be 

nhtsined for t h i s  system vi th  B stationary nonlinearity by using the 

Popov Criterion. The l a t t e r  result a lso happens t o  be the Routh-Hurwitz 

sector f o r  t h i s  par t icular  system 

and a3, 2’ 

(2.20). 

Now consider a par t icular  form of the function f(u, t): 

fb, t)  = g ( t >  h ( d o  

where g ( t )  and h(u) s a t i s fy  the inequalities: 

o - < g ( t )  - < 1 

I h(u) I < ZC 

fo r  all t 2 o 
for all u 

Furthermore, for  the purpose of t h i s  example, l e t :  

g ( t )  = ( a t  + b)e-Pt (t 2 0) (3.27) 

where a, b, and p are non-negative constants, 

A curve of g ( t )  versus time is  shown i n  Figure 3.5. The time 

function g ( t )  corresponds t o  the instantaneous voltage across the 

capacitor i n  the c r i t i c a l  case of the natural  response of a three- 

element RIx= para l l e l  circuit .  

while a and b are determined by i n i t i a l  conditions i n  the circui t .  

p is determined by the  element values, 

The conditions which m u s t  be imposed upon a, b, and p, according 

t o  (3.25) and (3.27) are  

O < b < l  - -  
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pig. 3.4 U s e  of Subcase I= on the system Described by (2.18) 
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Fig. 3.5 A Typical Curve of the Function Given by (3.27) 
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For t h i s  par t icular  time-varying nonlinearity, one may determine the 

in tegra l  which appears on the l e f t  side of the  In tegra l  Constraint f o r  

each of the three subcases, 

a a 
P 

,+ a f z  t dz = p j  [(a - bp) - a ~ t ] e - ~ ~  h(o)  ado 

0 0 
2 

- p t  KU - 
2 (3.31) < @(a - bp - apt)e 

Referring t o  Figure 3.5> one can see t h a t  the maximum posi t ive slope of 

g ( t )  occurs a t  t = 0. 

g ( t )  i s  s t i l l  posit ive,  but g ( t )  i s  greater  than g(0). 

(t , + a), the slope of g ( t )  is  always negative and g ( t )  is  posit ive.  

The significance of these observations i s  t h a t  i f  the following inequal- 

* 
I n  the closed in te rva l  [0, t 3, the slop of 

In  the in t e rva l  
* 

i t i e s ,  which correspond t o  the In tegra l  Constraint f o r  each subcase and 

u t i l i z e  (3.31) hold fo r  t = 0, then they a re  t rue  fo r  a l l  t > 0. 

2 2 
U 

- P t  KU 5 P , [ w  dz < p(a - bp - apt)e  - 2 - mlU - 
? - = Bcr, 4% t> 

- p t  Ku- < 0 
p(a - b p  - apt)e 2 (3.3 33 1 

2 - p t  KU 5 @(a - bp - apt)e  - - Bcr3 ?(a, t )  2 

Equations (3 .32) - (534)  may be simplified t o  give (a t  t = 0): 

(30 34) 

- KCa - bp) 
% - 2 

- a - bp 
a2 - 2b 

(3.37) a - bp 
a =  

2Kb2 

where a CY and CY have been chosen as the  smallest values which 

s a t i s f y  (3.32)-(3.34) when f3 i s  positive. 
1’ 2’ 3 
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(3.38) 

(3* 39) 

(3.40) 

There are def ini te  choices of a, b, and p i n  the present example 

f o r  which Subcase I is bes t ,  and other choices of a, b, and p for  which 

I1 i s  best. Two of these cases are given below. 

Case 1. 

a = 0.9701 
b = 0.4000 q, = 0.400 
py= 0.4253 
t = 1.939 

I 

q2 = 1.000 
. .  q3 = 2.500 

Subcase Kmax Corresponding B 

I 39-41 
I1 35= 00 
I11 27.95 

0.4382 
0.4686 
0.0000 

Therefore, Subcase I gives the best results fo r  Case 1. 

Case 2. 

a = 1.5142 1, = 0.400 
I 

q = 0.500 
5 = 0.625 

b = 0.80oO 
P*' 0,8927 2 
t = 0.5918 

Corresponding f-3 Kmax Subcase 

I 39- 41 
II 45.47 
III 42.45 

0.4382 
0.5549 
0.4- 

Therefore,Subcase I1 gives the b e s t  results fo r  Case 2. 

By taking K = Kmaxf one may show from (3.35)-(3.40) that: 



- 38 - 

2 
T2 = ‘I, 93 

(3.41 1 

(3.42) 

Equations (3.28) and (3.41) require tha t  g1 5 9 2 f o r  t h i s  example. 

This information, together with (3.42) and the f a c t  t h a t  the curves of 

versus 7 and Kmax versus 7 i n  Figures 3.3  and 3.4, respectively,  Kmax 2 3 
are ident ical  fo r  a l l  of the points calculated numerically, means t h a t  

for  the particlllar plant (2.20) and the spec i f ic  form of f ( u ,  t )  given 

by (3.24)-(3.27), Subcase III can never give a la rger  Kmax than Subcase 

11. However, t h i s  does not rule  out the poss ib i l i ty  t ha t  I11 may indeed 

be be t te r  than I1 for  other cases. 

One may use the procedure described i n  Appendix I t o  calculate the 

n-vector q i n  (3.3) and the n by n matrix P i n  (3*1)* As an example, 

the values of q and P for  Subcase I i n  both cases given above are  

0,8803 8,4691 3.9093 o06Lo2 

0,9036 0.6402 0.4555 0.1439 
q = (L4840) j P = (3.9093 20 3351 00 4555 

which means both V ( x ,  u,  t>  and t ( x ,  6, t )  are f u l l y  determined fo r  the 

par t icular  values of Kmax and f3 which were obtained. 

3* 4 Conclusions 

Suff ic ient  conditions fo r  the s t a b i l i t y  of feedback systems with a 

single time-varying nonlinear element contained i n  a f i n i t e  sector have 

been given by Rozenvasser. 

advantage of more information which might be available about &he nonlin- 

The r e su l t s  reported i n  t h i s  chapter take 

ea r i ty  by placing an upper bound upon a cer ta in  integral ,  (3 dz, 

which occurs i n  the expression fo r  $(x, t). If t h i s  addi t ional  infor- 

mation i s  known, then a frequency domain c r i t e r ion  which often gives 

4 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



- 39 - 

be t t e r  results than the Rozenvasser Criterion may be developed. 

I f  the only information available about the nonlinearity i s  tha t  

it l ies i n  a f i n i t e  sector, then the Improved Criterion developed i n  

th i s  chapter cannot, give a better result than the Rozenvasser inequality. 

However, i f  i n  addition one knows t ha t  f(a, t )  i s  governed by (3.24)- 

(3-27) and t ha t  - < Jr (where Jr is  a constant) f o r  a l l  t - > 0, t h in  

Subcase I may often be used t o  obtain a be t te r  sector than tha t  obtain- 

able by Rozenvasser. Moreover, i f  s t i l l  more information about g ( t )  

and i t s  slope i n  certain intervals are known, then the two remaining 

subcases may also be useful. I n  general, any of the three subcases 

may be used only i f  the particular a corresponding t o  t ha t  subcase can 

be found. 

given by (3.24)-(3.27). 

This does not r e s t r i c t  f(a,  t )  i n  every case t o  the form 

An example was given i n  which Subcase I yielded a be t te r  sector 

than either Subcase I1 or 111. A second example showed tha t  Subcase I1 

can sometimes give a be t te r  result fo r  cer ta in  nonlinearit ies than 

e i the r  of the other two subcases. 

Subcase I11 gives the best results of the three subcases, but it is  

No example has yet been found i n  which 

conjectured tha t  such an example may indeed exist .  

Although the par t icular  example i n  Section 3.3 i l l u s t r a t ed  only 

three special  subcases of the Improved Criterion, t h i s  r e s t r i c t ion  is 

cer ta inly not necessary. Allowing al, a and a t o  be nonzero simul- 

taneously may yield for some systems an even wider sector than can be 
2’ 3 

obtained by using any one of the three subcases. 
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c m m  4 

A STABILITY C R I T E R I O N  FOR FEEDBACK SYS'IEMS 
CONTAINING A SINGLE SINUSOIDAL GAIN 

4.1 Introduction 

A s  described i n  the preceding chapters, the recent trend i n  

s t a b i l i t y  investigations has been toward developing frequency domain 

c r i t e r i a  which guarantee asymptotic s t a b i l i t y  for feedback systems 

having a single nonlinear and/or time-varying element i n  an otherwise 

l inear  system, 

a single stationary nonlinearity, and the Improved Criterion of 

Chapter 3 f o r  time-,varying systems represent important s t a b i l i t y  r e su l t s  

of t h i s  type. These c r i t e r i a  are ,  i n  general, independent of the order 

of Zhe system and require tha t  the nonlinear charac te r i s t ic  remains i n  

a f i n i t e  sector (0, K )  f o r  ail time. For s ta t ionary systems the value 

of K from the Popov Criterion depends only upon the open-loop t ransfer  

function of the l inear  plant,  but f o r  systems with a time-varying 

element the  Improved Cri ter ion shows t h a t  K also depends upon the r a t e  

a t  which the charac te r i s t ic  varies, In  general, when more information 

i s  available about the nonlinear time-varying element, a wider s t a b i l i t y  

sector should be obtained- 

s t a b i l i t y  cr i ter ion f o r  systems which contain an element about which a 

substant ia l  amount of information i s  known. Specifically,  the element 

The Popov Criterion, which applies t o  systems having 

The purpose of t h i s  chapter i s  t o  develop a 
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is l i nea r  and var ies  sinusoidally with time a t  a single constant 

frequency. 

4.2 Statement of the Problem 

Consider an unforced l inear  feedback system containing a single 

sinusoidal gain i n  the  loop (Fig. 4.1). 

{ I *  1 1  
\-t*J-/ j ,  = Ax + b g(t)(r 

(4.2) 

(4.3 1 

T u = c x  

g ( t )  = E 2 [l + Iq sin ( b l o t  + @)I 
where x is  an n-vector which represents the state of the system, A i s  

an asymptotically s table  n by n constant matrix, b and c are n-vectors, 

and u i s  the input t o  the time-varying element whose var ia t ion is  

described by (4.3). 

The sca la r  N i n  (4.3) is a non-negative constant which does not 

Bounds on g ( t )  may be obtained frm (4.3) as  exceed unity. 

E 2 (1-N) g ( t )  5 9 (1+N) (4.4) 

f o r  a l l  t > 0, which indicates tha t  g ( t )  l ies  within a f i n i t e  range which 

has a lower l i m i t  of zero only for N = 1. 

- 

The problem i s  t o  determine suf f ic ien t  conditions which m u s t  be 

s a t i s f i e d  by the l i nea r  plant  i n  order f o r  the system (4.1)-(4.3) t o  be 

asymptotically stable. 

4.3 Derivation of the Sinusoidal Criterion 

A Liapunov function consisting of a quadratic term plus an in tegra l  

Attempting t o  be more term has dominated the work i n  previous chapters, 

general, one may consider the following as a ten ta t ive  Liapunov function, 
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Fig. 4.1 Block Diagram of the Sinusoidally Varyin& Linear 
System (4.1)-(4.3) 

4 
E 
I 
I 
1 
R 
I 
I 
I 
1 
s 
S 
I 
3 
I 
I 
S 
1 
I 



- 43 - II 
8 
I 

T ~ ( x ,  t )  = x PX + xTp x s i n  ( w  t + + ,TPcx cos (wet + 0) 
(4.5) 

S 0 

Evaluating i ts  t i m e  derivative along the t ra jec tor ies  of the system 

(4.1)-(4.3), one obtains 

c(x, t )  = x T T  [A P + PA + rc (PbcT + cbTP)b 
2 

+ x T T  [A Ps + PsA - woPc + 2 KN (PbcT + c b 5 )  

(P bc T + cb T, r >jx sin (wet + 

+ x TKN [- (PcbcT + c b 5  )> s in  ( w o t  + @ )  cos ( w o t  + @) 

+ x TKm [F (P bcT + cb% )fx s in  2 ( w o t  + @)  

+ 
2 s  S 

+ x T T  [A Pc + PcA + w P + $ (PcbcT + cbTPc)& cos ( w o t  + @)  
o s  

2 C 

(4.6) 
S S 

Constrain $(x, t )  t o  be of the form 

T T 2 

T 2  2 2  

+(x, t )  = -[q x + q:x s i n  ( w  t + + qc x cos (mot + @)I 
0 

-(a x) [I-S s i n  ( w o t  + e )  - a s in  ( w o t  + 4 )  

- muo cos (wot + @) 

- a 2 cos2(wot + (011 
- a sin(wot + Q )  cos ( w o t  + e )  1 

(4.7) 

where q, qsy q,, and d are real n-vectors and 6, a, p, a 

scalar  constants which add t o  the generali ty of (4.7). 

and a are 1’ 2 

By equating 

the coefficients of corresponding terms i n  (4.6) and (4.7), one obtains 

(4. a T K A P + PA + 5 (PbcT + cb?) = - qqT - adT 

A T Ps + PsA - woPc + (PbcT + cb T P) + f (PsbcT + cbTPs) 

ATPc + PcA + woP, + $PcbcT K + cbTPc) = -qqc T T T 

(4.9) 
T T - qsq + 6 ad = - 9Qs 

T 

- qcq + @woad (4.10) 
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T T 
q P  bcT + c b 5  ) = - qsqc - q c s  q .2 c C 

+ aldd (4.11) 

2 T  
E(PsbcT + cbTP ) = -q s s  q 2 S 

+a dd 

T o = - q,q? + a 2 

Equations (4.8)-(4-l3) will be utilized to obtain a single matrix equa- 

tion and a single vector equation from which the frequency domain 

inequality fol lows directly. From (4.131, one finds 

(4.14) 

Post-multiplying and pre-multiplying (4.12) by an arbitrary n-vector y, 

one MY write 

or 
T 29 T 2 

KN (bTPsy)(c y) = - (q S Y  T )* + a  \d y) (4-16) 
'T If one sets c y = 0, then 

or 

Therefore, either c is proportional to (ad - 9,) or  to (ad + qs), Le., 

either 

ad - 9, = kaC 

or 

ad + 9, = 

where ka and are proportionality constants. 

Performing the post-multiplication and pre-multiplication of (4.11) 

(4.191 

(4.20) 
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by y and regrouping t e r n ,  one may write 

T Subst i tut ing (4.14) in to  (4.21) and se t t i ng  c y = 0, one obtains 

(4.21) 

Therefore, e i the r  the n-vectors c and d m u s t  be l i nea r ly  dependent or  

c i s  proportional t o  (a a - 2 J7 q j, i.e., e i t n e r  1 2 s  

d = kcC 

o r  

ald - 2 4 q, = kdc 

(4.23) 

(4.24) 

where k and k are proportionality constants. When (4.23) i s  placed 

i n  (4.19), the result i s  

C a 

9s = (ac - ka)c (4.25) 

Substi tuting (4.14), (4.23), and (4.25) i n  (4.11) and (4.12), one obtains 

2 
P b = [s 2 (ka - cLkc) 6 kc + “Ik, IC 

C 

Psb = =  ka (2a kc - k,)c 

(4.26) 

I n  summarizing the foregoing, one should observe tha t  the net  e f f ec t  of  

(4.11)-(4-13) i s  tha t  the  vectors d, qs, qc, Psb, and P b are  each pro- 
C 

por t ional  t o  the  n-vector c. O f  the two proportionali ty constants, 

k and kc, one may be selected a rb i t ra r i ly .  L e t  a 

(4.28) 
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above, except one or  both of the  two different  a rb i t r a ry  constants would 

appear i n  a different  posit ion i n  the  resu l t ing  equations. 

The effect of (4.10) w i l l  be considered next. Because of (4.14) 

and (4.23), q must be proportional t o  some l inea r  combination of c and 

A c unless q, i s  zero. 

when q 

frequency domain equality which would not be useful i n  the  s t a b i l i t y  

investigation. 

zero. 

T One cannot obtain a frequency domain inequality 

f 0 because i n  such a case one would obtain from (4.8)-(4.9) a 
C 

Therefore, the very nature of (4.10) demands t h a t  qc be 

From (4.14), this means tha t  a2 must a l so  be zero. 

Since both Ps and Pc are symmetric, equations (4.26)-(4.27) imply 
T P = a  cc 

S so 
T P = ac0 cc 

C 

However, an inspection of (4.10) when q C equals zero shows t h a t  

aco = 0 

Therefore, from (4.26 ) 

a = O  
1 

Using (4.23) and (4 .29)  i n  (4.10), one f inds 

where kc is  given by (4.28). Thus, 

- &  
Os0 - 4 

and 

I ? =  BK ccT 
s 4  

Substi tuting (4.35) and (4.28) i n  (4.27), one f inds 

(4- 36 1 



t *  
M 
I 
1 
8 

' I  
I 

- 47 - 

Theref ore 

The result of placing the foregoing i n  (4.9) is 

U s i n g  

P = P - P /N 
S - 

q = 9 - qs/N 

one may write (4.38) in the form 

Equations (4.8), (4.9), and (4.12) yield 

A % + F A = - q q  --T T 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

The six formidable equations (4.8)-(4.l3) have been reduced t o  

The (4.41)-(4.42) t o  w h i c h  the lemma of Appendix I may be applied. 

resulting frequency domain inequality is  

Sinplif'ying, one has 

1 * + j w  E) G(ju)] a - + R e  [(1-- K aa2 

- (1+--- a2) IG(jw) I 2 , > O  
I? b2 

(4.44) 



- 48 - 

which must hold for a l l  r e a l  u, some real sca la r  constant p, some real 

posit ive scalar a,  and some r e a l  non-negative sca la r  N, where 0 < N < lo 

The expression for  ?(x, t )  in  (4.7) is  negative semi-definite only 

- -  

fo r  cer ta in  values of the sca la rs  a,  f3, w and 6* The relat ionships  

which must ex is t  between these scalars  i n  order f o r  $(x, t )  t o  be 

0' 

negative semi-definite w i l l  now be determined, 

a 

Using (4.32), the result 

= 0, and (4.37), one may write 
2 

(4.45) 

where 

K 2 2  
4cr 

- p a w o  cos ( w o t  + @ ) )  

m(t) = - (1 - 6 s i n  ( w o t  + e )  - a s i n  (uot + a )  

(4.46) 

The func t ionm(t )  i n  (4.46) must be non-negative f o r  e(x,  t )  t o  be 

negative semi-def i n i t e  

Lema : 

The W e t i o n  m ( t )  given by (4.46) i s  non-negative f o r  a l l  t 1 0 i f  

and only i f  there e x i s t s  some r e a l  scalar  constant 8 i n  the in te rva l  

(0, n/2) such t h a t  

(4.47) 

Bwo = cos 8 [a + a sin (4.48) 

where 6 is  a r e a l  posi t ive sca la r  constant i n  (4.47)-(4.48), a and uo are  

r e a l  positive sca la r  constants, and p i s  a r e a l  scalar  constant. 

scalar  6 i s  negative, then the scalar  constant 8 must belong t o  the in te r -  

v a l  (% , 21r) i n  (4.47)-(4.48). 

If the 

If 6 i s  zero, then the following 
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relationships m u s t  hold. 

I 

2 PWo 2 < a +(-I 2 -  fo r  a 2 Jw 
fo r  a < 

Then the inequality 

m(t*) 2 0 (4- 52) 

i s  both necessary and sufficient for m(t) t o  be non-negative for  all 

t - > 0. 

* 
Sett ing the first derivative of m(t) a t  t = t equal t o  zero, one has 

* * 
d t  

(4.53) 
* + pwoa sin(wot + 441 = 0 

To simplify notation, l e t  

Q = w t  + @  (4.54) 
* 

0 

U s i n g  (4.54) and solving (4.52) and (4.53) simultaneously yields 

(4.47)-(4.48) when 6 is non-zero. 

(4.53) becomes 

For the case i n  which 6 equals zero, 

(4.55) 
2 (s in  Q ) ( $ w , ~  - 2 ~ r  cos Q)  = o 

Therefore, e i ther  

s i n  0 = 0 
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o r  
@“O 

COS 8 = - 2a 

If (4.57) i s  t rue,  then the application of 

a > -  However, i f  (4.56) i s  t rue,  then 

2 1  (4.52). This r e su l t  i s  va l id  for  a < - 2 ’  

2 1  
- 2  

(4.57) 

(4.52) yields  (4.49) fo r  

(4.50) i s  obtained from 

A family of curves showing 

permissible values o f a  and B w  

Fig. 4.2. 

for  various values of 6 i s  shown i n  
0 

A l l  of the conditions developed i n  t h i s  section can now be 

brought together i n  the form of a theorem fo r  asymptotic s tab i l i ty .  

Theorem: 
* 

The system (4.1)-(4.3) i s  asymptotically s table  i f  there e x i s t  

numbers a > 0, @, 6, N (where 0 5 N 5 l), and K > 0 such t h a t  

a )  ‘max = K + c  (4.58) 

where E is  an a r b i t r a r i l y  small r e a l  posit ive scalar  constant, 

b )  the inequality (4.44) with Kmax replacing K 

1 - + Re [(l - K 
max 

- (1 + 

6N - 
XI2 

6 
N 
- -  

holds fo r  a l l  r e a l  w, some r e a l  scalar  constant @, some 

r e a l  posit ive scalar  a, and some r e a l  non-negative scalar  

N, where 0 5 N 5 1, 

there e x i s t s  some real sca la r  constant 8 i n  the interval c )  

(0, fii2) such t h a t  (4.47)-(4.48) 

o1 I J”j 
1 + cos 

* 
The technique of Section 3.2 and Appendix I1 has been u t i l i z e d  t o  

-’make +(x, t) negative def ini te .  
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Fig. 4.2 A Femily of Cunres of a Versus pu for Various Values 
of such that m ( t )  in ( 4 . 6 )  is flon-kgative 
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hold f o r  6 > 0 and the equations (4.49)-(4.50) 

hold when 6 = 0, and 

d )  the stationary system (3.14) is asymptotically s table  fo r  

all K i n  the in te rva l  (0, K). 
1 

The s t a b i l i t y  c r i te r ion  resul t ing f'rm the abave theorem is  quite 

general. The resu l t  i s  val id  for  any frequency of sinusoidal variation. 

As the  frequency approaches zero, a and N approach unity and the Popov 

sector i s  obtained. Moreover, as the frequency approaches inf in i ty ,  

B i n  (4.49) m u s t  be chosen t o  be zero. Figure 4.3 shows a diagram of 

the sector obtained from the cr i ter ion,  which sha l l  subsequently be 

referred t o  as the Sinusoidal Criterion. 

4.4 Relationship w i t h  Previous Cr i te r ia  

The Rozenvasser Criterion i s  a special  case of (4.44) fo r  the 

class  o f  systems under consideration and may be obtained by se t t ing  

a = 1, 6 = 0, B = 0, and N = 1. 

By choosing V(x,  t )  as i n  (3.1) and l e t t i n g  f(0, t )  = g( t )a ,  where 

g ( t )  i s  a time varying gain, one may constrain c(x, t )  i n  the form 

E L B . u  a2 
2 a t  + (4.59) 

t o  guarantee asymptotic s t a b i l i t y  for  systems containing a single time- 
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varying gain g ( t )  i f  both 

- &j 2 d t  - K f3 u . L l  g ( t )  [l - (4.60) 

holds fo r  a l l  t - > 0 and (1.16) holds for  a l l  r e a l  w. 

w a s  established very ear ly  during t h i s  t hes i s  investigation, i s  equiva- 

l en t  t o  a more recent result by Brockett and Forys [32]. 

Sinusoidal Criterion of t h i s  chapter yields  the same result as  (1.16) 

and (4.60) when applied t o  the system (4.1)-(4.3). 

gives the best sector i n  (4.44), then there is  an improvement over the 

above result. 

This result, which 

For 6 = 0, the 

However, when 6 # 0 

The Sinusoidal Criterion may be applied d i r ec t ly  by choosing N = 1 

and then varying a and 6 or  f3 and 6 t o  f ind the la rges t  K. 

may a l so  u t i l i ze  other techniques t o  obtain a graphical interpretation. 

One w i l l  observe tha t  the Popov inequality (1.16) is  obtained by choosing 

6 = 0 and CY = N. The value of N w i l l  be i n  general less than unity. 

Thus, a graphical interpretat ion i n  the form of a modified frequency 

response (Fig. 1.1) may be used t o  find the widest sector i n  Fig. 4.3. 

The new cr i ter ion gives a sector whose lower l i m i t  i s  non-zero when N f 1. 

To cmpare th i s  r e su l t  with c r i t e r i a  which guarantee s t a b i l i t y  i n  a 

sector (0,  K) ,  one may use a "pole-shifting" technique t o  rearrange 

(4.1)-(4.3) such t h a t  the lower l i m i t  for a new gain h ( t )  defined below 

i s  zero [ls]. 

However, one 

This sh i f t ing  i s  only fo r  the purpose of comparison and 

does not affect  the  result of the theorem. 

Define 

m 
2 h ( t )  = - [l + sin(wot + a) ]  (4.61) 
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Therefore, 

K h ( t )  = g ( t )  - 2 (1-I?) 

The new system equations become 

k = A1x + b h ( t ) a  

( J = c x  T 

where 

K T A1 = A  + - (1-I?) bc 2 

(4.62) 

(4.65) 

With t h i s  new formulation h ( t )  belongs t o  the range (0 ,  KN), and 

asymptotic s t a b i l i t y  is  guaranteed i f  the peak-to-peak sinusoidal 

var ia t ion does not exceed KN. 

An example w i l l  be presented t o  i l l u s t r a t e  the  new cr i te r ion  

when 6 = 0 and a = N. 

Example 

Consider the system described by the following s e t  of d i f f e r e n t i a l  

e quat i ons . 
j ,  = x  1 2  

k2 = x3 

%3 = -2.8345 x1 - U2 - 6~ 3 + g( t )u  

1 u = -x 

K g ( t )  = 5 [l + m sin ((dot + @)]  

"he open-loop t ransfer  function of the l i nea r  plant i s  

1 
s3 + 6s2 + Ils + 2.8345 

G(s) = 

(4.66) 

(4.67) 

(4.68) 

(4.69) 

U s i n g  the  modified frequency response described i n  Fig. 1.1, one 
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f inds t h a t  the maximum value of K which s a t i s f i e s  (1.16) i s  63.16 w i t h  

a corresponding B of 0.545. 

Let the value of  wo i n  (4.68) be 1.60 f o r  t h i s  example. 

then use (4.49), where N replaces a, t o  find t h a t  N equals 0.8998. 

Therefore, the value of KN obtained by using the l a rges t  possible K i n  

(1.16) i s  56.83. 

One may 

Using t h i s  value of KN, one may write the system equations i n  the 

form of (4.72)-(4.65). The resu l t ing  plant  t r ans fe r  function i s  

G(s) = 1 - - 1 (2.20) 
s3 + 6s2 + 11s + 6 ( s  + l ) ( s  + 2 ) ( s  + 3 )  

and the new time-varying gain h ( t )  becomes 

h ( t )  = 56.83 [l + s i n  (1.6t + @ ) ]  2 

The reason f o r  select ing the samewhat awkward values i n  (4.69) was 

t o  a r r ive  eventually a t  the t ransfer  function i n  (2 .20) ,  which was the 

basis of an example i n  Section 3.3. 

the Improved Criterion, which had been developed fo r  feedback systems 

containing a single time-varying nonlinear element. The only addi t ional  

information available was an upper bound on an in tegra l  involving the 

time r a t e  of change of the nonlinear character is t ic .  

obtained by using Subcase I of the Improved Criterion was only 39.41, 

compared t o  56.83 by using the new cr i ter ion.  Thus the new c r i t e r ion  

based on a l inear  system having a single sinusoidal gain has yielded a 

much b e t t e r  result for  t h i s  par t icu lar  case than a previous c r i t e r ion  

developed f o r  feedback systems containing a single time-varying nonlinear 

element 

This example was examined by using 

The m a x i m u m  gain 
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Returning t o  the or iginal  problem described by (4.66)-(4.69), one 

may ver i fy  tha t  the maxhum value of KN does not occur a t  tha t  value 

of f3 for  which K is maximum (Fig. 4.4). If the Popov l i n e  i n  Fig. 1.1 

is tangent t o  the curve a t  a s l igh t ly  lower frequency w = 3.04, compared 

t o  w = 3.31 fo r  maximum K, then the corresponding lower value of f3 yields 

a larger  value of 0 . 9 1  fo r  19 (compared with 0.8998 before). 

result is  that the maximum value of KIi is  57.62 with a corresponding B 

llhe net 

of 0.484. 

The next curve (Fig. 4.5) shows the maximum gain as  a function of 

the frequency w of the sinusoidal variation. 

l a rger  gains are allowed for lower frequencies according t o  the 

This curve indicates tha t  
0 

Sinusoidal Criterion. 

Choosing a = N and 6 = 0 enables one t o  u t i l i z e  the graphical 

interpretat ion i n  Fig. 1.1. However, a pole-shifting technique must 

l a t e r  be applied t o  obtain a sector whose lower l i m i t  is zero. 

indirect  procedure i s  unnecessary. 

This 

If 19 is chosen t o  be unity, then 

one may v a r y a  t o  obtain the same result a s  before. 

the pole-shifting and the need for finding a new G(s) .  

This eliminates 

Suppose one has a system canposed of the plant in (2.20) and a 

sinusoidal gain h ( t )  described by (4.61) where  Ts = 1. 

a = 0.921, f3 = 0.484, and 6 = 0, one may use (4.44) d i rec t ly  t o  

guarantee asymptotic s t a b i l i t y  in  the range (0, 57.62). 

Then by choosing 

kt Gl(jw) be the plant t ransfer  function i n  the  formulation in 

which (4.60) applies and a wedge sector is obtained. Let G 2 ( j o )  be 

the plant t ransfer  function when the lower l i m i t  of the sinusoidal gain 

i s  zero, i. e., as in (4.61). Then the relationship between G1( j w )  
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and the two formulations of the problem lead t o  the same resul t .  

4.5 Application of Cr i te r ia  t o  the Damped Mathieu Equation 

A counter-example using the damped Mathieu equation was presented 

i n  Section 2.3 t o  show tha t  Popov's Criterion needs modification f o r  

time-varying systems. 

gain and thus f a l l s  i n to  the c lass  of problems t o  which the c r i t e r ion  

developed i n  t h i s  chapter applies. This problem i s  par t icu lar ly  

in te res t ing  because the exact s t a b i l i t y  boundaries (Fig. 2.3) a re  

recorded i n  the l i t e r a t u r e  [ 3 ,  27, 281. The Rozenvasser Cri ter ion 

w i l l  f i rs t  be applied and then the improvement offered by both the 

Improved Criterion and the Sinusoidal Cri ter ion w i l l  be demonstrated. 

The d i f f e ren t i a l  equation i s  

The par t icu lar  equation has a single sinusoidal 

it + 2pk + [p + 25 s i n  ( 2 t  + +)]x = o (4.72 1 

which may be rearranged as 

1 G(s) = 
s2 + 2ps + 7 

The relationships between K, 7 ,  p, p, E, and 5 are  

K = 2(P - 7 )  

v = 2 5 + 7  

2 
S = l l - P  
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Therefore, 

I 
8 
I: 
1 
I 
1 
1 

K 
5 =i; 

K 2 
2 

5 = - + 7  - p 

(4.75) 

(4.76 1 

The problem is  t o  determine curves i n  the ( E ,  5 )  plane as  y is  

varied. The results obtained frm the Rozenvasser Criterion, the 

Improved Criterion, and the Sinusoidal Criterion w i l l  be compare& 

In applying the Rozenvasser Criterion, one may first calculate 

y -  w 2 

2 R e  G ( j w )  = 
( 7  - w2I2 + ( 2 P 4  

Set t ing  the derivative of Re G ( j w )  equal t o  zero, one f inds the 

Rozenvasser gain a s  a function of p and 7. 

% = 4 P  ( d ? + P )  

Combining (4.78) with (4.75)-(4.76), one obtains 

2 
5 =-$  

P 

(4.77) 

(4.78) 

(4.79) 

Consequently, i f  p = 0.1, 

( 1 = l o o E  2 (4.80) 

which expresses 5 as a function of fo r  the Rozenvasser Criterion. 

Moreover, f o r  p = 0.1, the la rges t  values of K that could be 

obtained by the Improved Criterion (Subcase I) and Sinusoidal Cri ter ion 

are tabulated i n  Table 4.1 and displayed i n  the fom of curves shm i n  

Fig. 4.6. 

the region of asymptotic s t a b i l i t y  f o r  that cr i ter ion.  

Sinusoidal Criterion gives a la rger  region of asymptotic s t a b i l i t y  than 

e i t h e r  the Rozenvasser Criterion 

me region between the par t icu lar  curve and the ( axis is  

Thus, the 

or the  Improved Cri ter ion f o r  t h e  
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Table 4.1 Application of the Rozenvasser Criterion, the Improved 
Criterion, and the Sinusoidal Cri ter ion t o  the System 
Described by (2.8) and (4.78) as  y i s  Varied and p is 
Constant a t  0.1. 

Rozenvasser Criterion: 

Ifi ‘R 5, 
0.17 .204 0.26 -051 
0.50 .323 0.66 .OB1 

1.00 ,440 1.21 . n o  
2.00 .606 2.28 2 5 1  
3-00 0733 3.35 0183 

Improved Criterion: 
* 

Y KI PI ‘I (1 
w 

0.17 0.204 0.OC 0.5C 0.26 * P ! I ~  
0.. :, 0.323 0.00 0. & 0.66 .\tu; 
1.00 0.458 0.97 1.08 1.22 .114 
2.00 0.846 3.40 1.45 2.31 -211 

3.00 1.240 4.00 1.76 3.61 .310 

Sinusoidal Criterion: 
* 

‘S SS 6 w Y KS PS 
0.17 0.235 -40 0.916 0.0 0.51 0.28 ,059 
0.50 0.430 .54 0.842 0.0 0.82 0.71 .lo7 
1-00 0.680 .60 0.800 0.0 1.14 1.33 .l7O 
2.00 1.199 .64 0.768 0.0 1.58 2.59 .3m 
3.00 1-68 .66 0.752 0.0 1.92 3.84 .420 

* 
w 

the  l e f t  hand side of (3.16) or (4.44), respectively, attains i ts  

mnalle s t value. 

is  tha t  value of w i n  the search f o r  the  l a rges t  KI or  % such t h a t  
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system described by (4.72), (4.73), and (2.8), when y i s  varied. 

4.6 Summary 

Sufficient conditions were obtained i n  this  chapter t o  guarantee 

global asymptotic s t a b i l i t y  f o r  l i nea r  feedback systems containing a 

single sinusoidal gain. 

Criterion, represents a considerable improvement over both the Rozenvasser 

The new result, known as  the Sinusoidal 

Criterion and the  Improved Criterion, which were developed f o r  a c lass  

of time-varying nonlinear systems. 

The Rozenvasser Criterion, the Improved Criterion, and the 

Sinusoidal Criterion were each applied t o  the damped,Mathieu equation. 

When several  values of 7 were considered with p held constant a t  0.1, 

one could obtain curves i n  the ( 5 ,  () plane f o r  each cr i ter ion.  

curves i l l u s t r a t ed  tha t  the Sinusoidal Cri ter ion yielded a l a rge r  range 

These 

of asymptotic s t a b i l i t y  than e i the r  of the other two c r i t e r i a .  

addition, Subcase I of the Improved Criterion yielded a be t te r  r e s u l t  

In  

than the Rozenvasser Criterion. 
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5.1 Evaluations of Results 

The recent trend in  s tab i l i ty  theory has been toward developing 

c r i t e r i a  which apply t o  a wide class of systems rather than being con- 

cerned about methods which apply only t o  a particular system. 

years the Second Method of Liapunov served as  a t oo l  fo r  investigating 

the s t ab i l i t y  of particular equations. 

low order, and the techniques developed almost always depended greatly 

upon t h i s  fact. 

For many 

Usually these systems w e r e  of 

The work of Popov [E?, l 3 ] i n  the early years of t h i s  decade i s  of 

special  in te res t  i n  the study of the problems of s t ab i l i t y  theory. 

Popw used functional analysis t o  develop a s t ab i l i t y  cr i ter ion for  

feedback systems containing a single time-invariant nonlinear element 

i n  a f i n i t e  sector of i t s  input-output plane. 

was significant, not only because it was independent of the order of 

the system, but also because the permissible value of K depended only 

upon the transfer function of the l inear  plant. 

H i s  s t ab i l i t y  cr i ter ion 

The Popov result vas soon derived through the use of Iiiapunov 

As a part of h i s  work, Kalman presented an theory by Kalman [lk]. 

cffezti-~e ~roced-~re by vMrh m e  cmhn ronstruct the Liapmov function 

t o  guarantee global asymptotic stabil i ty.  Rozenvasser [29] observed 
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t ha t  a special case of the  Popov Criterion (f3 = 0) was applicable t o  

systems i n  which the nonlinearity varied w i t h  time. 

Upon the works of these investigators are based the r e su l t s  of 

It was first shown via  a counter-example that Popov's t h i s  thesis.  

Criterion must be modified ( for  8 f 0) t o  apply t o  the case of a 

time-varying nonlinearity. 

Criterion was developed i n  Chapter 3 t o  guarantee global asymptotic 

s t a b i l i t y  f o r  feedback systems having a single time-varying nonlinear 

element confined t o  a f i n i t e  sector of i t s  input-output plane. This 

c r i te r ion  represents a considerable improvement over the Rozenvasser 

Criterion. However, although the Rozenvasser Criterion requires only 

tha t  the continuous nonlinearity remains i n  the f i n i t e  sector f o r  a l l  

time, the Improved Criterion also requires additional information 

related t o  thera te  a t  which the nonlinear character is t ic  var ies  with 

time. 

Once t h i s  need was established, the Improved 

The u t i l i za t ion  of more knowledge about the separate element i s  

fundamental t o  t h i s  thesis.  

c r i te r ion  f o r  feedback systems containing a single element about which 

a substantial  amount of information is  known. Specifically, the element 

i s  l inear  and var ies  sinusoidally with t i m e .  

the Sinusoidal Criterion, yields  a s t a b i l i t y  sector which i s  much larger  

than could be obtained by either the Improved Criterion or  the Roznevasser 

Criterion when applied t o  this  special  case. 

There i s  developed i n  Chapter 4 a s t a b i l i t y  

This new result, known as  

The s t a b i l i t y  c r i t e r i a  of t h i s  thes i s  represent a considerable 

improvement over previous results. 

independent of the order of the system and yield a sector which depends 

In every case the c r i t e r i a  are 
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upon the transfer function of the l inear  plant and additional information 

about the separate element. The c r i t e r i a  guarantee global asymptotic 

s t a b i l i t y  f o r  feedback systems containing a single time-varying element. 

5.2 Proposed Extension of the Sinusoidal Criterion 

The ideas of this and the following sections are presented as 

suggestiou for *..--..++" IL1"5DCll&it iGI1.  *-e d2J r e c m  that the 

Rozenvasser Criterion was developed by using a Liapunav function con- 

s i s t i ng  of only a quadratic 

v(x) = X T P ,  

v(x, t) = x [P + Ps 

The Sinusoidal Criterion of 

T 

and constraining t(x, t) t o  

tern, i.e., 

(5.11 

Chapter 4 was obtained by choosing 

sin(wot + 0) + pC cos(wot + +)lx 

be of the form 

(4.5) 

T T 
i r (x ,  t) = - [q x + qsTx sin ( w  t + 0 )  + qc x cos ( w o t  + 0)f 

0 

- (dTx) [l-6 sin ((dot + 0 )  - CY2 sin2(wot + @) 

- "2 cos2 ( w o t  + e) ]  

- p a w o  cos ( w o t  + 0)  

sin ( w o t  + 0) cos ( w o t  + 0) - al 
(4.7) 

The cr i ter ion result ing from (4.5)-(4.7) yielded a much bet ter  resul t  

than the Rozenvasser Criterion for feedback systems having a single 

sinusoidal gain (4.1)-(4.3). 

The proposed extension 

function of  the form .B 

is t o  consider a more general Liapunav 

cos (nwot + e)$ L P m  sin (kwot + @) + 



- 68 - 

and t o  constrain L(x, t )  as 
M N 
,i-l v T  2 i(x, t)  = -[qTx +L ‘sk x s in  (kwot  + @) + L q C n  x cos (nuot + e) ]  
k=l  n=l  

N N  
T 2  p F  

k=O n=O 

- (d x)  [l -L L a& s in  (kwot + @) cos (nwot + e ) ]  

(5.3) 

While the Rozenvasser Criterion and the Sinusoidal Criterion used a 

V-f’unction from a truncated Fourier Series,  the proposed extension 

permits one t o  include terms i n  both V and 

fundamental frequency. 

which are higher than the 

A more general s t a b i l i t y  c r i te r ion  should be 

the result. 

5.3 Extension t o  Systems Containing Several Time-Varying Nonlinearities 

The second area for  further investigation i s  based on e a r l i e r  

resu l t s  by Ibrahim and Rekasius D8], who developed c r i t e r i a  f o r  feedback 

systems w i t h  more than one time-invariant nonlinear element. 

t i cu la r ,  one should be able t o  use the techniques of Chapter 3 t o  develop 

I n  par- 

a new cr i ter ion which applies when the nonlinear elements vary with time. 

The sug@;ested Liapunov f’unction i s  
m ‘i 

v(x, t )  = XTPX +z BiJ f ibi ,  t )  dZi (5.4) 

which is  analogous t o  a Liapunw function used i n  D8-J t o  obtain a 

c r i te r ion  t o  insure global asymptotic s t a b i l i t y  fo r  single loop systems 

with several nonlinear elements. For the proposed investigation, the 

nonlinear characterist ics should each be confined t o  a finite sector. 
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The ra tes  a t  which these nonlinear characterist ics vary with t ime w i l l  

undoubtedly play an imprjrtant role. 

"he above two ideas appear t o  be fruitf'ul areas for f'urther 

iIivestigation 3n s t a 5 i l i t y  theory f o r  feedback system having t i m e -  

varying elements. 
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APPENDIX I 

PROOF OF TfiE MODIFIED KAIM4N IEMMA 

A proof fo r  the lema i n  Section 3.2 i s  provided i n  this appendix. 

A s  a part of the sufficiency proof, a procedure due t o  Kalman [14] is  

outlined f o r  the construction of a Liapunav function. 

Ne ce s s i ty  : 

Adding the quantity (-j.S + jd?) t o  the left hand side of (3.7) 

and rearranging terms, one obtains 

(1.1) 
( - j w I  - A T )P + P(jw1 - A) = qq T + J r r  T 

Pre-multiplying (1.1) by * T  b (-jd - AT)-' and post-multiplying by 

( j w I  - A)-% , one has 

b%( j w I  - A)-% + b T ( - j w I  - A T ) - h  = bT(-juI - A T ) -1 qqT( j w I  - A)-% 

(1.2) 
+ b T ( - j w 1  - AT)-' J r rT ( j w I  - A)-% 

~ b = f i q - z m  1 

b?P = fi qT - 2 mT 

From ( 3 . 8 ) ,  one has 

(1.31 

(1.4) 

Using (1.3) and (1.4), one may write (1.2) as 

f i  qT (jd -A)-$ - z m  1 T  ( j d  -A)-% + b T (-jd - A T ) -1 fi q 

1 T  T -1 T T -1 T - r b (-jd - A ) m = b (-jd - A ) qq (jd - A)'% 
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Adding 7 t o  both s ides  of (115), then rearranging terms and factoring, 

one obtains 

[bT ( - j w 1  - A T 1  )- q - f i  1 [qT(jwI - A)-% - fi 1 = 

T T -1 
-1 [b ( - j w 1  - A ) r]  [ r T ( j w I  - A)-%] 

(1.6) 
1 T  - A)'% - - b ( - j w 1  - + 7 1 T  - - m  2 ( j w I  2 

Since the quantity on the l e f t  hand side of (1.6) i s  real and non- 

negative, then it follows tha t  inequality (3.9) 
T T 

7 - Re [m ( j w I  - A)-%] - .4 I r ( j w I  - A)-% l 2  ,> 0 

must hold for a l l  real w. 

Thus the necessity proof i s  completed. The sufficiency proof 

i s  obtained in  a manner analogous t o  the proof by Kalman i n  [14]* 

Sufficiency: 

The sufficiency proof consists of showing tha t  ( 3 . 9 )  implies t ha t  

(3.7)-(3.8) must hold where A, b, and c define the system (2.1)-(2.2). 

kt the system be described by i t s  phase variables, i .e.,  l e t  

1 

0 

0 

1 

0 

n-2 -a 

The open-loop t ransfer  function of the l i nea r  plant i s  given by (1.14). 

Inequality (3.9) may be writ ten 

0 . 7 )  
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Factorization of (I. 7) yields 

where the poles and zeros of 

(1.8), one forms 

are i n  the lef't half plane. Ran 

If the coefficients of H(jw), arranged i n  the order of ascending powers, 

are  identified with the n-vector q, then 

(I. 10) 

The vector q so defined sa t i s f i e s  (3.7) and (3.8). 

implies the equations (3.7)-(3.8), which completes the sufficiency proof. 

Moreover, the n-vector q can be effectively computed by using the above 

procedure. 

Therefore, (3 .9 )  

note tha t  the asymptotic s t a b i l i t y  of A i n  (3.7) implies 

t ha t  P is non-negative. For P t o  be positive definite,  the pair (A, c T ) 

should be cunpletely observable. 



- 76 - 

APPENDIX I1 

AN EQUIVAIENCE PROOF FOR STABILITY INEQUALITIES 

The purpose of t h i s  appendix is t o  show tha t  the inequality (3.16) 

is  equivalent t o  the inequality (3.20) 

1 - K - Barg + R e  [(l + Boc2 + $4) G ( j w ) l  

i=l 

where 

K = Kmax - E  (11.1) 

To prove th i s  equivalence, one must show tha t  (3.16) implies (3.20) and, 

i n  addition, tha t  (3.20) implies (3*16)- Let 

where P1, P2, ..., P, are a rb i t r a r i l y  s m a l l  positive quantities. 

Therefore, (3.20) implies (3.16) i f  

1 -- 1 
- - E 1 -  
K Kmax 

or, simplifying, 

K = K- - K K- 

(11.2) 

(11.4) 

1 
I 
1 
I 
1 
1 
1 

8 
1 
8 
I 
8 
I 
1 
I 
I 
I 

' I  
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One may choose E i n  (11.1) such that 

E = E  K K  1 m a x  (11.5) 

and,therefore, (3.20) implies (3.16). 

Next, one must show that ,  given E, the values of p and di may be i 

properly chosen. This means tha t  (3.20) must follow from (3.16). The 

-v-al.~e ef = is i_nmrdiat,ely known from (11.5) when E has been specified. -1 

Since the scalar constants pl, pg, ..., pn and the l inear ly  independent 

n-vectors d l, d2, . . . , d are all arbitrary,  one may choose n 
P = P 1 =  P2 - - 0 . 0  - - Pn (11.6) 

Therefore, one may select  p and dl, de, . .. , dn such tha t  

which shows tha t  (3.16) implies (3.20). 
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Errata Sheet for Technical Report TR-EE66-2, Purdue University, "On the  
Asymptotic S tab i l i t y  of Feedback Control Systems Containing a Single Time- 
Varying Bleooent" by 2. V. Rekasins and J. R. Rawland, January, 1966. 

Now Reads ghould Read 

6, l f n e 2  . . the  cume i = 0 . .  . .the curve i 0 . . 
9, l i n e 8  Horeover, i ( x , u )  I S  Eloreover, the cume 

not... 

13, line 7 O < n , < K  
o <  li< I 

28, last line i # O  

25, iast iine 
28, eqn. 93.15) O ~ : ~ $ L = K  

31, 4th lime a f t e r  (3.20)where K = Kmex 

31, condition (c) of in the interval 
theorem 

36, 7th line a f t e r  (3.3Q ... utLlfze (3-31) hold.. ... u t i l i z e  (3.31), hold ... 
41, 5th line a f t e r  (4.3) %e scalar H in (4.3) The scalar  I in (4.3) 

is 8 rea l  ppsit ive is a am-negative 
constant cons tan t 

SO, 2nd line of theorem ... where 0s  1.. ... where O <  1 ... 
and last l i ne  of con- 
dition (b) 
50, next t o  last line . . .some real mu- . . .same real posit ive 
of caaditian (b) negative scaler N, . . , scalar N, ... 
52, condition (d) ...in the  interval  ( 0 , K ) .  ...in the closed interval  

(0, Kppex]. 
k 54, eqn. (4.60) - - 
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