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Abstract

It is shown that the wake of the moon can be described by a
closed set of moment equations derived from the Vlasov equations.
The problem of the steady wake is solved, By comparison of the
results with experiment it is shown that the wake must be unsteady,
If the wake is turbulent, it is shown that such a turbulence possesses
features not analogous to those which occur in a viscous fluid. By
requiring that there be a non-linear cascade from larger scales,

it follows that the mean magnetic field is small compared t

[w]

the

fluctuating magnetic field. This result is in agreement with obser-

vation.
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I. Introduction

Recently Negs“) has rpported magnetic field measurements made
on board the Imp I saﬁeiiiﬁew&hich show a disturbance in the solar wind some
200 moon radil downstréam of the moon. - At a distance of 200 radii, the
wake is about 5C rzdii wide. The wake was detected by noticing that the
satellite abruptly encountered a rapidly varying magnetic field. If the
magnetic field were steady (in time), then the length scale over which the
magnetic field was observed to vary in space was about one radius. The
fluctuations in magnetic field strength were of the same size as the mag-
netic field in the solar wind before it reaches the earth.

Such fluctuations in rﬁagnetic field are also found in the region between
the collisionless shock and the magnetosphere. It is commonly thought that
they are (1) three dimensional, (2) unsteady, and (3) random. .~ Hence the
phrase ''turbulent niagnetic fiéld“ is emp_loyed to describé the observations.
Ah.impor‘cant motivation in thé present study is to clarify the im})lications
of this idea. ‘

The solar wind, through which the moon moves, has a mean velocity’
of about 400 km/sec, and a den;e.ity of 10 protons/cc.‘ The magnetic ﬁeid
associated with the solar wind is about 5y, so that the ratio of mean velocity
to Alfvén speed is about 10. The Mach nun;xber, M, of the protons is about
10, and the Mach number of electrons is about 1/10. The ratio of Debye
length to moon radius is 1,,0_7. The ratio of proton Larmor radius, based
on mean velocity, to moon radius, is about 5. The mean {ree path for
electron-proton cellisions is about 105 mocm radii.

Previsusly, Jz. L. Al'pert et al@z) have analyzed the rarefied \gas
flew over satellitss, and have discussedipraperties of wakes generated

by saiellites, However, they discuss problems whare the magnetic field

is given by itz ‘=ze sirzam value, which, in view of Ness' results, is a

poor assumsy m. Also thevignore the emission of plasma waves fromethe
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- satellits, under the assumpiion that such waves will be strongly damped when

their wave length:is less than a mean free path. We show here that when the
wave length is grezter than a proton Liarmor radius, the opposite is in fact
the case.

In the next section, it is shown that the Vlasov equations are the
proper starting point for the discussion. An asymptotic expansion of these
equations is given, based upon the size of the moon and properties of the solar
wind. This expansion leads to a closed S'et of moment equations. These
equations describe the motion of a compressible, pérfectly conducting fluid,
under the action of Lorentz forces. This fluid has no pressure in the gas
dynamic sense. The relevant expansion of the upstream boundary conditions,
so as to include temperature effects, is given.

In the third section, it is shown that if the flow is steady, the
resulting wake must be conicai flow. In the axisymm_etfic case, this
conical flow is analyzed in detail, and a sclution desc'ribing,it is given.  The
magnetic field in the wake, described in this way, does not agree with the
observations of Ness. Thus the filow must be unsteady' if Ness' observations
are cqrrect.

The fourth sec.:tion shows that a three dimensional, unsteady, rando}n
flow described by the moment equations derived in section II possesses
features having no analogue in the turbulence occurring in a viscous fluid.

II. The Equations of Moction

In the solar wind, the overzll Lorentz force acting on the plasma is
much greater than the interparticle force. In fact, the ratio is

2
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Where U_ is the mean velocity of the solar wind, Bm‘-is the magnetic field in
the solar wjnd, a is electron charge, £, is the dielectric constant of free
space, and 1 is the interparticle distariéé. - Collisions can be ignored as the
mean free path is much greater than the radius of the moén, L (see Sec. I).
Under these assumptions, the plasma equations describe how the Lorentz
force is produced by the motion of the plasma; and how the plasma reacts fo
this force, |

Le,ngths,?, ,’are nondimensionalized with L, time, t,':"with L/ Uw.'
velocity, v'with U_, the magnetic field b, with B_, and the electric field, &,
with U, ‘B_. Letf be the proton distribution function, hondimensionalized

with U;, L, and the proton number density at ywstream infinity, nb. Then

+ ol = 3 S ' -,
f(t, X vy )‘d vdx
: . e e ‘ ’ S A
is the (nondimensional) number of protons in 3;0 <x¥ < .xo, + d% , .‘?o <y < Vo
+ d ?’r‘ Likewise, fe' ie the electrion distribution function.
(3 .
The motion of the plasma is described by the Vlasov - equations
(m/me“is the proton to electron mass ratio = 103):
8 f af 3 f
’ e — e m S A WA e
55— *V 5% +mé’ r (e+vxb)—-F».—v = 0, (1)
A A A A
2L+ 3L S rEsvaB 2 -0 (2)

cufl® = ‘@ S‘S‘S ot - £) aP v, (3)

dive = % gg S (-5 a®y, @)

%..E: = -m, divh = 0. (5)
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i | The parameters are-(p.o-is the permeability of free space, c the velocity of

light) .
aU Lpn
@ s —F—2 2 & 10°
) -]
|
| g = (U oc:/c)2 ~ 1070
LB a
r = 2 ~ 5
Udm

In equation (3), displacement currents are ignored, bieng of order .
The upstream bonndary conditions, assuming thermodynamic

equilibrium, and the mean velocity in the Tz direction,

-3/2 2
flo) = (w Y'MZ) exp[ - ll\za—— - - fz)Z]
| - (6)
. . m. -3/2 ym * N
f) = ry=— M) exp[ -2 M* (¥-T2)%]

For a perfectly absorbing moon, the electrons and ions striking the
‘lunar surface are immediately neutralized. This means that there are no
charged particles at the lunar surface.

f(surface) = f_(surface) = 0 (7

Of course,. othef, more realistic surface boundary conditignq"
could be specified. But the deductions made below about th,e'f’pl";perties :
of the flow are valid for any surface boundary conditions.

- Since a'is large, and P small, the lowest appfoximation to the flow
has two Simp1§ pfopertiés; From equation 3, the mean velocities of the
protons and ele_.ctror_xlsbare‘equal. .From. evvqua,tjion 1, the electron density .
is equal to fhe~1$rd£c?% density. The electrons are stuck to the protons. The
mean velocity-ah& ﬁﬁr{ﬁber density describe the mean flow. Thus a single
fluid desc:iptioﬁ is' appropriate. - {(This is only true when the length scale is

suitably large. On the order of a Debye length, charge separation can occur,
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and single fluid efuations are not appropriate, A similar remark applies
to time scales.) | :

" The proton: Mach number is large. This imples tha.q an expansion

‘whose lowest term describes a cold plasma.is: appropria.te. 'I'hc expansmn is .

0 1 1y ¢ S
£~ 0 L f( k. )
Although equa.tlon (8) is of the same form as that given by

Rosenbulth and Simon("')

‘Larmor radius theony given in: & ).

Substituting equation 8 into equation 2, and letting,l??"f" @ jr‘i.eldsli

9 £(0)

A0 0y (1)
3f L, == 0f = ~ 8f
BtV o - @+ T B2 %)
T v a? v | 3v ! ’ ‘.v ( |

The upstream boundary condition can be expanded in a Taylor series

_about zero tempe'raftiure'. This gives a series of delta.-funqég_ioi_x'l..,multvipliéd{-;'

by'powerS'of 1/M2 - The {irst term in the series is

£ o) = 53 - 1) o o ({0’)

i,

It will be shown that .f(o_) describes a cold (zero femperamr‘q)v,;ﬂvew of

protons.

The electrqn Mach number is small, For electrons, a first approxi-

‘mation-which gives a cold plasma is incorrect. The fjrat appronma.twn to

f e’ f (0 ), must satisfy a more complicated equation than that satuﬁed by

,f(O) (eqs 9a). The equation for f, must contain some ccnvcetive ferms.
Further, théupstream boundary condition on £e is nat g _gﬁomﬁmvto th;e-: e

 Vlasov - equation (1) for B # 0), except in an appro;;i_;p‘qﬁg sense. The

, the present results are not equivq.lent to the imite '
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upstream boundary condition makeg sense: only--When:§xpanded'- inan v
 asymptotic series of delta functions. .

,' These difficulties are remedied by setting

£, ~1, (0 =, oo+ g gl (%, #*, t; + esh ‘«._,',(‘1\1). -
where ?;."' x ’rmn'E- '\'rk. The equations for{ (0) f (” p,re
e ‘ _
(»v | )
| o1, (0) , af(o) Sl
e I >+, : e
| o ) 3 . v R R RN Co
ﬁ R 'i) | (1) SR |
YA | ot O
B 58 e . - Pk ™ RPN \
V.t e+ V4 XD S S— =000 0 (12b)
- ol ey vt _’,

Than cqus.tions dbscnbe how the electrons: pexform‘ 2. spxral mouon
abouf the" ﬁam 1ines. 'I'he electron velocity, O i—;—-; ), is just that
reqwire& 40 make the Larmor radius the same orde: of ma.gni,tude as the
“moon, radi.\il. ' o |

. The *apatream boundary conditions may now. be expa,nded in a aenes
of delta function in v.*, analogous to equatmn (10) SRR
. This*givqé .' S | * . , |

: f_e(o)(é)’: 5(?,‘,'.")‘ RPN

fe(l) (m) =A 0 . (13) |

We precced to derive the moment equa,tionl aasoc;ated w:th
. equations (1) - (13). First, notice thatf 1 ) is zero bath on the surface a
-of the moon and at upstream, mfm:.ty. The: equatwn (le). £or f (1) conta.ms

no forcing funct:.an. Hence

: _1 |
_vfe.()a.o.
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From equation (4), as a/f >> 1, the density of f(l) is the same

as that of fe(l), thus

S' g S 1) 4B g 2 v (14)

-
Call the first approximation to mean velocity u. From (3), as
a >> 1, the mean velocity of protons is equal to the:nean velocity of

electrons, to loweSt order.

SN

Taking the first two moments of equation (9a) for f(o) gives, us‘ing

the definition of u,

E‘ + -‘l; X g = 0, (15)
(0) (3)  _ |
g 5 S"i vy dmv = (U U, (16)

where n is the (non dimensional) number density, -Equétion (15) is-dh‘m';q
law for a perfect conductor. Equation (16) shows that f(o) describes a cold
plasma.

Taking moments of equation (9b) gives continuity and momentum
equations. The right hand side of the momentum equation has (no pressure)

only a-_]’ xD term, where 'j\ is given by

3 =§§S v £140) o,

Using fe(l) = 0 and equation (3) gives

? = -?’.- - cur o | (16)

With (15), (16), (17), a closed set of moment equations may be written down.
. In dimensional form (p = proton density, capital letters denote dimensional

quantities)
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—d
—5—Lat + divp U= 0, (18)
—
P2 +p@-MT =3 cun¥ x B, (19)
%_?B._ + Turl @ xB )= 0; DivB = 0 , {20)

The absence of pressure in {19) is due to the fact that the protcns
control the motion, and to first approximation, the protons have zero
temperature, and also to the fact that there are no close collisions in the
plasma. |

III. The Steady Wake

Consider the steady wake of a body moving in a fluid described by
equations (18), (19), (20). Assume at upstream infinity that Bmfis parallel
to U_. The body is-axisymmetric. Under these circumstances, the wake is
axisymmetric. For the wake of the moon, the flow is hyper alfvénic: the
ratio of free stream velocity to Alfvén speed is about 10. |

Far downstream, the size of the body is of no importance. In a steady
flow, equations 18, 19, 20 have no length scale. Hence the flow fardowu-
stream.is conical. For the axisymmetric case, let z be in the direc&on

of the free stream, and r the cylinder radius. As the flow is conical, there

-is a similarity solution for equations (18), (19), (20). The similarity vari-

able is
n = r/z. (21)
The flow properties are constant on rays drawn from.the body (located at
r = z = 0).
Letting ( ), denots upstréam conditisns, the flow quantities in the

wake behave in the folloywing way:



= p, o(n) ,

dlr ©
i)

u_ [ uln), vim 1, (22)

@
"

B, [ blm), ctn].

Here u, b are the components of the velocity and magnetic field in the z

direction; v, ¢ are the components in the radial direction.

Upon substituting (22) into equations (18)-(20}, the continuity (equation 18)

and induction (equaticn 20) may be irtegrated as

¢, =0 vig,

b

nc + 82 (23)

vb - uc = g3»

\
where g; denotes a constant of integratior. The momentum equations may

be written

(24)

The boundary conditions on the axis of symmetry are

v{0) = ¢(0) = O. (25)

The jump conditians across the ccllisinnless shock may bewritten
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n ' (2¢)

2
\[ SZWE?II-H%— +b B ] _ =0

where [ B\'] n-denotes the jump in normal ¢omponent of B across the shock,
t denotes tangential components. In the last eguation of (26), I is the unit
matrix. |

For a ghock inclined at an angle tan 6 =17 o ! the first three eguations
of (26) can be shown to implyg; = 1, g, = 1, and g, = 0. |

The last equation states that, across the shock, the jump in'momentum

flux is balanced by the jump in magreiic stress. As S is large, an expansion

in terms of S — o is appropriate. Now, if the shock were weak, i.e. if S

‘were near one, then, from linearized thecry, we expect that © would be of

order 1/S2 - 1. In the present case, S is large, and the strong shock has a

deflection angle greater than that given by lirezarized theory.

8 =m_ ~ &S (a7)

o

“Associated with this deflection, the other flow quantities behave as

—~ +.4F
a 1+_u_¥1.l
S
ve v mtys,
1 £ %3
b 14 Of—g—), (28)
. S
e~ ctqhyss,
L o~ oo {-rﬁ’), where 1 = *:;+/S .
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Substitution of this expansion into the last equation of (2‘6) gives

-8 = -60‘++ o‘+V+‘

| 2
lo = cetvts+otet +1/2

\

The first equation in {29) assures the balance between the magnetic stress

(29)

and the momentum flux in the z direction; the second, the balance in the

r direction. These equations yield

V+ = 1
262
o (30)
Lt 28 !
2621

: '*~-»1--The»«solufion:n;@yﬂpe gotten as follows. Since g3 = 0, the first

priay-be integrated using the last equation of (23), to give
1
wHvE =1+ O ) (31)
S ‘ .

Here, the constant of integration is evaluated at the shock, 11+ = &, using

-the expansidn (28).

Using the expansion (28) for all O<'n+< 6 reduces the second equati on

of (24) to
dut _ ~ct act
- »
ant an*
which gives
- +,2
ot = le) (32)

the constant of integration being evaluaisd on 11+ = 0, (equation 25).
Equations (31), (32}, and (23) are the sclution.

Using (37} and (23), the value cf & is determined to be
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6 = . (33)

Using (31), (32) and {23), the variation of c+, u+ and v+ with 'q+

is found to be

ot = - 2mh)2
vto= ot (34)
Hos 2,q+

A sketch of this simple solution is shown in Figure 1, The linear
variation of the magnetic field with n+, and the small size of the change
in magnetic field across the wake O(%) both contradict the observations
of Ness.

IV. Comparison with Turbulence

In this section, we show that a three dimensional random flow
described by equation (18)-(20) pcssesses features having no analog in the
turbulence occurring in a viscous fluid. For purposes of comparison we
shall use the hypersonic wake, (4) At the outset, it should be noted that
equations (18)-(20) have no dissipation terms. Such terms undoubtedly
come into a higher order approximation of the plasma equations. But
the next higher approximation to (18)-(20) requires detailed knowledge
of fe(o), and the calculation of fe(o) appears quite difficult,

In view of this difficulty, we compare equations (18)-(20) to the
inviscid (Euler) equations. Consider for comparison an eddy in the
hypersonic wake to be a lump of fluid surrounded by thin shear layers.

(4)

It is known ' that the density changes in this eddy are negligible, Thus,
the flow inside the eddy may be considered incompressible, to first approx-
imation. The dissipation occurs in the shear layers which enclose the eddy.

Hence the flow inside is irrctational. There is a velocity potential ¢ satis-

fying Laplace's equation, The internal flow is specified by giving either the
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normal or tangential velocity on the boundary of the eddy. The fundamental
feature of this description is that any size or shape of eddy is allowed, as
the solution ot the boundary value problem posed above always extsts and is
unique. |

In a similar vein, we ask if such latitude is available in eguations
(18H420). As, to some order, there is dissipation associated with rotational
magnetic or velocity fields, the question amounts to examining the class of
irrotational solutions permitted by (18-20). It is easy to see that the
system of equations which are satisfied by the velocity potential ¢ , and the
magnetic potential L]J(§ =‘V_‘t,b) , are redundant, In general there are no
solutions to an eddy problem posed in the same way as in the hypérsonic
wake.

The reason is that wave propagztion, on the scale of an eddy, must
be dominant in flows governed by (18-20). For example, using Ness' data
for magnetic fields, and estimating that the fluctuating velocity field is 1d%
of the mean velocity, we find that the magnetic energy in an eddy is roughly
the same as kinetic energy. From this, it follows that Alfvén waves may not
be ignored in the dynamics of an eddy {in contrast to the hypersonic case
‘where acoustic waves were unimportant inside an eddy). The reason that
no nontrivial irrotational motions exist inside a closed eddy is that the
equations are hyperbolic. Solutions exist only for problems posed on an
initial line, not a closed surface. These solutjons are, in general,
rotational.

Thus the concept of vortex stretching in equations (18-20) is also
significantly different from that in a viscous fluid. This is most easily

seen in the case where the density fluctdations are small. In that case, set

ﬁ:ﬁ+§/\lup ’ o = -T:T\—_Bs;’-\/up . Then if
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- — S _____Qx
r = curl P, s = curl N

an equation for the-evolution of r and s can be w¥itten as(S)

[%—E—-—-+curler]+[€—f+curlsxP =0] (35)

Assuming the r is almost always zero in regions where s is non~zero leads
to the idea that r ;.s stretched by Q and s by P.

Consider a coordinate system moving with the mean velocity, U,
Assume that the mean value of the magnetic field is non-zero. If, att=0,
a disturbance creates x and s,accordng to (35), the r and s filaments will
tend to separate with a mean velocity B/ '\/:L—b-;—— (bar denotes mean value).
&L this happens, the mechanism for stretching s by P becomes linear, for,
if r and s are sgparated by large distznce, the irregularities in P caused
by variations in r will not be felt by the s filaments, and vice versa. . Thus,
if the mean magnetic field is non-zerc in the wake, the random rotational
elements in the flow separate, and, after a long time, are con\{ected with
the mean magnetic field, in this circumstance, a cascade can proceed
only thHrough stretching by mean field gradients. From section III, we
anticipated that mean field gradients in the wave may be small,

There is every reason to believe that a cascade does exist. The above
is an argument that the mean magnetic field in the turbulent wake of the
moon should be near zero: letB = B + B', where B' is the fluctuating
part of B. Then «/(‘;‘T / B << 1, so that the Alfvén waves are propa-
gated mainly by the instantaneous magnetic field rather than its mean value,
This is in rough agreement with Ness' results.

Because the vortex stretching mechanism is very different from the
classical case, and because eddies cannot exist with the same form that
they have in the classical case, one should expect the random three

dimensional unsteady flow governed by (18-20) possess features not
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analogous to turbulenceva.s it eccurs in a viscous fluid,

Finally, it seems worthwhile {o point out that Cohen(6) has
shown that the solazr wirid has fluctuations on the scale of 800 km, which
is roughly c~mparable with the scales of motion seen by Ness. If most
staré’ have solar winds, and if thost solar winds are turbulent, and if the
speculations of this section apply, about half the matter in the universe

is in this sort of turbulent motion.
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FIG.1. STEADY WAKE OF MOON (EQ.34)



