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FOREWORD

This document represents a final report prepared
for the Manned Spacecraft Center, National Aeronautics
and Space Administration, Houston, Texas presenting
the results of a study conducted between July 1964
and November 1965 by the Space and Information Systems
Division of North American Aviation, Inc., under
Contract NAS9-3159, Study of Flow Fields About
Axisymmetric Blunt Bodies at lLarge Angle-of-Attack.

The use and organization of the computer program
are documented in a separate Computer Program Operating
Manual, SID 65-1355, in three volumes. The theoretical
formulation of the basic method is presented in this
report.

This study was performed by the Flight Sciences
Department of the S&ID Research and Engineering Division
under the direction of H. G. Webb, Jr., Program Mansger.
The following individuals contributed significantly to
this study in the areas indicated: H. S. Dresser, over-
all development of the computer program; B. K. Adler,
formilation of the analytic shock fit, the iterative
convergence technique, and the data output options;

R. H. C. Lee, basic theoretical formulations; and

S. A. Waiter, analysis of the Apollo Command Module
entry flow field. Particular appreciation is due

R. B. Anderson, N. Rosenblatt, and J. Wallen for their
contributions in programming the analysis and in sub-
sequent checkout.
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ABSTRACT

point errors.

An IBM 7094 computer program has been developed for the
calculation of equilibrium, real gas inviscid flow fields about
axisymmetric blunt bodies at large angles-of-attack traveling at
supersonic speeds. The program will compute the subsonic and
transonic flow regions behind the detached bow shock with
sufficient supersonic data being generated to allow initiation
of a method-of-characteristics solution for the remainder of
the flow field.

An inverse method was chosen as the basic method. Starting
from an initial estimate of the shock shape, the flow field and
resulting body are found. The computed body is compared geo-
metrically with the desired body to establish a set of control
By sequentially perturbing the analytic shock
coefficients, a set of influence coefficients is found which is
then used to compute shock coefficient corrections which reduce
the control point errors in a corrected flow field run. This
procedure is convergent if the initial shock shape is sufficiently
close to the exact shock shape. The program will handle the
Apollo Command Module, as well as a general class of body shapes.

This report presents a detailed derivation of the theoretical
formulation, an explanation of the numerical procedures used in
the finite difference solution, followed by sample results for
two cases, one of which is the Apollo Command Module in a real
gas flow at 22° angle-of-attack.
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SUMMARY

Based on a thorough review of existing methods for the computation of
inviscid subsonic-transonic real gas flow fields over blunt axisymmetric
bodics traveling at supersonic speed at high angle-of-attack, the inverse
method was selected for the development of an IBM 7094 computer prograi for
calculation of flow fields over the Apollo Command Module and a generalized
class of shapes. The program was checked out on several sample cases, two
of which are documented herein. One of these is the real gas angle-of-attack
flow field over the Apollo Command Module.

A minimum number of assumptions were made in formulating the computer
program from the exact partial differential equations. The only major assump-
tion made in the analytical development of the solution was the use of a
finite difference technique in the numerical analysis. An accurate empirically
fitted set of equations was used to represent real air properties. In the
inverse method, the flow field and predicted body shape result from the
integration of flow properties marching to the body in a body-oriented
cylindrical coordinate system from an assumed or predicted bow shock wave.

An analytic shock fit using up to 20 coefficients was developed which proved
very accurate in representing a wide range of blunt body detached shocks.

An automatic iteration procedure, required in this approach, was developed
for correcting the shock to obtain the correct body shape. This procedure

is based on the assumption that the initial shock shape is sufficiently close
to the correct shape so that the necessary corrections in the coefficients

of the analytic shock equation result in linearly related corrections in

the coordinates of a set of body control points.

A sample case was chosen for the program development period as a check
on the formulation and programming. Since sphere flow fields have already
been accurately computed and reported in the open literature, this shape and
shock were rotated 4O degrees to obtain the input conditions for a perfect
gas angle-~of-attack case. Typical results are presented herein. The real
gas Apollo Command Module flow field results are presented to show the ability
of the program to accurately predict the entire subsonic flow field at an
angle-of-attack of 22 degrees, including the region near the small shoulder
radius on this capsule shape.

In addition to the formulation of an analytic shock fit and the iterative
convergence technique, the two chief technical problems solved were the
handling of instabilities in the flow calculations and the coupling of a body
determination routine into the finite difference integration procedure. The
instability problem was solved by establishing two tests for removable
singularities and by using a two-dimensional smoothing procedure to overcome
nonessential instabilities observed near the body axis of symmetry. Smoothing
was not found to be required for the zero angle-of-attack case. The body
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determination procedure predicts the body location by using a stream function,
extrapolates to find body properties, and controls the deletion of calculations
for grid points which fail the instability tests or which lie within the
predicted body where calculations proved unreliable.

- viii -
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INTRCDUCTION

The determination of the fluid properties in the subsonic-transonic flow
field over a blunt body has been the focus of numerous gasdynamic investiga-
tions. Not only docs it provide the necessary data for the subsequent evalua-
tion of the attenuation of electromagnetic signals through the shock layer
and the radiant and convective heat transfer to the nose cap, but it also
serves as an essential step toward initiating downstream supersonic flow
field calculations. Past investigations in this area have dealt mostly with
two-dimensional and axisymmetric bodies at zero angle—of-attack , mainly
because of the simplification in the analysis for these cases. However,
the flow field about a typical re-entry vehicle is generally three-dimensional;
and, complex as it may appear, the calculation of three-dimensional flow fields
has become a task of increasing urgency.

The objective of this study was to develop a computer program for
calculating flow fields about axisymmetric blunt bodies at large angle-of-
attack with a higher order approximation to the flow properties than the one
presented in Reference 1 . The basic approach of Reference 1 was to use
the method of integral relations with the following assumptions: 1) a number
of flow properties vary linearly across the shock layer (Belotserkovski's
one-layer method, Reference 2 ), and 2) the flow properties vary sinusoidally
around the stagnation point.

Prior to undertaking this effort, a survey was conducted to determine
the current state of the art in blunt body flow field analysis and to
determine which approach should be taken to develop the required computer
program. The methods presented in the literature are classified into two
categories; the inverse and the direct methods. The inverse method assumes
a known shock geometry and computes the entire flow field, including the
body geometry. The direct method, on the other hand, uses a known body
geometry, assumes additional information about the flow field properties R
and iterates to a final converged solution. Examples of the inverse method
are those of Fuller (Reference 3 ), and Lomax and Inouye (Reference 4 ) in
which instabilities in the calculations are removed by smoothing. Garabedian
and Lieberstein (Reference 5 ) also solved the inverse problem, but in a
complex plane where instabilities were not present. The direct approach has
been used by Maslen and Moeckel (Reference 6 ), Gravalos, et al (Reference
7 ) and Ushida and Yasuhara (Reference 8 ), as well as in the work based
on the method of integral relations.

The conclusion to use the inverse method with smoothing in the present
study was reached after a review of these methods. The direct methods using
the streamline curvature principle (References 6,7and 8 ) cannot define the
flow field accurately near the stagnation point. This drawback is trouble-
some for the three-dimensional case where the maximum entropy streamline does
not necessarily coincide with the stagnation streamline. The method of
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integral relations (even with two strips) may not yield enough flow field
details to obtain accurate starting conditions for the solution of the super-
sonic flow region. The work of Bohachevsky, et al (Reference 9) is a new
promising formlation of the direct method that was presented after the
decision was made to use the approach taken in this study. The inverse
method has been used for two-dimensional blunt body flow field analysis
using smoothing techniques and has proven to be both fast and accurate and
is simpler than the method of Reference 5 . The inverse method will yield
sufficiently detailed flow fields, even in the vicinity of the stagnation
point, without any assumption on the entropy of the stagnation streamline.
Its chief drawback is its dependence on an advance knowledge of the shock
shape. The approach used in the present study overcomes this deficiency
by development of an automatic iterative technique for converging on the
correct shock and body shape using a predicted shock shape for the initial
conditions. If the predicted shock is sufficiently close to the correct
shock the technique is convergent.

This report, supplemented by the Computer Program Operating Manual,
Reference 10 , describes the theoretical analysis and presents a detailed
description of the formulation and operational use of the computer program
developed for the calculation of the subsonic-transonic flow field about a
blunt body of revolution at angle-of-attack. In order to simplify the
computation, air is assumed to be either a perfect gas with constant specific
heats or a real gas at thermodynamic and chemical equilibrium. The general
approach described here can be extended to the case of nonequilibrium flow.

SID 65-1353




THEORETICAL FORMULATION

In the theoretical analysis of the inverse method angle-of-attack blunt

body solution, many critical decisions must be made which will affect the

— formilation of the resulting computer program. Since the derivation must be
based on a specific coordinate system, it is in order to give the chcice of
a suitable system a high priority. A body-oriented cylindrical system has
advantages in this analysis because of its ability to handle axially symmetric
body shapes. This system also has advantages at hypersonic speeds when the
shock lies close to the body. Another item to consider is the high degree
of accuracy required in the final results. This is extremely important in
the inverse method. Thus, the approach taken herein is to derive the funda-
mental equations and then introduce a minimum number of necessary assumptions
to simplify the analysis for programming.

Problem areas to consider include selection of an accurate analytic shock
fit equation and exploration of a means of correcting the shock to obtain a
more accurate body shape. The well-known problem of integration instability
in numerical solutions using the inverse method is also of utmost importance.
Although perfect gas thermodynamic properties offer no problem, a procedure
. for introducing equilibrium real air properties must be chosen.

PRINCIPLES OF THE INVERSE METHOD

The inverse method of solution computes the flow properties behind a
given shock when free stream conditions and the thermodynamic properties of
the gas are specified. It is desired to compute a solution which extends
sufficiently into the supersonic region to allow a method-of-characteristics
solution to be started. Consider the zero angle-of-attack flow field over an

|
| |
|
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|
axisymmetric shape as shown in Figure 1 .

Typical Right-

. Bod
Running Characteristic v

‘M _ x-Axis of Symmetry

| I
. Figure 1. Typical Zero Angle-of-Attack Flow Field Over an Axisymmetraic
Blunt Body
I
|
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The following discussion considers the free stream conditions and thermo- ‘
dynamic properties of the gas to be held constant. The features of the flow
field are worth noting, for their understanding is important in establishing
the operation of the inverse method.

1. The shock ecmb is analytic, and any segment of the curve can be
continued to the entire curve.

2. The shock ecmb and the entire flow field eckhad are uniquely
defined by the body shape dja. Since the converse is also
true, it follows from analytic continuation that the body dja
is determined uniquely from any segment of the shock ecmb.

3. The sonic line ckhj is also determined uniquely by any segment
of the shock ecmb.

L. The segment of the sonic line jh uniquely defines the body
segment ja, and the segment ch of the sonic line determines
uniquely the flow in the region chbme.

Since the body segment ja is defined by the sonic line segment jh, it is
necessary to verify with the inverse method that the correct body shape ja is
obtained before initiating the characteristics solution slightly downstream
of the line ckha with the body shape na given.

Thus it may be stated that it is necessary to define the flow field in ‘
the region eckhad with the inverse method. The method of characteristics can
then be used to solve for the region fbmchan. Note that the body shape may be
altered downstream of point a without altering the flow upstream of the limit-
ing characteristic ab.

The consequence of the existence of an analytic shock is that in principle
the segment em of the shock is sufficient to start the inverse method. By
marching in the x-direction, the required region will thus be computed; and the
required data will be available for the characteristics solution. A difficulty
arises, of course, in the numerical solution of the partial differential equa-
tions. Since a finite number of grid points are selected, for example, along
the segment em, there exists an increasing loss of accuracy in the evaluation
of higher order derivatives as the end of the array, point m, is approached.

In practice the initial values must be prescribed somewhat past point m to
allow accurate calculation of the required subsonic-supersonic flow field.

GOVERNING EQUATIONS

The subsonic-transonic flow field about a blunt body of revolution at a
large angle-of-attack is to be considered. The resulting flow field in the
shock layer will be three-dimensional with symmetry about the pitch plane.
An inverse method has been chosen for the analysis. In this method, a shock
shape is assumed; and the thermodynamic and flow properties in the shock layer
are obtained from step-by-step integration of the governing equations, starting
from the shock. The body supporting the assumed shock is obtained as part of ‘
the solution. With air assumed to be either a perfect gas with a constant

-4 -
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specific heat ratio or a real gas at thermodynamic equilibrium, the governing
equations in the shock layer are the following:

Continuity: V- (/0 U) = 0 (1)
Momentum: U-v0 = _/ZL Vp (2)
Energy: h+4T-U=h, +?{»TU: (3)
State: h=h( P )/,) (%)

analysis.

a cylindrical system.

surface.

over the surface.

1. The required body shapes are axially symmetric.
network of points on the shock is thus most suitably selected in
The point spacing can be varied to result
in satisfactory detail in property distributions over the body
For the Apollo shape, for example, the radial spacing
can be easily reduced in the region of the smaller radius of
curvature on the shoulder where properties will change rapidly

A body-oriented cylindrical coordinate system has been chosen for this
The reasons for this choice are:

The starting grid

2. The shock shape is more easily expressed analytically in a body-

oriented cylindrical coordinate system.

3. Data output as required by the three options is facilitated in

the cylindrical system.

This coordinate system is shown in Figure 2 in which the X - axis is the

axis of the body, €
and n

is the meridional angle measured from the X-y plane,
is the distance perpendicular to the

X—axis.
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Figure 2. Coordinate System

In cylindrical coordinates, Equations (1) through (3) become

5 (puw) +x & (rev) + & (pw) = © 5)

u-g—;‘c:--l-r% +-—‘f{-%%—=—(%—%§- (6)

w e il 4 W a‘g’——“j—;—*=-,’7§—,% (7)

u&“;‘—\-v*a{ LT VW =—/7‘,-ﬁ%?5 (8)

3 (s wt) = e b U .
-6 -
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where W, v-, w" are the velocity components in the X s M , and O

directions, respectively. The details of this transformation are given in
Appendix A.

For the convenience of numerical integration of the above partial
differential equations, the coordinate system is transformed into a shear
coordinate system in which the distance in the % direction is measured
from the shock surface instead of from the Yy-% plane. This shear coor-
dinate system is shown in Figure 2. Let the shock be described by:

X = S(n.)e) (10)

The transformation to the shear coordinate is

X =x - S(n,e) (11)
.= N
®© = ©6

The partial derivatives in the cylindrical system are related to those in the
shear coordinates by

(39),0 = (3%).., (122)
‘aah‘x)e =(%"—-)X,9 - %—’%)x,e (‘%(‘)ﬂ)e (12b)

(3? o n :(%Ln" (%‘?‘)x,h(’;%)me (12¢)

-3
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Using Equation (12) and denoting a partial derivative by a subscript,
Equations (4) through (9) become

A, — N S“v;( - SeW'x*%ﬁ +RVR +%"Z&+we+.l‘7’;n +vr=0 (13)

Q uy +nvun+wue=_ﬂ-f;-p X (1)

Qux + nU Uy +Wwyg —-w’z_—_ﬁﬁ“ﬁ +——&Ei—"/§ (15)
P S

Qu&+nwuﬁ+w’we +u'ur=—/—,‘—+—/’;EL (16)

hP Px +'h/o/0x TUU HUUy +Wwwy =0 (17)

where Equation (9) has been differentiated with respect to X, and

Q

R -nvSy —w S,

he = (%%‘)/, )
ho :.—‘(%B—P

It should be noted that the A and @ partial derivatives above are
taken with X holding constant instead of % . Equations (13) through (17)
consist of five partial differential equations for the solutions of the five
dependent variables: w, v , w, L > and P . These equations can be

further rearranged into the following forms suitable for the step-by-step
integration scheme:
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For equilibrium air,

_.
/

(-,_ ! =2 2 l_bl.\
=tQ ) l'),(n’-\-n‘g,,_-roe/_( - (18)

{( "l}o“\ Xnv-u -\-urue)-l-(Q\r -l-nfl-\ S,L)(,-._\n,- Wy +7-Fh- ur)

+(Qur+/oi}, 59)(nu-ujr,_ +wg + B +vur) 170‘}0(1'\.\1;11-01’9 +’—l¥4+/‘.‘;&+vv)}

Uy =——!.j[ntru.n—\-urue +/—’Z—f‘ (19)

. Uy =—-&—[n.u~u;t +urué+%&‘—w}—£/§&5“] (20)
wx:“"—!f[ﬂu'“’i. +wug -i-;?- +U'W"-/‘S%PL (21)

/ox :'-’g-["'“x - S —ug S, +nu;_+/7‘é +W*j{@é"+b} (22)

For a perfect gas with constant @ , we have

¥ P
‘ h =-i.—_—l-7o“ (23)
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therefore, ‘1 :(—3:——) /-E)L (24)

h,o '_:'_(7?_-47)/'%‘ (25)

Substituting Equations (24) and (25) into Equation (18) and rearranging, we
obtain

2 -1
Px = {-;,Q/f + (n.’i-}fS;-l-Sé)} (26)
[A

{(.. /o..?"-/L‘g-i‘-)(nV'u,ﬁurue)+(nfgn—%5'l"£’;£r>'

(nvu;, +urvg +f:?"- ~u?) +</o Se — & )

(nm +urwy +/-§‘— +u’ur)+/0Q (rug +w3+"'7fr&+-“/7’;4+tr)}

The formulation actually used in the program requires one additional
transformation of variables. It will be shown in a later section that a
data smoothing procedure is required to control noise buildup in the data
as the X integration proceeds toward the body. To most accurately smooth
the data near the X axis (m=0) it is desirable to introduce the
velocity components U" and @ , defined in Figure 3 and by the following
equations.

- 10 ~
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Y s w

€|

Pitch Plane—\

View Along Positive
X -Axis

Figure 3. Definition of Transformed ILateral Velocities

U T U Cos © —w siné (27)

—

W = Usin® + W cosS (28)

These variables have the desirable characteristic that only one value of each
exists on the X-axis (m=0) whereas the components U~ and wr are also
functions of the coordinate © . Thus the components U~ and & are only

slightly dependent on © near the axis (where the noise is greatest) and can
be smoothed with the least error.

The transformation of the X-derivative equations is readily accomplished
by deriving expressions for v~ and w- and their n, 6 , and X -deriva-
tives in terms of v and W and their n. , © , and X-derivatives.
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Equations (27) and (28), when solved for w” and U~ yield,

U" = U cos & +wW sinb

and w = W cos ® — U ainb

Straightforward differentiation of these expressions with respect to n,
6, and X yield the following derivative transformations,

‘j]—L —_ —J/"L Cose + -J-rh_ sin 6
\;.—e :_—--U‘s,ne -\-L_r"ec_ose-{-—(ﬁ‘cose ‘\'_l:’é S‘V\e
u; = _U-')'( cos O ‘i'—U-Fx sm 6

W =—U‘,L51n9 + W, cos &

n
Wy =-=Ucos 8 —Up smb — W SinO + Wy cos 8
Wy = —Uxsm 6 + Wy Cos ©
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The derivatives of the expressions for V5 and u’/} require the solution
of two simultaneous algebraic equations. Othérwise the transformation involves
only straight substitution. The results are,

Q=nu—-nS, (Gcos6 +r sim 6)—'59 (Wrcas® ~Tsin ) (29)

P, —_-{ Q(h, -5)+ he (n+n*S2+ s;)}_! . (30)
{[ w=noh Y au (Fcos0 + Tsin6)+ Up (B cosd ~T-sine))
+{@(F cos® +7r sme) + 30 b, S [ (7 cos 045 sm B cos0 4T, sin0)
+WrcasO (T cos6+ 0 51n0)—T sin6(T; cos 6 +3F sin e)+%b.]
Ho (@ cos& ~T-sne) +oh So) [T o8 + 75 Q) (i cos0-Z51n0)

+ L_U'Cose(-—u_é S8 + U] cos 9)"’-6'5"‘9(-‘;9 SN — g cas g).,_/i;e.i

+0Q '},[/’L(U; cas® +, sme)——lf;sme +07, cas 8

+L‘/z,ﬁ‘- (U'COSQ +_u7'sm8) + ,/gﬁ-(a‘raose -U sme}}
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/ox = -;‘Qf-{n. ux—nsn[ﬁ'; cos O +w Sm.e]— Se[ﬁ_rxcose —~Ux S'anJ (31)
+ J'L[-u';LCose + th;‘ smé] + %[Fas 6+w sm9]

+ ["F’e 56 +wy cose]+;/§9-[w cos® —Usm 6]}

Ux = 'é‘{h lL,,_(F‘cos 6 -HTI‘smG) + ue(u_rcose —-U'sme)i-’;la&'l (32)

Vy =—é{ n.(U-cose +|Irsmé)ﬁ'-;L +TrUg cos® —U U sin@ (33)

JUPaCos® _ Posin® 1 Sn B cosb S szme]
e V 7 D

—_— ] —_ — —_ e —
wx::-—d-[n,((r'cose +W sin 6) W5, + W cos® — ring sinB (34)

+ L fasin® JLSn.j)(sme + Py cos@ __ e PxC°$9}
7 ~ F 7
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Equation (30) is applicable to the perfect gas case and the explicit
equations for hp and hp ; Equations (24) and (25) may be substituted
directly as was demonstrated previously. The result for fx is,

“(_"ﬂ‘f | )
A - S J

>

-~
W
\n
N

i [- e —( ) ;’;Q “] [nu,,_(‘ﬁ-cose + W s8) +Uy (FcosD-T S e)]
Hn 0S5, ~Z) AT o0+ s (5-cos 64T s18)
(B cos 8-+ T, 516) + T cos6 (T cas 6 +T55 Smd)
-7 5in 0 (03 cos 6+ sm6) + L",a&-]
+[ Pt ~(ZED AR caso :&smeﬂ[n(ﬁme +Tr5n8) *
Wi cos B T sin8) + Wrcas O(-T; 518 +Thj cos 0)
+T s 6(T5 sme —, cos O) +7P°-]
40 Q[0 (T, cos & +T;, sin 6) + Ty cos6 — Ty sn6
+ i/‘,,ﬁ’-‘ (Fcos© +T s1n8) + 7o (Weoso-T Sme)]}
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The numerical integration of the governing equations starts from the
shock. With the values of p , 0 , & , v, and W specified by the shock
relations which will be discussed in the next section, their derivatives with
respect to N and @ can be numerically calculated. Equations (30) through
(35) can then be applied to generate the X -derivatives.

These dependent variables can then be integrated in the X —direction to
yield their values at a surface parallel to the shock surface. This process
will be repeated until the entire body, including the body sonic line, is
reached. The total velocity

U =Vu‘+ Ut W (36)

is calculated and subsequently used to compute the local Mach number at each
point.

At each step of the forward integration, knowledge of p and o will
be used to generate other thermodynamic properties such as enthalpy, h ,
entropy, s , temperature, T , and local Mach number, M . Thus, for the
equilibrium air case, h , 8 , and T can be obtained from the existing
S&ID equilibrium air subroutine. The equilibrium air speed of sound is

2 = (32)

The second Law of Thermodynamics can be expressed as
1
Tds =dh -=dp (37)

The differential of h can be written as

dh =(38), dp +(38), 4.

Substituting into (37), we obtain

Tde =[(32), - A dp (3, dp

- 16 -
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From which one obtains,

(55)
2 °pP/p
Yo T LT3y

P/p
Thus the equilibrium local Mach number is given hy

.L — I ]
Me = U ZT}‘_L (38)
f

For a perfect gas, the thermodynamic properties can be calculated
directly as follows:

T =/°_P§ (39)

' 2 —_—2, —
h - Hoo =—2-<U°° -uw-v —w") (40)
for any'74.
CONDITIONS BEHIND SHOCK
In this section, a method of determining the flow and thermodynamic
properties behind an asymmetric shock will be described. The method is an

extension of the usual oblique shock relations to the general three-dimensional
case. Let the shock surface be described by the equation

3(7(3;'”;6):;(-"5()1,6):0 (41)

—>
and let N be a unit vector normal to the shock surface, as shown in
Figure 4.
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LR ¥

Figure 4. TFree-Stream Velocity Vector Components

~ va _1 (> Ts _v S )
n "N =.ﬂ—( i’x- B i'n.Sn.— o R J
where Nglvs\ =(‘+SJ:-+_I_LS§_)‘&

In order to apply the oblique shock relations, the free-stream velocity _(T-a
i_’g)resolved into components normal and tangential to the shock surface. If
¢

is a unit vector in the free-stream direction (i.e., in the direction of
the X‘-axis of Figure 4 ), then

U, = ' Uy (43)
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00
- >

Uoon: U”(Yl'b) (44)

— — b 4 - > —>

] T 7 ;
th - VYoo v.on— Uoo!.!. Y‘-\V.‘ L4 l'l-jl (155)

2 2-'_ — = 2
%%=VU”—UW‘_ ”Nﬁ-(n'b) (46)
where UV = tycosot — L, cos@sm& +1; sinb sinx (47)

and U:p,‘ R U"t s U,," R Uoot are the normal and tangential components
of the free-stream velocity vector and their magnitudes.

Substituting Equations (42) and (47) into Equations (43) through (46), we
obtain

Ueo,, = —ﬁ-r( Ly — L.S, — Le-ﬁL) (48)
U n= KNUM (49)
U“t:: U,o{:; (Cos o<~ —I‘%") +_l;_(-KWS£‘ —cos 6 smx)+—l’9 (smesnm-&éi}
(50)
2\
Uao.t':Uoo(l"',E\l‘a)z (51)
where K= cos x +S,.,_co.56 sin& "%’- snb sin (52)
- 19 -
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Equations (48) through (52) are used in the following oblique shock relations
to determine the flow and thermodynamic variables behind the shock, wg ,
u_s ) Ws 5 Ps 3 a‘rld f‘

PV = 2 Us, (53)

* 2
Peo */e0 U-on = Ps +/".s Usn (54)
he + 4 U = ho+ 2(U5 + U (55)
U"°t = Ust (56)

where the subscripts M and ¥ denote the components normal and tangential
to the shock surface. These oblique shock relations can be rearranged to
give:

Ug, =€ U, (57)

Sn

Ps = pe +u U:,,(l -€) (58)

2

h, + 482 (1-€*) (59)

b
©
i

hs = "‘s ( Ps » ,a_,) (60)

and € = A‘- (61)

s

For equilibrium air, an iteration scheme is necessary for the solution of the
above shock relations since hg in Equation (60) is a complicated function of
Ps and Ps - Corresponding to each value of € , Ps and pPs can be deter-
mined from Equations (58) and (59) and hg determined from Equation (60).
Call this value h, . Using the energy equation, Equation (59), another

- 20 -
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value of the enthalpy can also be computed and denoted by hs . The method of
iterating on the shock properties consists of starting with an assumed density
ratio, € , and modifying this value until the two enthalpy curves (h vs.€ )
cross one another. An alternating interpolation and extrapolation scheme is
then used to converge on the value of € which produces the condition

h: - hs = 0

For a perfect gas, iteration on the density ratio is not necessary since
€ 1s explicitly given by the following equation:

z?‘%
- 7+ 1

€ (62)

The velocity components behind the shock can now be determined after a
vector addition of Equations (48) and (50) has been made. Thus,

X -component Ug = Uw i cos & — ’%—1 (l - 6)} (63)
S
SU -component Vg = tJ°° {'— cos 66 sin o +J_<ﬁa2 (l"‘ 65} (61~|-)
¢ KSs ; N
2] ~component Wwsg = UoozSW\ 95 SN +N—’-;: (‘— e)k (65)

The component velocities Vs and Ws are next transformed to —V-", and ws
using Equations (27) and (28). These velocity components and the converged
values of pg and Ps completely specify the boundary conditions behind the
shock and permit their A and & derivatives to be determined numerically.
Using Equations- (30) through (35) in the previous section, the forward inte-
ration of the governing equations can then be initiated. Calculations of other
thermodynamic properties behind the shock are carried out in exactly .the same
manner as described in the previous section.
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DETERMINATION OF STREAMLINES AND BODY SHAPE

For the purpose of determining the streamline trajectories and the body
shape, a pair of stream functions are introduced so as to satisfy the follow-
ing relationship:

Vp x VY =oU (66)

By using the following identity
V-(3 x%)=(vx3) -k -(vxK)-g

with the assurption that
§=V¢
R o=V Y

the divergence of/oU may be written as
Vo U=V (VoxVP)=(Vx V) VP -(Tx V) - Vd=0

Since V- (PU) = O is in fact the continuity equation, the stream functions
that satisfy Equation (66) will thus identically satisfy the continuity equa-
tion. The vector is perpendicular to both vectors Vcl) and VY and the
vectors V@ and VY are perpendicular to the surfaces § = constant and

Y = constant, respectively. Hence the vector % lies in both the planes

4) = constant and Y = constant at the point in question. The consequence
is that both the ¢ = constant and W = constant family of surfaces are
stream surfaces, and their intersection is a streamlipe.

Application of Equation (66) to the shock layer region yields the follow-
ing scalar equations

¢u We - ¢e WUp = npou 7
0 Y - D W, = npu (68)

¢xwh- - ¢;\. LP;, =pw (69)

- 22 -~
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where the subscripts 2 and © denote partial differentiations, holding %
constant. After transforming the coordinates X. , ~ , and & to X , n

and © according to Equation (12), the above equations take the following
forms:

b

(bn.we _¢e Yh =p (n\k —n.\rS,L—-uu-Se) (70)
o W, -9, Yo =npv (71)

¢, U, — bn Uy = o wr (72)

Equations (71) and (72) can now be used to solve for ¢x and Wy . The
result is

(73)

(p _,o(}'l.\r'¢n.+lﬂ'¢e)
* - ¢e ‘Pn. —¢n..q}6

Since the velocities U~ and W~ have been transformed to U~ and wr in the
basic formulation, Equations (73) and (74) must also be rewritten in terms of
v~ and W . The results are

_ [ng, (Veos6 +Wsin 6+ @, (r @s6 -7 sme)] (75)
¢x“7& 4’9“’,,_"’@,,_4’9
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,o(/?— o (v cos © + i s1n e) + Yo (Wreos © ~'\7‘sm9)1
= A ,

Wx - 4’9 Wn - ‘bn. q}e (76)

Since uniform conditions prevail in the free stream flow, an infinite number
of choices of the initial values of ¢ and § can be selected. Note that
the values of the stream functions are invariant in crossing the shock, and
that the working equations, i.e., Equations (75) and (76),are independent of
the initial conditions. A pair of stream functions which satisfy Equation
(66 ) and behave well throughout the flowlfield are now defined in terms of
the free stream oriented coordinates (X, td’ , 2’ in Figure 2) as follows:

4) = V/a,o U, y' ()
\P =v/a°° Uw =z’ (78)

Transforming Equations (77) and (78) into the body-oriented cylindrical coor-
dinates and making use of Equation (10), we obtain the stream functions
immediately behind the shock:

¢S=Vf°° Uw {S(ﬂ-‘)es) sSin %¢ -l-)'LJ Coses cos 0(} (79)

‘Ps = /an nyg s Os (80)

The above equations are used to calculate ¢,‘ s d)a , Y, and We behind
the shock which in turn allows calculation of (bx and Yx from Equations

(75) and (76). The stream functions are then numerically integrated toward
the body with the subsequent st and @ derivatives evaluated numerically

at each constant X surface instead of using Equations (79) and (80). A
record of the values of these stream functions will be kept in the entire shock
layer so that the streamlines corresponding to each set of values of ¢3 and .
Ys at the shock can be easily traced.
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To determine the body, we note that the body is wetted by the stagnation
streamline. Therefore, both stream functions at the body must be invariant
and equal to the respective ones at the stagnation point. The stagnation
point is defined, because of the flow symmetry about the pitch plane, by

wBoDY = \pSTAG =0 (81)

Qliow = q)s-rae (82)

Thus body locations other than in the pitch plane, where IP=o at all points,
are obtained by searching for points in the shock layer where Y=o . These
points should glso satisfy the relation ¢ =@ grag and thus serve to determine
the value of staG - The body location in the pitch plane may then be
obtained by searching for points in the shock layer on the pitch plane where
¢= ¢57A6—', ~This point will be given more detailed consideration in a later
section on the body determination procedure used in the computer program.

SHOCK SHAPE FORMULATION

. The inherent instability of the integration of the elliptic type flow
equation in the subsonic regime for an initial value (or Cauchy) problem has
long been recognized. This is referred to as nonessential instability in

Reference 4. It is precisely this phenomenon which requires the statistical
smoothing of the data which is described in a later section. This instability
becomes troublesome whenever an initial error is introduced into the calcula-
tions because the tendency is for this error to grow rapidly. It is thus
mandatory to ensure the use of smooth inputs to the program. The easiest way
of ensuring smooth initial conditions is to use an analytically fitted shock
shape. Needless to say, all subsequent steps in the integration procedure
should also be done accurately; and these considerations will be dealt with
in the appropriate section of the report.

The equation which is used to represent the shock should be versatile
so that a variety of surfaces can be represented. Since angle-of-attack
effects are included, the shock shape in cylindrical coordinates will not
have axial symmetry even for axially symmetric body shapes. Thus referring
to Figure 2 the shock shape can be described either as,

S=S(n,0)

or

n=f(s,0e)
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Power series and Fourier series are very versatile functions. These
two series can be combined into either a Fourier series having power series
coefficients or vice versa (both equivalent), i.e.,

TS B R
)L=z (zan’,‘s')c.sge =z (i‘ a."scos 39) s" (84)

where all (sin 46 ) terms can be eliminated because of symmetry of the shock
about the pitch plane. Upon examination of the derivatives, it is seen that
Equation (84) can never yield a blunt body at the origin because the slope can
never be infinite. Thus only the two forms of Equation (83) are of further
interest. While these two forms are mathematically equivalent, there will be
differences in manipulations when a finite number of coefficients are determined
mathematically for the program input.

The only information found concerning angle-of-attack effects on the shock
shape about blunt bodies was Kaattari's work, References 11, 12, and 13 where
he determined that a correction (to the zero angle-of-attack shock) of the
form

<j1|!L *‘llz_fﬁs) cos O

proved very satisfactory. Using this information, it would seem that the form

9:0 n=(

would give the Kaattari terms most explicitly. Also, this form allows the
pitch plane shock, about which the most information would be available, to be
fitted more accurately than the other form which would stress the & varia-
tion.

It has already been stated that it is desired that the function be com-
pletely analytic, and it is at this point that the implications of using a
body-oriented cylindrical coordinate system must be examined. The main
problem is concerned with continuity of the various JU derivatives across

- 26 -
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the origin = O. For purposes of analysis, consider a Cartesian system
lying in a plane inclined at an angle & and passing through the X - axis
as shown in Figure 5.

Figure 5, Transformed Cartesian Coordinate System

By transforming the series expression to a form using the variable Y we
obtain two expressions which may be compared for continuity in the A
direction. For €=6) 5 Y =sL while for 8=+ , Y=-n.
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Since
cos g(ﬂ'+6.) = cos QT cosg6, = (-1)? cos g6, ,
we obtain
oo\ S=7.(Z ang 4" cor 48
6:0 n=\
oo 1 2 n
0=1m+8 , S=Z(Za%(-|) 3)(-0 cos g
4=o0 n=i
Or, for & = r+6;
= et nt9 n
S= (Z Ap.a (—l) Y | cos 36
g-.-.o nel

Since both expressions must be identical in this coordinate system, it
follows that

(- l)n+3= l

This requirement may be also stated as,

n+q =2N
where N is any integer from O to oo .
Thus if @ is odd, only the odd powers of M may be present; and if - |
is even, only the even powers of M1 may be present. The partials with

respect to © are always continuous at the origin because JU goes to zero.
Therefore, the final series is of the form

— 4 .

S_(a'z,o nz"-atoﬁ- +a‘)° IL‘+"’ )
+(0~.,\ o+ Qs Jt-’-;-a.,,l n.’.\--—----)cose
"'(41)9,11-"'1"0.4),_}!:' R s )cos 2.8
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Y ’
or

+ 2.( 2% 8, ama 2) cos ((am-1)e)

n=i V=)
It is to be noted that the Kaattari terms remain.

Equation (85) gives smooth, analytic, non-pointed surfaces; but it is
limited in the fact that for each value of /2 there is only one value of S
or, i.e., the curve can never be double valued in S . 1In such cases as the
Apollo capsule types, it may well be desirable to fit a shock shape with a

negative first derivative, on/3S . To allow for such a possibility, the
first symmetric terms (p =o

6
T N

can be replaced by Sy , where S is defined by

10

a2 s 3
NT=5Se T8, 5 t3,,S,t---+a,,S, (86)
and the Equation (85) becomes
< (5 \
QIR an -~ A
S =9, v\ L Qanap N ) ¢°s 288 (&7)
P= Nnal
00 o0
an-1
22 (2 o )l 39
[- o)
where )‘Lz .:Z dn o Son
n=| ’
- 29 -~
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The computer program will accept the shock fit given by Equation (83)
-with terms included through = 2 and N = A0 with or without the g=0
term replaced by Equation (86) . The program user should, in general, follow
the restrictions just derived for the allowable terms, a.nd the remainder of
this report will be based on the observation of these restrictions. The user
may, however, wish to add one or more of the non-allowable terms for the
purpose of convenience in hand alteration of the shock fit. This may be
justified by the fact that the program uses a finite difference technique
with a five point fit for determining the lateral derivatives (in which the
discontinuity would appear). By restricting the use of non-allowable terms
to the higher order terms in Jv , the discontinuity at the origin may be
effectively smoothed out.

ITERATIVE CONVERGENCE TECHNIWUE

The iterative convergence technique as applied to the inverse method
consists of linearly relating changes in the predicted body coordinates to
changes in the coefficients used in the shock fit. The justification and

use of this linear influence technique as applied to the blunt body problem is
presented below.

Given a function of the form

S=F ( A, a"-na‘\a*)--.)

where S is the dependent variable, 4, , A, , Ao ---- all represent inde-
pendent variables, and

€

{:l (4‘; a’wa's""")
€, = fa (4|,4z, 43—--—>

crs 6 (0 an 2y o)

- m ——

where €\ 5 €2 ....represent dependent variables which are functlons of the

same independent variables. Then if the number of a.J’s and €‘ s are equal,
it can be said

G (e ,€x,€q-----)

: ! Y
However, if the €{ s and ®Rj S are related implicitly, G(C‘,C-,.,éfa--)
cannot be solved for analytically, and other methods must be resorted to.
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For the present purposes, the function F (d, , a‘z) Az -- --) represents
the equation of the shock wave

2 4 an
S = (a, n ')"az/l -+ e +an n )+(an+' n- +an+1n?. . Case
+( . .)cos 2.8
or
S:So-t—(an“ IL+an+1_J\3....)a>se +( ----- )cos 26
where

and €, ,€, , €3 , etc., are measures of the error between the desired
body and the body obtained by using the input shock equation. The number of
€i's is equal to the number of Q 3 8 which actually are the constant coef-
ficients in the shock wave equation but are considered as variables because
they are to be varied so that the desired body is obtained from the input shock
equation.

From the Taylor series expansion, changes in €({ are related to changes
in the‘variable' @j by

se.= 2o wi( Z (3 34)

n=i :|=(

oo n
SE. = Z_Y%"(ga SQ.-l-%-a; Sal-l- %‘—;Sas ces .+§_&.P Sagei

n=t N
L=la P

where (‘)r{l 3a, + %a;?'ml ------ ) is an operator on € { . It is seen
that as Ja; approaches d.o-j , the higher order terms consisting of N22
will approach zero; and so for vanishingly small da H

9€i € E: €
Séi: TE:‘SQ.'*"‘?Z;. Saz+%~—5§a5..... Z:P Sap) (88)

i=l,p
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J
If p such simultaneous equations are derived with the €¢ § represent-

ing the initial errors between the_desired body and the body obtained from

the initial shock input, and if 3‘3./943 can be found, then the 5&3'5 can be
found by requiring 9€; = -€¢ . These & a;’s are the required changes

in the shock shape coefficients to reduce all errors to zero. It is to be
remembered that this is only true if the shock coefficient corrections are
small enough for a linearized approach to be valid.

The partial derivatives, by definition, are the ratio of the differential
change in €; to a differential change in @Qj , keeping all the other &j's
constant. They are approximated as follows. The a,; coefficient of the
shock is perturbed &n amount A &, so that the new @, = &, +44&,. Now
the program is run and a body obtained from this perturbed shock equation.

The new errors, €; =€{+A€;, are now compared to the original errors, €
and the perturbations in the errors are obtained from

(Ei_ +A€;_)"‘ €; = AEg;

similarly
(a,+2a,)-a =aa,
and gi: = 2?. L =1 5 P can then be formed.

By similarly perturbing a4, ,4s--&p all the partial derivatives can then
be formed and p simultaneous equations written. The resulting p equations
in p upknowns, &a, ,8&,,- -~ , 3 ap , are linear and algebraic. Thus
they can be solved and the resulting solutions be used to correct the shock
coefficients for the new input.

The corrected shock equation coefficients are

and the procedure repeats itself until the 6,:'3 are all below acceptable
values.

INSTABILITIES AND DATA SMOOTHING

The solution of the flow field behind a prescribed shock amounts mathema-
tically to solving an initial value or Cauchy-type problem. The difficulties
which arise in this solution have been widely discussed (e.g., References 4,
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and1l4). The discussion in Reference L gives an excellent treatment of this
topic and presents the results and conclusions of a thorough study of the
various instabilities that are of interest in the development of a finite
difference solution of the inverse method. In Reference 4, Lomax and Inouye
identify two classes of instability--inherent instability and induced instabil-
ity.

Induced instability is caused by the specific behavior of a particular
numerical procedure as applied to a given type of equation. This instability
has been experienced with the computer program in running the Apclle body at
angle-of-attack and occurred in the pitch plane on the outer radii grid points
on the windward side of the flow field. The instability can be eliminated by
an appropriate reduction of integration step size but is unfavorably affected
by using a closer radial grid spacing.

Examination of Equations (18) and (19) through (22) shows that two remov-
able singularities also exist in the flow. The denominator of Equation (18)
may be shown to be zero when the characteristic line becomes parallel to the
marching plane. For the perfect gas case, for example, if the denominator is
set equal to zero, one obtains

(B (=) +ho [+ 8245 =0

From Equation (24)

And from Equation (25)

" N
*170 R ;;;1
Or
____E}Z_T__. -._.jE;JZ. = - a*
hp-'?'
pX
Thus ('_}%') - a“-
[ + S‘,:.(-(-%ﬁ}‘ - (89)
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The velocity component normal to the marching plane is the scalar product of
the velocity vector and a unit vector normal to the plane. Using Equation 42),

Y4 > - 2\ />~ = ->

(\+ S:"'(%)I)'/z

U, = U-U Sp~ g§é§! - ';g‘ (90)
" (i S:'\'Q}T‘)‘)h (1+ S,:-\-(—%z)y" .
So that Un = a

To avoid encountering this condition, which experience has shown is only found
in the high supersonic regions of the flow field, a test of normal Mach number
is made. If

MY\ > N orest

the integration of that grid point is terminated.

The second removable singularity occurs when Q =0, which is the condi-
tion for zero velocity normal to the marching plane. This may be verified
from Equation (90) above. Since this condition occurs in a limited region
very near the body surface, the approach has been adopted in which the inte-
gration of that grid point is terminated when the value of

o)
<
( QSHQCK ‘:," QTEST -

The body location and properties are then obtained from the extrapolation
technique used in the body determination procedure.

Inherent instabilities are stated in Reference 4 to arise from either
of two sources: (1) due to singularities (2) due to ill conditioning. The
presence of singularities in the flow field is obviously unrealistic and
implies that an unacceptable shock shape has been used. Special cases Where
the desired body is non-analytic (e.g., the discontinuous curvature on Gemini,
Apollo, etc.) result in singularities occurring on the body surface. For
these cases, the problem is handled by limiting the integration to the region
outside of the body.
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The instability due to ill conditioning is nonessential and would not
occur in an analytic solution of the flow behind a given analytic shock. It
arises from the inherently unstable solution of the differential equations
starting from any initial inaccuracy. In numerical solutions, these inaccura-
cies result from round-off, truncation errors in integration, and curve fit
errors in computing derivatives. Considerable discussion exists in the litera-
ture on this problem as it exists in the subsonic region of the flow. Lomax
and Inouye reported that they used smoothing to control the error buildup.

No such problem was encountered with the S&ID program at zero angle-of-attack,
since the radial grid point spacing was much iarger than that used by Tomax
and Inouye. The closeness of grid points in the @ -direction near the body
axis is not a problem, since properties have axial symmetry. The procedures
followed by the S&ID computer program do not treat the zero angle-of-attack
case differently from a general case. These data are separately computed at
all grid points, and axial symmetry of flow property values for the zero
angle-of-attack case results entirely from the axial symmetry of the shock
and not from special treatment. The result, however, is that despite this
general treatment, the flow property values do have exact axial symmetry
(even though they may have errors due to round-off, truncation, etc.). This

is true -even for the reformulation in terms of U and W since examination
of the X -derivative equations reveals that the & -derivatives of all flow
properties are multiplied by wr (which is zero for this case). Thus perfect
smoothness of the data in the @ —direction is evident in the results. An
instability was found to develop near the X -axis for non-zero angle-of-attack
cases without smoothing. 1Its origin can be traced to the choice of coordinate
system through the following arguments.

When the angle-of-attack is not zero, the axial symmetry of property
values is not present. The round-off and truncation, etc., errors are now not
identical for all grid points at /1= constant, and the perfect smoothness of
the data is lost. Now in itself this lack of smoothness would be no worse
than a similar lack of smoothness that is always present in the /2 —direction
and which caused no trouble for zero angle-of-attack. The cause of the
severe instability which was found is due to the cylindrical coordinate system.
The choice of a cylindrical coordinate system inherently results in a closer

\z

spacing of grid points near the X -axis as shown in Figure 6 .

Figure 6. Grid Point locations in Cylindrical Coordinate System
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In examination of Equations(5) and (6) , for example, it is observed
that all 6 -derivatives are weighted by the factor l/n. Thus for the same
degree of random inaccuracy in property values the @ -derivatives of these
properties exhibit a noise component which increases as l/n. This becomes
disastrous for small enough values of & . The simplest cure for this problem
would be to eliminate progressively more grid points on the inner radii. As
the axis is approached the properties approach the constant values at the axis,
and only one point is required to carry all necessary information. The
presence of other points and inaccurate values adds nothing to the information
but adds progressively increasing noise as the axis is approached. This entire
problem is adversely affected by the original choice of UV and w” as the lateral
velocity components. These velocities do not approach constant values as the
axis is approached but approach functions of & .

In practice the dropping of grid points as just suggested is not practical.
v derivatives are required for outer radii grid points and the calculation
of these derivatives uses property values on the inner radii. Carrying the
logic two steps further it is seen that inner grid points could be dropped if
the necessary intermediate point values were obtained by interpolation. But
the operation of interpolation is basically inaccurate so that the application
of statistical smoothing comes to mind as a means of increasing smoothness
while basically retaining the information in the data. This is the approach
used to control the instabilities in the calculations. Coupled with smoothing
the velocities v~ and w were transformed to the velocities ¥ and W~ as
described in Equations(27) and(28) and shown in Figure 3 . The advantages
of using the new variables is that: 1) their approach to constant values as
A0 effectively furnishes another point at the origin in the data grid,
thus aiding in the smoothing as actually programmed; and 2) by effectively
replacing the lowest frequency term in a Fourier series expression for the
velocities at /L =0 by a constant term, the filtering technique (smoothing)
is much less critical and more easily done with a simple approach.

The flow field computer program is written in double precision to reduce
round-off errors to a minimum. Although it was not expected that this
feature would eliminate the need for smoothing, it was expected that the num-
ber of smoothings could possibly be reduced and that smoothing could possibly
be started at a point farther downstream of the shock, thus promoting
increased accuracy of the final program results.

The properties to be smoothed may be represented by a two-dimensional
set of data points, h,a , where the subscripts on the property p are
related to i and © respectively, as defined in the Operating Manual,
Reference 10. Although consideration was initially given to smoothing by
fitting a least square surface to a subset of these points, from which an
interior point could be corrected or smoothed, the simpler procedure of
smoothing alternately in the orthogonal »o and © directions was adopted.
As will be noted later, the program will allow the user to apply arbitrary
weighting factors, dependent only on the SU coordinate, in applying the
correction indicated by the smoothing procedure.

The actual filtering technique adopted is a modification of that used
by Lomax and Inouye, Reference 4 . The method is to move the central point
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in a group of five to the curve defined by a least square parabolic fit to
these same data points. Since the S&ID program uses variable point spacing
the least square fit calculation is complicated somewhat but is still
straightforward.

Smoothing is applied alternately, first in the radial direction and
then in a circumferential direction, and can be justified by the following
considerations, In smoothing, the data should preferably be weighted in
such a manner that values in which there is a high confidence level are
smoothed the least, whereas values in which the confidence level is low
are smoothed or corrected the most. In our case calculated values on the
inner radii have the lowest level of accuracy and should be given the least
weight in smoothing. By smoothing alternately in the .2 and & directions R
the data points can be weighted somewhat by using a particular sequence,

In smoothing data in the 2 direction first (that is, on a line &= constant)
most of the data points will be accurate and hence the data will be smooth.
The plot of some property on a line # = @, is shown in Figure 7 .

=0
 §
Property 8,
6= 6,1 6 = 6
0 Data Points
-—— Smoothed Curve
/JJ
~Po= Property at ~=0
9(*«
Py 2

Figure 7 . Typical Property Variation in the Radial Direction

The value of a property at L =0, called p, , being independent of €,
aids in the smoothing operations since all smoothed curves must have a
common value at =0 . Thus the smoothed curve is tied down by a constraint
at the origin and by the existence of mostly smooth data.

By using the particular sequence stated above, neighboring data points
to the origin on the line = constant are more heavily weighted (since they
are considered first) than neighboring data points on the curve & = constant
(since they are used second-only after being smoothed). This is consistent

-~
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with the weighting considerations just presented since most data values on
a line @ = constant are accurate - only the points near the axis will be
inaccurate.

THERMODYNAMIC PROPERTIES

The program has been formulated with the provision for running both the
perfect gas case (i.e., constant specific heats) and a real gas, equilibrium
air case. The thermodynamic state properties for the real air are based
principally on the Hilsenrath and Beckett tabulated data for argon-free air
presented in Reference 15 supplemented by information from References 16,
17, and 18.

The subprogram used to compute the real gas thermodynamic properties is
based on empirically-fitted equations to the Hilsenrath and Beckett data and
for the most part is capable of reproducing the tabulated data to within one
percent. A sample, for instance, of the reproducibility of enthalpy is
shown in the table below:

Table 1 . Comparison of Thermodynamic Properties
of Real Air, 1°3|0 (fé‘o) =-2

Temperature Hprogram Hyen Percent Error

(Degrees K) (BTUffbm) (BTU/1bp)
2000 987.3 984.3 0.305
3000 2166.8 2157.3 0.440
4000 4278.0 L251.4 0.625
5000 5858.7 5820.4 0.658
6000 10792.0 10712.8 0.739
7000 22480.4 22279.2 0.903
7500 28568.3 28277.8 1.027
8000 32935.4 32576.8 1.102
8500 35876.4 35468.3 1.150
9000 38157.6 37722.8 1.150

The empirical equations are developed in Reference 19 as dimensionless
parameters of the form H/aRT, & , and 8/R, each of which is given as a
function of pressure and density. The program is capable of operating over
a density range of 106 to 102 relative atmospheres and up to a temperature
of 15,000 K. A relative atmosphere is defined as o/2, where , 1is the
density at standard conditions of temperature and pressure. The terms in
the empirical equations consist of eighth-degree polynomial expressions
Joined by transition functions stemming from Bose-Einstein and Fermi-Dirac
quantum statistics as applied to molecular dissociation processes. These two
transition functions are of the following form:
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Fermi-Dirac Function

| + exp (kx)

Bose-Einstein Function

|
I = exp(kx)

The thermodynamic properties procedure for real air is formulated as a
subroutine in the program and can easily be exchanged for other gas medias
if so desired. However, this would require the formulation of a new set of

equations empirically-fitted to the new gas media.
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COMPUTER PROGRAM DEVELOPMENT

GENERAL DESCRIPTION

The Blunt Body Computer Program produces the inviscid, subsonic-transonic
shock layer flow field for a convex, axisymmetric body shape at angle—of-
attack. An estimated shock shape and specified requirements for altering
this shock shape along with free-stream flow conditions and certain control
information are entered as input information to the program. The program
then uses this information to generate the flow field and a perturbed shock
shape. This process is repeated automatically until each coefficient in the
shock equation has, in turn, been perturbed. The body shape perturbations
resulting from each flow field calculation and the incremental changes in
the shock coefficients are then employed in a linear influence coefficient
matrix solution to find a final correct shock shape. This final shock shape
is then used to generate a final flow field. A second program, following this
basic flow field computation program, uses the final flow field data to generate
additional flow field parameters and to output data according to pre-specified
plans or options designed specifically to aid in the study of reentry flow
field and heating analyses.

The program has been designed with the capability for handling a perfect
gas media (specified constant #*) or a real gas air media. An increased run
time is associated with the real gas case due to the iterative procedure
required in the evaluation of certain thermodynamic functions. The program
has been formulated such that other atmospheric medias can readily be incor-
porated provided suitable empirically-fitted expressions, similar to those
used for the air media, can be formulated for the thermodynamic properties.

The basic formulation of the program is based on a body oriented
cylindrical coordinate system wherein grid points on the marching planes
are defined by a radial distance, 2, measured from the body axis of symmetry
and an angular distance, ©, measured from the pitch plane. A marching
plane 1is a computing plane in the program which is parallel (i.e., every-
where equidistant in the X -direction) to the shock surface. These planes
form the basis for the X -integration of the flow properties in that one
starts at the shock surface and works downstream until the body surface is
defined. Figure 8 shows a typical grid point pattern on a marching plane
together with the {,] subscripting notation used to identify grid points
in the program. The pattern is viewed from the shock looking downstream
along the body axis of symmetry.
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Figure 8. Orientation of Grid Points in Marching Plane
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Only the flow field to the right of the pitch plane is considered because of
the flow symmetry existing about the pitch plane. Advantage is taken of this
symmetry in the evaluation of & -derivatives for points on j=1 and 2 by
artificially using mirror-image points to the left of the pitch plane. It is
also to be noted that symmetry exists between the lower half of each

plane and its image plane with respect to the origin making it possible to
consider points and properties along the mirror-image of the lower half of

a plane in the evaluation of lateral derivatives and the smoothing of

data in the . —direction.

It is not necessary to use the entire network of grid points shown in
the illustration. Provision for eliminating a portion of the grid network
has been incorporated in the program. This is a highly desirable feature
when computing flow fields for bodies at large angle-of-attack where the
outer extremities of the flow field on the leeward side of the body are
highly supersonic and instabilities commonly arise due to an alignment of
the local characteristic line with the marching plane. This feature
eliminates this undesirable region and limits the calculations to the
desired subsonic-transonic flow region.

The entire program consists of two basic parts: Part (1) - A program
for computing a flow field based on a given shock including a systematic
means of iterating on the shock shape; Part (2) - A program for calculating
additional flow field parameters and the output of data according to pre-
specified options. The basic flow field computation program is subdivided
into five parts linked to a main program. Such an elaborate procedure is
required because of the lack of adequate machine-storage space introduced
by the three-dimensional requirements of the problem to be solved. The
first link (Link 5) called by the main program reads in the input data and
sets up certain arrays of information in storage in the program. The second
link called (Link 4) establishes the shock shape, forms certain geometrical
lateral derivatives of the shock surface, and solves for the properties at
each grid point immediately behind the shock. Link 1 eontains the
marching procedure which integrates plane by plane from the shock to the body.
This link also contains the body determination procedure. Link 2 provides the
routines for smoothing property data on the marching planes as the flow field
is developed. The last link called in the flow field program, Link 3, pertains
to the procedure for perturbing systematically the shock shape and solving
the influence coefficient matrix for a more correct shock shape. A final
flow field is then obtained for this more correct shock and stored on tape
for use in the Data Output Program (Part 2 of the over-all program).

The Data Output Program performs certain basic functions in addition to
the options specified as input to the program. Included in these mandatory
functions are traces of the stagnation streamline and all other specified
streamlines in the pitch plane. Body streamline traces emanating from the
stagnation point are also furnished. These body streamlines are actually
shown as projected traces on a planar surface normal to the body axis of
symetry. Properties at specified stations along the body surface are
always obtained with the data output program. These stations lie along lines
formed by the intersection of a 8 = constant plane and the body surface and
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emanate from the point of intersection formed by the axis of symmetry and
the body surface.

In addition to these basic forms of data output, one can call for certain
specified data output options. The first, known as Option B, presents flow
properties (i.e., pressure, density, temperature, enthalpy, entropy, velocity,
and Mach number) at specified intervals along any or all of the specified
streamline traces. The other two options, A and C, are somewhat related in
that Option A is a degenerate case of Option C. If Option A is specified,
properties are obtained along the normal at a body station. Option C produces
a camplete description of the flow field properties using a cylindrical
coordinate system based on the normal at a body station.

The Data Output Program consists of a main program and four links.
Link 1 deals with the output requirements of Option B. ILinks 2, 3 and 4
apply to Options A and C. Link 2 provides the procedure for transforming
local cylindrical coordinates based on the local body normal to the cylindrical
coordinate system used in the Flow Field Program. Link 3 determines bounding
grid coordinates for both the flow field and body stations. Link 4 reads from
tape and strips-off the flow field properties at the bounding points and
interpolates between them.

NUMERICAL PROCEDURES

Iateral Derivatives

In the process of marching from the shock to the body it is necessary
to first evaluate property derivatives in the lateral plane (i.e., marching
plane) before obtaining property derivatives in the marching direction.

These lateral derivatives are usually determined by the application of finite
difference principles to a set of specific points in the lateral plane. A
typical network of points is shown in Figures 8 and 10.

In general, finite difference schemes are applied to a network of
evenly spaced points in which the geometrical aspects of the method are
vastly simplified by the uniform point spacing. In many problems, such as
the blunt body flow field problem, it is impractical to use a uniform point
spacing because of the complexities of the body shape and associated flow
field. This becomes obvious when one considers current reentry bodies of
the capsule-type which consist of a large face radius followed by a small
shoulder radius. The most desirable point spacing in the radial direction
for such a case, based on the body axis as the origin, consists of a coarse
spacing over the face radius and a fine spacing in the shoulder region.
This is not only true from the standpoint of economy in program operational
time but is necessary for good accuracy. A close point spacing is required
in the shoulder region where properties are changing rapidly. However, this
same close point spacing over the face of the body would probably introduce
noise in the data due to an insufficient change in properties between
adjacent points. A non-uniform point spacing also proves beneficial in the
angular direction for angle-of-attack cases where it is desirable to obtain
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more detail and accuracy in the vicinity of the stagnation point. It should
not be misconstrued that this procedure will handle only cases of unequally
spaced grid points. The procedure is general and will readily handle the
simpler case of egqual point spacing.

Another desirable feature that is incorporated into the lateral
derivative procedure in the program is the ability to limit the lateral
extent of the flow field to an arbitrary region of the entire grid point
matrix by working strictly within a cutoff flow field boundary, Figure 10.
The program begins with the complete matrix of points at Lhe shock, but
immediately reverts to the cutoff boundary once the march to the body has
been initiated. This cutoff boundary is for the most part tailored to the
specific problem being solved and attempts to limit the solution to the
subsonic and transonic regions of the flow field. Supersonic flow can be
obtained with the program provided there is no alignment of the local
characteristic line with the marching plane. Flow singularities of a
removable nature will occur in such cases.

The basic formulation of the lateral derivative procedure employs a
five-point central difference fit to the grid points. In the last section
mention was made of the various flow field symmetries obtained with the
form of the cylindrical grid system employed in the program. This is
particularly true in the angular direction about the pitch plane making it
possible to'use a five-point central difference scheme to compute lateral
derivatives for all points in the angular (theta) direction. On the other
hand, the radial direction contains no such condition at the outer edges of
the flow field, and it is necessary to employ five point off-side finite
difference formulae for the outer two radii. In the original lateral
derivative formulation no attempt was made to eliminate grid points that
fell inside of the predicted body shape. This approach was changed when
it was found that the properties at these grid points could become
completely unreliable due to their proximity to singular regions in the
flow field. These singularities may be essential or may be of a removable
type associated with the particular coordinate system employed in the program.
The decision was made to drop the forward integration for such points, prior
to reaching the body, and to obtain the body location and properties for
this grid point by extrapolation. This step cured the problem of inaccuracies
in the data but necessitated a reformulation of the lateral derivative pro-
cedure to include off-side or end point finite difference schemes for grid
points in the central region of the marching plane. At the same time
it was realized that a cutoff flow field would be highly desirable from the
standpoint of eliminating singular point instabilities occurring in the
supersonic region. The use of a cutoff flow field introduced a further
need for a finite difference scheme with off-side or end-point provisions.
Thus, a three-point finite difference scheme with end-point provisions was
incorporated in the lateral derivative procedure. A three-point fit was
considered for two reasons. First, storage space in the program was limited
because of the need for carrying large arrays of double precision numbers.
Second, the three-point fit provided greater flexibility once the body was
encountered and grid points were dropped. The only disadvantage of the
three-point fit is its poorer accuracy in comparison with a five-point
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off-side formula. However, it was reasoned that the end-of-array points,
where the marching plane intersected the body, were being dropped continually
as the integration proceeded and the propagation of errors into the remaining
grid points would be somewhat self-limiting.

To summarize, a five-point central difference formula is used when
possible. Otherwise a three-point central difference or end-point formula
is used except at the outer radial edge of the cut-off grid where five-point
off-side or end-point formulas are used to determine JU-derivatives on the
outer two grid points.

A short suwmary of the three-point and five-point lateral derivative
formulas is presented below along with appropriate illustrations, Figure9 ,
of the symbols used. Considering the five-point fit, a fourth degree
polynomial,

Y= a +bx +ex’r dx® +ext (92)

is passed through the five points with the center point as the origin.
Rewriting this polynomial for each point in terms of the local coordinate
system and eliminating the translation distance, & , one obtains the
following expressions:

Yen = S'= bF +cF*+dFi+eF? (92)
g(.,) =R = bG+ CG"+J.G'+ eG"' (93)
Yoy = & =0 (94)
Y @) = T'= bB + ¢ B*+d B3+ eB? (95)

Jua= U'= bE + cE*+dE® +-eE* (96)

The solution of these equations to obtain expressions for the coefficients )
b,c ,d and e in terms of the property parameters SR, T' and UV
and the relative distances F,G ,B and E can be obtained by a matrix
solution. The denominator is strictly a function of the local distances and
once a grid pattern has been chosen remains the same for each marching plane.
The job of forming lateral derivatives is further simplified by noting that
the radial point spacing is the same for each j plane and the angular

point spacing is the same for each ( line. The resulting expression for the

denominator in the expressioms for the polynomial coefficients are as
follows:
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Figure 9 . Description of Three-Point and Five-Point Finite Difference Fit
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DEn=HEYE + BEGr B G - BPEGL B -6 om
-G[Be BE +BPEY - BEY - B - BYEFY
B[ P + EFL BG-GBt - BF06

~g[p¥@ + BFE + BFE - BFE - BFe' - B'F6 ]

The expressions for each of the coefficients are presented below:

b=t { S[Rel +BFE +REC-BE -BER -s2@]  (oe)
R[BF B + BEF- B - BEF L BYEF Y
+T[EF + B+ E PG - BB -

~U [BPR + B + BB B - B‘F‘G‘]}

c =N { s'[’e'a + B'eG 1B - B BB ] (99)

-R[BE'F +BEF+BPF-BeF—BEF> EEF]
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+T'[e* S+ E¥F +EFE-EFE - e -—l‘.—f’FGﬂ

~U[e'r@ + B+ BF G -BFE - B -B’Fcﬂ}

d=s { s'[e%s + B'e@® +BEW -Bec? —REV* —E'E'G|  (10)
-R [&¢'F +BEF + BEF*-BEF*- BE'F —BfE7F]
+T' [EFe e +EFPE - EFet - E%F & - £

-U'(B're +8'F & +BF G - BFG*- B G- B F"GY&

e = % {S'[B‘F_‘G + BEG +BEC -BES -BER P E%] (101)

-R X,B"E’F + BEF+BE*F - B EF*- BE'F*- B°E* F
+T [E‘FGE‘ +EFG +EF G - EFE - B F - EFGT

-0 {3’\:@3‘ +BFGYBFPG -BF& —BFG - B’F‘G]}
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Differentiating Equation (91) one can obtain the following expressions for
the derivative at each of the five points shown in Figure 9a in terms of
its distance from the center point.

V' = b +2cx + adx*+4ex® (102)
‘j'(_,_g= b+ 2cF +3dF*+4eF? (103)
Yep= b+ 2cG+3da + 4G (104)
Y = b (105)
‘:IIW) = b+ 2cB+ 3d B*+ 4eB? (106)
Yuy=b+ 2cE +3dE*+4e E (107)

The three-point finite difference fit is obtained in a similar manner
using the nomenclature presented in Figure 9b . In this case a quadratic
equation is passed through three points with the center point again as the
origin. The resulting equations are

5(0—!1 bG +c G (108)
Yior = & =0 (109)
Yoy = T'= bB4+cB® (110)
In the three-point fit the analysis is greatly simplified as shown below:
DEN = G*'B —-B*'G (111)
\ ' ’
b=m(_&"T —B'R] (112)
¢ =5 [-GT' +BR] (113)

The corresponding expressions for the derivatives in the three-point fit are

\J(,,) b+ acG (114)
3(.,“) = b+ 2cB (116)
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Figure 10 is presented to illustrate the various ways in which the
finite difference formulas are used to obtain lateral derivatives. The
typical cases shown illustrate most of the common situations. The same
grid points are examined from both the radial and angular viewpoints since
the points may be treated differently in the two directions. In the case
ot the five-point fit in the radial direction there are two oft-side formulas,
one for the outer radius and the other for the next to the outer radius point.

The grid network for the body-oriented cylindrical coordinate system
used in the program orfers considerable advantages in the formation of the
lateral derivatives due to the manner of subscripting and handling grid
points. With reterence to Figure 8, it is noted that the ) subscript,
defining points in the angular direction, runs from j=| at &=0° (i.e.,
pitch plane) to J=Jmex at € =90*. The ( subscript, on the other
hand, runs continuously from top to bottom for each J meridian plane.
The J planes are thus symmetrically located about the @=90°® plane as
well as the pitch plane. Considering the mirror image of each ¢ plane in
the lower half of the flow field, one can compute radial derivatives in a
continuous manner across the origin. One must reverse the sign of M
and consider the properties in a Cartesian sense. In using image points
to the left of the pitch plane it is also necessary to temporarily assign
the opposite sign to the flow field properties wr and @ . The sign
attached to the other flow field properties remains the same on either
side of the pitch plane. Symmetry conditions also exist in computing

‘ lateral derivatives in the & -direction using the pitch plane as a plane
of reflection. This is the reason that @ -derivatives for points in the
pitch plane and its neighboring plane are shown in Figure 10 as having
been computed with a five-point central difference formula. Once one
considers end points away from the pitch plane in the @ —-direction, it is
necessary to revert to an end point formula. This situation arises
immediately when one considers using a cutoff flow field in the solution.

The five-point scheme for obtaining lateral derivatives is naturally
more accurate than the three-point scheme because of the increased information
that is made available. The central difference fit is preferred over an
end-point fit because of its greater accuracy. Probably the most inaccurate
evaluation of the lateral derivatives occurs when a three-point end-point
formula must be used in both the radial and angular directions. Fortunately,
this should not occur until very near the body after most of the flow field
has been computed. It is quite important to make the transition from one
radius to the next along the cutoff boundary as smooth as possible to
minimize the use of the three-point end-point formula.

Body Determination

From the definition of ¢ and P given in the theoretical development,
it follows from the existence of a single stagnation streamline which wets
the entire body surface that,
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¢Boby = ‘bSTm (117)

q}aony = LPSTAG (118)
Since the stagnation streamline lies in the pitch plane

Ysrae =0 (139)

A simple procedure for locating the body surface outside of the pitch plane
is to search for points where Y= O ., At these points (P should be

¢ body = bs ag — & constant. It was found that a more accurate procedure
for computing stag is by linearly interpolating between body points in the
pitch plane to determine the value of § at the location where U = o .
This calculation is made in the Data Output Program.

It will be shown in the next section that the stream functions vary
with X in such a manner that their X -derivatives become infinite at the
body surface as shown in Figure 11 . The Y curve is extrapolated to the

body by fitting a parabola to the last two computed values while requiring
symnetry about the Y = O line.

e |

’ﬂ dgopy = A CONSTANT
)i

]

¢; v G\ ul

xBODY
Figure 11 . Variation of Stream Functions in X -Direction

The plot of ¢ vs X for the same grid point has its vertex at X=X

body?
this uniquely determining ¢ , 4. v
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The gradients of the stream functions ¢ and <Il can be readily shown
to be infinite at the body. Consider a flow field about a blunt body at
angle-of-attack shown in Figure 12 .

Figure 12. Streamline Behavior Near the Body Surface

n v
MASS FLDW =1!7,,U_°n."= f/onRcledn (120)

where 4§ accounts for non-radial flow at radius K.
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Differentiating the mass flow expression with respect to N R

amw

ee.Uan$2 = LUFRAe = F(R,e,m)

From the definition of ¢ s

¢=V/~U-o (Hc"'h‘cos;é\)
or d)-(l)c =V/4~U‘° N cos 4

Differentiating this equation with respect to st R

dn T e e cess
Since

d}l.. _ dr d(Q—Qc)
dn = d(¢-¢) dn

Thus,

o (8-0d(e-4) _ ("
% sp) dn _.of/oU$Role=F(&,e,n) (121)

The variables 2, U, £, and cosB may be expanded in a Taylor series
at the body surface. It can be shown that after performing the above integra-
tion, and then evaluating the resulting equation on the surface that to first
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order in N all terms of the series drop out except the constant values on
the surface. The final form is,

e
[ (6-4) d(p-6) = n G (=,0)
or (Q' &C\)t =an G(K,G} (122)

Thus 47 varies parabolically with N at the body surface. ¢c. is
recognized as the body value of { . The analogous derivation of the
behavior of Y is straightforward.

A simple explanation of the existence of infinite gradients of ¢
and Y at the body surface may also be found from examination of Equation (66).
Since both WV d) and ¥ Y are normal to the surface and thus parallel, we
rust have an indeterminancy with either V ¢= 00 or VP = eoor both V ¢
and PP = ee in order to have a finite U result from the vector cross
product.

Locating the body in the pitch plane by parabolic extrapolation of ¢
has two problems,

1. The calculation is inaccurate near the stagnation point where
the flow velocities approach zero.

2. ¢ may equal ¢body at points other than on the body surface.
This introduces the difficult problem of discriminating between
correct and incorrect body location predictions.

Both problems have been overcome in the program by using a simple approximation
that is considered acceptable to engineering accuracy. The body location pre-
dictions for the pitch plane are assumed to be identical to the predictions

for the nearest grid plane (J 22). This is justified by the following
considerations,

1. Only axially symmetric bodies are considered.

2. The variation of predicted body shape with € near the pitch
plane is at most a co® @ type effect due to symmetry of the
flow field with respect to the pitch plane.

3. The grid plane nearest the pitch plane may be located by the
program user at such a value of @ that the error introduced
may be controlled.

The procedure in the program for locating body points is conducted in
the following manner. After computing properties in the KM plane, a
prediction of the distance to the body is made for each remaining (i)
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grid point. A check is then made to see if the predicted body point lies
within the next integration interval. If so, the point is identified in such
a manner that it will be dropped during the predictor step in the next
integration interval. The body properties for these points are obtained

by linear extrapolation.

After identifying these points, the program also checks the remaining
available grid points for two conditions. First, are there any pockets in
the grid network where only two points remain. This check is made in both
the 2 and & directions. These points are also identified in a special
manner as it is impossible to determine lateral derivatives for these points
after performing the predictor integration step in the next interval. The
reason lies in the fact that properties are not determined for grid points
lying within the body. Therefore, properties are not computed on the next
marching plane for those grid points intersecting the body in the next
integration interval. This means there would only be two remaining points
in this local region on the next plane at the end of the predictor step.
Thus, it would be impossible to finish the corrector step in the integration
procedure since the program requires a minimum of three points in any
direction to form lateral derivatives. The grid points falling in this
category are permitted to predict properties on the next plane so that they
will be of aid in forming lateral derivatives for adjacent points. They are
subsequently dropped on the integration corrector cycle in the next interval.
Using the predicted body location, the program extrapolates for the body
properties at these grid points.

The second check is performed on the remaining grid points and has to do
more with the accuracy of subsequent calculations. It is a check to identify
those groups of grid points in which there are only three points remaining
at the completion of the integration cycle for the next interval. While
there are sufficient points (i.e., the minimum of three) to form lateral
derivatives in both the predictor and corrector integration steps, the
accuracy of these derivatives starts to become questionable beyond one more
integration interval due to the use of end-point lateral derivative formulas.
Therefore, the program identifies these points in a manner that they also
will be dropped after the next interval. Body properties for these points
are obtained by linear extrapolation.

Two other conditions enter into this body determination or point-
dropping procedure. There is provision in the program for dropping points
when the grid points approach singularities in the flow field and computations
become too inaccurate to continue. Although the source of these singularities
and the specific tests used for their control has already been discussed, it
is appropriate to restate this information. One singularity results from the
alignment of the local characteristic line with the marching plane. This
condition is determined by observing when the normal Mach number approaches
unity. The other singularity occurs when the marching plane becomes aligned
with the local streamline slope. The previously described test for each of
these conditions is made for each grid point on the corrector integration
step, and the point is dropped upon failing the test. Again the body
properties are obtained by extrapolation. Although the singular region
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may be confined to a thickness of only a few marching planes at most, no
attempt is made to resume the forward integration of this point after passing
through the singular region. In theory, however, it should be possible to
resume the calculations for this grid point downstream of the singularity.
The extrapolation for body properties for points encountering the second
singularity does not produce unreasenable results as this singularity generally
occurs very near the body surface and only a short extrapolation is required.
The extrapolation for points failing the normal Mach number test may be over
a greater distance, and the resulting accuracy may be more questionable.
However, these points usually lie at the outer edges of the flow field

where the flow is supersonic and are not essential to the required solution.

Iterative Convergence Technique

Error Measurement

The body obtained from a given shock shape is introduced into the
iteration (influence coefficient) subroutine as a series of points having
the same radial and angular coordinates as the grid points for the flow
field integration. The errors between the predicted and desired body are
defined to be the distances between the bodies as measured along a perpendi-
cular from the desired body to the body predicted by the shock equation.
This perpendicular is erected at certain points on the desired body which
are designated trol points, and the errors at the control points will be
called simply the errors.

Since the predicted body is given in terms of discrete points and not
an analytic curve the predicted body surface must be defined in the region
between these computed body points. The approach used is to connect adjacent
points with straight line segments. The error is the distance along the
normal from the body to the intersection of the normal and the line segment
as shown in Figure 13 . The control point will always have the same S
as a predicted body point so that the errors will approach zero as the
iteration procedure converges.

b
Predicted
Body Points Normal to Desired Body
Control Point
Desired Body
Error
—> X

Figure 13. Measurement of Predicted Body Shape Errors
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In order to establish some reference system from which to measure the
errors a particular point on the desired body is designated as a translation
Roint, This point, shown in Figure 14, has S and © coordinates equal to
that of a predicted body point, and after each run the predicted body point
and this translation point on the desired body are made to coincide by
translating the entire desired body shape. Thus s errors are a measure of
the body shape error, and the X -translational location of the body is not
considered in the error evaluation.

n|
Shock

S and b subscripts
refer to shock and

S body-oriented coordinate
system, respectively

Translation

Point W
Xy %@

Control
"cs ] n‘i( Point

Shock System ~ n=£0x)

Origin x

——

|

XO xT- —

Figure 14. Location of Translation and Control Points

The control and translation points are initially given in terms of R's
and ®'s. The equations for the desired body are given in terms of a body
oriented system. Then knowing the Aq and Mg coordinates, the X
coordinates Xe, and Xy, can be calculated. Xyg is the coordinate in
the shock oriented system and is used in fixing the origin of the body oriented
system. The quantity Xyg 1s the X coordinate of the predicted body point
at that st in the given plane.
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The origin of the body oriented system is fixed at Xeo= (X-rs ~-Xr b)
for all planes, and the control points are given in the shock oriented
system as

xcs = (sz - XTJ ““xcb

A1l the predicted body points are computed in terms of a shock oriented
system so no conversion is necessary.

The error is the distance between (xc ,Jt.c)a.nd (XI
where the latter point represents the mtersect:_on of the normal and the
predicted body line segment.

Given the body equation N = f (Zb). A conversion to the shock oriented
system can be made by the substitution

‘r(xs —(XTS-XTb)) =3 (xs)

Then (ix—h'—) = slope of curve = tan &
Xs xCS)"‘-C.

and the slope of the normal is

—Tan (a0’ - 6) = —cTn © =-TT|N—O

or _g_&)
x.c,s,n.

The Jt intercept of the normal is at

- 60 -
SID 65-1353




NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

Then the equation of the normal becomes

o= - (%s—)x%;cx +(J'L¢+e\%)k‘ n;_ XC‘) (123)

The equation of the predicted body line segment is similarly found to be

_ }z'z—jz'l ( — (Ilq_ - R .
ﬂ—(xzs—x.,,) £+ Xas—xts) Z‘s) (124)

When linear Equations (123) and (124) are solved simultaneously, the
solution becomes

X (ﬂt (xa.:t;l) Xus) = (/lc "'(Ag‘s)xc,m; . 7‘6;)
" G0 @

[N - dxs
A-x‘l "x';\’ x*s + ( qu—)nc. ) x 19

Torea) +(35,

~
\J1
Nt

and

<(%;_-:%_) Xig + (d__Xs)xq.n‘ Xy (126)

X;,-Zl) ( )Xc,"-c
+(ch + (% kssnc. 'X.cs)

ny = =3

s
Xy, lte |\
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If Ry > Ry, then the equation of the next upper line segment is computed
and the solution found again.

If oy < Ry, then the equation of the next lower line segment is computed
and the solution found again.

The solution must fall within the defined body points on that particular

plane unless a special input selection is made. After finding the correct
solution, the error is

€; =2 Y lug—xe) - (-7 (127)

The positive sign is given it Xgpg >Xeg , negative if X >Ny . The body
. s o - . -1 S
is always assumed to have a positive iirst derivative.

Desired Body Definition with Options

The procedure has just been described tor computing errors between the
predicted and desired body. The predicted body points are outputs from the
integration procedures in the main program. The desired body points and
shapes must be computed separately for the applicable body shape option.
General cylindrical coordinate systems will be used in the following
derivations. In all cases the X -axis lies on the axis of symmetry of
the desired body. The desired body shape is basically entered into the
progranm and computed in a system having its origin at the intersection
of the X -axis with the body. For the special option of a hemispherically
blunted general body, it has been found convenient to enter body shape
parameters into the program referenced to the station of tangency of the
hemisphere to the second body segment. A transformation of the origin to
the X -axis intersection with the body is accomplished internally within
the program.

General Body. The general body consists of up to four segments, each
segment consisting of a power series of up to six terms. So, for each
segnent

S
r =,,Z_:; on (g =%) =4 o

The equations are written in terms of a body oriented system, Figure 15 .
The point for fixing the body in the shock oriented system is given as R+
along with the appropriate segment and plane. The control and translation
points are limited to )l'; equal to those of the grid coordinates used for
the flow field solution.
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n ‘__an - Xb - /‘/l
|

5
a=2 0na(xy ~Xpa) "
n=o0
. I |
n=3 an, @) - == ay,0=0;%, =0
A n=\
Sesvient1 | somer 2 | ssament 3 | sesment 44

Xp I

%—xs
Figure 15 . Definition of General Body Shape

Each segment will start at Ab,i in the body oriented system and
continue until Xy, i1 - A segment begins at an n; = @o,i - The
segments are tangent at their points of intersection.

If the translation point is given at N =Jty in segment p then the
equation

is solved for X-y by the Newton-Raphson iterative process. After completing

an initial run with the program the body system origin is displaced from the
shock system origin by an amount

xos =( sz - XTB)
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where X-rs is the X coordinate of the predicted body point at the g
and O+ values of the translation point.

A transformation of the general equation to the shock oriented system
can then be made:

B
N = Z a,\)a (X—‘ XE.L—(X-.-‘—'XTb )n i=1,4

n=o

n
L =2 : Qn i (7“' Xpi— Xyg + 7”T,,) L=1,4
n=o

Each control point K¢ s in segment qQ 1is determined iteratively
from the equation

5

The derivative at a point on the desired body is required for the error
calculation and is given by

(_d_vs) IR | 1 4
dn . dn - z _ -1 (2
‘ S)i. : na,; QC Xpq~ Xt x'rb

dx

-

or on the q'ﬂv segment

dx _ !
(ﬁ)x‘si e s Nang (xcs— -xh,‘\.- X'!:s +x1'b) "

Then (Axs/dn),‘q‘ ne 3Xcg and the appropriate Xig, Xa,, /T,
and Jta of the body determined by the shock are substituted in
Equations 125, 126, and 127 to obtain the error.
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General Body with Hemispherical Nose. The first segment of the general
body may be fitted with a hemispherical nose as shown on Figure 16 » the
radius being uniquely determined by the equation of the second segment under

the assumption of continuous values and first derivatives between segments.
Thus the only input will be

5
. . n
L= Z A (\Xb — Ky ;) t=2 4 (129)

) s ¢

where now Yb i is measured from the start of the second segment and
therefore i;,_: 0 . Again, all four segments need not be used but a
minimum of two,’ including the hemisphere, are necessary for a solution.

Figure 16 . General Body Shape with Hemispherical Nose

Assuming tangency of the hemisphere to the second segment R

5
(Eléf (Z An 1:)2;)) = TAN (qo°— Q) =ctnG = a2
b "n=o ’
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which is a constant. It is obvious that

0,2
Therefore: Nty = SInd 6

ao,L | + C.TN2¢

= ao)ﬂ. v I+ al,:: (130)

and thus Jt 3 is automatically determined by the second segment.

The equation of the hemisphere can be expressed as

Xb =""-VJ'L: —17.’- —+ h.H

This places the hemisphere in a coordinate system with the origin at the
intersection of the hemisphere and the X axis. This coordinate system is
the one required by the program in determining the errors of the control
points while matching the predicted body with the desired body at the transla-
tion point. Substitution of Equation (130) for /Ly yields for the hemisphere

2 e - ~
xb:_—-v Ao 2, (1 + a‘),_) -+ “o,z\“ ta o (131)
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If the translation point falls on the hemisphere then,

. L
.X'rb: "'V“o)z_ (\ + oq;‘;_) - ﬂ-:: -+ ao,k\' | + 47:1_ (]32)

The equations of the other segments must also be put in the samc

reference system. This may be done by translating the segments a distance XH

which represents the distance between the origin and the start of the second
segment. From geometry

XH = R..H (\— COS@S

= ny (| -etN @ smd))
= ao,a.V‘ 4+ a,;‘;_ —Q,; A4, (133)

Where again —
Ap =Ry — %y

(134)

If the translation point falls in the pTh segment, p>1, Xty

must be solved iteratively from Equation (129) which can be rewritten using
E-.-\n"'

quations (133) and(134) as follows:

S n
)lT = nZ.o A“,z (be - Zb)P - 'JCO (135)

Now all the body fit equations may be transformed to the shock

oriented system. Using the basic transformation equation relating shock
and body oriented coordinate systems, as previously derived

Xs =Xp + (Xrg, —Xq,) (136)
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it is simple to substitute for xb from Equation (131) to find for the

hemisphere,
— 2 a o 2
%5 = f aga (1ral) -2 e )Tv <

+(XTS --X'rb) =

For all other segments Equations (133),(134) and (136) when substituted into
Equation (129) yield

S
L =Z An, i ('X ——ibt‘ ("‘0,3-V H-a.‘,: - “91 ao',)
n=o

n
-sz"'be) L:2,4

where ITS is the matching point of the predicted body.

Similarly, each control point Xe s in segment 1 is determined from
the equation

2 2 [N " ! _
xcs =- dolz_ (I +a,,,_) - R, + ao',_ | '*"a!,z +(XT3 IT‘)

and in segment 9@ 4, q >1 Xc_s must be solved for iteratively from

S
ey 2

n
Ty ao,a_) — Xty -l"XTb)
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In the first segment

‘l—a—ixp_) =- e . (137)
Zeg, Mg -Vaz,,(u-a.,f,j-n:

and for the 9 th segnment, q>\

JXs

|
a, e M _ﬁ A, g(xr.;'ib{ (%:"V I+a; -a,, d,},)"xr,"’xr,)n ()

where is computed from either Equations (132) or(135). Now in
Equatlons(137) or (138) x¢ and the appropriate Xig Y. ,M and
may be used to obtain %he error by substitution :Ln Equat:Lons (125),

(126) » and (127)'

Apollo. The Apollo shape, Figure 17 , is automatically determined by
option ’ and only the translation and control points need be specified. The
shape is a spherical segment bounded by a toroidal shoulder. It is uniquely
Céieflned by Ry, , Ry, and d/2 which are 15.4 ft, 0.642 ft, and

L2 ft.
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d/2

Figure 17 . Apollo Command Module Shape

)

The two segments may each be represented in a body centered coordinate

system by equations of the form,

Xp=- K“':-J'L‘L + R"‘l (for the spherical segment l) (139)

-2 A Cy .
Xp= .V?“,_‘ (h-nHLT) +X(“£l)b (for the toroidal shoulder,
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The quantities x(“’-ﬂb and AH,_T are functions of the geometry:
Ape= % —R (u1)
H;,T - 2 \"‘L
Xugty, = ®oty = (Ry, —Ra)) cosd

Ry, — (Ru." Ku,) V V- sweh

Where
siv b = —L = Rua
- R“l - R, .
Therefore
X(H,T)b =KH.'Y(RH.‘ RQ‘—(—;{——R“Q‘ . (142)

Substituting (141) and (142) in (139) and (140), the final equations in
a body system become

Xy ""—\l Ry, - 2% +Ry,

Xy, =—V Ry, —(R—%+ Ruy) +Ru,

—WRH‘ "RH,_)‘- - (_ﬂz_.. _K“-‘)C

The translation distance be may now be found from

Xy, ==\ R - 2% +R, (143)
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or

Xr = —_V R —(np -4 +RH,)"'+RH‘ (1)

—:V (R\-H_ R“a.)-&— (_df -K"‘Q’J

depending upon whether the point lies in the first or second segment
respectively.

The body equation may now be fixed in a shock oriented system by using
the appropriate predicted body point:

x=- Ra - n*+ (R, —x7 +21)

(for the spherical segment)

and
x——VR‘ (n -4 ‘:+(R —" RN - (& >
- o, A\ T+K“1.) Hy (R"‘t “b“(z "Rﬂa)
(for the toroidal segment)
or
—_— - K kS
X = \, Ry, - n~ + X(H.ﬁg (145)
(for the spherical segmen’r:)
and

X= —-vgl:;_ _(}1 -% +RH7.)1: + X(“’J’)s (146)

@‘or the toroidal segment)
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where

x(“c.'js = (RH‘ —be +xTS>

and

x(”z"’)s = (R“‘-y (R“"Rﬂn)"" (%- kH’yr "X-rb - XT,-)

where the appropriate value of K,  is substituted from Equation (143)
or(144) . Each of the control points is solved from

Xeg = _W“T‘ nRe o+ X(n1)s

(for the spherical segment)

and

- - _d 2
Xeg = _V Ry (ne-4 +Ru,) +Z(Hz.1)s
(for the toroidal segment)

On the spherical segment from Equation (145)
ot -

S K
(d.xs ~ YR —nE (47)
IR xe e .

Similarly on the toroidal segment from Equation (146)

ax,) _\ By - (e —2 +Ru)* (u8)
dn Xeg, e Jee~-2—+Ru,
-73 -
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Equations (147) and (L48), Xeg and the appropriate Xig,Xag ,
and g can now be used to obtain the body error by substitution in
Equations (125), (126), and (127).

Integration Procedure

The integration procedure used in the computer program is a fourth-
order Runge-Kutta scheme modified to include the Gill correction. This
procedure is described in detail in Reference 20 . It employs a fixed
step-size or integration interval, entered as input to the program,
throughout the entire solution. The only difference over the method
presented in Reference 20 1s the acceptance of data obtained with the
corrector step at the intermediary plane. Normally, the Runge-Kutta
procedure employs four steps to complete a cycle. The step size is
automatically halved, and the first and second steps determine predicted
and corrected conditions on the intermediary plane. The third and fourth
steps pertain to the predictor and corrector steps for the second half of
the entire interval. Thus, two marching planes of data are obtained by the
program for a complete cycle of the Runge-Kutta procedure. In most solutions
a slightly greater difference between predicted and corrected results has
been noticed at the intermediary plane than at the end of the cycle, but
the results are still considered sufficiently accurate and acceptable for the
purpose of supplying detail on the behavior of the flow field properties.

In the early stages of program development a simple second order
predictor integration scheme was tried but proved to be too inaccurate in
its determination of the stream functions. The merit of a predictor only
scheme of integration is obviously the shorter program operating time due
to the elimination of the corrector cycle. An attempt was made to improve
the accuracy of this scheme by effectively increasing the order. However,
this would have required carrying data on an additional marching plane for
use in the computations and the program storage space was too limited to
do this. Thus, this scheme was abandoned in favor of the Runge-Kutta
procedure.

Data Smoothing

The properties p 3P W®,v,w, ¢ and Y are smoothed individually at
all grid points (i,3). A least square parabola is fitted successively to
sets of five points with the center point value being adjusted to the value
of the parabola. The data are smoothed first versus sU , then versus 6 .
The following special considerations are observed,

1. Symmetry requirements with respect to 6= 0%, 180° (the pitch
plane) are observed by adding image points. The grid system and
property definitions require treatment of the data as shown in
Figurc 18 . The antisymmetric behavior results from the
cartesian form of the definitions of W" and § .
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- Image Points (Equal Values)

‘: JL= Constant ('rr-o, < L
': (r+e )™
4

a. Symmetrical Properties

A\ n= Constant 1)—..5‘ 11.“?

o
\A— Image Points (Opposite Values)

b. Antisymmetrical Properties

Figure 18. Symmetry Properties of Data About Pitch Plane

The variation of properties along a coordinate J = constant
requires the transformations shown in Figure 19 in crossing
the axis at nx=o0.

The symmetry about the pitch plane establishes the relationship
between values on the lines ob and 0€¢. The program computes
values on the bent line ao0c¢ whereas a smooth analytic variation
of the properties is found along the line aob . The data on aoe
are transformed, as shown in Figure 19 , to represent data

on the line aob. The data are smoothed and then transformed
back to the desired location on aoe.
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v T J = Constant
P
ﬂ
w
¢
Averaged Property Value
R 5=6] n

a. Properties Having Non-Zero Value at Axis

= A
ry’ 6=86 J = Constant

Computed Values

Transformed Data
to be Smoothed

b. Properties Having Zero Value at Axis

Pitch Plane\

c. Definition of § Coordinate

Figure 19 . Treatment of Radial Distribution of Properties
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6.

A data point at the origin is always used if an adjacent data
point is available. For the variables (- and Y the value

is zero by definition. For W,V P, and ® an unknown
constant value is evaluated after the first smoothing by extra-
polating from five adjacent points (least square parabolic fit)
and averaging the JmAx values obtained. On subsequent
smoothings, since a point will now exist at the origin, an
extrapolation is not necessary and the IMAx smoothed values

are averaged.

If one or more successive data points are missing, the least
square fit is not allowed to span the gap between the adjacent
sets of data.

At the end of an array end point formulas are used. This means
effectively that the last three points of the array are all
moved to their corresponding values on the same least square
parabola.

If fewer than five data points exist in a set, the points are
left unaltered.

Thus not only are the data smoothed consistent with symmetry about the
pitch plane, but the values of the @ -derivatives of the properties at the
origin are zero as required.

The numerical procedure used in the program, while following the above
principles, fits a parabola to five points using the following definition of
variables. Consider that the property Y is to be smoothed versus the
variable X . A simple translation is perrormed such that properties and
X -values are plotted relative to the center point in a set of five as
illustrated in Figure 20,

y= ‘T " Yeanrer

d

Least Square
O(y Parabola

X= R-Xcenter

L Ay |__

Figure 20 . Ieast Square Smoothing Parabola
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The equation of the least square parabola is

y =.a+ bx + cx* (149)

An arbitrary spacing of points is allowed. Following the approach given in
Reference 21, the following three equations are used to compute the three
coefficients of the parabola.

(M-bA.z-t-c 4:."33.) + (a.+bA_, N -y_J +a +(a+bA, red) - ‘dl)
+ (a-i-\)A,.-\-c.A,,:-ﬁ‘) =0
A_,_(M‘béx*-CA.’i —‘1_,,_) ta, (a +ba, +cA_f‘—g.,) v 4 (arbaresi—y )
+a,(arbAreal—y,)=0
Ay (a+béz+cl§:— 3_2)1-4:(& +ba +c A_f'—g_l) +A’((a+ bo+ cz;f-g,)

+a2(a +bA,_+c:A;_"-L3,)=0

or
Sa +b (A_l+A_z+Al+A-,_> + C(A_:_+Aj;+AT+A:_)
+ (_%-z—‘éq_‘él _tda.) =0
a (A—1+ A tA +A1) +b (A_2;+A_T+ Al A;:) +c(4_'1+4§+£', +A3,)

+(‘AL\‘-1— 4, Y- &Y, — A‘L"h) =0

2 2 3 3
a(al+ & enl +A’;_) +b (Ai%- A +8+A, J+c (A_:-k-A: ratead

+loaly —aPy oy, -AY )=0

If we define
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where
L= A+ A, + A+ 8,
M= A%+ AT+ &0+ A
N + 03+ R+ A

A& 4 4
A, + A + A+ 4y

-3

JA

3
-2
4

—d
n

and if

Rl = 5-1+5-|+ ‘J|+\éﬁ-
P“J.EA—:LH-;_"' L\.‘.|‘$-|+ A"ﬂn "'A‘L‘ém

- AX 2 2 *
RaZ 4, 4,+ 5, Yo +AIY +HY,
the solution is,

Rk L M
R, M N
R P
A= 3 N
D (150)
5 Ri M
L Ra N
b = IM R_} P
D (151)
5 L R
L M Ra
and C = M N RL
D (152)
Where the center point formula is used, the corrected or smoothed value is

simply & . For end points the full equation is used to compute the smoothed
value.
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In the computer program the user may choose the following input para-
meters,

1. The K value defining the location of the marching plane at which
smoothing is initiated.

2. MNumber of smoothings per plane.

The smoothing is automatically removed from operation when a body intersection
has been obtained on the inner grid radius in the meridian plane Jmaw

It has been observed that for capsule body shapes the smoothing can
reduce the data accuracy in the flow field near the shoulder. Since smoothing
is needed only near the axis, it is desirable to use only a percentage of the
indicated correction due to smoothing. This weighting factor is input as a
function of radius only and may vary between zero and one. Its radial
variation should be a faired curve having its maximum value of one on the
X axis.

DATA OUTPUT PROGRAM

The flow field program integrates to determine the properties
u.,'u'-, w, p >/°) ¢ and ¥ at grid points and at predicted body locations
and stores these final results on tape for use by the separate Data Output
Program. These data can also be printed out by the flow field program if
desired. For practical applications the data output program presents the
following properties and information,

Pressure, atmospheres

Density, lb/ft3

Temperature, °R

Enthalpy, BTU/1b

Entropy, BTU/1b°R

Velocity, ft/sec (magnitude and direction)

Mach number

Perpendicular distance from the body surface to the shock wave
Stagnation point location

Streamline traces in the plane of symmetry. The user selects
the streamlines by specifying the point at which these stream-
lines cross the shock. The stagnation streamline trace is always
determined.

k. The projection on a plane normal to the body axis of symmetry,
of the streamline traces along the body surface emanating from
the stagnation point at specified angular intervals.

Ca He 300 HH O QO T P

The Data Output Program computes and always presents the above informa-
tion, with quantities a through h being determined on the body surface at
points designated as stations. These stations lie along lines on the body
surface emanating at specified angular intervals from the point of inter-
section of the surface and the axis of syrmetry. The program user has the
option of choosing the angular interval and the spacing of stations along
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the body lines. The spacing is specified in terms of curvilinear distance

neasured along the surface for the Apollo shape; for the general body shape
the spacing is specified in terms of the radius, Jt ¢ , measured from the

axis of symmetry.

In addition to these data quantities a through g are also presented for
the shock layer according to the following three options, any combination of
which may be selected.

Option A

Data are presented for the region between the body and the shock along
lines perpendicular to the body at each station. Along each of these lines
a ninimum number of five equally spaced data points including the body and
shock points will be obtained. The user has the option of choosing the
number oif points up to a maximum oi ten.

Option B

Quantities a through g are obtained at specified intervals along any or
all of the streamline traces defined in j and k above.

Option C

For cach station, data are obtained in a field bounded by the shock wave
and the plane tangent to the body at the station. Points in this field are
located by a cylindrical coordinate system (A, ®)x' ) with its origin at the
station and the centerline of the cylinder (x/axis) normal to the body. The
angular coordinate is measured from the plane containing the body data line
and the axis of symmetry of the body.

The operation of the Data Output Program may be functionally represented
by the following block diagram.
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\y

Tape Data

Input

Station Streamline Trace and Body Station Property

Locations Stagnation Point and Shock Distance
Calculation Calculation

Option A & &

Spacing

Option B Stream- Option B Option A

line and Spacing

Selection — Option C

Option C "

Coordinates

Option B  Streamline Option A Option C Body Station
Output Trace Output Output Data

Output Output

Figure 21, Block Diagram of Data Output Program

The calculation of the output data in Options A and C is closely related
to the body station property and shock distance calculations, and they will be
discussed together in the following text. Similarly, the calculation of the
output data in Option B is closely related to the streamline trace calculation
and they will, therefore, also be discussed together.

Body Station Property Calculation and Options A and C

The object of the body station property calculation and data Options A
and C is to obtain properties in the flow field at various points in the
shock layer other than the grid points ({,j,k). In Option A the properties
are calculated at equally spaced points along a normal to the body at a given
location or station, designated by fs and ©s . In Option C, the normal
to the body becomes the =%’ axis of a localized cylindrical coordinate
system, the origin being on the body, €‘S being measured with respect to
a meridian plane of the body passing through the X’ axis, and 2'S being
measured perpendicular to this X’ axis. Thus, each data point associated
with a given station can be desirmated by an x’, A’ and 6’ after the
ns and ©s of the station are known. It is seen that Option A is merely
a simplified form of Option C with N'=0© and the X' axis divided up
equally between the body and the shock wave.

The coordinates of the stations for Apollo are input in terms of Lg,
the geodesic from the body origin point to the station, rather than the ng¢
which is needed for interpolation between grid points. A relationship between ‘
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L and R can easily be found. The differential arc length d.L along the
body data line is related to its components in a cylindrical coordinate
system as follows,

@AV =@ + @’

or

L = fn-v | +(%—%)"‘ dn

0

The equation of any given translated circle of radius R is,

x =—ﬁl_(n‘ﬂr)1' Xt

where Nt and X+ represent the distances between the center of the circle
and the . and X axes respectively.

Then;
dx _ _n —n-
R
and
| = Rdn
A [(R=nd)-s0ranen
- - T
=R s ("‘jij“;)
or

Neg = R SN .;S. +nr

- 83 -
SID 65-1353



yd

s
NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

For segment 1 of Apollo, n+=0 , R=Ry, , (see Figure 17 ) and

s = Ry, sin (\\;\i)

For the second segment
_(_4d
Ry = ( 2 RH«)

The start of the second segment, the beginning of the shoulder, is at

%‘ "‘RH;
ILSH =RH\ SIN d} = RH\ __—_R“‘—R“

a

Therefore at the start of the second segment, the beginning of the shoulder,

In the second segment

-1 { e =1
s =Ry, sin '( RH:)"KRJA)"'LSH

So, now solving for g and substituting for a4 s() and l—su s

d
~ -,:—'RHI
A"S — RH‘)&. SlN(Ls ""(RH!:“"RH&HSIN (RH.—RH,) —l}.‘_&i
kS

which is the expression for Ng in the second segment (Lsg >LSH ).
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After the complete flow field and body have been obtained, with or
without shock convergence, the data output options may be used. It is
necessary for the interpolations that the geometric relationship between
the body and the shock coordinate systems be known. It is to be assumed
that the final predicted body as determined by the shock wave , and the
desired body as eventually determined by the input equations are sufficiently
close so that the normals and localized coordinate systems may be oriented
with respect to the desired body which is fixed in the shock coordinate
system by the translation point, defined in Figure 14 . After the desired
body is translated to its final position, and the body equations are
expressed in the shock-oriented system. A normal to the body may be
erected having the following equation, which is obtained from a generalization

of Equation (123).

n = —(—j—ijs Xg + (}15 +(-3x—,f)s Xs)

or
N = dp Xg +bn (153)

At this point in order to determine the absolute coordinates of the
points of Option A, it is necessary to introduce interpolation constants
Cn sCgs Cx Which represent the fractional coordinates of a data point
between the bounding ('s, j's, ork's, shown in Figure 22 .

4,05, ) 9% 1
i ;055X /

xdp ) ﬂ’dp SGAP'_'

Tir 10541 5 X ke

_nl:'ﬂ 59:}1-[ ,X.k

R 305 shoper
LT 3%
et se.‘u-n)xk.._,
SIS

Figure 22. Bounding Grid Points for Data Interpolation

-85 -
'SID 65-1353




g

NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

For Option A the ©4p of any data point is equal to the Os of the
station. The ©j's of the grid system are glven in terms of 0°< @< 90°
for the first quadrant and due to the way the J's are defined, &;=T-8;
in the second quadrant. Thus the 6j’s bounding the @sg can be found
and Cegg may now be defined as

— ©s — 63
Ces = 6,4 6;

The absolute coordinates of the data points for Option C are not yet known
and will be found later.

The shock surface is represented by a series of points, S¢,j , as
computed by the main program. The shock surface as interpolated in a
plane ©s of Option A is given by

. 65 "e.i
S‘-')es - SLJ;‘ +<6.i+l "ej) <S a1 - Si‘; 3‘)

:SBJ (‘_ Ces\) t Cog Si,](—l

where j and j+1 represent the 3'8 bounding Og .

Joining the shock points by line segments, the equation of any segment at a
given ( and adjacent (a 1is

(nis — ni) x [ [ Riz = T ) ‘1
= + .
s { - SL, 6s \S‘-* 65 S‘-;es S +03

Skl)es
or

/LSH =aAgy X +bsa (154)
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After searching for the correct segment which the normal intersects, the
simultaneous solution of Equations (153) and (154)can be found yielding

X :_LS_'L__EE_
L On — Agsy

n. = a.. (\bs_u“_bi.\.l_LSH

e ore

The distance between the body and the shock wave along the normal becomes

Nlxc- w0 (-

If ©On = angle between the normal and Xs axis, then

TAN B, = a4,

An

S = S——
N 9,,, W
{

O, = T——x
oS On T v an

Now, the coordinates of each of the mm data points can be found:

Py (Tx DLS,)-t-(h.l Ns) )( Tz a’->(f_—_l§ (155a)

p=i,m

and

ara = b = L
Xp= Rox\ “=X5-<V(x;.—xg i j/ Wivar )(m") (1550)

p=1, m

- 87 -
SID 65-1353



e

NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

For Option C each of the points must now be put into the absolute
coordinate system. Let n', X', ®' be the coordinates in the localized
system and ~, X and & Dbe the coordinates in the absolute shock oriented
system. The transformation can be made by finding the vector R in cartesian
coordinates. R , shown in Figure 23 ,is.a vector from the origin of the

absolute system origin to the given data point. R is made up of three
components,

—

—y —> —
R =2r + Ny + Ny

|
Lj /
/ 5
/ : I POINT IN af;'g}
/ . e
|
SHOCK TRACSE / \
IN PLANE /
8=0 —

——_ SHOCK TRACE
IN PLANE
6=90" - 270"

Figure 23 . Relative Coordinate System

where

—

/Uy = vector from the shock origin to the point on the body
( Xy ,Rg) from which the normal is erected. This vector
lies in a plane inclined at an angle ©g with respect to
the pitch plane.
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)?,_= vector from the tip of o to the point at which n' s
erected. This vector is coincident with the X’ axis, lies
in a plane inclined at an angle 65 with respect to the
pitch plane, and is inclined at an angle Op to the X
axis as measured in the &5 plane.

ﬁ;r- n which is perpendicular to the )c‘ axis, inclined at an
angle 6’ as measured in a plane perpendicular to X' from
Lhe original @5 inclined plane which contains the x’
axis. 7, , ®X, and 7, are described graphically in
Figure 2.

i
Now, finding the components of each of these vectors , if o, T and ®
represent unit vectors in the absolute cartesian system,

- I —» —>
R=[-Xsl. + Ngcos8s | +tngsinGs k
+[_ X' ': An Cos6g x! '—.'_ An SN_G_; x' T:
Vr+ay Vi+ay’ ) Vi+ ax
' ! ’ / -»
+[_ An U Cos@ —i'r_'_ N cos 6s cos § - I'L:smess"ue').!
Vivar Vi+tax ,
n'sins Os cosB TZ]

{
+(n. c0s Og sme‘+—‘—’;—
yl+ an

= R, L +R\A—'} + R K

_ [X x' an n'cosel] =
T LTS Viya; Y1+ an ,
dn casBs X . n’'cosBs cosd

' | N>
.|.[ - =L SINB . SINB |
)7.5 Ccos 95 _m“T' -V_lTA_;'—‘ S )

U
! 1. n'sin6scos® | 7
+[ﬂ$s«nes—m+n’coses SING T SN s K

Vv vay Y1 + ap
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Now, converting back into the cylindrical coordinates of the shock system,

Xpatn = Ry
]
= Xg— = — _ &n_’j_ﬁ-‘.‘fi—e’—' {(156)
Voo~ Prar

= R.* Ro>
" DATA v J t ke
Qn cosBs %' :z cosBs osﬁ_ (157)

=1?.Coses
{s V\+an | + an

an SinBs X'

2
—-}L'.sw 65 sIN e’) -l-(n.S siNnBg —
[/ [ +an

' s in 8 6'\* &
r {
4N 'cosBs SiNO + TS C03 ) 1
YV I+ an

and

e [ Ry
éDATA -~ TAN ( R,—,_.)

an c0s0s X' A cosbscosd’

:TAN-'[(,;_scoses_-v—‘—_'—_—a—“-‘ -V—T—‘i’_a—n-.

—n'sin & sIN 9)/(1135‘"95 _%NQ;XI

A sINGs cos 9‘>]

/ ]
+N casEe_ sIND +
= Vi +ans

(158)
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These equations for Option C data points reduce to those of Option A,
Equations (155), if ru'= O and X' is appropriately defined.

At this point since the absolute coordinates of all the data points for
Options A and C are known, the Cgg's for Option C and the Ca, ’s and
CX‘P's for Options A and C may now e found. Knowing the 9“": , the 8; 3
and 63, 's bounding the QJP'S can be found and

(159a)

for the data points of Option C. Similarly, the bounding )Z;_’S for all the
data points can be found and

Ny — ¢
= Zdp T Lt (159v)
CAJP Ry — i

The bounding Kk 's of a data point , shown in Figure 25 , are not so easily
found since the 7« value of a k 1is also a function of & and 6 .

‘|n—5i_+'( ) 9,1? / (X'X —IIK
/ )
f Xp F g t
/ A ‘]"* Nt
, | f
/ Ao R
—St,q; | l

Figure 25. Bounding k’s and Cx

For each data point of Option C, as in Equation
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The equation of a % plane, which is parallel to the S i'GJP surface, is

k-1
N = Ay X +[/'Li — Adgy (S()%P +Z AL)] (160)

where
Qsy is defined by Equation (154)

A,:= integration step size, the distance between
K and Kk +1 planes, A, =0.

If U is the U of the smallest bounding /L{ of the data point then

letting . =s4p in Equation (160), tests can be made for the bounding k's
by testing against

e—{
Ry [ =t (50 5 A1)
Xk = A su

or, after substituting for &g, from Equation (154) and reducing
-\

xkz Si,edp(l - Cn;.,) + CI\.JP (S‘:“)ea,) + Z AN (161)

o

Once the bounding K's are found , such that

X <Xp < Xip

then

k-
= m('"%e) +CA’dP S‘.-‘“Jed.e +AZ Al (162)
k
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Now there is enough information available to interpolate for the
properties at the various data points. With each data point there is
associated a Cxyp ) Cny )Ce" and eight bounding grid points at which all
the flow properties are Enown. However, it has been found that after the
body is reached flow gradients become extremely nonlinear which would
indicate that any linear interpolation involving a grid point within the
body is likely to be highly inaccurate. The properties at each body point
found on a given ( and j are computed by the main program. In order to
maintain consistency with the main data output logic each bounding grid point
shown in Figure 26 1lying within the body will use properties found by |
linearly extrapolating from the properties at the body point at that ¢,
and the grid point at the first K outside the body at that L and j.
This should allow any subsequent interpolations and previous computations
to remain unaltered and is consistent with the assumption of linearity in
the X, & andr directions.

k

~l9p > Igp. 3P

kb Y

last Valid Data Poi.nt—/

Extrapolated
Data Points

Computed
Body Point

Figure 26, Bounding Grid Point Within Body

The bounding ¢'S ,j's and k’s of the data point are known as well
as the k preceding the body point at any ( and j where a body point
exists. Let these ks be denoted by Ko , kq+! and k- ; respectively.
If for any bounding grid point of a data point ka > Kpy; "for the ko th
plane bounding grid points or (ka+I1) >kp;; for the (kat!)th
plane bounding grid points (assuming a body point does exist at the ¢ J
in question), then the properties at that grid point must be replaced by
extrapolation. Let the k of the bounding grid point in question be
designated kgp whether fkg4p = Kka or Ka+1 . Then, letting i.“,
and Jgp be the .« and § of the grid point, finding th at li?
JSP from Equation (161), and assuming @ to represent a géneral property,
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Qb igs ige — Riap,ise k
Q. - =Q. . + . (163)
dap,k 4 ¢ J k . . —
Lar, dgrs g Al var, b Xb‘%l’hl&l’ Xkb
( p~V
( kgp — kb) AT
t=ky,
where
Q i‘,, 5 jég , kxép representg the extrapolated property which
replaces the property currently at tap 33,, and k%P .
b ¢ h ...+ is the body property at that L p and ) S
(assuming a Dody point is defined at that iqp and 13,3 ). 3
Xy poadgp t is the X coordinate in the shock system of the
body point (scompu{ed in the main program)
A{ - - - -+ - is the integration step size used to reach the (ifl)St.

plane from the (¢} plane.

There are times when the body point is computed at a given 3p and
J gp by extrapolating across a number of k planes. When this occurs the
properties at the intermediate grid points are determined by linearly inter-
polating between those at the body point and the last computed grid point,
Equation (163) accomplishes this kii‘ ky is degined to be the k of the
last computed grid point, and and i ] refer
to an intermediate point: 8 ap > dap.kgp

Assume () ,k represent the lowest ¢,j and k of the bounding grid
points of a given data point. Then if Q. represents a given property,
interpolation in the @ direction gives

Qi'xeép ,k =Qi)l)\‘ (l - Cedp) + Cedr QKJ :H'\,k (16143)

. = - A 164b
Q‘+')edp)k— Qi+l,3,k (' Cedp) +C94PQM, 3,k (1640)
Qi»eév»kﬂ = Qf,b,kﬂ (‘ - CG&P) + Ce&p Qt,m,m (16ke)

Q U, Ogp , ket = Qiu,j,kﬂ (‘ - Cegr) + C'edp Qi+l,3+l, k! (164d)
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where for Option A the above calculations are valid for each data point in a
given station since Oy, =6sand Co,p = Coy-

Now interpolating in the X direction and substituting the values
calculated by Equations (164)

Q l,edp)xdp= Qi,edp)k (l - CXJP)-’- CXJP Gllalp)k” (1658.)
Cap,Xdp = QCN,OAP,k (‘ - dep) +C"Jp Qm,e‘?,m. (165b)

and finally, interpolating in the 2t direction and using the results of
Equations (165) ,

= 0. |- ) (166)
& Ndp ,Edp ’xdp Q"Jedp )xJp ( Ch"?

+C,, Q

e T s, ©4p s Xdp

which represents the interpolated property at the data point.

Streamline Trace Calculation and Option B

The mandatory data calculated by this procedure includes the stagnation
point location, streamline traces in the pitch plane and streamline traces
along the body surface emanating from the stagnation point. The stagnation
streamline trace will always be computed. When the option is selected the
various thermodynamic properties are computed along these traces.

In the pitch plane WY =0 but the streamlines are labeled by finite
values of @ .

The 1.5 at which various streamlines cross the shock wave in the pitch
plane will be input data, Rin. The ¢ at that point on the shock is found
by linear interpolation using the @; 3,k ’s which are computed by the main
program. In the pitch plane j=\ | '¢_—; 4)(:'.,14) and if sv; and g4 are
the n's bounding a given N ip;

(Rin -72;) (éf*m “‘pi,‘)

(p'rruace: (pi.,\ t ("’in - ;,_.‘)

(167)
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Once the value of ¢ to be traced is known, a search for this ¢ must
be made in the box shown in Figure 27 (bounded by N ’s and k planes)
which the streamline has just entered.

¢ trace

?i,‘km\

\
ﬂ-li.

&iy kh A »

Figure 27. Bounding Grid Points for Streamlines in Pitch Plane

This search is made by testing whether

érmce - q)i.ﬂ,kn

< | (168)
& A
Wir, knet — q/f.-;-i)kn
or ’
¢ € — (b(,k
q)TzAc d) n <| (169)
YKknpt T Viykn
or

b

¢TPJ~CE - ¢l'.,kn+|
(p't'l-l,km-l - ®l) Kn+

< | (170)

which would indicate whether the desired value of ¢TgAce is to be found
between the corresponding values of {’s or k's . If the streamline enters
between the (’s or k’s indicated above, then of course the tests must only
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be made on the remaining two sides. No test is ever made for the fourth side ’

(between ., and iy on the kpn plane), because it is assumed
that a streamline will never travel towards the shock wave.

If either (168) or (169) are satisfied, then

_ A
X rrpce —xkn +(¢ TRace (D("')kn)(((p oo, knat” oiu,kng

Arrace =/ (i

or

A \
Xrrace = an"" (¢mnce - d)z)k,)( ®: aes — ¢i,k.‘ }
N rrace = A

respectively. If (170) is true, then:

Rreace =7 +(d>TRACE _(b;

)kﬂt-l

Rt — %y ——
) * : (171)
¢£*',kn+\—— 4)£,le

For the stagnation sireamline ¢rg“5 ='¢$TM' The X\ coordinate is
found by Equation (161). Thus the »~2 and x are known. For interpolation

the constants CA and Cy,with Cg=0,are calculated from Equations (159) and (162)
and used in Equation (172) below where ® is a property:

an-_— Ql)k(l —-C,,) + Cr Q el ke (172a)

or

Oi = Q“')"n (( —CX) +Cx Q Ly kntt (172b)

The proper?ies are now interpolated for at intersections of the stream-
lines and ¢ S and k planes but may be output at fixed input
intervals of arc-length or more correctly, segment length. .

- 98 -
SID 65-1353




NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

] J
Given the X' s and L S of the streamline trace the distance

dy = | (xa-x)" + (ra-n)™

can be compared to the desired distance between output, €, shown in Figure 28.

If § »>d; the next d must be computed and so on until,

n
S “z AL sAYH-\

and then

| vy
Q(s> = Q. *';s_i—_{@m—z Mnez— QG n'n;]

Aney

for each property.

¥ s =d, ,

Q(s) = Q, ﬂl"'%(an’L - @ fl\)

M e e o man PR 3
lnis process can be contim

s ued, letting X, and R, be the X and N
where the quantities were last output on the streamline yielding

n, = n“_‘_‘ + AY\-\-I (nnfl_ }-LVH‘I

X

Il
o
P
(7))
l
-
~—’
S
¥
=
+
r‘
o
S
.1.
Nallirg

o
where if dm.. =A|, Nn= o0 , then 2 :A;;o.
1

The streamline is traced and properties interpolated (if desired) by moving
along k planes in this manner until bounding values of f can no longer
be found within the defined flow field.
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Jm—n‘-'_"
vew [/
1 d
— L
Qs)
New
| n,

? F

Ky K, Kn Knxi knta

Figure 28. Output at Specified Intervals

The stagnation point location on the body cannot be found from ¢ and
Y since @ = @Psuc= constant and W= 0 everywhere on the body surface.
The test for stagnation point is made by finding that point where Ur = O,
The bounding J/t; 's , those at which U~ changes sign, are found by deter-

mining where on the pitch plane of the body
T U U, 1
v, U ‘<(| Ui +lU'L l) (173)

Once these bounding ;% are found, linear interpolation for U = O can be
accomplished to compute the sv at the stagnation point as defined below:

— (ﬂ'i'ﬂ — i)
n =N. — 75 (171)
Vi \UEH — U /
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The value of @ at the stagnation point, ¢stag’ is also computed by a linear
interpolation. ¢ stag 1s then used to trace the stagnation streamline in the
pitch plane.

Traces of streamlines originating at the stagnation point and emanating
at various angles with respect to the pitch plane may now be found as shown
in Figure 29. In order to facilitate the analysis the streamline traces are
not found on the actual body surface but instead on a projection of the body
surface on & plane perpendicular to the X axis. A series of concentric circles
is to be used for the interpolation of the streamline path based on the cri-
teria that along a given streamline the direction of the velocity vector is
always tangent to the path.

STAGNATION
POINT

Figure 29. Streamline Trace on a Body Axis Projection

It is convenient to work in a cartesian system, origin at the body axis s
and axes perpendicular to the body axis and lying in the pitch and yaw planes
(Figure 29).

Some input data designates that a streamline trace will be made on a
streamline emanating at an angle &;,; from the stagnation point. This
streamline segment can be represented by the linear equation

Y=2ciNBip +Nsrac (175)
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Assuming the integration interval to be K , the first point on the trace is
at the location,

Yoo = R COS)BJ'V\ + staa

7= RS‘NﬁLn

The coordinates of the flow field grid points surrounding this intersection
point can now be found by first computing the A and @ of the point in the

absolute coordinate system. Knowing Yoo &) >
_ > 2 176a)
e —V 3| + Z (
6 = Tan" ;' (176b)
]

If Option B is elected all the flow field properties must be found at Y,,=,.
Otherwise only U~ and W need be found to determine the flow direction at
Yo,2. The U'sand j'S of each of the grid points surrounding Y,,%®.
and interpolation constants GCna and Cg can be determined as outlined
previously. Since the properties on the body at each t and ) are known,
two—dimensional interpolation can be accomplished. If & 1is a property,
then

Qi,e = G ; ( \= Ce,\) T Cop Qi,‘w (177a)

Qieo = Quuj (- Ce,b*\- Cop Qs 1 (1770)
and

QI\IQ = Q'\_,e (l - CR.“> + CRnQ(‘,.H)e (177C)
where ¢ , (41 and j , j+| are the bounding L's and J'’s

respectively. Once the properties have been interpolated for, the second
point of the trace must be determined. This is found by going back to
Z=0, Y =R, and extending a ray a distance AR . The slope of this
next segment (crN@ ) is found by using the velocity direction at ¥, ,%Z,
to extend the segment from Z=o, Y= . The quantities Uy and 07

)
were interpolated for through Equations (176) and (177) . This new,8 can .
now be computed from
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= -l _Wi (178)
The second point at \J,_ yZ3a can now be given as

u. = AR cos/3! + h-srAG

§ -
Z, = AR sing,

The third point trace is now found by using the velocity direction at Ya 29
to extend a line segment from 4, ,2, a distance 2R to Yy 1Zy. The
new,§ can now be found from

W

’51 = TaN =) (179)

The new point is at

93 =y, + aR cos s,
2-3 = z( + 2R SlM)é‘z

These equations may be generalized to the problem of computing the
trace to the n?h ring at 4, 2, ,n=3.

Yn = Yn—= + LR cosfBp

Zn = Zp-a AR s g

defining n n-2 Pn-1

= Tan"' Yo (180)
' v

e
F'Y'_‘ n-t

Now the properties can be interpolated for at Yn,2Zn if so desired.

The new,d to extend a segment from the (h-l)s'r to (n+ NDer
point can be found by Equation (180) after N 1is increased by one, and
this process continues until the streamline goes beyond the defined body
points.

After the trace is completed, it is obvious that the distance between
points is usually not R . The quantities are, however, output at intervals
of R by a method similar to that used in the pitch plane traces.
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Computation of Additional Flow Property Data

When the program interpolates or extrapolates for the thermodynamic
properties at a given data point, the results consist of values of w,v,
(ft/sec), p (atmospheres),/o (b /41’,3 ), and in some cases for Option B,
o, (lb,.,\/sec)y’; and P ( bm sec)% In addition, for the mandatory
output and for Option B it is desired that the thermodynamic properties of
temperature T (°R), enthalpy, R (BTUAbm), entropy S (BT /lbm- °R), total
velocity,J (ft/sec), and local Mach number, M be computed. The method of
calculation of these quantities depends on whether the flow field is assumed
to be composed of a real or perfect gas, except for the total velocity which
is always given by

U= q W+ T+ Wt

Real Gas
The properties of a real gas are a function of p and® . Gas tables

for air which are read into the program allow the following to be obtained
directly:

Compressibility Factor ...« Z& ( P ,/o)

(Enthaipy) 2
P R CVOR -
(Entropy)
“Rergarc S (P>A/RSPEC‘F‘C
Defining

T = 778.3 £t-lb
BTU

- \b
A= 216.8 ZTTf-_Er’i

Then
h Patm A /BTy
h(ee) = (B« x s
(lbm) P Istare /OQ%?‘) J (ATM £
BTU S BTU
S (u,,,,—"k =(R sp. )s“n % Rgp, b .- °PJ
PRoérA™
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For a real gas

BTV
R BTU — 1.9358% (Ib-mo\e-"‘é Z
sp. \\b,; °R 22.9¢6 lbw/tb-mole

= 0.06835590 Z (g

Now the equation of state allows temperature to be calculated

T(’K) P (ATM) _A_ ATM fT) (181)

(’lbm> RSP BTU P) J

Local Mach number

® U

where A& 1is the local speed of sound. For real equilibrium air, the Mach
number may be expressed as

M == = Y -3 (182)

V l :-[ P 20"74\ ;azn) }?/’ g‘ p)o

where @ = 32,174 ft/sec?
P = pressure in atmospheres

Perfect Gas

For a perfect gas (Z=1()

= 1.98588 —
RS (MOL WT) \ 0.06 855‘[0(“’ -op) for aty.
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and from the equation of state

0 _ P (ATMm) A BTU
T(‘Q "/01_;5._ Rep BT.U) *F Am-ﬁ’-‘)
and
"\ = CPT
_/CL P
\RS? /°
G A-rm) BTU
== /“:(( ) 2 (MM = (183)
Also

=j - }(l,{p)dg:j_a_g_ —IRSP dp

Substituting for R from Equation (183)

f"'s "[_(éqi—ﬁ_]RsRiE—
oo =R [ — ] -ra [
ftas = Rsp[r[‘ +fm
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Defining Sz =0, and integrating

Rsp. L
St =?fﬁ-[3‘1n 7/%%‘ -+ ln —;%] ‘{:—“-E—L:TQ (184)

For a perfect gas, from Equation (183)

JhY . ¥ p A
(STP"T—\ P d

Ph rs A

————'

3plp " (a-)p I

So, substituting into Equation (182) the expression for local Mach number
reduces to the well known expression

U
Va?RryT T

M =
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@

SHOCK SHAPE PREDICTION

CURVE FITTING PROCEDURES

kquation {(85)with a symmctric and €os © term may be fitted to a graphi-
cal representation of the shock by merely observing the pitch plane
(where 6 = 0°, 180°) and picking various points on the shock wave, inserting
the appropriate values for the S and 2{ of the point, and then solving
the resulting linear simultaneous algebraic equations for the coefficients.
These equations are of the form

P n m n
an an-i
S‘ =Z (ZAJ.VI,Q.P ot )’t Z(Z am.l’:.m—( n—l )
m=i

p=0 V=i =1
L =1, NUMBER oF cogrFICIENTS

+ ForR ©=0 AND — FoR O=/g0°

where the 4zn,z.p 3 am_,) am-1 are the coefficients and are unknowns.

This method is not applicable with Equation (86)due to its implicit form,
and has the additional restriction that for any more than two cos 6,(3=0,%),
terms the 6 variation of the shock wave is not uniquely defined because all
the contributions are being lumped together.

A superior method which does not suffer from the above limitations deter-
mines the contribution to the S distance from each ceos 48 term.

At a given N , each group of terms can be rewritten as follows for
Equation (85)

P Ny p
Z (Z.\ a&np,zp Ri"“) Cos 2p8 = Z C(lm cos 1pB (185a)
P=0 " n=| £
(S an-1 m

WZ‘:(Z:: 41.)1”;51",_, %N ) Cos((a.m—!)e)zwzr;l C(,_m_,)‘. cos{(xm-l)e)

(185b)
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and similarly for Equation (86)

S

L

= COi

Ne

P
an
Z(nz___‘l azn,zp g >C°S 2p6 = ; C(,.p)i cos :LPG (186a)

I

=3
P=1

M oon m
:ﬁ; ( nZ=; Aan-i,2m-1 jl?;‘m ? cos <<:zm— I> 6) =; Cam-1), Cos((2m-)6)

(186p)

Since 2 p and (K\M-'l) are even and odd values, respectively, of 9
a series of equations of the following form will result,

J
Si)J —-;;} Cq: cosge‘_-\
L= CONSTANT ;\=\)3+|

where ej represents planes where a graphical representation is available.

S L= the § measurement at that ﬂz and 6‘1.
)
3
Z C’%i = the + | unknowns which represent the contribution
3=o of each term at that 2 ;.

It is seen that for a unique determination of (g +I) constants, (3"")
planes are needed. For each J1{ a set of equations can be set up, and a plot
of Cq versus /& can be made with the Cgq's defined by Equations (185) and
(186). Then each curve can be fitted individually by conventional methods

which are illustrated in the following example, along with the application of
the previous theory.
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Example

Assume that it is desired to use Equation(87) in the form

3
S = 50 +(a|)| U+ as)l n) Cos B
4 [4
+(\a_“_ n*va,, n*voa, ) cos 20
> oy~ b/ ’
where

a 2 3

Now g =2 so g4\ =3 separate planes are needed. Let it be assumed that
the © =0°% 90°, 180° representations are available. Now let t=1\ ) ==
some constant. Then at s,

CQ = SQ
3
Cy =41,()7-; “'asl\n-l

_ 2 4 6
Ca=dy . Ny Ty, Tt A, Mt
and the equation reduces to the form

S=Cy +C cts +c, Cos 2B

For JLu = R\
Now, as shown in Figure 30

ato=0 S=S, =Co +C| +C, (187)
at g=lgo° S,=GCo —C +Cy (188)
-111 -
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at 6:=90° S, = Co —C, (189)

A NS

Figure 30, Definition of S3, Sp, and S3

Solving Equations (187), (188), and (189) simultaneously for

) (—5—}&*%)

Co = =R,
S, -9
C = l2- 1):1.:11.
S,+ Sa
Co_:""z_( 2 —83>IL=JL|
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This gives one point on the Cg versus JU plot. The entire process is
repeated for a set of JU values until the complete plots shown in Figure 31

can be made.

S.-rS,,
5
(S,-—Sz>
"

(

~I¢ I

N L

Y

A 4

n=n,

Co

Y
o
1
I
9

(St';Sz __53>

~In
]

U n= h‘

Figure 31. Typical Radial Distribution of Parameters Cos Cq and C,
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Now each of these curves can be independently fitted by the equations

2 _ 2 3
N =Ry Co + 40 C + A30 Co

C‘=d|)| L+ 43,‘ ./1-3

_ 2 4 4
Cy = 42,:. ot 44)1/2, + a‘),_/z_

respectively.

This may be easily done after determining which points on the curve are
to be used. These points must be equal in number to the number of coefficients
to be determined and should be selected to result in the best overall fit of
the computed curve. If the points are selected as the /'L,:’s Just used to
define the curve, then an equation of the following form results,

'S S S - 3
- t A& 0( * 2 a S\+ s;
ﬂ,::— a0 (_—-—ES‘ -[-83)‘: + 22,0, —1———+ 83 £+ 380 +53 ;

. 1 .
where three appropriate | S are chosen and the resultant linear equations
solved for a‘)o 5 ax,o R 43)0 .

For Curve 2

S, —Sa — 3
2 ),_ - a')' 4N +a3,l %

where two ¢ ’S are chosen and the equations are solved for &, and dy,

For Curve 3

_L S\‘f"S& _ 2 4 <
:2.( 2 53>i. =dq, 7t t 44,3. LT VPR

‘9
where three ('S are chosen and the equations are solved for &, a, Qua ,
and 4‘)1 .
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This general analysis can be applied to any number of coefficients or
groups of coefficients and is completely analytic, the only requirement beiqg
that the appropriate number of planes are available for determining the S¢s.

Shock Shape for Apollo, &K = 22 Degrees

The shock shape for the Apollo Command Module may be predicted by using
the Kaatiari method; detailed in Referencel3, or by scaling an experimentally
determined shock. Both methods have been applied to the case defined by the
following flight conditions,

Angle-of-Attack = 22 degrees

Velocity 22,754 feet per second

Altitude 150,480 feet

The scaled shock was found by using the procedure recommended in Reference 22,
in which the local standoff distance is scaled in proportion to the predicted
standoff distance on the longitudinal axis. This scaling thus in general is
not linear with shock density ratio. The tworesulting shock shapes are shown
in Figure32. 1In the checkout of this case, the results of which are presented
in the next section, the hand improvement of the shock shape started from the
scaled shock. The details of the procedure for methodically improving the
shock shape are also explained in the following section.

SHOCK PREDICTION FOR TEST CASES

Shock Prediction for Sphere, < = -L0 Degrees

A zero angle-of-attack flow field was computed for a sphere at M = 10
for a perfect gas of ¥ = 1.4 using a thoroughly checked out inverse method
program obtained from the NASA/Ames Research Center. Since the S&ID inverse
program integrates along the body axis of symmetry, an angle-of-attack case
was obtained by a coordinate rotation as shown in Figure 33.

This case was run as the basic check for the angle-of-attack formulation,
since the shock is very accurately known. All that is required is to define
the shock analytically. Although the zero angle-of-attack shock is analytic
and known, the analytic coordinate rotation proved cumbersome and would have
required special programming. A graphical solution was made using the princi-
ples of descriptive geometry. For this case the shock shape can be found in
all @ planes. The planes © = 0} 90°, 180° were used to define a shock fit
equation of the form given in Equation ( 87 ). The analytic fit was found to
be about as accurate as the shock could be constructed graphically. This
shock also fit the graphical shock in the € = 45° — 225° plane with a high
accuracy. The resulting shock fit equation, scaled to a shock radius on the
wind direction axis of 1.0, is
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Figure 32.
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S = Co+CicosB® +C, cos2B

S = So —(0.!46!1. ~0.03817° +0.295 12.5) Cos©

= é
= (0.0117 n*+ 00835 ¥ —o0.1500.7 ) cos 26

Se is called the symmetric term

where
n* = 2365 S, — 1.200S,
=4
.. | |
Axis of Symmetry
// of Shock
p 4
‘ Figure 33. Coordinate Transformation for Sphere Flow Field at Angle-of-Attack
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This shock is presented in Figure 34. The shock shape is shown in five
© -planes. Also plotted are the zero angle-of-attack shock and two special

analytic functions, Cgo and Co+ Cgy.

It is of interest to note the following physical features of this shock:

1. The values of the symmetric and <os € terms are both an order
of magnitude larger than the values of the <os 20 term.

2. The shock shape in the @ = 90° plane, the zero angle-of-attack
shock, and the shock shape defined by the symmetric terms only
all differ from each other by roughly the magnitude of the
cos 26 terms.

3. The use of the zero angle-of-attack shock as a first approxima-
tion to the symmetric term is in error by as much as approximately
15 percent of the local stand-off distance.

SID 65-1353




SPACE and INFORMATION SYSTEMS DIVISION

NORTH AMERICAN AVIATION, INC.

Sphere Shock Shape, &= -40°, = 1.4, /\(k._.._ 10
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RESULTS FOR TEST CASES

SPHERE FLOW FIEID, ¢ = 40 DEGREES

As stated previously, the sphers is an cxcellent case to use in develop-
ing a three-dimensional flow field computer program, since the results obtained
can readily be compared to o{ = 0° results by proper coordinate transforma-
tions. The results obtained for the sphere atel = 4O°® are presented in
Figures 35, 36, and 37. Figure 35 presents the complete pitch plane and
front view of the sphere flow field including the sonic lines and a set of
typical streamlines. The upper sonic line was easily obtained and thoroughly
substantiates the NASA/Ames results of Reference 4. The lower sonic line in
the pitch plane was more difficult to obtain because of the greater marching
distance and the fact that there is a continual reduction in the number of
grid points remaining with which to form lateral derivatives as the body is
approached. As a result, the accuracy of the calculations becomes less in
this region. However, a portion of the lower sonic line in the flow field
was obtained and the agreement as to location checks with the position of
the upper sonic line. The stagnation point obtained with the program lies
on the flow axis as it should, adding further substantiation to the S&ID
results.

The body locations obtained by the program are presented in Figures 35
and 36 for three meridian planes, &= 0°/180°, 45°/225°, and 90°/270°. The
shock shapes for each of these planes are also included. The body, circular
arc of 0.76 ft radius obtained from the Ames result, is shown for comparison.
The Ames shock standoff distance of 0.103 ft was used to properly orient the
circular arc.

Figure 37 presents the body pressure distributions in each of the three
meridian planes. Again, results taken from the Ames oL = 0° case have been
transformed by coordinate rotation and presented as substantiation of the
S&ID program results. The sonic pressure is also shown for reference. The
approximate radial positions of the sonic points in the pressure distribution
plot for the pitch plane appear to agree with the results shown in Figure 35.
Good agreement is also obtained with the Ames data for the stagnation pressure.

APOLLO FLOW FIEID, o{ = 22 DEGREES

An equilibrium real air flow field over the Apollo Command Module was
computed for the following flight condition,

o = 22 Degrees
Velocity = 22,754 Feet/Second
Altitude = 150,480 Feet
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As previously described, a scaled schlieren shock shape was found and
was used for the initial shock estimate in the pitch plane. The shock shape
in the 90° meridian plane was estimated by Kaattari's methods. Since this
case also served in program checkout, it proved simpler to correct the shock
shape by hand as the program checkout proceeded for this difficult angle-of-
attack case rather than use the iterative convergence procedure. For example,
the problem of integration instability caused by too large an integration
interval was encountered and studied during the course of shock shape
improvement. A much better understanding was zlso obtained of the best
values for Qtest and Mtest. These considerations could only be evaluated on
single program runs. As the effort continued it became apparent that, at
least for high speed real gas flows, a reasonably rapid hand perturbation
procedure could be used to converge to the desired body shape.

The grid point locations are shown on Figure 41 where each original
point in the cutoff grid is shown with a body surface velocity vector. The
€ spacing is a uniform 15°. Points are closer together near the outer radii
to ensure accuracy in the stagnation region as well as the shoulder flow where
high property gradients occur. The choice of the radial spacing proved a
problem. For any greater point spacing than that shown, the accuracy of the
stagnation region was degraded rapidly. The close radial spacing required
resulted in an integration step size of 0.0175 ft to maintain a stable integra-
tion near the shoulder. Since the program uses a fixed step size, a total of
about 55 integration (k) planes were needed to define the entire flow field.
Single run time was about 90 minutes for the real gas runs. The grid cutoff
limits were selected to avoid unnecessary calculations in the high supersonic
flow regions, particularly in the € =180° plane.

The initial shock was fitted by the standard shock equation using the
explicit form of the symmetric term. Both symmetric, cos ©, and cos a0
terms were used. If one represents the shock shape as a function of R
in a given meridian plane by S subscripted as defined in Figure 34.

33 = Co —_Cl -+ C1

where

Co, €, and Ca are the functions of /U that are the coefficients of
the cos(0)® ,cos © , and Cos 28 terms respectively. Solving for Co, C, ,
and €; 1in terms of the predicted shock shape coordinates one obtains,
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_ 5 Ss Sy
Co =3 + 3+ =
S, Sa

C, = a2 T =X
= S Ss , _Sa
Ca =7 —2+77

These equations were used to compute Co, Ci, and C, which were in turn
fitted by polynomials to obtain the initial coefficients for the analytic
shock fit. Analytic corrections to the shock were made by first finding
corrections required in the individual planes 6 = 0°, 90°, and 180° and
then using the following equations to obtain the corrected values of Co,
C’ F) and CL-

A S AS; ASy
ACy = = + Z -+ 3

ASa

This approach works best if shock shape perturbations result in only local
body shape perturbations, a situation which is approached as the free stream
Mach number and shock density ratio both approach infinity. The Apollo flight
condition was such that this method worked well.

The use of a small integration step size allowed the Qiest to be
selected at the rather low value of 0.1. The Miest was selected at 0.6, a
value which seemed to work well on several cases investigated. Smoothing
started on plane K= 15 and was terminated by the normal test. Two smoothings
per plane were used. The weighting factors are shown in Table 3.

The hand correction of the shock started logically with the lowest order
terms in /. The local shock standoff distance was corrected by a percentage
of the predicted body error on the same normal. To move the predicted body
the shock was moved in the same direction. 25% of the body error was applied
at the shock. The correction was expressed as a polynomial in A for ease
in correcting Sy, Sy, orS3. The correction can either be positive (the
shock moves toward the body) in which case no problem occurs, or negative,
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in which case a problem may exist. The objective is to avoid an unrealistic
irregular shock, especially one with a reversal of curvature. The correction
was fitted by the equation

AS = n?

SHock

A SBQDY
4

If the correction was in the negative direction il was first verified
analytically that the shock did not exhibit an inflection point. Early runs
on this case utilized the perfect gas option built into the program. A value
of @ was chosen that duplicated the real gas normal shock density ratio.
Only after obtaining a fairly good body prediction were real gas runs made.
This procedure proved that the use of a perfect gas simulation of a real gas
flow could save machine time. When the change to a real gas calculation was
made, the predicted body shape did not change radically.

The flow field results are shown in Figures 38, 39, and 40. The
pressure distribution is compared with Newtonian in Figure 40 . The data
variations all appear reasonable and consistent. The input data to the
program is sumnarized below in Tables 2 and 3.

Table 2

Apollo Analytic Shock Shape Coefficients

Terms in
Polynomial (Symmetric Term) (Coefficient of 6) (Coefficient of 26)
n 0 .032 0
N2 .03021 0 0
n3 -2.5x10-4 5x10~4 -2.5%x10~4
Rk 3.88x10-5 5x10-5 5,125x10~5
n8 8x10-9 -1.6x10-9 8.0x10-9
n 10 1.28%x10-10 0 -1.28x10-10
nl2 9.063x10-12 7.25x10-12 -1.813x10-12
nlé 2.56x10-15 5.125x10~15 2.56x10-15
Table 3
Smoothing Weighting Factors
n 1 2 2.9 3.7 4,33 L.75 5 5.25
F |l 1 |1 .95 .8 2 .1 .05 0
L 15.5]5.67]5.83 6 L.25 | 5.33 5.5
F|l o] o 0 0 0 J )
- ]_27 -
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BEHAVIOR OF ITERATIVE CONVERGENCE TECHNIQUE . q

The iterative convergence technique for improving the shock shape and
predicted body shape has been tested on several sample cases. Functional
checks were performed on a perfect gas zero angle-of-attack sphere flow.
Both a one- and two-coefficient approximation of the shock were used and
results indicated an improved shock was obtained by the automatic procedure.

An early test of the procedure was made for a perfect gas, v = 1.4,
flow over the Apollo shape at €< = 0°, The implicit shock shape was used;
and it was found that for this three-coefficient shock fit the shoulder
region did not improve on the first iteration, although the large face
radius was improved. Subsequent iterations were not attempted, because
although slow convergence was possible it did not appear satisfactorily
rapid. The cause of the poor performance was traced to the inherent
behavior of perturbed shocks of the implicit fit. It was concluded that
the explicit fit would have less cross-coupling effects between different
coefficients. This explanation was borne out on an iterative run on a real
gas Apollo flow field for o€ = 0°. One iteration was run in which a two
coefficient (explicit shock fit) was initially perturbed very slightly from
the correct shape which was found by hand perturbation. The shock and body
shapes resulting from the automatic iteration were improved in comparison
with the initial shapes.
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NOMENCLATURE
& speed of sound; shock coefficient defined in Equation (83);
body coefficient. defined in Equation (129)
Cc coefficients defined in Equation (185)
d maximum diameter of Apollo
£ non-radial flow factor
9 %-S; shock equation parameter defined by Equation (83)
h specific enthalpy
by = (3h/ap)
p =
P

&
I

(;h/a/a)P

o t grid coordinate defining value of JU

-/

L unit vector along X' -axis

-

L~ unit vector along direction of increasing S
—_

Ux unit vector along X -axis
-

Lo unit vector along direction of increasing ©

J grid coordinate defining &

K,k cos«x 4+ S, Cos B Sin o — %Sm 0 siver; integration plane index
L surface arc length

M Mach number

m shock equation parameter defined by Equation (85)

N -v I+ S,: +(?s.:-)-” ; any positive integer

n shock equation parameter defined in Equation (83) ; distance

normal to body surface
—>
. n unit vector normal to shock surface
- 133 -
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y

8 5 9§ 5 § €4 9 0

x

X)gﬁ.‘.

x4,

M

@ m

pressure; shock equation parameter defined in Equation (85)
A —nu- Sy — w Sy

gas constant per unit mass of undissociated air; distance from
body axis to point on surface; radius of curvature

a body-oriented cylindrical coordinate (see Figure 2 );
streamline radius (see Figure 12 )

function describing shock,(Equation 10 )
specific entropy

temperature

total velocity

velocity in the X-direction

velocity in the R-direction

transformed velocity defined by Equation(27)
velocity in the O8-direction

transformed velocity defined by Equation(28)

shear coordinate; distance measured from the shock surface in
the x-direction

body-oriented Cartesian coordinates (see Figure 2 )
free-stream-oriented Cartesian coordinates (see Figure 2 )
compressibility factor

angle-of-attack

angular location of streamline (see Figure 12)

specific heat ratio

distance between data points (see Figure 27 ); shock standoff
distance

density ratio access shock, error defined in Equation (127)

a body-oriented cylindrical coordinate (see Figure 2 ); slope
defined by Figure 14.
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i‘ /d density
| ¢ a stream function defined by Equation (77)
l/) a stream function defined by Equation (78)
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SUBSCRIPTS
b measured in body-oriented system as defined by Equation (128)
Cc corrected shock coefficient; coordinate of free stream stagnation

streamline; control point

e equilibrium

9 shock coefficient identification index defined in Equation (83)

I refers to intersection of body normal and predicted body line
segment

i)j number of independent variables

H, hemisphere radius

Ha shoulder radius

m shock coefficient identification index defined in Equation (85)

n normal to shock; shock coefficient identification index defined

in Equation (853 ; exponent in general body fit equation

0 reference condition; intersection of shock with X -axis; origin
of body-oriented system

p shock coefficient identification index defined in Equation (85);
number of shock coefficients; body segment of translation point

q body segments of control points

L partial derivative with respect to R

S behind shock; measured in shock-oriented system as defined by
Equation (153)

t tangential to the shock, translational point

X partial derivative with respect to X

X partial derivative with respect to X or X -component

V partial derivative with respect to y or | —component

Z partial derivative with respect to ¥ or ® -component
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0 (zER0)

!12743

partial derivative with respect to &

free stream

vector quantity

denotes shock equation form defined by Equation
number of independent variables, © plane

sonic condition
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APPENDIX A

TRANSFORMATION OF CONSERVATION EQUATIONS IN VECTOR NOTATION
INTO A CYLINDRICAL ORTHOGONAL COORDINATE SYSTEM

For any orthogonal coordinates (but not necessarily cartesian), i.e.
2: (xl ) X2, X3) the %iv:rg:x;c:eog a 2gector function

v T [b(h,_h,ﬁ)+é§h,h.$;) N sg;;::f,)l (150)

h, hphy X, 9 Xa
where h, b,  and by  are obtained from
(ds)t =(h,dxy+ (h,&x,)’-—f (h; 47!-3)1

ds being an elementary length in such a coordinate system. For cylindrical

coordinates,
(d SY =(Ax_()1 + (Jn)l +(}1c\9)1'

So that

V'? = )‘:. {)(h’")_kig’l’f‘) +))(:3)

X
. — )'F( _L_b 'cz | “'
or v-{ = R _1.7:_%5:- (191)
-1 -
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The application of Equation (191) to the continuity equation, Equation
(1) , in which 4, =pU, f, =p v, and -fa=/ow' is straightforward and
results in the expression

(pu) VY (rov S (owd (192)
v-pU=0= o3 ) da

oNn

as previously given in Equation (5) .

The momentum equation, Equation (2) , can also be written as,
- \V} Y e \ \v;

The gradient of a scalar function is given in Reference 23 as

| = - -2
Vienx %— ’\l-‘:xz%'é"" X3 3%, (ou)

So that in cylindrical coordinates

B L g L =g Y
V=X +n ~*tx© 35 (195)
the right hand side of Equation (193) is thus,
-5 __l|7T3p. 2Pk 2 (196)
2 Vp = ;r[x e+ 3R 4T L 28

To evaluate the left hand side of Equation (193) we note that

-

U=Xu+Rvr +8w (197)

Forming the scalar product U ‘V using the gradient operator defined by
Equation (195), we obtain,

(U V) —U- +U"} -}iur.g-e—-
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and thus,

(T -V)U’ =(“§T YU+ w>(i’u + R +8

The right hand side can be expanded and siwplifisd to yield the following
components,

The final form of the momentum eqQuations are obtained by writing the three
equivalent scalar equations, using Equations (196) and (198).

QAU QW w Il — -1 J¢
pYs v oW _wt ) 199b)
“ax + U ~ YO58 R o M (
w w dwr . prw ___ L IP
wsx Fver +5 56 TR TTPASE (199¢)

- 13 -
SID 65-1353




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

The evaluation in cylindrical coordinates of the termU-G in the energy
equation, Equation (3) , comes directly from Equation (197). Thus,

e

UU ___u:._'_ U_n._'_w-z.

and so the energy equation becomes,

h + l,—_(u’-\—v*-u-w"\') =h, + -‘5_-\): (200)
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APPENDIX B

VALIDITY OF THE INFLUENCE COEFFICIENT METHOD
In Reference 4 it has been found that a shock equation of the form

2 4
O'S(LRL';L'i_ Ass g_gs ) (201)

2 As; 3
! +VM;—-I' (E;)

S _
Rs

where
Asg = Ass (7; M ‘o)= shock wave parameter

Rs = radius of the shock wave at the centerline

will produce spherical or elliptical nosed, axisymmetric bodies in a perfect
gas to a high degree of accuracy. This equation can be considered to be a
reduced form of

4 6
N _n_._>
S - 0-5(_§)+;A5S(REQ“'A% Rs (202)
Ks i 2 Ase I'I“)_\-s
bt ‘Ma’;—(' (Ks)

with A7S =0.

An equation of similar form in a body-oriented coordinate system can be
used to represent the body obtained s

4 (3
Xb _ n > N (_"_"_3
—R—s = O.5'(-——Rb 'l'Agb (RL -+ A-’B Ry (203)
- 5 -
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The various coefficients can now all be related by the Taylor Series

expansionj
3. 3 3 n
Sei =7, W(Z: B 34«
L=1,3

where now

RS': a, RL = € (201.;8.)

As .= A As = €, (204b)

A7s= Aq A"h = €, (204¢)

It is of interest to determine the magnitude of the coefficients of the
Taylor Series for v1 > | since the terms using these coefficients have been
neglected in the iterative convergence technique used in this computer program.
The second order terms have been computed using the results of Reference 4
( A'7s =0 ) in conjunction with new results obtained using the computer
program of Reference 10 for A-,s;ﬁ 0.

Equation (203) can easily be fitted to an elliptical body if the ratio of
the major to minor axis is known, definingVB_b‘ = b/a . Knowing the equation

of an ellipse;
O —a)" .
—Qa
b N |

a* B =
TN | L
or Xb=a—a\(\—fi—)

Using the binomial expansion;

-

_ Rt a4 nt )
BRSSO

and considering only the first three terms

4 ‘
dJ"-2 a Jt an

X =S Yead tREE

SID 65-1353




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

a
to within 4.5% and knowing By= b/a® | Ry = b /o for an ellipse,
then

Xe _ 1 (AN oL (ﬁ_) 1 > _ﬂ_)
Rb‘z(Rb *e BelRr; +\GBb(Rb
or in the form of Equation (203)

As, =4 By A1~ % By (205)

In Figure 29 of Reference 4 are given the various Bb of bodies obtained
from various Agg values in Equation (202). Thus, the results of Reference
4 can be used to obtain the body coefficients for various values of A_r,-s R
A7 = O . However, in order to compute second derivatives of the various
bod§r coefficients other results are needed for A-,s#o.

The Ames computer program was used to obtain bodies for non-zero values
of Agg . The output is a series of points representing the body associated
with the specific Asg and A7g , Rg=1( of Equation (202). A curve is then
fitted through three appropriate body points and Rb , As b and A"h
algebraically obtained.

Then the functions

Ry = Ry ( Asg » A1s s Rs\) (206a)
A5b = Asb (Ass s A'ls ’ RS) (20ép)
= oy (b s Py o) o

can be plotted for various points if the effect of Rg on the body variables
can be found. The initial values (at which the derivatives are found) for
each of the variables are Agg = 0.08, A7g =0,Rs=l.Figure 29 of Reference
L shows Ass vs Bp for Mg, = constant lines and A4, = 0, Rs =1.
Figure 30, of the same reference, shows Rp/ Rg vs By “for Mpa, = constant
lines and ,4-,5 =0 . Thus the desired relationship can be found using M, =/0
and B = By (Ass) from Figure 29, yielding Rp =Rp (Rs) for Ass

= constant, Ay g = constant =(0. It must now be realized that KRs is merely
a scaling factor and that a change in Rjp would only provoke a change in Rg
and would not effect As, or A7, which determine the non-dimensional shape
of the body and are not functions of what scale is to be used. Thus

Asb -7-6' AS'b (KS>
A-'b # A7|> (KS>

)

-7 -
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and Equations (206) reduce to;

Rp = Ry ( Rs , As_ , A73> (207a)
As, = As‘,( Asg , Azg (207b)
A7b = A75(A5s > A?s) (207¢)

The resultant plots are shown in Figures 42, 43, and 44 . The results of
Figures 29 , 30 of Reference h , coupled with Equatlons(ZOS), are used for
Figures 42 and 43 where A+3=0. The analytic curve fit is used in
Figure 43 to obtain the plotted results where A75=0 . Where Azg =0

in this figure, the appropriate results indicated by Reference 4 are shown
but not used. The apparent discrepancy between these two methods results
from the fact that on the NAA runs of the Ames program the sonlc part of the
flow field was truncated to facilitate runs using finite A-; S which other-
wise would give unstable solutions. A second source of dlfference is the
arbitrary location of the three points analytically fitted to solve for the
three body shape parameters. Although absolute values may be in error, the
trends are believed correct.

The second derivatives may be found from Figures 42, 43, and A4l .
From Equation (204), the derivatives of the body parameters needed are seen
to be:

N=11 first order effects:

2 2 P

oks ) éAgs gL
and
n =2 second order effects:
%> 2 >
g P 9 )
<>zs ;Ass * A-/,) DK"-‘- Ass + QA-,: + ORg dAs,
42 P >

+ + + +
Rs >A7s g R, T NsIRs ISR Sh1, dAs,
Some of these derivatives may be eliminated since for any variables a and

3° D
adb b Ja

*-

also;
2>

a" Rp _ 2R [ 9 — (3R »
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Variation of Body Shape Parameters with A7q

Figure 43
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and similarly

¥Ry _ YRy %&)
oM dRs IR IAg S A1s Jog=(

Thus the needed derivatives for first and second order effects become;

i.. .9_— _;—_—- b‘l— )i- z )‘.‘.1 -;‘.'_
ORs ’2A5 Ay T A5 Y oaAn, * A5 SAq

for A5L ) A7b , Ry and in addition

2 t N

- R N
9As 9Rs 7 JA; SRs

for A (Y b A-,b
Now the derivatives may be obtained:

For Ry
2
-%—ss?- =0 Figure 42

k5
o Rg =0.76 -—)——Eh—- =0.625 Figure 42 or 43
)RsﬁAsg

> Ry .
——— e — ‘so
SRe 3A7s 0 Figure 44

L.
2 B }1 R
oRp ﬂ) Rp \ —-—,_b— = 0 Figure 42 or 43
RS;ASS}ZS=I a ASS
= 0.6 A5 9 1Rb
| 375,35y,

= .86 Figure 44

"' 2
ékhz‘(a’_&b > ; A?_l; ~ D Figure 44
S
Re=!

=-0.50 L’
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For A5b

285y __ 5 .

For A7b

T
dRs

)A‘lb

= 1l.1
2 As

SAq,
S Are

=8.0

=0 As# As, (Rs)

TA,JL = {0 Figure 43

.E:AZI:._— 43 Fi
= — igure 44

X~ 0 Figure 44

YAy
o A'I b¢ A-’b (Rs)

A, _ [O Figure 43 or 44
2

E__Al.b__ — — 473 Figure 44

8 SAB‘; Az

Y
=T 2 9 Figure Lk
o Aqg
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The final equations may be computed by substitution in Equation (204).
Thus, at Rg=1, Asg = 0.08 and Aqg = 0 , the equations for the influence
coefficient method become

- s RL = [0.7‘ S RS +0.625 § Ass —0.50 % A-Is-l
+ [o.ezs S Rs SAs.s—o.soS Ry 3 Ay t2.36 Ef‘css’o'A,J

-2 Ass = [ 1.43As, — 3.6 A‘A-,s] +015 (SASX-\-%O 3 As
- 5A, = Lursas, + 9.0 3A7 )4 [s(3AsT 4358 S0 ]

including second order terms

Thus it is seen that unless the errors, Sﬁb 5/455 )§A7 are small,
thereby making the shock corrections, JRg , A _,&,sgz}, small, ®it is very
possible that higher order terms will effect the conVvergence of the influence

coefficient method.
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