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FOREWORD

This document represents a final report prepared

for the Manned Spacecraft Center, National Aeronautics

and Space Administration, Houston, Texas presenting

the results of a study conducted between July 196_

and November 1965 by the Space and Information Systems

Division of North American Aviation, Inc., under

Contract NAS9-3159, Study of Flow Fields About

Axis_etric Blunt Bodies at Large An_le-of-Attack.

The use and organization of the computer program

are documented in a separate Computer Program Operating
Manual, SID 65-1355, in three volumes. The theoretical

formulation of the basic method is presented in this
report.

This study was performed by the Flight Sciences

Department of the S&ID Research and Engineering Division

under the direction of H. G. Webb, Jr., Program Manager.

The following individuals contributed significantly to

this study in the areas indicated: H. S. Dresser, over-

all development of the computer program; B. K. Adler,

formulation of the analytic shock fit, the iterative

convergence technique, and the data output options;

R. H. C. Lee, basic theoretical formalations; and

S. A. Waiter, analysis of the Apollo Command Module

entry flow field. Particular appreciation is due

R. B. Anderson, N. Rosenblatt, and J. Wallen for their

contributions in programming the analysis and in sub-

sequent checkout.
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ABSTRACT

An IBM 709_ computer program has been developed for the

calculation of equilibrium, real gas inviscid flow fields about

axisymmetric blunt bodies at large angles-of-attack traveling at

supersonic speeds. The program will compute the subsonic and

transonic flow regions behind the detached bow shock with

sufficient supersonic data being generated to allow initiation
of a method-of-characteristics solutfon for the remainder of

the flow field.

An inverse method was chosen as the basic method. Starting

from an initial estimate of the shock shape, the flow field and

resulting body are found, w-he computed _-_- "-_ _ comps_ed geo-

metrically with the desired body to establisn a set of control
point errors. By sequentially perturbing the analytic shock

coefficients, a set of influence coefficients is found which is
then used to compute shock coefficient corrections which reduce

the control point errors in a corrected flow field run. This

procedure is convergent if the initial shock shape is sufficiently

close to the exact shock shape. The program will handle the

Apollo Command Module, as well as a general class of body shapes.

This report presents a detailed derivation of the theoretical

formulation, an explanation of the numerical procedures used in

the finite difference solution, followed by sample results for

two cases, one of which is the Apollo Command Module in a real

gas flow at 22 ° angle-of-attack.
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SUMMARY

Based on a thorough review of existing methods for the computation of

inviscid subsonic-transonic real gas flow fields over blunt axisy_netric

bodlcs traveli__ngat supersonic speed at high angle-of-attack, the inverse

method was selected for the development of an IBM 70_4 computer progz-_ for

calculation of flow fields over the Apollo Co_nand Module and a generalized

class of shapes. The program was checked out on several sample cases, two

of which are documented herein. One of these is the real gas angle-of-attack
flow field over the Apollo Command Module.

A minimum number of assumptions were made in formulating the computer

program from the exact partial differential equations. The only major assump-
tion made in the analytical development of the solution was the use of a

finite difference technique in the numerical analysis. An accurate empirically
fitted set of equations was used to represent real air properties. In the

inverse method, the flow field and predicted body shape result from the

integration of flow properties marching to the body in a body-oriented

cylindrical coordinate system from an assumed or predicted bow shock wave.

An analytic shock fit using up to 20 coefficients was developed which proved

very accurate in representing a wide range of blunt body detached shocks.

An automatic iteration procedure, required in this approach, was developed
for correcting the shock to obtain the correct body shape. This procedure

is based on the assumption that the initial shock shape is sufficiently close
to the correct shape so that the necessary corrections in the coefficients

of the analytic shock equation result in linearly related corrections in

the coordinates of a set of body control points.

A sample case was chosen for the program development period as a check

on the formulation and progranmLing. Since sphere flow fields have already

boen _o_1_÷._]vv______ commuted, and reported in the open literature, this shape and

shock were rotated _0 degrees to obtain the input conditions for a perfect

gas angle-of-attack case. Typical results are presented herein. The real

gas Apollo Command Module flow field results are presented to show the ability
of the program to accurately predict the entire subsonic flow field at an

angle-of-attack of 22 degrees, including the region near the small shoulder
radius on this capsule shape.

In addition to the formulation of an analytic shock fit and the iterative

convergence technique, the two chief technical problems solved were the

handling of instabilities in the flow calculations and the coupling of a body
determination routine into the finite difference integration procedure. The

instability problem was solved by establishing two tests for removable

singularities and by using a two-dimensional smoothing procedure to overcome

nonessential instabilities observed near the body axis of symmetry. Smoothing

was not found to be required for the zero angle-of-attack case. The body

- vii -
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determination procedure predicts the body location by using a stream function,
extrapolates to find body properties, and controls the deletion of calculations

for grid points which fail the instability tests or which lie within the

predicted body where calculations proved unreliable.

- viii -
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INTRODUCTION

The determination of the fluid properties in the subsonic-transonic flow

field over a blunt body has been the focus of numerous gasdynamic investiga-

tions. Not _--_-__^_ _._÷p_v_d_..... the necessary data for the subsequent evalua-

tion of the attenuation of electromagnetic signals through the shock layer

and the radiant and convective heat transfer to the nose cap, but it also

serves as an essential step toward initiating downstream supersonic flow

field calculations. Past investigations in this area have dealt mostly with

two-dimensional and axisyrmmetric bodies at zero angle-of-attack, mainly

because of the simplification in the analysis for these cases. However,

the flow field about a typical re-entry vehicle is generally three-dimensional;
and, complex as it may appear, the calculation of three-dimensional flow fields

has become a task of increasing urgency.

The objective of this study was to develop a computer program for

calculating flow fields about axisymmetric blunt bodies at large angle-of-
attack with a higher order approximation to the flow properties than the one

presented in Reference 1 . The basic approach of Reference 1 was to use

the method of integral relations with the following assumptions : l) a number

of flow properties vary linearly across the shock layer (Belotserkovski's

one-layer method, Reference 2 ), and 2) the flow properties vary sinusoidally
around the stagnation point.

Prior to undertaking this effort, a survey was conducted to determine

the current state of the art in blunt body flow field analysis and to

determine which approach should be taken to develop the required computer
program. The methods presented in the literature are classified into two

categories; the inverse and the direct methods. The inverse method assumes

a known shock geometry and computes the entire flow field, including the

body geometr 7. The d_ect method, on the other hand, uses a known body

geometry, assumes additional information about the flow field properties,
and iterates to a final converged solution. Examples of the inverse method

are those of Fuller (Reference 3 ), and Lomax and Inouye (Reference _ ) in

which instabilities in the calculations are removed by smoothing. Garabedian

and Lieberstein (Reference 5 ) also solved the inverse problem, but in a

complex plane where instabilities were not present. The direct approach has

been used by Maslen and Moeckel (Reference 6 ), Gravalos, et al (Reference
7 ) and Ushida and Yasuhara (Reference 8 ), as well as in the work based

on the method of integral relations.

The conclusion to use the inverse method with smoothing in the present

study was reached after a review of these methods. The direct methods using
the streamline curvature principle (References 6,7and 8 ) cannot define the

flow field accurately near the stagnation point. This drawback is trouble-

some for the three-dimensional case where the maximum entropy streamline does
not necessarily coincide with the stagnation streamline. The method of

-1-
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integral relations (even with two strips) may not yield enough flow field

details to obtain accurate starting conditions for the solution of the super-

sonic flow region. The work of Bohachevsky, et aL (Reference 9) is a new

promising formulation of the direct method that was presented after the

decision was made to use the approach taken in this study. The inverse

method has been used for two-dlmensional blunt body flow field analysis

using smoothing techniques and has proven to be both fast and accurate and

is simpler than the method of Reference 5 . The inverse method will yield

sufficiently detailed flow fields, even in the vicinity of the stagnation

point, without any assumption on the entropy of the stagnation streamline.

Its chief drawback is its dependence on an advance knowledge of the shock
shape. The approach used in the present study overcomes this deficiency

by development of an automatic iterative technique for converging on the

correct shock and body shape using a predicted shock shape for the initial

conditions. If the predicted shock is sufficiently close to the correct

shock the technique is convergent.

This report, supplemented by the Computer Program Operating Manual,

Reference 10 , describes the theoretical analysis and presents a detailed

description of the formulation and operational use of the computer program

developed for the calculation of the subsonic-transonic flow field about a
blunt body of revolution at angle-of-attack. In order to simplify the

computation, air is assumed to be either a perfect gas with constant specific

heats or a real gas at thermodynamic and chemical equilibrium. The general
approach described here can be extended to the case of nonequilibrium flow.

-2-
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THEORETICAL FORMULATION

In the theoretical analysis of the inverse method angle-of-attack blunt
body solution, many critical decisions must be made which will affect the

formulation of the resulting computer program. Since the derivation must be

based on a specific coordinate system, it is in order 50 give th6 chcic_ of

a suitable system a high priority. A body-oriented cylindrical system has

advantages in this analysis because of its ability to handle axially symmetric

body shapes. This system also has advantages at hypersonic speeds when the

shock lies close to the body. Another item to consider is the high degree

of accuracy required in the final results. This is extremely important in

the inverse method. Thus, the approach taken herein is to derive the funda-

mental equations and then introduce a minimum number of necessary assumptions

to simplify the analysis for programming.

Problem areas to consider include selection of an accurate analytic shock
fit equation and exploration of a means of correcting the shock to obtain a

more accurate body shape. The well-known problem of integration instability
in numerical solutions using the inverse method is also of utmost importance.

Although perfect gas thermodynamic properties offer no problem, a procedure
for introducing equilibrium real air properties must be chosen.

PRINCIPLES OF THE INVERSE METHOD

The inverse method of solution computes the flow properties behind a

given shock when free stream conditions and the thermodynamic properties of

the gas are specified. It is desired to compute a solution which extends
sufficiently into the supersonic region to allow a method-of-characteristics

solution to be started. Consider the zero angle-of-attack flow field over an

axisymmetric shape as shown in Figure 1 .

Limiting Characteristic b_/

Running Characteristic __

Sonic Line c--_/ ""

'Mir--_ _ i_Cl !

I Shock

Typical Left-Running Characteristic

_-Axis of S>ymmetry

Figure i. Typical Zero Angle-of-Attack Flow Field Over an Axisymmetrlc

Blunt Body

-3-
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The following discussion considers the free stream conditions and thermo-

dynamic properties of the gas to be held constant. The features of the flow
field are worth noting, for their understanding is important in establishing

the operation of the inverse method.

1. The shock ecmb is analytic, and any segment of the curve can be
continued to the entire curve.

. The shock ecmb and the entire flow field eckhad are uniquely

defined by the body shape dja. Since the converse is also

true, it follows from analytic continuation that the body dja

is determined uniquely from any segment of the shock ecmb.

3. The sonic line ckhj is also determined uniquely by any segment

of the shock ecmb.

The segment of the sonic line jh uniquely defines the body

segment ja, and the segment ch of the sonic line determines

uniquely the flow in the region chbmc.

Since the body segment ja is defined by the sonic line segment jh, it is

necessary to verify with the inverse method that the correct body shape ja is

obtained before initiating the characteristics solution slightly downstream

of the line ckha with the body shape na given.

Thus it may be stated that it is necessary to define the flow field in

the region eckhad with the inverse method. The method of characteristics can
then be used to solve for the region fbmchan. Note that the body shape may be

altered downstream of point a without altering the flow upstream of the limit-

ing characteristic ab.

The consequence of the existence of an analytic shock is that in principle

the segment em of the shock is sufficient to start the inverse method. By

marching in the x-direction, the required region will thus be computed; and the

required data will be available for the characteristics solution. A difficulty

arises, of course, in the numerical solution of the partial differential equa-
tions. Since a finite number of grid points are selected, for example, along

the segment em, there exists an increasing loss of accuracy in the evaluation

of higher order derivatives as the end of the array, point m, is approached.

In practice the initial values must be prescribed somewhat past point m to
allow accurate calculation of the required subsonic-supersonic flow field.

GOVERNING EQUATIONS

The subsonic-transonic flow field about a blunt body of revolution at a

large angle-of-attack is to be considered. The resulting flow field in the

shock layer will be three-dimensionalwith syn_netry about the pitch plane.

An inverse method has been chosen for the analysis. In this method, a shock

shape is assumed; and the thermodynamic and flow properties in the shock layer

are obtained from step-by-step integration of the governing equations, starting

from the shock. The body supporting the assumed shock is obtained as part of

the solution. With air assumed to be either a perfect gas with a constant

-h-
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specific heat ratio or a real gas at thermodynamic equilibrium, the governing

equations in the shock layer are the following:

Continuity: _ ° (p G ) -- O (1)

c

Momentum: U - V IJ -- --_-- Vp (2)

Energy: I_ 4--_ U-U_- _e_ +-_'U2 (3)

State: k r_ _-_( p )_) (/_)

A body-oriented cylindrical coordinate system has been chosen for this

analysis. The reasons for this choice are:

IQ The required body shapes are axially symmetric. The starting grid

network of points on the shock is thus most suitably selected in

a cylindrical system. The point spacing can be varied to result

in satisfactory detail in property distributions over the body

surface. For the Apollo shape, for example, the radial spacing

can be easily reduced in the region of the smaller radius of

curvature on the shoulder where properties will change rapidly
over the surface.

2. The shock shape is more easily expressed aaLa±j--_--''_"11_-_=_j_.. =_hodv-_

oriented cylindrical coordinate system.

3. Data output as required by the three options is facilitated in

the cylindrical system.

This coordinate system is shown in Figure 2 in which the x-axis is the

axis of the body, O is the meridional angle measured from the X-y plane,

and _ is the distance perpendicular to the _-axis.

-5-
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I

Body

_X)U.

Figure 2. Coordinate System

In cylindrical coordinates, Equations (i) through (3) become

(5)

_u. 4.-<<__+,-_ -_ _ =-_-_ (6)

(7)

(8)

(9)

-6-
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where u-, u- , _r are the velocity components in the x , _ , and e

directions, respectively. The details of this transformation are given in

Appendix A.

For the convenience of numerical integration of the above partial

differential equations, the coordinate system is transformed into a shear

coordinate system in which the distance in the _¢ direction is measured

from the shock surface instead of from the _-_ plane. This shear coor-
d__uate system is shown in Figure 2. Let the shock be described by:

* = S (_)o) (1o)

The transformation to the shear coordinate is

× : z - :_Cr,,e) (_)

7L =

0 = O

The partial derivatives in the cylindrical system are related to those in the

shear coordinates by

(Z2b)

-7-
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Using Equation (12) and denoting a partial derivative by a subscript,

Equations (_) through (9) become

Q_ +_u-_ +E% -_r== p_ e'_ -i-
f

(15)

P. Se P__
Q % + _r_¢ urure ÷v-ur = -?--÷ -p

(16)

where Equation (9) has been differentiated with respect to X , and

O_. r,-u..- _trSz,,.-u_-S e •

p --" •

It should be noted that the _ and e partial derivatives above are

taken with X holding constant instead of % . Equations (].3)through (17)

consist of five partial differential equations for the solutions of the five

dependent variables: _, _ , _, ,to , and p . These equations can be
further rearranged into the following forms suitable for the step-by-step
integration scheme:

-8-
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For equilibrium air,

(_.8)

- - 0. _U'ULr, " -t-u_'l._._ f p (]-9)

(20)

U.rx=-_-[_ .-_r _ _-ur% _-_-_-+_w'-_ -_] (2:].)

For a perfect gas with constant _ , we have

(23)

-9-
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(24)t ore o e,

(25)

Substituting Equations (24) and (25) into Equation (18) and rearranging, we
obtain

px -- - + (_%_S2 +s; (26)

The formulation actually used in the program requires one additional
transformation of variables. It will be shown in a later section that a

data smoothing procedure is required to control noise buildup in the data

as the X integration proceeds toward the body. To most accurately smooth
the data near the X axis (rL= O) it is desirable to introduce the

velocity components _ and _ , defined in Figure 3 and by the following

equations.

- lO -
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Pitch Plane--_

View Along Positive
X -Axis

/

Figure 3. Definition of Transformed Lateral Velocities

t)- = LF Cos e -- t.g" _,r_e (27)

These variables have the desirable characteristic that only one value of each

exists on the %-axis (_=o) whereas the components U- and uu_ are also

functions of the coordinate e Thus the components _ and _ are only

slightly dependent on e near the axis (where the noise is greatest) and can
be smoothed with the least error.

The transformation of the X-derivative equations is readily accomplished

by deriving expressions for 11- and _r and their r_ , 0 , and X-deriva-

tives in terms of _- and _ and their _ , _ , and M-derivatives.

-ll-
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Equations (27) and (28), when solved for _f and M" yield,

Lr" = u"cos e -*-_r sznO

and

Straightforward differentiation of these expressions with respect to rL ,

@ , and X yield the following derivative transformations,

_u-_ =-_sln_ + _ cos

-12-
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The derivatives of the expressions for _ and _ require the solution

of two simultaneous algebraic equations. Othe'rwise the transformation involves

only straight substitution. The results are,

(30)

-13-
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(32)

(33)

P P
,,-,..._F'_,=o,,e s. P,,,,,',e]

p --P f -j

(3h)

-4- _ ._P_,,e. + _ _..,e _ ..%t',,co=e_1P P

-lh-
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Equation (30) is applicable to the perfect gas case and the explicit

equations for lip and _l"; Equations (24) and (25) may be substituted

directly as was demonstrated previously. The result for rX is,

- 15 -
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The numerical integration of the governing equations starts from the

shock. With the values of p , d , _A , V" , and u_ specified by the shock
relations which will be discussed in the next section, their derivatives with

respect to _ and e can be numerically calculated. Equations (30) through
(35) can then be applied to generate the X -derivatives.

These dependent variables can then be integrated in the _-direction to

yield their values at a surface parallel to the shock surface. This process

will be repeated until the entire body, including the body sonic line, is

reached. The total velocity

(36)

is calculated and subsequently used to compute the local Mach number at each

point.

At each step of the forward integration, knowledge of p and f will
be used to generate other thermodynamic properties such as enthalpy, h ,

entropy, s , temperature, I" , and local Mach number, NI . Thus, for the

equilibrium air case, h , s , and T can be obtained from the existing

S&ID equilibrium air subroutine. The equilibrium air speed of sound is

The second Law of Thermodynamics can be expressed as

I
(37)

The differential of _I can be written as

ah

Substituting into (37), we obtain

- 16 -
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From which one obtains,

1

O. e =

'i_hus the .............. "_

--

For a perfect gas,

directly as follows:
the thermodynamic properties can be calculated

(38)

T =f--_ (39)

(ho)

for any _4.

CONDITIONS BEHIND SHOCK

In this section, a method of determining the flow and thermodynamic
properties behind m_ as_-mvLetric shock will be described. The method is an

extension of the usual oblique shock relations to the general three-dimensional

case. Let the shock surface be described by the equation

and let n

Figure 4-
be a unit vector normal to the shock surface, as shown in

- 17 -
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U U_.

?

where

Figure &. Free-StreamVelocity Vector Components

-_ Vg
_ =N : ¢-(-c,--_,,s,,--_,,_)

I I ( #)*N-_ vs = I+s_÷

(h2)

In order to apply the oblique shock relations, the free-streamvelocity _--

i_resolved into components normal and tangential to the shock surface. If
is a unit vector in the free-streamdirection (i.e., in the direction of

the X'-axis of Figure & ), then

-18-
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_ °_ )

u.= u..(,_.L_) (_)

it _ il __ If r--P --_ "_" _]1

V_L" ''_'" " lJ "'"

U_ U -U _ =U,_ I-Ln"- ; (66)

where L/ = (._cos _ -- l,_.CosO -_v/l 0( + L0 sln 0 $|_ _ (/+7)

and "_In , "-0_._.Ir,, Urn. , U_.il: are the normal and tangential components
of the free-stream velocity vector and their magnitudes.

Substituting Equations (&2) and (hT) into Equations (/+3) through (/+6), we
obtain

(_)

= K U. (/+9)
U,,_ r, N

(5o)

{

where
(52)

- 19 -
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Equations (_8) through (52) are used in the following oblique shock relations

to determine the flow and thermodynamic variables behind the shock, U s ,

_s , tu's , Ps , andps :

/-. U._ = f, O,,, (53)

U _- U 2- (5_)

h +-_u _ l_+'(u _ +u') <_oo o_ _ Syl S-t.

U_ = Us1; (56)

where the subscripts T_ and _ denote the components normal and tangential

to the shock surface. These oblique shock relations can be rearranged to
give:

Uc3yt = -_ IJ_ (57)

p., - t=>..+p,. u".,,(s-_)
l

:h. +_V.#(,_

(58)

(59)

h: =_,. Cp.>,=:) (60)

and g --__ (61)

For equilibrium air, an iteration scheme is necessary for the solution of the

above shock relations since hs in Equation (60) is a complicated function of

_s and p5 • Corresponding to each value of _ , Pi and /os can be deter-
mined from Equations (58) and (59) and _i determined from Equation (60).
Call this value h: Using the energy equation, Equation (59), another

- 20 -
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value of the enthalpy can also be computed and denoted by h s The method of

iterating on the shock properties consists of starting with an assumed density

ratio, g , and modifying this value until the two enthalpy curves (h vs. _ )

cross one another. An alternating interpolation and extrapolation scheme is

then used to converge on the value of E which produces the condition

-- o

For a perfect gas, iteration on the density ratio is not necessary since

g is explicitly given by the following equation:

g = u,.,,
_ --I-I

(62)

The velocity components behind the shock can now be determined after a

vector addition of Equations (&8) and (50) has been made. Thus,

;_-component t_S =U_r_o_ (_ K (,___)_ " (6.3)

_IL-component _Fs -"- U_ _'- tzo.q _5 $,1tl Ix 4- _ (, - i_)'_ (64.)

r KS,_
0 -component _ -'--U_$I'_s s_ _- L|- E)_ (65)

N_ -j

m

The component velocities _-s and _US are next transformed to _ and W 5
using Equations (27) and (28). These velocity components and the converged

values of p_ and _s completely specify the boundary conditions behind the
shock and permit their /L and _ derivatives to be determined numerically.

Using Equations-(30) through (35) in the previous section, the forward inte-

ration of the governing equations can then be initiated. Calculations of other

thermodynamic properties behind the shock are carried out in exactlythe same

manner as described in the previous section.

- 21 -
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DETERMINATION OF STREAMLINES AND BODY SHAPE

For the purpose of determining the streamline trajectories and the body

shape, a pair of stream functions are introduced so as to satisfy the follow-

ing relationship:

V_) X V _ ---/,oV (66)

By using the following identity

with the assumption that

F=V$

h

the divergence offffmay be written as

v.fU-- re-o

Since V-(f_) = O is in fact the continuity equation, the stream functions

that satisfy Equation (66) will thus identically satisfy the continuity equa-

tion. The vector_ is perpendicular to both vectors V_ and V_ and the
vectors V$ and V_ are perpendicular to the s_u.rfaces_ = constant and

= constant, respectively. Hence the vector _ lies in both the planes

= constant and _ = constant at the point in question. The consequence

is that both the _ = constant and _ = constant family of surfaces are

stream surfaces, and their intersection is a tr__.

Application of Equation (66) to the shock layer region yields the follow-

ing scalar equations

- 22 -
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where the subscripts _ and @ denote partial differentiations, holding

constant. After transforming the coordinates _ , _ , and _ to X , _t ,

and O according to Equation (12), the above equations take the following
forms:

(70)

(7:)

(72)

Equations (71) and (72) can now be used to solve for _X and _X- The
result is

(73)

(,,,_,,-_,,+ _ ._,,)
%<=f,_,, W,.,.- ¢,.%

(,TJ,)
% j ,,,,p j

Since the velocities U- and OJ" have been transformed to _" and _ in the

basic formulation, Equations (73) and (7&) must also be rewritten in terms of
_- and _. The results are

(75)

-23-
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(76)

Since uniform conditions prevail in the free stream flow, an infinite number

of choices of the initial values of _ and _ can be selected. Note that
the values of the stream functions are invariant in crossing the shock, and

that the working equations, i.e., Equations (75) and (76),are independent of

the initial conditions. A pair of stream functions which satisfy Equation

(66) and behave well throughout the flow field are now defined in terms of

' _tthe free stream oriented coordinates ('7.., , _t in Figure 2) as follows:

=-Vf- uJ

U,o' (78)

Transforming Equations (77) and (78) into the body-oriented cylindrical coor-

dinates mud making use of Equation (lO), we obtain the stream functions

immediately behind the shock:

(79)

(80)

The above equations are used to calculate #_,_@, _, and q#. behindthe shock which in turn allows calculation of and from Equations

(75) and (76). The stream functions are then numerically integrated toward

the body with the subsequent 2t and e derivatives evaluated numerically
at each constant X surface instead of using Equations (79) and (80). A

record of the values of these stream functions will be kept in the entire shock

layer so that the streamlines corresponding to each set of values of _s and

_ at the shock can be easily traced.

-2_-
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To determine the body, we note that the body is wetted by the stagnation
streamline. Therefore, both stream functions at the body must be invariant

and equal to the respective ones at the stagnation point. The stagnation

point is defined, because of the flow symmetry about the pitch plane, by

-- _ST -- 0_o_Y -- AG

(s2)

Thus body locations other than in the pitch plane, where _)-_0 at all points,

are obtained by searching for points in the shock layer where _ = O • These
points should _lso satisfy the relation $-_@T_ and thus serve to determine
the value of _$rAG - The body location in the pitch plane may then be

obtained by searching for points in the shock layer on the pitch plane where
_= _STA_" This point will be given more detailed consideration in a later

section on the body determination procedure used in the computer program.

SHOCK SHAPE FORMULATION

The inherent instability of the integration of the elliptic type flow

equation in the subsonic regime for an initial value (or Cauchy) problem has
long been recognized. This is referred to as nonessential instability in

Reference _. It is precisely this phenomenon which requires the statistical

smoothing of the data which is described in a later section. This instability
becomes troublesome whenever an initial error is introduced into the calcula-

tions because the tendency is for this error to grow rapidly. It is thus

mandatory to ensure the use of smooth inputs to the program. The easiest way

of ensuring smooth initial conditions is to use an analytically fitted shock

shape. Needless to say, all subsequent steps in the integration procedure
should also be done accurately; and these considerations will be dealt with

in the appropriate section of the report.

The equation which is used to represent the shock should be versatile

so that a variety of surfaces can be represented. Since angle-of-attack
effects are included, the shock shape in cylindrical coordinates will not

have axial symmetry even for axially symmetric body shapes. Thus referring

to Figure 2 the shock shape can be described either as,

or

- 25 -
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Power series and Fourier series are very versatile functions. These
two series can be combined into either a Fourier series having power series

coefficients or vice versa (both equivalent), i.e.,

_,o

c,s e1 (s3)

where all ($I_ _ _) ) terms can be eliminated because of symmetry of the shock

about the pitch plane. Upon examination of the derivatives, it is seen that

Equation (8&) can never yield a blunt body at the origin because the slope can
never be infinite. Thus only the two forms of Equation (83) are of further

interest. While these two forms are mathematically equivalent, there will be

differences in manipulations when a finite number of coefficients are determined

mathematically for the program input.

The only information found concerning angle-of-attack effects on the shock

shape about blunt bodies was Kaattari's work, References ll, 12, and 13 where
he determined that a correction (to the zero angle-of-attack shock) of the

form

proved very satisfactory. Using this information, it would seem that the form

would give the Kaattari terms most explicitly. Also, this form allows the

pitch plane shock, about which the most information would be available, to be
fitted more accurately than the other form which would stress the @ varia-

tion.

It has already been stated that it is desired that the function be com-

pletely analytic, and it is at this point that the implications of using a

body-oriented cylindrical coordinate system must be examined. The main

problem is concerned with continuity of the various J_ derivatives across

- 26 -
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the origin J%- O. For purposes of analysis, consider a Cartesian system

lying in a plane inclined at an angle _! and passing through the 5K- axis

as shown in Figure 5.

Figure 5. Transformed Cartesian Coordinate System

By transforming the series expression to a form using the variable tJ

obtain two expressions which may be compared for continuity in the 25

direction. For 8=el , _ =_ while for 6 =_)I t?r , _--- )% °

we
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Since

cos _l

we obtain

O =el

3=0 Ifl=l

$--_ n:l

Or, for _-- _W-O I

_- .)
Since both expressions must be identical in this coordinate system, it

follows that

(- I)n +fi = [

This requirement may be also stated as,

where N is any integer from 0 to _ .

Thus if _ is odd, only the odd powers of _I may be present; and if

is even, only the even powers of rl may be present. The partials with

respect to _ are always continuous at the origin because )7- goes to zero.

Therefore, the final series is of the form

s = (_:,,o,.-,.'-+,_,_,,,,,4+ ,_,,o.,-,.'+ .... -)
+(_.,,_r,. + a_,, _._+"-5,, ".'÷ ..... -)cose

-- 28 --
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or

_C6

(2 ((,) )+ _zn-,,_m-t cos am- O
"= ,',-I

It is to be noted that the Kaatta_i terms remain.

(S5)

Equation (85) gives smooth, analytic, non-pointed surfaces; but it is

limited in the fact that for each value of f& there is only one value of
or, i.e., the curve can never be double valued in S In such cases as the

Apollo capsule types, it may well be desirable to fit a shock shape with a

negative first derivative, _/)S . To allow for such a possibility, the
first syzmetric terms (p -- 0 )

_" fL(>t ....

can be replaced by S o , where .So is defined by

(86)

and the Equation (85) becomes

..,

(87)

where

oo
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The computer program will accept the shock fit given by Equation (83)

•with terms included through _= _u and Yl- _.O with or without the _ = o
term replaced by Equation (86) __ The program user should, in general, follow

the restrictions just derived for the allowable terms, and the remainder of

this report will be based on the observation of these restrictions. The user

may, however, wish to add one or more of the non-allowable terms for the

purpose of convenience in hand alteration of the shock fit. This may be

justified by the fact that the program uses a finite difference technique

with a five point fit for determining the lateral derivatives (in which the

discontinuity would appear). By restricting the use of non-allowable terms

to the higher order terms in J% , the discontinuity at the origin may be

effectively smoothed out.

ITERATIVE CONVERGENCE TECHNIIUE

The iterative convergence technique as applied to the inverse method

consists of linearly relating changes in the predicted body coordinates to

changes in the coefficients used in the shock fit. The justification and

use of this linear influence technique as applied to the blunt body problem is

presented below.

Given a function of the form

where S is the dependent variable, _i , _&, _ .... all represent inde-

pendent variables, and

E', -- Trl ( #.,, (1._. ,(:_IL._ .... )

where _Et _ _2. ....represent dependent variables which are functions of the
variables. Then if the number of _{'S and _i'E areindependent equal,same

it can be said

s- ..... )
However, if the Ei I I %aj are related impllcit ,

cannot be solved for analytically, and other methods must be resorted to.

- 30 -
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For the present purposes, the function

the equation of the shock wave

F(a! DL;_ _3 .... ) represents
) )

or

where

A_ = a, So + a,. s2 + a_ S_3 ......

and _1 , _ ) _3 J etc., are measures of the error between the desired

body and the body obtained by using the input shock equation. The number of

E{IS is equal to the number of _5 which actually are the constant coef-

ficients in the shock wave equation but are considered as variables because

they are to be varied so that the desired body is obtained from the input shock

equation.

From the Taylor series expansion, changes in Eg are related to changes

in thelvariable ' _ by

±
YI=I ,i=t

L=l,p

where (_a1_i+ _-__L ...... ) is an operator on _L It is seen

that as _ approaches & @j , the higher order terms consisting of YI__
will approach zero; and so for vanishingly small _ _
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I

If p such simultaneous equations are derived with the E_ s represent-

ing the initial errors between the desired body and the body obtained from

the initial shock input, and if _EL/@_ can be found, then the _'a can be

found by requiring _i ----_ • These _s are the required changes
in the shock shape coefficients to reduce all errors to zero. It is to be

remembered that this is only true if the shock coefficient corrections are

small enough for a linearized approach to be valid.

The partial derivatives, by definition, are the ratio of the differential
change in C_ to a differential change in _) , keeping all the other _'_

constant. They are approximated as follows. The a I coefficient of the

shock is perturbed in amount _ _, so that the new at = _1 +A_I. Now

the program is run and a body obtained from this perturbed shock equation.

The new errors, _ ---_[+Z_6[, are now compared to the original errors, _ ,

and the perturbations in the errors are obtained from

similarly

and _ _--_I f.- I } p can then be formed.

By similarly perturbing gL_)_--_p all the partial derivatives can then
be formed and p simultaneous equations written. The resulting p equations

in p unknowns, _t_t ,6_,--- _ _ O.p ; are linear and algebraic. Thus
they can be solved and the resulting solutions be used to correct the shock

coefficients for the new input.

The corrected shock equation coefficients are

I I I
| I I

' I I

= + NaP
I

and the procedure repeats itself until the _g i are all below acceptable
values.

INSTABILITIES AND DATA SMOOTHING

The solution of the flow field behind a prescribed shock amounts mathema-

tically to solving an initial value or Cauchy-type problem. The difficulties

which arise in this solution have been widely discussed (e.g., References _,

- 32 -
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andlT+). The discussion in Reference _ gives an excellent treatment of this

topic and presents the results and conclusions of a thorough study of the

various instabilities that are of interest in the development of a finite

difference solution of the inverse method. In Reference _, Lomax and Inouye

identify two classes of instability--inherent instability and induced instabil-
ity.

Induced instability is caused by the specific behavior of a particular

n,±_ri_al procedure as applied to a given type of equation. This instability
has been experienced _th the computer program in rulnling the _^-^77^ _y_ __=÷

angle-of-attack and occurred in the pitch plane on the outer radii grid points

on the v_ndward side of the flow field. The instability can be eliminated by

an appropriate reduction of integration step size but is unfavorably affected
by using a closer radial grid spacing.

Examination of Equations (18) and (19) through (22) shows that two remov-

able singularities also exist in the flow. The denominator of Equation (18)

may be shown to be zero when the characteristic line becomes parallel to the

marching plane. For the perfect gas case, for example, if the denominator is
set equal to zero, one obtains

From Equation (24)

i _ l I I I
hp-T = _-:r 7- 7 =_-:r _

And from Equation (25)

. _ _ I:,t-,f- Ip=
Or

Thus

I

t,t>-T
=-_

(89)
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The velocity component normal to the marching plane is the scalar product of

the velocity vector and a unit vector normal to the plane. Using Equation (_2),

(90)

so that = O,

To avoid encountering this condition, which experience has shown is only found

in the high supersonic regions of the flow field, a test of normal Mach number
is made. If

n > Mn .eST ,

the integration of that grid point is terminated.

The second removable singularity occurs when Q :O, which is the condi-

tion for zero velocity normal to the marching plane. This may be verified

from Equation _0) above. Since this condition occurs in a limited region

very near the body surface, the approach has been adopted in which the inte-

gration of that grid point is terminated when the value of

The body location and properties are then obtained from the extrapolation

technique used in the body determination procedure.

Inherent instabilities are stated in Reference _ to arise from either

of two sources: (1) due to singularities (2) due to ill conditioning. The

presence of singularities in the flow field is obviously unrealistic and

implies that an unacceptable shock shape has been used. Special cases where

the desired body is non-analytic (e.g., the discontinuous curvature on Gemini,

Apollo, etc.) result in singularities occurring on the body surface. For

these cases, the problem is handled by limiting the integration to the region

outside of the body.

- -
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The instability due to ill conditioning is nonessential and would not

occur in an analytic solution of the flow behind a given analytic shock. It

arises from the inherently unstable solution of the differential equations

starting from any initial inaccuracy. In numerical solutions, these inaccura-

cies result from round-off, truncation errors in integration, and curve fit
errors in computing derivatives. Considerable discussion exists in the litera-

ture on this problem as it exists in the subsonic region of the flow. Lomax

and Inouye reported that they used smoothing to control the error buildup.

No such p_nblem was encountered with the S&ID program at zero angle-of-attack,
since the radial grid point spacing was much larg_ _ than th-_ used by !_max

and Inouye. The closeness of grid points in the G -direction near the body

axis is not a problem, since properties have axial symmetry. The procedures

followed by the S&ID computer program do not treat the zero angle-of-attack

case differently from a general case. These data are separately computed at

all grid points, and axial symmetry of flow property values for the zero

angle-of-attack case results entirely from the axial symmetry of the shock

and not from special treatment. The result, however, is that despite this

general treatment, the flow property values do have exact axial syn_netry

(even though they may have errors due to round-o_ff, truncation, etc. ). This
is true e_en for the reformulation in terms of _ and _ since examination

of the _ -derivative equations reveals that the 9 -derivatives of all flow

properties are multiplied by _f (which is zero for this case). Thus perfect
smoothness of the data in the 8 -direction is evident in the results. An

instability was found to develop near the X -axis for non-zero angle-of-attack
cases without smoothing. Its origin can be traced to the choice of coordinate

system through the following arguments.

When the angle-of-attack is not zero, the axial symmetry of property
values is not present. The round-off and truncation, etc., errors are now not

identical for all grid points at/l= constant, and the perfect smoothness of
the data is lost. Now in itself this lack of smoothness would be no worse

than a similar lack of smoothness that is always present in the /& -direction

and which caused no trouble for zero angle-of-attack. The cause of the

severe instability which was found is due to the cylindrical coordinate system.
The choice of a cylindrical coordinate system inherently results in a closer

spacing of grid points near the X-_'_^ shown i_nFigure 6CLA-_O as

Figure 6. Grid Point Locations in Cylindrical Coordinate System
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In examination of Equations(5) and (6) , for example, it is observed

that all •-derivatives are weighted by the factor |/n. Thus for the same
degree of random inaccuracy in property values the G-derivatives of these

properties exhibit a noise component which increases as I/_. This becomes

disastrous for small enough values of Ju. The simplest cure for this problem

would be to eliminate progressively more grid points on the inner radii. As

the axis is approached the properties approach the constant values at the axis,

and only one point is required to carry all necessary information. The

presence of other points and inaccurate values adds nothing to the information

but adds progressively increasing noise as the axis is approached. This entire

problem is adversely affected by the original choice of %r and ar as the lateral

velocity components. These velocities do not approach constant values as the

axis is approached but approach functions of @ .

In practice the dropping of grid points as just suggested is not practical.

)_ -derivatives are required for outer radii grid points and the calculation

of these derivatives uses property values on the inner radii. Carrying the

logic two steps further it is seen that inner grid points could be dropped if

the necessary intermediate point values were obtained by interpolation. But
the operation of interpolation is basically inaccurate so that the application

of statistical smoothing comes to mind as a means of increasing smoothness

while basically retaining the information in the data. This is the approach
used to control the instabilities in the calculations. Coupled with smoothing
the velocities v- and _" were transformed to the velocities V- and _," as

described in Equations(27) and(28) and shown in Figure 3 • The advantages

of using the new variables is that: l) their approach to constant values as

JZ-_O effectively furnishes another point at the origin in the data grid,
thus aiding in the smoothing as actually programmed; and 2) by effectively

replacing the lowest frequency term in a Fourier series expression for the
velocities at J%=o by a constant term, the filtering technique (smoothing)

is much less critical and more easily done with a simple approach.

The flow field computer program is written

round-off errors to a minimum. Although it was

feature would eliminate the need for smoothing,

ber of smoothings could possibly be reduced and

in double precision to reduce

not expected that this

it was expected that the num-

that smoothing could possibly

be started at a point farther downstream of the shock, thus promoting

increased accuracy of the final program results.

The properties to be smoothed may be represented by a two-dimensional

set of data points, _L,_ , where the subscripts on the property p are
related to J% and @ respectively, as defined in the Operating Manual,

Reference 10. Although consideration was initially given to smoothing by

fitting a least square surface to a subset of these points, from which an

interior point could be corrected or smoothed, the simpler procedure of

smoothing alternately in the orthogonal _ and O directions was adopted.

As will be noted later, the program will allow the user to apply arbitrary

weighting factors, dependent only on the _Tt coordinate, in applying the

correction indicated by the smoothing procedure.

The actual filtering technique adopted is a modification of that used

by Lomax and Inouye, Reference _ . The method is to move the central point
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in a group of five to the curve defined by a least square parabolic fit to

these same data points. Since the S&ID program uses variable point spacing
the least square fit calculation is complicated somewhat but is still
straightforward.

Smoothing is applied alternately, first in the radial direction and

then in a circumferential direction, and can be justified by the following

considerations, In smoothing, the data should preferably be weighted in
such a m_-_uer that va!nes in which there is a high confidence level are

smoothed the least, whereas values in which the confidence level is lo_

are smoothed or corrected the most. In our case calculated values on the

inner radii have the lowest level of accuracy and should be given the least

weight in smoothing. By smoothing alternately in the _ and _ directions,

the data points can be weighted somewhat by using a particular sequence.

In smoothing data in the /_ direction first (that is, on a line 9= constant)
most of the data points will be accurate and hence the data will be smooth.

The plot of some property on a line 0-_ el is shown in Figure 7 .

e=O

Property

= el +_r O = el

o Data Points

---- Smoothed Curve

P'o= Property at )%= 0

'_
A.

Figure 7 . Typical Property Variation in the Radial Direction

The value of a property at _= o , called Po , being independent of e ,
aids in the smoothing operations since all smoothed curves must have a

common value at4=o. Thus the smoothed curve is tied down by a constraint
at the origin and by the existence of mostly smooth data.

By using the particular sequence stated above, neighboring data points

to the origin on the line 8 = constant are more heavily weighted (since they
are considered first) than neighboring data points on the curve )t = constant

(since they are used second-only after being smoothed). This is consistent
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with the weighting considerations just presented since most data values on

a line 0 = constant are accurate - only the points near the axis will be
inaccurate.

THERMODYNAMIC PROPERTIES

The program has been formulated with the provision for running both the

perfect gas case (i.e., constant specific heats) and a real gas, equilibrium

air case. The thermodynamic state properties for the real air are based

principally on the Hilsenrath and Beckett tabulated data for argon-free air
presented in Reference 15 supplemented by information from References 16,

17, and 18.

The subprogram used to compute the real gas thermodynamic properties is

based on empirically-fitted equations to the Hilsenrath and Beckett data and

for the most part is capable of reproducing the tabulated data to within one

percent. A sample, for instance, of the reproducibility of enthalpy is
shown in the table below:

Table i . Comparison of Thermodynami..c Properties

of Real Air, _o_1 o (/'_o) = - _

Temperature

(Degrees K)

2OOO

3OOO

_ooo
50oo
6000

70OO

75OO
8000

8500
9OOO

Hpro_ram

(BTUTIbm)

987.3
2166.8

h278.0
5858.7

10792.0

224so.h
28568.3

32935.Z_

35876./+
38157.6

HH&B

(BTU/lbm)

984_.3
2157.3
4251._
5820.4_

107].2.8
22279.2
28277.8
32576.8
35_68.3

37722.8

Percent Error

0.305

o.4Ao
0.625

0.658
0.739
0.9O3
1.027
1.102

1.150

1.150

The empirical equations are developed in Reference 19 as dimensionless

parameters of the form H/I_T, _ , and 8/_, each of which is given as a

function of pressure and density. The program is capable of operating over
a density range of lO-6 to 102 relative atmospheres and up to a temperature

of 15,000 K. A relative atmosphere is defined as/@//4 o where /_o is the
density at standard conditions of temperature and' pressure. The terms in

the empirical equations consist of eighth-degree polynomial expressions

Joined by transition functions stemming from Bose-Einstein and Fermi-Dirac

quantum statistics as applied to molecular dissociation processes. These two

transition functions are of the following form:
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Fermi-Dirac Function

t + exl, (k_)

Bose-Einstein Functio_

I - e.xp(_)

The thermodynamic properties procedure for real air is formulated as a

subroutine in the program and can easily be exchanged for other gas medias

if so desired. However, this would require the formulation of a new set of

equations empirically-fitted to the new gas media.
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COMPUTER PROGRAM DEVELOPMENT

GENERAL DESCRIPTION

The Bi_,_ Body Computer Program produces the inviscid, subsonic-transonic

shock layer flow field for a convex, axisyn_netric body shape at _gle-of-

attack. An estimated shock shape and specified requirements for altering
this shock shape along with free-stream flow conditions and certain control

information are entered as input information to the program. The program

then uses this information to generate the flow field and a perturbed shock

shape. This process is repeated automatically until each coefficient in the

shock equation has, in turn, been perturbed. The body shape perturbations

resulting from each flow field calculation and the incremental changes in
the shock coefficients are then employed in a linear influence coefficient

matrix solution to find a final correct shock shape. This final shock shape

is then Used to generate a final flow field. A second program, following this

basic flow field computation program, uses the final flow field data to generate

additional flow field parameters and to output data according to pre-specified

plans or options designed specifically to aid in the study of reentry flow
field and heating analyses.

The program has been designed with the capability for handling a perfect
gas media (specified constantS) or a real gas air media. An increased run

time is associated with the real gas case due to the iterative procedure

required in the evaluation of certainthermodynamic functions. The program

has been formulated such that other atmospheric medias can readily be incor-

porated provided suitable empirically-fitted expressions, similar to those

used for the air media, can be formulated for the thermodynamic properties.

The basic formulation of the program is based on a body oriented

cylindrical coordinate system wherein grid points on the marching planes

are defined by a radial distance, 2t, measured from the body a_is of s_-_v..etry

and an angular distance, O, measured from the pitch plane. A marching

plane is a computing plane in the program which is parallel (i.e., every-
where equidistant in the X-direction) to the shock surface. These planes

form the basis for the X -integration of the flow properties in that one

starts at the shock surface and works downstream until the body surface is

defined. Figure 8 shows a typical grid point pattern on a marching plane

together with the _j j subscripting notation used to identify grid points
in the program. The pattern is viewed from the shock looking downstream

along the body axis of symmetry.
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Pitch

Pitch Plane

Symmetry Points
(Image Points )

\

Mirror Image of

Lower Half ofj.-_

\

Figure 8. Orientation of Grid Points in Marching Plane
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0nly the flow field to the right of the pitch plane is considered because of

the flow symmetry existing about the pitch plane. Advantage is taken of this

sy_netry in the evaluation of 6_ -derivatives for points on _--I and 2. by

artificially using mirror-image points to the left of the pitch plane. It is
also to be noted that symmetry exists between the lower half of each

plane and its image plane with respect to the origin making it possible to

consider points and properties along the mirror-image of the lower half of

a _ plane in the evaluation of lateral derivatives and the smoothing of
data in the -% -d!__ectinn.

It is not necessary to use the entire network of grid points shown in

the illustration. Provision for eliminating a portion of the grid network

has been incorporated in the program. This is a highly desirable feature

when computing flow fields for bodies at large angle-of-attack where the

outer extremities of the flow field on the leeward side of the body are

highly supersonic and instabilities comonly arise due to an alignment of

the local characteristic line with the marching plane. This feature
eliminates this undesirable region and limits the calculations to the

desired subsonic-transonic flow region.

The entire program consists of two basic parts: Part (i) - A program

for computing a flow field based on a given shock including a systematic

means of iterating on the shock shape; Part (2) - A program for calculating

additional flow field parameters and the output of data according to pre-

specified options. The basic flow field computation program is subdivided

into five parts linked to a main program. Such an elaborate procedure is

required because of the lack of adequate machine-storage space introduced

by the three-dimensional requirements of the problem to be solved. The

first link (Link 5) called by the main program reads in the input data and

sets up certain arrays of information in storage in the program. The second

link called (Link _) establishes the shock shape, forms certain geometrical

lateral derivatives of the shock surface, and solves for the properties at

each grid point immediately behind the shock. Link 1 contains the

marching procedure which integrates plane by plane from the shock to the body.

Tb.is l_,__ _].qo contains the body determination procedure. Link 2 provides the
routines for smoothing property data on the marching planes as the flow field

is developed. The last link called in the flow field program, Link 3, pertains

to the procedure for perturbing systematically the shock shape and solving

the influence coefficient matrix for a more correct shock shape. A final

flow field is then obtained for this more correct shock and stored on tape

for use in the Data Output Program (Part 2 of the over-all program).

The Data Output Program performs certain basic functions in addition to

the options specified as input to the program. Included in these mandatory

functions are traces of the stagnation streamline and all other specified

streamlines in the pitch plane. Body streamline traces emanating from the

stagnation point are also furnished. These body streamlines are actually

shown as projected traces on a planar surface normal to the body axd_s of

symmetry. Properties at specified stations along the body surface are

always obtained with the data output program. These stations lie along lines

formed by the intersection of a G = constant plane and the body surface and
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emanate from the point of intersection formed by the axis of sy_netry and

the body surface.

In addition to these basic forms of data output, one can call for certain

specified data output options. The first, known as Option B, presents flow

properties (i.e., pressure, density, temperature, enthalpy, entropy, velocity,

and Mach number) at specified intervals along any or all of the specified

streamline traces. The other two options, A and C, are somewhat related in

that Option A is a degenerate case of Option C. If Option A is specified,

properties are obtained along the normal at a body station. Option C produces

a complete description of the flow field properties using a cylindrical

coordinate system based on the normal at a body station.

The Data Output Program consists of a main program and four links.
Link 1 deals with the output requirements of Option B. Links 2, 3 and h

apply to Options A and C. Link 2 provides the procedure for transforming

local cylindrical coordinates based on the local body normal to the cylindrical
coordinate system used in the Flow Field Program. Link 3 determines bounding

grid coordinates for both the flow field and body stations. Link _ reads from

tape and strips-off the flow field properties at the bounding points and

interpolates between them.

NUMERICAL PROCEDURES

Lateral Derivatives

In the process of marching from the shock to the body it is necessary
to first evaluate property derivatives in the lateral plane (i.e., marching

plane) before obtaining property derivatives in the marching direction.
These lateral derivatives are usually determined by the application of finite

difference principles to a set of specific points in the lateral plane. A

typical network of points is shown in Figures 8 and lO.

In general, finite difference schemes are applied to a network of

evenly spaced points in which the geometrical aspects of the method are

vastly simplified by the uniform point spacing. In many problems, such as

the blunt body flow field problem, it is impractical to use a uniformpoint

spacing because of the complexities of the body shape and associated flow
field. This becomes obvious when one considers current reentry bodies of

the capsule-type which consist of a large face radius followed by a small

shoulder radius. The most desirable point spacing in the radial direction

for such a case, based on the body axis as the origin, consists of a coarse

spacing over the face radius and a fine spacing in the shoulder region.
This is not only true from the standpoint of econom_ in program operational

time but is necessary for good accuracy. A close point spacing is required

in the shoulder region where properties are changing rapidly. However, this

same close point spacing over the face of the body would probably introduce

noise in the data due to an insufficient change in properties between

adjacent points. A non-uniform point spacing also proves beneficial in the

angular direction for angle-of-attack cases where it is desirable to obtain
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more detail and accuracy in the vicinity of the stagnation point. It should

not be misconstrued that this procedure will handle only cases of unequally
spaced grid points. The procedure is general and will readily handle the

simpler case of equal point spacing.

Another desirable feature that is incorporated into the lateral

derivative procedure in the program is the ability to limit the lateral

extent of the flow field to an arbitrary region of the entire grid point

_mt:rLx by working strictly within a cutoff flow field boundary, Figure lO.
' _ 1-_ 41. l_..I.The program begins with the complete matrix of points ab _n_ _au_, _

immediately reverts to the cutoff boundary once the march to the body has

been initiated. This cutoff boundary is for the most part tailored to the
specific problem being solved and attempts to limit the solution to the

subsonic and transonic regions of the flow field. Supersonic flow can be

obtained with the program provided there is no alignment of the local

characteristic line with the marching plane. Flow singularities of a
removable nature will occur in such cases.

The basic formulation of the lateral derivative procedure employs a
five-point central difference fit to the grid points. In the last section

mention was made of the various flow field symmetries obtained with the

form of the cylindrical grid system employed in the program. This is

particularly true in the angular direction about the pitch plane making it

possible touse a five-point central difference scheme to compute lateral
derivatives for all points in the angular (theta) direction. On the other

hand, the radial direction contains no such condition at the outer edges of
the flow field, and it is necessary to employ five point off-side finite

difference formulae for the outer two radii. In the original lateral

derivative formulation no attempt was made to eliminate grid points that

fell inside of the predicted body shape. This approach was changed when
it was found that the properties at these grid points could become

completely unreliable due to their proximity to singular regions in the

flow field. These singularities may be essential or may be of a removable

type associated with the particular coordinate system employed in the program.

The decision was made to drop the forward integration for such points, prior
to reaching the body, and to obtain the body location and propezti_s for

this grid point by extrapolation. This step cured the problem of inaccuracies

in the data but necessitated a reformulation of the lateral derivative pro-

cedure to include off-side or end point finite difference schemes for grid
points in the central region of the marching plane. At the same time

it was realized that a cutoff flow field would be highly desirable from the

standpoint of eliminating singular point instabilities occurring in the
supersonic region. The use of a cutoff flow field introduced a further

need for a finite difference scheme with off-side or end-point provisions.

Thus, a three-point finite difference scheme with end-point provisions was

incorporated in the lateral derivative procedure. A three-point fit was

considered for two reasons. First, storage space in the program was limited
because of the need for carrying large arrays of double precision numbers.

Second, the three-point fit provided greater flexibility once the body was

encountered and grid points were dropped. The only disadvantage of the

three-point fit is its poorer accuracy in comparison with a five-point
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off-side formula. However, it was reasoned that the end-of-array points,

where the marching plane intersected the body, were being dropped continually

as the integration proceeded and the propagation of errors into the remaining

grid points would be somewhat self-limiting.

To summarize, a five-point central difference formula is used when

possible. Otherwise a three-point central difference or end-point formula

is used except at the outer radial edge of the cut-off grid where five-point

off-side or end-point formulas are used to determine J%-derivatives on the

outer two grid points.

A short s_ry of the three-point and five-point lateral derivative

formulas is presented below along with appropriate illustrations, Figure 9 ,

of the symbols used. Considering the five-point fit, a fourth degree

polynomial,

(91)

is passed through the five points with the center point as the origin.

Rewriting this polynomial for each point in terms of the local coordinate

system and eliminating the translation distance, _ , one obtains the

following expressions :

_(.,._= S'= _,F +cF_+dFSl-eF 4 (92)

_,) - K = BG • cG_+,{ _'+ e& 4 (93)

_(')--o _ _.0

'_(+_)-T'- hiS+ cB"i-dB'+ e5 _'

_C+_.5= U'- BE + ¢F_?'+AE_ .-eE4

(9_)

(95)

(96)

The solution of these equations to obtain expressions for the coefficients

_ _ , a and e in terms of the propert_ parameters S; R', T' and U l
and the relative distances F j_j_ and can be obtained by a matrix
solution. The denominator is strictly a function of the local distances and

once a grid pattern has been chosen remains the same for each marching plane.

The job of forming lateral derivatives is further simplified by noting that

the radial point spacing is the same for each j plane and the angular

point spacing is the same for each 6 line. The resulting expression for the

denominator in the expressions for the polynomial coefficients are as
follows:
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l!,
' I

a. Five-Point Fit

II , /
I, i /

b. Three-Point Fit

Figure 9. Description of Three-Point and Five-Point Finite Difference Fit

-_7-

SID 65-]353



NORTH AMERICAN AVIATION, INC, SPACE and INFORI_IATION SYSTEMS DIVISION

(97)

The expressions for each of the coefficients are presented below:

(98)

(99)
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+T' [E4FG_I- E._F_ -_-E F_4- F_F-_- E_F_G-L_FG+ _

-R' [ B=E4F t'BF__F4 + B÷EF _--'B_EF _- B L=4F_ "- I_41ELF]

(1oo)

_ -l {S'

+ T' [EiFG,_"+ F_._'F_G,-F_,F_'-F_.F'G_"-F_'IF'G_- E:_:G.']

(:].oz)
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Differentiating Equation (91) one can obtain the following expressions for

the derivative at each of the five points shown in Figure 9a in terms of

its distance from the center point.

_' = b +;_cx +3dX_+4P--X _a

t

#

_(-0 = b + :LAG+ 3_&_+ 4eG 3

(lO2)

(lO3)

(lO_)

_[o) = b

!

(lO5)

(lO6)

(lO7)

The three-point finite difference fit is obtained in a similar manner

using the nomenclature presented in Figure 9b . In this case a quadratic

equation is passed through three points with the center point again as the

origin. The resulting equations are

In the three-point fit the analysis is greatly simplified as shown below:

DeN = _5 _BL& (m)

(_u)
= DEbt

= DEN
(1_3)

/

_((_,)= b + ;l c G

The corresponding expressions for the derivatives in the three-point fit are

(114)

_(.o)= b (n._)

_,) = b + _.c B (116)
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Figure lO is presented to illustrate the various ways in which the
finite difference formulas are used to obtain lateral derivatives. The

typical cases shown illustrate most of the common situations. The same

grid points are examined from both the radial and angular viewpoints since

the points may be treated differently in the two directions. In the case

of the five-point fit in the radial direction there are two ofi'-side formulas,
one for the outer radius and the other for the next to the outer radius point.

_"T.cgrid networ1_ l'or the body-oriented cylindrical coordinate system

used in the program o1"fers considerable advantages in the £oi_a_ion c+2the

lateral derivatives due to the manner o±" subscripting and handling grid

points. With re_'erence to Figure 8, it is noted that the j subscript,
defining points in the angular direction, runs from j=l at 8 =e ° (i.e.,
pitch plane) to _ --_ at Q = ?o" . The _ subscript, on the other

hand, runs continuously from top to bottom for each _ meridian plane.

The j planes are thus symmetrically located about the 0--_o ° plane as

well as the pitch plane. Considering the mirror image of each j plane in

the lower half of the flow field, one can compute radial derivatives in a

continuous manner across the origin. One must reverse the sign of

and consider the properties in a Cartesian sense. In using image points

to the left of the pitch plane it is also necessary to temporarily assign

the opposite sign to the flow field properties _ and _ . The sign
attached to the other flow field properties remains the same on either

side of the pitch plane. Symmetry conditions also exist in computing

lateral derivatives in the @ -direction using the pitch plane as a plane

of reflection. This is the reason that _-derivatives for points in the

pitch plane and its neighboring plane are shown in Figure lO as having

been computed with a five-point central difference formula. Once one

considers end points away from the pitch plane in the @ -direction, it is
necessary to revert to an end point formula. This situation arises

immediately when one considers using a cutoff flow field in the solution.

The five-point scheme for obtaining lateral derivatives is naturally
more accurate than the three-point scheme because of the increased information

that is made available. The central difference fit is preferred over an

end-point fit because of its greater accuracy. Probably the most _nacc_rate

evaluation of the lateral derivatives occurs when a three-point end-point

formula must be used in both the radial and angular directions. Fortunately,
this should not occur until very near the body after most of the flow field

has been computed. It is quite important to make the transition from one

radius to the next along the cutoff boundary as smooth as possible to

minimize the use of the three-point end-point formula.

_ody Determination

From the definition of @ and _ given in the theoretical development,

it follows from the existence of a single stagnation streamline which wets

the entire body surface that,
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Since the stagnation streamline lies in the pitch plane

_STA@ _ 0 t,,n_kJ-J.71

A simple procedure for locating the body surface outside of the pitch plane

s to search for points where _= O . At these points _ should be

body = $ stag = a constant. It was found that a more accurate procedure

for computing _ sta_ is by linearly interpolating between body points in the

pitch plane to dete[mdne the value of _ at the location where _-= O •

This calculation is made in the Data Output Program.

It will be shown in the next section that the stream functions vary

with ;Q in such a manner that their )q-derivatives become infinite at the

body surface as shown in Figure ll . The _ curve is extrapolated to the

body by fitting a parabola to the last two computed values while requiring

symmetry about the U_ = O line.

Figure ii.

/,

W_oD_= 0

_BOD_(

Variation of Stream Functions in _ -D'Lrection

The plot of _ vs X for the same grid point has its vertex at X=Xbody ,

this uniquely determining _ body"
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The gradients of the stream functions _ and _ can be readily shown

to be infinite at the body, Consider a flow field about a blunt body at
angle-of-attack shown in Figure 12 .

Body

Figure 12. Streamline Behavior Near the Body Surface

(12o)

where _ accounts for non-radial flow at radius _ .
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Differentiating the mass flow expression with respect to _,

From the definition of _ ,

or

Differentiating this equation with respect to _,

Since

an a.n

Thus

(121)

The variables /o3 U ) _',, and _s_ may be expanded in a Taylor series

at the body surface. It can be shown that after performing the above integra-

tion, and then evaluating the resulting equation on the surface that to first
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order in Yl all terms of the series drop out except the constant values on

the surface. The final form is,

Or (122)

Thus _ varies parabolically with rl

recognized as the body value of _ .

behavior of _ is straightforward.

_A

at the body surface. _ is

The analogous derivation of the

A simple explanation of the existence of infinite gradients of
and _ at the body surface may also be found from examination of Equation (66).

Since both V_ and V _ are normal to the surface and thus parallel, we

must have an indeterminancywith either V_= e_or V_ eOor both V_

and V_e_ in order to have a finite U result from the vector cross

product.

Locating the body in the pitch plane by parabolic extrapolation of_

has two problems,

i.

me

The calculation is inaccurate near the stagnation point where

the flow velocities approach zero.

at points other than on the body surface._may equal body
This introduces the difficult problem of discriminating between

correct and incorrect body location predictions.

Both problems have been overcome in the program by using a simple approximation

that is considered acceptable to engineering accuracy. The body location pre-

dictions for the pitch plane are assumed to be identical to the predictions

for the nearest grid plane (jI_). This is justified by the follo_lng

considerations,

1. Only axially sy_netric bodies are considered.

e The variation of predicted body shape with O near the pitch

plane is at most a co_ • type effect due to symmetry of the

flow field with respect to the pitch plane.

. The grid plane nearest the pitch plane may be located by the

program user at such a value of O that the error introduced

may be controlled.

The procedure in the program for locating body points is conducted in

the following manner. After computing properties in the _ plane, a
prediction of the distance to the body is made for each remaining ( Ljj )
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grid point. A check is then made to see if the predicted body point lies

within the next integration interval. If so, the point is identified in such

a manner that it will be dropped during the predictor step in the next

integration interval. The body properties for these points are obtained

by linear extrapolation.

After identifying these points, the program also checks the remaining

available grid points for two conditions. First, are there any pockets in

thc grid netwo_ where only two points remain. This check is made in both

the .I£ and @ directions. These points are also ...... _:-_ _ opo_]

manner as it is impossible to determine lateral derivatives for these points

after performing the predictor integration step in the next interval. The

reason lies in the fact that properties are not determined for grid points

lying within the body. Therefore, properties are not computed on the next

marching plane for those grid points intersecting the body in the next

integration interval. This means there would only be two remaining points

in this local region on the next plane at the end of the predictor step.

Thus, it would be impossible to finish the corrector step in the integration

procedure since the program requires a minimum of three points in any

direction to form lateral derivatives. The grid points falling in this

category are permitted to predict properties on the next plane so that they

will be of aid in forming lateral derivatives for adjacent points. They are

subsequently dropped on the integration corrector cycle in the next interval.

Using the predicted body location, the program extrapolates for the body

properties at these grid points.

The second check is performed on the remaining grid points and has to do

more with the accuracy of subsequent calculations. It is a check to identify
those groups of grid points in which there are only three points remaining

at the completion of the integration cycle for the next interval. While

there are sufficient points (i.e., the minimum of three) to form lateral

derivatives in both the predictor and corrector integration steps, the

accuracy of these derivatives starts to become questionable beyond one more

integration interval due to the use of end-point lateral derivative formulas.

Therefore, the program identifies these points in a manner that they also

will be dropped after the next interval. Body properties for these points

are obtained by linear extrapolation.

Two other conditions enter into this body determination or point-

dropping procedure. There is provision in the program for dropping points
when the grid points approach singularities in the flow field and computations

become too inaccurate to continue. Although the source of these singularities

and the specific tests used for their control has already been discussed, it

is appropriate to restate this information. One singularity results from the

alignment of the local characteristic line with the marching plane. This

condition is determined by observing when the normal Mach number approaches

unity. The other singularity occurs when the marching plane becomes aligned

with the local streamline slope. The previously described test for each of

these conditions is made for each grid point on the corrector integration

step, and the point is dropped upon failing the test. Again the body

properties are obtained by extrapolation. Although the singular region
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may be confined to a thickness of only a few marching planes at most, no
attempt is made to resume the forward integration of this point after passing

through the singular region. In theory, however, it should be possible to

resume the calculations for this grid point downstream of the singularity.

The extrapolation for body properties for points encountering the second

singularity does not produce unreasonable results as this singularity generally
occurs very near the body surface and only a short extrapolation is required.

The extrapolation for points failing the normal Mach number test may be over

a greater distance, and the resulting accuracy may be more questionable.

However, these points usually lie at the outer edges of the flow field
where the flow is supersonic and are not essential to the required solution.

Iterative Convergence Technique

Error Measurement

The body obtained from a given shock shape is introduced into the
iteration (influence coefficient) subroutine as a series of points having

the same radial and angular coordinates as the grid points for the flow

field integration. The errors between the predicted and desired body are
defined to be the distances between the bodies as measured along a perpendi-

cular from the desired body to the body predicted by the shock equation.

This perpendicular is erected at certain points on the desired body which

are designated g9_tr01 ooints, and the errors at the control points will be

called simply the error_.

Since the predicted body is given in terms of discrete points and not

an analytic curve the predicted body surface must be defined in the region

between these computed body points. The approach used is to connect adjacent

points with straight line segments. The error is the distance along the

normal from the body to the intersection of the normal and the line segment

as shown in Figure 13 • The control point will always have the same -_

as a predicted body point so that the errors will approach zero as the

iteration procedure converges.

Predicted

Body
Normal to Desired Body

ontrol Point

Desired Body

_×

Figure 13- Measurement of Predicted Body Shape Errors
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In order to establish some reference system from which to measure the

errors a particular point on the desired body is designated as a .translation

This point, shown in Figure l_, has -_. and e coordinates equal to

that of a predicted body point, and after each run the predicted body point

and this translation point on the desired body are r_de to coincide by

translating the entire desired body shape. Thus, errors are a measure of

the body shape error, and the _ -translational location of the body is not
considered in the error evaluation.

Shock System
origin -

S __ Shoak

Translation

Point-_

Xo _- : XN'--_I/

/

S and b subscripts
refer to shock and

body-oriented coordinate

system, respective]_

X

Figure l_ Location of Translation and Control Points

The control and translation points are initially given in terms of _'S

and O '$. The equations for the desired body are given in terms of a body

oriented system. Then knowing the JtT and Jtc coordinates, the X

coordinates }:_-b and _ican be calculated. X-rs is the coordinate in
the shock oriented syste_ and is used in fixing the origin of the body oriented

system. The quantity _T$ is the X coordinate of the predicted body point

at that _T in the given plane.
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body oriented system is fixed at _o = (XT$--_Tb)The origin of the

for all planes, and the control points are given in the shock oriented
system as

Ts b

All the predicted body points are computed in terms of a shock oriented

system so no conversion is necessary.

The error is the distance between (XC_ _ 2_c_and @Im_ _Z)
where the latter point represents the intersection Of the normal and the

predicted body line segment.

Given the body equation J% =_(_b)- h conversion to the shock oriented

system can be made by the substitution

Then

¢S)/LC.

and the slope of the normal is

- (.o"- I
-- --C.TI_ -- TANe

or. --(_-_l,X.c_ _Lc •

The .fT..intercept of the normal is at

/u

- 60 -

SID 65-13 53



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

Then the equation of the normal becomes

The equation of the predicted body line segment is similarly found to be

When linear Equations (]-23) and (12_) are solved simultaneously, the
solution becomes

= \_t-x_j I vm'x " _ Q*,-qt_.,:_,.-.. ___

and

2_ I - --
(126)
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If _ • _2, then the equation of the next upper line segment is computed

and the solution found again.

If _z < A I, then the equation of the next lower line segment is computed

and the solution found again.

The solution must fall within the defined body points on that particular

plane unless a special input selection is made. After finding the correct

solution, the error is

• i

(127)

The positive sign is given if XIs >_/-Cm , negative if _Cf >I('T-S " The body
is always assumed to have a positive rirgt derivative.

Desired Body Definition with Options

The procedure has just been described for computing errors between the

predicted and desired body. The predicted body points are outputs from the

integration procedures in the main program. The desired body points and

shapes must be computed separately for the applicable body shape option.

General cylindrical coordinate systems will be used in the following

derivations. In all cases the X-axis lies on the axis of symmetry of

the desired body. The desired body shape is basically entered into the

progra_ and computed in a system having its origin at the intersection

of the _ -axis with the body. For the special option of a hemispherically

blunted general body, it has been found convenient to enter body shape

parameters into the program refcrenced to the station of tangency of the

hemisphere to the second body segment. A transformation of the origin to

the y-axis intersection _.rlththe body is accomplished internally within

the program.

_. The general body consists of up to four segments, each

segment consisting of a power series of up to six terms. So, for each

segment

= a.,L Xb -NbL
!1=-0

( 28)

The equations are written in terms of a body oriented system, Figure 15 .

The point for £_ing the body in the shock oriented system is given as _T
along with the appropriate segment and plane. The control and translation
points are limited to _-'s equal to those of the grid coordinates used for
the flow field solution.
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"=° I I
--_'_./1L "" _1 (_" iI1_, (_. _)1'1- ---- _l)0 --0 ; "_'11,,'(_

Figure 15 • Definition of General Body Shape

Each segment will start at X b, _ in the body oriented system and

continue until _b,Lel . A segment begins at an _L = aa,_ • The
segments are tangent at their points of intersection.

If the translation point is given at /_ = _V in segment
equation

then the

5- ( )"
fl=.o

is solved for _Tb by the Newton-Raphson iterative process. After completing

an initial run with the program the body system origin is displaced from the

shock system origin by an amount

Xe_ =( XT 8 -- ZTb _
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where /_Ts is the /_( coordinate of the predicted body point at the .TZT
and _T values of the translation point.

A transformation of the general equation to the shock oriented system
can then be made:

°
IrI-0

l_r.o

Each control point _c g
from the equation

in segment O_ is determined iteratively

The derivative at a point on the desired body is required for the error

calculation and is given by

or on the _ segment

_1, _1

-
)'I=I

Then (JXs/_;_)_,_c :)_c s and the appropriate Xis) Xmsj /_1

and )_ of the body de_ermined by the shock are substituted in

Equations 125, 126, and 127 to obtain the error.
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General Body with Hemispherical Nose. The first segment of the general

body may be fitted with a hemispherical nose as shown on Figure 16 , the

radius being uniquely determined by the equation of the second segment under

the assumption of continuous values and first derivatives between segments.

Thus the only input will be

Irl-_O

where now Xb % is measured from the start of the second segment and
therefore _._.._..= 0 • Again, all four segments need not be used but a

minimum of _wo, including the hemisphere, are necessary for a solution.

Xb

Figure 16 . General Body Shape with Hemispherical Nose

Assuming tangency of the hemisphere to the second segment,
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which is a constant. It is obvious that

b, _°-/_ s,N @ = ao,_

Therefore:

(_o)

and thus 2%_ is automatically determined by the second segment.

The equation of the hemisphere can be expressed as

This places the hemisphere in a coordinate system with the origin at the

intersection of the hemisphere and the _ axis. This coordinate system is

the one required by the program in determining the errors of the control

points while matching the predicted body with the desired body at the transla-

tion point. Substitution of Equation (130) for _H yields for the hemisphere

Xb ao,_ (I + ,, ,,_ (_33.)
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If the translation point falls on the hemisphere then,

The equations of the other segments must also be put _i the s_mc

reference system. This may be done by translating the segments a distance _H
which represents the distance between the origin and the start of the second
segment. From geometry

= )'t..H (I-cTN_SI_(_)

j ,%= (1% ! + a,,= --a,j_ (Io,x (133)

Where again

If the translation point falls in the

must be solved iteratively from Equation

Equations (133) and(13A) as follows:

12_ segment, p > I , _vb( which can be rewritten using

n;G

(135)

Now all the body fit equations may be transformed to the shock

oriented system. Using the basic transformation equation relating shock

and body oriented coordinate systems, as previously derived

(136)
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it is simple to substitute for _ b from Equation (131) to find for the
hemisphere,

For all other segments Equations (].33),(].3/+)and (].36) when substituted into

Equation (129) yield

tl=o

1"1- XTs "t- "X.Tb ;. = z, 4

where _TS is the matching point of the predicted body.

Similarly, each control point _c$ in segment 1 is determined from
the equation

,,,')

and in segment _ _ _ >1 ,) ")(.C.,s must be solved for iteratively from

)1=0
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In the first segment

(137)

and for the _ ?_ segment, _>I

where _(TL . iS computed from either Equations (1,$2) or (135) • Now in

Equations (IS7) or (138) X c t and the appropriate Xt_ ,_ _j and
3_._= may be used to obtain the error by substitution _n"E_uations (125),

(126), and (127).

Apollo. The Apollo shape, Figure 17 , is automatically determined by

option, and only the translation and control points need be specified. The

shape is a spherical segment bounded by a toroidal shoulder. It is uniquely

defined by RH. _ I_H_ and 4/_ which are 15._ ft, 0.6/+2 ft, and
6./+2 ft.
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./I.

Figure 17 • Apollo Command Module Shape

The two segments may each be represented in a body centered coordinate
system by equations of the form,

for the spherical segment i_ (1,39)

)Lb=-_RN_ -(_t-_M_T_JrX(H_b-- -- (for the toroidal shoulder, segment 2)
(no)
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The quantities

Where

XC_ b and _._.'r are functions of the geometry:

(_z)

_ ._1/= P.,_, -- _- _ I - s,_X_

SIM _ =

Therefore

_.._ _-_.,-_C_.,-_..?-(÷-_.0; . (_2)

Substituting (I/_I) and (1_2) in (139) and (l_O),
a body system become

I_ _ _'

the final equations in

_ -V_'-( _ "'-"" _ _---&-+ P"Ha) +F"H_

-II(_.,-_.o"- c÷-_.__

The translation distance _T b may now be found from

_:-_/_._-_ +_. (1_3)
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or

(_),)

depending upon whether the point lies in the first or second segment

respectively.

The body equation may now be fixed in a shock oriented system by using

the appropriate predicted body point:

(for the spherical segment)

and

-_dwb + _Ts)

or

and

for the toroidal segment)

9( = _ -_' +X(H,W _

(for the spherical segmen_

_or the toroidal segment)

(1_5)

(Ida6)
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where

and

where the appropriate value of _Tb is substituted from Equation (]J+3)
or(l_) . Each of the control points is solved from

and

Xcs ÷ x(u,T_

(for the spherical segment)

(for the toroidal segment)

On the spherical segment from Equation (]J+5)

Similarly on the toroidal segment from Equation (]J+6)

(I_7)

(l_)
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Equations (]47) and (]48) , _cs and the appropriate _(|_,_ ) )I,

and _ _. can now be used to obtain the body error by substitution in

Equations (125), (126), and (127).

.Integration Procedure

The integration procedure used in the computer program is a fourth-

order Runge-Kutta scheme modified to include the Gill correction. This

procedure is described in detail in Reference 20 . It employs a fixed

step-size or integration interval, entered as input to the program,

throughout the entire solution. The only difference over the method

presented in Reference 20 is the acceptance of data obtained with the

corrector step at the intermediary plane. Normally, the Runge-Kutta

procedure employs four steps to complete a cycle. The step size is

automatically halved, and the first and second steps determine predicted

and corrected conditions on the intermediary plane. The third and fourth

steps pertain to the predictor and corrector steps for the second half of

the entire interval. Thus, two marching planes of data are obtained by the

program for a complete cycle of the Runge-Kutta procedure. In most solutions

a slightly greater difference between predicted and corrected results has

been noticed at the intermediary plane than at the end of the cycle, but

the results are still considered sufficiently accurate and acceptable for the

purpose of supplying detail on the behavior of the flow field properties.

In the early stages of program development a simple second order

predictor integration scheme was tried but proved to be too inaccurate in

its determination of the stream functions. The merit of a predictor only

scheme of integratmon is obviously the shorter program operating time due

to the elimination of the corrector cycle. An attempt was made to improve

the accuracy of this scheme by effectively increasing the order. However,

this would have required carrying data on an additional marching plane for

use in the computations and the program storage space was too limited to

do this. Thus, this scheme was abandoned Mu favor of the Runge-Kutta

procedure.

Data Smoothing

The properties _ ,/_, CA, _, _j @ and _ are smoothed __udividually at

all grid points ( _ j). A least square parabola is fitted successively to

sets of five points _lth the center point value being adjusted to the value

of the parabola. The data are smoothed first versus J'L , then versus e •

The following special considerations are observed,

le Symmetry requirements with respect to _ = 0 °, 180 ° (the pitch

plane) are observed by adding image points. The grid system and

property definitions require treatment of the data as shown in

Figure 18 . The antisymmetric behavior results from the

cartesian form of the definitions of _ and _ .
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_ Image Points (Equal Values)

a. Symmetrical Properties

Image Points (Opposite Values) -_

b. Antisymmetrical Properties

Figure 18. Symmetry Properties of Data About Pitch Plane

1 The variation of properties along a coordinate j = constant

requires the transformations shown in Figure 19 in crossing
the axis at _--O.

The symmetry about the pitch plane establishes the relationship
between values on the lines o_ and o C. The program computes

values on the bent line _oc whereas a smooth analytic variation

of the properties is found along the line go_ . The data on _oC

are transformed, as shown in Figure 19 , to represent data
on the line _Ob. The data are smoothed and then transformed

back to the desired location on moc.
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_r

P

a. Properties Having Non-Zero Value at Axis

_-,-._ _- [_:_on_i
Computed Values

Transformed Data
to be Smoothed

b. Properties Having Zero Value at Axis

Pitch Plane _

I_/ = C°nstant

c. Definition of j Coordinate

Figure 19 • Treatment of Radial Distribution of Properties
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1 A data point at the origin is always used if an adjacent data

point is available. For the variables _ and _ the value

is zero by definition. For t_)_ p,j@ and _ an unP_own
constant value is evaluated after thg first smoothing by extra-

polating from five adjacent points (least square parabolic fit)

and averaging the _MA_ values obtained. On subsequent

smoothings, since a point will now exist at the origin, an

extrapolation is not necessary and the XMA_ smoothed values

Zl.o If one or more successive data points are missing, the least

square fit is not allowed to span the gap between the adjacent
sets of data.

e At the end of an array end point formulas are used. This means

effectively that the last three points of the array are all

moved to their corresponding values on the same least square

parabola.

6. If fewer than five data points exist in a set, the points are
left unaltered.

Thus not only are the data smoothed consistent with symmetry about the

pitch plane, but the values of the @-derivatives of the properties at the

origin are zero as required.

The numerical procedure used in the program, while follo_lng the above

principles, fits a parabola to five points using the following definition of

variables. Consider that the property y is to be smoothed versus the

variable X. A simple translation is performed such that properties and

_(-values are plotted relative to the center point in a set of five as

illustrated in Figure 20.

/ ,/
/_-- Least Square

Figure 20 . Least Square Smoothing Parabola
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The equation of the least square parabola is

= _÷ bx_- c_ _ (_9)

An arbitrary spacing of points is allowed. Following the approach given in

Reference 21, the following three equations are used to compute the three

coefficients of the parabola.

_) ( ")
+ C-_._-__,-_,-_)=o

+(-_._-__,_.,-_,_,-a_)=o

_-_._-_,__-_,_,-&__=o

or

!f we define

5 L M

L M N

N D
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where

L- A_. + Zkt + A! + _,_.

_--- ___+ A:" "

and if

the solution is,

R, - ___+_.,. _, +_

i_.l L I¢1
P._. M IJ

R_, N 1_

D (15o)

!!"'"1
b = .l"' . P

D (lSZ)

and p._ __----

g L

N R,
D (152)

Where the center point formula is used, the corrected or smoothed _ value is
simply_ . For end points the full equation is used to compute the smoothed
value.
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In the computer program the user may choose the following input para-

meters,

1. The k value defining the location of the marching plane at which

smoothing is initiated.

2. Number of smoothings per plane.

The smoothing is automatically removed from operation when a body intersection

has been obtained on the inner grid radius in the meridian plane _M_

It has been observed that for capsule body shapes the smoothing can

reduce the data accuracy in the fl_ field near the shoulder. Since smoothing

is needed only near the axis, it is desirable to use only a percentage of the
indicated correction due to smoothing. This weighting factor is input as a

function of radius only and may vary between zero and one. Its radial

variation should be a faired curve having its maximum value of one on the

axis.

DATA OUTPUT PROGRAM

The flow field program integrates to determine the properties

j _-j _j p ,_j _ and _ at grid points and at predicted body locations
and stores these final reoults on tape for use by the separate Data Output

Program. These data can also be printed out by the flow field program if

desired. For practical applications the data output program presents the

following properties and information,

a. Pressure, atmospheres
b. Density, lblft_

c. Temperature, °R

d. Enthalpy, BTU/lb

e. Entropy, BTU/lb°R

f. Velocity, ft/sec (magnitude and direction)
g. Mach number

h. Perpendicular distance from the body surface to the shock wave

i. Stagnation point location

j. Streamline traces in the plane of symmetry. The user selects

the streamlines by specifying the point at which these stream-

lines cross the shock. The stagnation streamline trace is always
determined.

k. The projection on a plane normal to the body axis of symmetry,
of the streamline traces along the body surface emanating from

the stagnation point at specified angular intervals.

The Data Output Program computes and always presents the above informa-

tion, with quantities a through h being determined on the body surface at

points designated as stations. These stations lie along lines on the body

surface emanating at specified angular intervals from the point of inter-

section of the surface and the axis of symmetry. The program user has the

option of choosing the angular interval and the spacing of stations along
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the body lines. The spacing is specified in terms of curvilinear distance

measured along the surface for the Apollo shape; for the general body shape

the spacing is specified in terms o£ the radius, _ _ , measured from the
axis of symmetry.

In addition to these data quantities a through g are also presented for

the shock layer according to the following three options, any combination of
CWnich may be selected.

Option A

Data are presented for the region between the body and the shock along
lines perpendicular to the body at each station. Along each of these lines

a minimum number of five equally spaced data points including the body and

shock points will be obtained. The user has the option of choosing the
number oi" points up to a _um of ten.

Option B

Quantities a through g are obtained at specified intervals along any or
all of the stre_m]_tne traces defined in j and k above.

Option C

For each station, data are obtained in a field bounded by the shock wave

and the plane tangent to the body at the station. Points in this field are

located by a cylindrical coordinate system (_'j @_ % _ ) with its origin at the

station and the centerline of the cylinder (%taxis) nodal to the body. The

angular coordinate is measured from the plane containing the body data line
and the axis of symmetry of the body.

The operation of the Data Output Prograr, may be functionally represented
by the follo_ing block diagram.

- 81 -

SID 65-1353



NORTH AMERICAN AVIATION, INC. SPACE and INFOR.%IATION SYSTE,_IS DIVISION

Tape Data
Input

Station

Locations

Option B Stream-

line and Spacing
Selection >

Option C
Coordinates

Streamline Trace and

Stagnation Point
Calculation

&

Option B

Option B

Output

---D

Body Station Property
and Shock Distance

Calculation

&

Option A

Option C

Streamline Option A Option C Body Station

Trace Output Output Data

Output Output

Figure 2]. Block Diagram of Data Output Program

The calculation of the output data in Options A and C is closely related

to the body station property and shock distance calculations, and they will be

discussed together in the following text. Similarly, the calculation of the

output data in Option B is closely related to the streamline trace calculation

and they will, therefore, also be discussed together.

Body Station Property Calculation and Options A and C
,¢

The object of the body station property calculation and data Options A

and C is to obtain properties in the flow field at various points in the

shock layer other than the grid points (_,J,k). In Option A the properties

are calculated at equally spaced points along a normal to the body at a given

location or station, designated by /Ls and es . In Option C, the normal
to the body becomes the x' axis of a localized cylindrical coordinate

system, the origin being on the body, 8 'R being measured with respect to
I

a meridian plane of the body passing through the _' axis, and % _ belng

measured perpendicular to this _' axis. Thus/ each data point associated
, after thewith a given station can be designated by an _ /t' and 6 s

/is and Oa of the station are known. It is seen that Option A is merely

a simplified form of Option C with /t'_O and the _' axis divided up

equally between the body and the shock wave.

The coordinates of the stations for Apollo are input in terms of l--x,
the geodesic from the body origin point to the station, rather than the /as

_¢nich is needed for interpolation between grid points. A relationship between
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L and fL can easily be found. The differential arc length _ L along the
body data line is related to its components in a cylindrical coordinate

system as follows,

or

The equation of any given translated circle of radius _ is,

=-_R_-C_-_) _ +_

where /_T and XT represent the distances between the center of the circle
and the .17.and X axes respectively.

Then;

4_
.]'L -- .,fl., T

R_-_-_T) _

and

f_

"" Rdn.l = t

_
or

/'k s --R S[_ (-_)_)_
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For segment I of Apollo,)t T= O_ _= RHt , (see Figure 17 ) and

(L,'_

For the second segment

The start of the second segment, the beginning of the shoulder, is at

Therefore at the start of the second segment, the beginning of the shoulder,

LSH = RHI sIN- \ RH_Ri_U

In the second segment

-- _.,_../- F..,z _ _- Lsx

So, now solving for IZ_ and substituting for )_T _ _ and Ls_,

which is the expression for Jt_ in the second segment ( L s >Ls_ ).
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After the complete flow field and body have been obtained, with or
without shock convergence, the data output options may be used. It is

necessary for the interpolations that the geometric relationship between

the body and the shock coordinate systems be known. It is to be assumed

that the final predicted body as determined by the shock wave, and the

desired body as eventually determined by the input equations are sufficiently

close so that the normals and localized coordinate systems may be oriented

with respect to the desired body which is fixed in the shock coordinate

_y_b_rc,by the tr_nsl__tio___point, defined in Figure l_ . After the desired

body is translated to its final position, and the body equations _r_
expressed in the shock-oriented system. A normal to the body may be

erected having the following equation, which is obtained from a generalization

of Equation (123).

= karLI sxs -4" Xs_

or

At this point in order to determine the absolute coordinates of the

points of Option A, it is necessary to introduce interpolation constants

C_ _Ce_ C× which represent the fractional coordinates of a data point

between the bounding _t$ ,_ ,$ , orK_, shown in Figure 22

Figure 22. Bounding Grid Points for Data Interpolation
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For Option A the e_lp of any data point is equal to the 8S of the
station. The Ok's of the grid system are given in terms of Oe_O_ qO °

for the first quadrant and due to the way the j _ are defined, e_=_-Sj

in the second quadrant. Thus the ej '_ bounding the e 3 can be found

and C es may now be defined as

Ces =-- e +L-e 

The absolute coordinates of the data points for Option C are not yet known
and v_ll be found later.

The shock surface is represented by a series of points, 5 L,_ , as

computed by the main program. The shock surface as interpolated in a

plane e s of option A is given by

where j and _-L-I
• !

represent the 5 $ bounding @S •

Joining the shock points by line segments, the equation of any segment at a

given _ and adjacent _ is

or

= ash X + (15a)
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After searching for the correct segment which the normal intersects, the
simultaneous solution of Equations (153) and (15_)can be found yielding

The distance between the body and the shock wave along the normal becomes

If e_ = angle between the normal and _m axis, then

TAN E_)_ = _'1

t::lLvl

"11. 'sl_ 0,_ 3D÷o., '

i

_os On Vl÷ak'
Now, the coordinates of each of the _ data points can be found:

and

-- l j 'tl'i

(Y55a)

_-DATA -- _YI

(155b)
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For Option C each of the points must now be put into the absolute

coordinate system. Let _' , _, O _ be the coordinates in the localized

system and _u) X and O be the coordinates in the absolute shock oriented

system. The transformation can be made by finding the vector _ in cartesian

coordinates. _ , shown in Figure 23 ,is.a vector from the origin of the

absolute system origin to the given data point. _ is made up of three

component s,

= Jr )'L__ 4-/t. 3

/
/
/
/

/
/
/

BODy

STATION

\

Figure 23. Relative Coordinate System

where

fk, = vector from the shock origin to the point on the body

( Xs ,As) from which the normal is erected. This vector

lies in a plane inclined at an angle OS with respect to

the pitch plane.
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_= vector from the tip of /l, to the point at which is
erected. This vector is coincident with the _s axis, lies

in a plane inclined at an angle Os with respect to the

pitch plane, and is inclined at an angle en to the X

axis as measured in the O s plane.

_ = _ which is perpendicular to the _t axis, inclined at an

angle _ / as measured in a plane perpendicular to X' from

the original 03 inc!ined plane which contains the X i

axis. _ -_
Figure _. 2_ and _ are described graphically in

Now, finding the components of each of these vectors, if L ) _ and

represent unit vectors in the absolute cartesian system,

= X s_. + ,a s coses j +_ s._e5

+ L - _ t+ o¢, _,+ _

"V_+=_ _ +(a'c.o,e=c_e'-Ks,.%s,.e j

+ 5"+ '_. )
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J

Figure 24 . Vector Relationships in Coordinate Transformation
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Now, converting back into the cylindrical coordinates of the shock system,

I
):

= Xs--V I.a _,
_ I _o_g I

_ J.)u!

and

_+ _, I/t÷ _'

-m-'s_(as s,_e i- ,% s{_gs- -F I Jr a_"

+ _'o_ _j s,_ _ + -V- ! + _ '

X_

_DATA T/+N_ j ( R_= _=__-1

(].57)

_- T_N-'I (_j case _ -

r I

(15_)
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These equations for Option C data points reduce to those of Option A,

Equations (155), if ,t l= O and X' is appropriately defined.

At this point since the absolute coordinates of all the data points for

Options A and C are known, the C@_'s for Option C and the C_p's and l

Ca_X_dpr$ for Options A and C may now oe found. Knowing the 8d_s , the _ 5
O5+iI$ bounding the _dp°S can be found and

_ O,_e-O.; .

C eap - Oj+ I e _
(159a)

for the data points of Option C. Similarly, the bounding _k_q_ for all the

data points can be found and

The bounding k Is

found since the

-_,L_, - -)_i (159b)

of a data point, shown in Figure 25 , are not so easily
value of a K is also a flmction of _u and O •

Figure 25. Bounding k;$ and E_

For each data point of Option C, as in Equation
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The equation of a k plane, which is parallel to the _ L;O@ surface, is

k-!

where

asx is defined by Equation (15_)

_= integration step size, the distance between

k and k tl planes, _o = O.

If L is the [ of the smallest bounding _-_ of the data point then

letting _ -2@ in Equation (160), tests can be made for the bounding k_
by testing against

)1
Xk =- a.s.

or, after substituting for O,$14 from Equation (15_) and reducing

_-_

7"k.= S'_)Oap CI --C,n.wJp_ J(" C,rl.,Ip C%_.+l)Otj,_ _ _ '_.

_.ce the bounding k _ are found, such that

(z6z)

then

k < Xdp < Xk,,

: s,.,,,,.+z
A k

(z62)
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Now there is enough information available to interpolate for the

properties at the various data points. With each data point there is

associated a g_ap ) _ap )Ce-_l. and eight bounding grid points at which all
the flow properties are Known. However, it has been found that after the

body is reached flow gradients become extremely nonlinear which would

indicate that any linear interpolation involving a grid point within the

body is likely to be highly inaccurate. The properties at each body point

found on a given ( and j are computed by the main program. In order to

maintain consistency with the main data output logic each bounding grid point

shown in Figure 26 lying within the body will use properties found by.
linearly extrapolating from the properties at the body point at that L j

and the grid point at the first k outside the body at that L and j .

This should allow any subsequent interpolations and previous computations

to remain unaltered and is consistent with the assumption of linearity in

the _) O andJz directions.

Data

I

Last Valid Data Point

_Xs

Computed

Body Point

Extrapolated
Data Points

Figure 26. Bounding Grid Point Within Body

The bounding _ s )d ¢ and k's of the data point are known as well

as the k preceding the body point at any _ and j where a body point

exists. Let these _ be denoted by k_ _ k_l and _b_,_respectlvely.
If for any bounding grid point of a data point k_ • kb_ j for the MASh
plane bounding grid points or (14_'PI) > _b_ _ for t_e (_L_I) _k

plane bounding grid points (assuming a body po_t does exist at the L)J

in question), then the properties at that grid point must be replaced by

extrapolation. Let the k of the bounding grid point in question be

designated kb_eP whether k_p = k_ or kL*l . Then, letting L_
and JSw the _ and _ of the grid point, finding Xkb at L_p .

j_p from Equation (161), and assuming d_ to represent a genera± proper_y,

- 9_ -
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k_v - A(.

where

replacesQ __p J ;l_l_e' k p represents the extrapolated property which
p_olperty currently at _'$P _ Jl_p and I<_p.

_b _ : • - is the body property at that " and

, SP ._.l_p " " " p_P _i'_assuming a ooay point is defined at that _ _p and _ ).

Xbi._p a'i:lP ..... is the )_ coordinate in the shock system of the
body point (bompGted in the main program)

_ ....... is the integration step size used to reach the (_¢l_t
plane from the _ t_ plane.

There are times when the body point is computed at a given [SP and
j Sp by extrapolating across a number of k planes. When this occurs the

properties at the intermediate grid points are determined by linearly inter-

polating between those at the body point and the last computed grid point.
Equation (163) accomplishes this if Rb is defined to be the k of the

last computed grid point, and kSp and Q;{IP J JlBP_k_P refer
to an intermediate point.

Assume _) _ )k represent the lowest
poi_nts of a given data point. Then if

interpolation in the O direction gives

_) j and k of the bounding grid

represents a given property,

(16 a)

(I- (164b)

(164d)
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where for Option A the above calculations are valid for each data point in a

given station since O 4 ---@S and C@_p _cim.

Now interpolating in the _ direction and substituting the values

calculated by Equations (164)

(165a)

(165b)

and finally, interpolating in the .)7.direction and using the results of

Equations (].65),

+ Chap Q L÷,,eap ,_p

(166)

which represents the interpolated property at the data point.

Streamline Trace Calculation and Option B

The mandatory data calculated by this procedure includes the stagnation

point location, streamline traces in the pitch plane and streamline traces
along the body surface emanating from the stagnation point. The stagnation

streamline trace will always be computed. When the option is selected the

various thermodynamic properties are computed along these traces.

In the pitch plane _ _-O but the streamlines are labeled by finite

values of _ .

The _ _ at which various streamlines cross the shock wave in the pitch

plane will be input data, _;n • The (I) at that point on the shock is found

by linear interpolation using the _'" _ "S which are computed by the main
program. In the pitch plane j=| _ _ _(_,_ and if .I"I.i and 71.L÷I are

the )%'_ bounding a given _.L_ ;

(I)r_._¢_ = (l)i_ I -!-
I*_i+1- _i)

(167)
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Once the value of _ to be traced is known, a search for this

be made _ the box shown in Figure 27 (bounded. by "_L • and k
which the streamline has just entered.

must

planes)

, k_,l/

A/i

_L

Figure 27. Bounding Grid Points for Streamlines in Pitch Plane

This search is made by testing whether

or

or

ui.',:_-,,k_,L i,lJ,:_)k. I

(1)_,.,,k.,,- ¢_,k,_

< I (168)

I _1 (169)

<l (17o)

which would indicate whether the desired value of _ TR.act is to be found

between the corresponding values of { 's or k's • If the streamline enters
between the L_x or k'5 indicated above, then of course the tests must only
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be made on the remaining two sides. No test is ever made for the fourth side

(between _L I and )_._._.! on the k n plane), because it is assumed
that a streamline will never travel towards the shock wave.

If either (168) or (169) are satisfied, then

or

)'tT_.ac_: = ,h. i

respectively. If (170) is true, then:

P"TR-A_e

For the stagnation streamline _T-macE=-_$Ta6. The X _ coordinate is

found by Equation (161). Thus the .It.and _ are known. For interpolation

the constants CA and C_i_,l_ C@_Ojare calculated from Equations(159) and (162)
and used in Equation (172J below where _ is a property:

or

(172a)

(172b)

The properties are now interpolated for at intersections of the stream-

lines and _g's and k planes but may be output at fixed input

intervals of arc-length or more correctly, segment length.
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Given the 5 and _L 5 of the streamline trace the distance

can be compared to the desired distance between output, g) shown in Figure28.
If S _the next c[ must be computed and so on until,

S

and then

rl

for each property.

Tf S ___c[, ,

.n_, + - Q, r,.,')

_nls process can be _^-_4 ....a lo,÷_=. .__ __nd )_, be the _ and 2%

where the quantities were last output on the streamline yielding

-" ,_ _+, _'nt-_. -- ')l'lae

7,- I "-- "X'n+l + d_+i " _+'_" -

o

where if d.+l =_I, fl= 0 j then _ml._O.
!

The streamline is traced and properties interpolated (if desLred) by moving

along _ planes in this manner until bounding values of _ can no longer
be found wi.th_'_the defined flow field.
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/

Figure 28. Output at Specified Intervals

The stagnation point location on the body cannot be found from _ and

since $ --$_a_ = constant and _ = 0 everywhere on the body surface.

The test for stagnation point is made by finding that point where _-= O.

The bounding %t '5 , those at which _ changes sign, are found by deter-

mining where on the pitch plane of the body

Once these bounding 21_ are found, linear interpolation for _= 0 can be

accomplished to compute the _ at the stagnation point as defined below:

-lO0-
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The value of

interpolation.

pitch plane.

_at the stagnation point, _staR, is also computed by a linear
stag is then used to trace the-stagnation streamline in the

Traces of streamlines originating at the stagnation point and emanating
at various angles with respect to the pitch plane may now be found as shown

in Figure 29. In order to facilitate the analysis the streamline traces are

not found on the actual body surface but instead on a projection of the body
surface on a plane perpendicular to the 5[ axis. A series of concentric circles

is to be used for the interpolation of the streamline path based on bhe cri-

teria that along a given streamline the direction of the velocity vector is

always tangent to the path.

S TAC._N,_.'I'|O N

P o_._T

Figure 29.

_z

Streamline Trace on a Body Axis Projection

It is convenient to work in a cartesian system, origin at the body axis,

and axes perpendicular to the body axis and lying in the pitch and yaw planes
(Figure 29).

Some input data designates that a streamline trace will be made on a

streamline emanating at an angle_i, from the stagnation point. This
streamline segment can be represented by the linear equation

= _- r-.TN/gP_. _ "/- 21-STA@ (175)

- i01-
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Assuming the integration interval to be _ , the first point on the trace is

at the location,

-)- .fL STg$

The coordinates of the flow field grid points surrounding this intersection

point can now be found by first computing the _ and O of the point in the

absolute coordinate system. Knowing _, ) _I J

_ 2" (176a)

(_ = TAIQ-I _-.I (176b)

If Option B is elected all the flow field properties must be found at _I )_l •
Otherwise only _- and _r need be found to determine the flow direction at

_an_J_l . The L '$ and j IS of each of the grid points surrounding _t_L
interpolation constants G_ and C O can be determined as outlined

previously. Since the properties on the body at each _ and _ are known,

two-dimensional interpolation can be accomplished. If _ is a property,
then

Q = % c,,J * q,,, (177a)

(177b)

and

(4 - C_.,_)+ C_ n Q L,=,e (177c)

• s JSwhere _ , _@I and j _ ]+l are the boundJ_ug L s and

respectively. Once the properties have been interpolated for, the second

point of the trace must be determined. This is found by going back to

-- O , _ --)t_T_, and extending a ray a distance_R . The slope of this
next segment (CT_) is found by using the velocity direction_ at _i j_a

to extend the segment from _E=O) _---_. The quantities OT and _,
were interpolated for through Equations (i7_) and (177) • This new_ can
now be computed from
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The second point at

_,- T_-' _ (178)- -W',

_ )_. can now be given as

_. = ,I.1< cos_, -_ ASTAG
/ -

_I.. = _.liL cJ11,,l_ 1

The third point trace is now found by using the velocity direction at _ __

to extend a line segment from _ I)_l a distance _.R to _ )_. The
newf_ can now be found from

= TA -' (179)
u"=

The new point is at

These equations may be generalized to the problem of computing the

trace to the )17_ ring at _n,_n_->3 •

defining
:E-n = _n-z. + 3..IZ.stl,4._._ l

•"_I¢I-I = "I"A N" I -_'rr_-'
- i1.,-n_I

(18o)

Now the properties can be interpolated for at _ I_n if so desired.

The new_ to extend a segment from the (_-I)$_ to (_+ I)gT

point can be found by Equation (180) after fl is increased by one, and

this process continues until the streamline goes beyond the defined body
points.

After the trace is completed, it is obvious that the distance between

points is usually not _ . The quantities are, however, output at intervals

of _ by a method similar to that used in the pitch plane traces.

- lO3 -
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Computation of Additional Flow Property Data

When the program interpolates or extrapolates for the thermodynam_c --

properties at a given data point, the results consist of values of _ U_-

(ft/see), p (atmospheres),p (_b_/&t. 3 ), and in some cases for Option B,

, (I_,_/$_) _A, and _ "( 1_/Sac)_. In addition, for the mandatory

output and for Option B it is de{ired that the thermodynamic properties of

temperature T (°R), enthalpy, h (BWIJ_, entropy S (Bl_/_bm- o_), total

velocity, U (ft/sec), and local Mach number, _ be computed. The method of

calculation of these quantities depends on whether the flow field is assumed

to be composed of a real or perfect gas, except for the total velocity which

is always given by

Real Gas

The properties of a real gas are a function of p and/O . Gas tables

for air which are read into the program allow the following to be obtained

directly:

Compressibility Factor .... _ (_/))

• • o • ° • •

Defining

Then

BrU

A = _.11_..8 A_._f._t_

S
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For a real gas

{ _,TU \

---- O.O_,_ssqo Z \lb,,- P-.7

Now the equation of state allows temperature to be calculated

(0,0T (lSl)

Local Mach number

where _.- is the local speed of sound. For real equilibrium air, the Mach
number maybe expressed as

M

U
(is2)

where

Perfect Gas

= 32.174 ft/sec 2

p = pressure in atmospheres

For a perfect gas (_= |)

- 105 -
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and from the equation of state

= p (. ATIv_') A ( _'i"O

_ej t_J

and

h = cpT

2&P_2

(_3)

Also

Substituting for _ from Equation (183)

- io6 -
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Defining S_ =_O, and integrating

=_ + C BTU__
[__ oR,/ (18_)

For a perfect gas, from Equation (183)

_fJp _-_

So, substituting into Equation (182) the expression for local Mach number

reduces to the well known expression

M

0

- ]-07 -
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SHOCK SHAPE PREDICTION

CURVE FITTING PROCEDURES

t_ ....... ÷_ _ _os e term may be fitted to a graphi-Equation _o)jwiu. a o#_............

cal representation of the shock by merely observing the pitch plane

(where _ = O °, 180 °) and picking various points on the shock wave, inserting

the appropriate values for the S[ and 2%£ of the point, and then solving

the resulting linear simultaneous algebraic equations for the coefficients.

These equations are of the form

_=O YI=I I'_=1 n:t

[, -- I) t4UICI_,E1K 01= CoEWlrlCIEM'I"£

-f- FO_. O=0 ° AND - FoR. 8=11o"

where the 61._,lrt)_.P _ _._n-i) :,m-I are the coefficients and are unknowns.

This method is not applicable with Equation (86) due to its implicit form,

and has the additional restriction that for any more than two cos _ej(_=oj_
terms the _ variation of the shock wave is not uniquely defined because all

the contributions are being lumped together.

A superior method which does not suffer from the above limitations deter-

mines the contribution to the S distance from each cos _O term.

At a given _[ , each group of terms can be rewritten as follows for

Equation (85)

2o( > t_'_.mp,xp A_ 2n CoS&pO = C(:M (

-- = p=o

M¢I=I _=I

m¢I

=7".
(iS b)

- 109 -

SID 65-1353



NORTH AMERICAN AVIATION, INC. SPACE and 1NFOR_IATION SYSTENtS DIVISION

and similarly for Equation (86)

S0_ = Cot

p= I y)r-.-I O'%YI_ Z.p '/_i QS 2.pt9

P

Cos _.p8 (_6a)

Z
'rY1=l I1---I r1_=l

(_Sb)

Since _Lp and (;_--I) are even and odd values, respectively, of _ ,

a series of equations of the following form will result,

S

ea

where 8j represents planes where a graphical representation is available.

S L)] = the S _asm_m_t at that )l i and e,i"

X C_ L --" the _ _l unknowns which represent the contribution

_=_> of each term at that _,;.

It is seen that for a unique determination of (_ +I] constants, (_+')

planes are needed. For each _£ a set of equations can be set up, and a plot

of C_ versus AL Can be made with the C%'_ defined by Equations (]-85) and
(186)] Then each curve can be fitted individually by conventional methods

which are illustrated in the following example, along with the application of

the previous theory.

- llO -
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Example

Assume that it is desired to use Equation(87) in the form

S = .--_o +Co.,)1 Jl "-_ta_l ,_.._'_ cosO

where

Now _ =% so $_ _= 3 separate planes are needed.
the O _O_ 90 °, 180 ° representations are available.

some constant. Then at It I

Let it be assumed that

Now let 6--I))_ =)_l =

Co _ SQ

3

C_-- CLblA s -t_.3jl_.l

and the equation reduces to the form

FOP-- .FL

Now, as shown in Figure 30

=f_l

o

atO--O s=Si "---CA JrCi -t- C_. (187)

_ 8 =180 ° S_ = Co -CI "fC_

-Lll-
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(i 9)

Figure 30. Definition of S1, $2, and S3

Solving Equations (187), (188), and (189) simultaneously for

- Z -- " "l- S A. =_-,

:::7_ rl.= fl.i

- ]_]_ -
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This gives one point on the C_ versus _ plot. The entire process is

repeated for a set of _ values until the complete plots shown in Figure 31
can be made.

u_

-l_ I]

II .. kJ

0 IL---?L_
b

U s't.= _.(
JL

Figure 31. Typical Radial Distribution of Parameters CO, C1 and C2

-ll3-
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Now each of these curves can be independently fitted by the equations

pL== 0.,)o co _-ax, o CJ +0.3,o C_

Cl =d,,, P- ÷ 4_, I _

respectively.
O_. = 4.a,A

This may be easily done after determining which points on the curve are

to be used. These points must be equal in number to the number of coefficients
to be determined and should be selected to result in the best overall fit of

the computed curve. If the points are selected as the Jt_ _ just used to

define the curve, then an equation of the following form results,

' I

where three appropriate t _ are chosen and the resultant linear equations

solved for _J_O _ 0"_>o _ &_o"

For Curve 2

where two _ '_ are chosen and the equations are solved for _bl La& _a.

For Curve 3

where three

and %,_. •
_$ are chosen and the equations are solved for _,,_, a_ •

-ll4-
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This general analysis can be applied to any number of coefficients or

groups of coefficients and is completely analytic, the only requirement being
that the appropriate number of planes are available for determining the _ _ _.

Shock Shape for Apollo, cg. = 22 Degrees

The shock shape for the Apollo Command Module may be predicted by using
the _aattari method, Hetailed in Reference l3 , or by scaling an experimentally

determined shock. Both methods have been applied to t_e case defined by _^_AA_

following flight conditions,

Angle-of-Attack = 22 degrees

Velocity = 22,754 feet per second

Altitude = 150,480 feet

The scaled shock was found by using the procedure recommended in Reference 22,

in which the local standoff distance is scaled in proportion to the predicted

standoff distance on the longitudinal axis. This scaling thus in general is

not linear with shock density ratio. The two resulting shock shapes are shown

in Figure32. In the checkout of this case, the results of which are presented

in the next section, the hand improvement of the shock shape started from the

scaled shock. The details of the procedure for methodically improving the

shock shape are also explained in the following section.

SHOCK PREDICTION FOR TEST CASES

Shock Prediction for Sphere, o< = _40 Degrees

A zero angle-of-attack flow field was computed for a sphere at _ = lO

for a perfect gas of _ = 1.4 using a thoroughly checked out inverse method

progrmm obtained from the NASA/Ames Research Center. Since the S&ID inverse

program integrates along the body axis of symmetry, an angle-of-attack case

was obtained by a coordinate rotation as shown in Figure 33.

This case was run as the basic check for the angle-of-attack formulation,

since the shock is very accurately known. All that is required is to define

the shock analytically. Although the zero angle-of-attack shock is analytic

and known, the analytic coordinate rotation proved cumbersome and would have

required special progranm_ng. A graphical solution was made using the princi-
ples of descriptive geometry. For this case the shock shape can be found in

all _ planes. The planes O = 0_ 90 °, 180 ° were used to define a shock fit

equation of the form given in Equation ( 87 ). The analytic fit was found to
be about as accurate as the shock could be constructed graphically. This

shock also fit the graphical shock in the _ = 45 ° --225 ° plane with a high

accuracy. The resulting shock fit equation, scaled to a shock radius on the

wind direction axis of 1.O, is

- ll5 -
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Figure 32. Pre]/mizmry Apollo Command Module Shock Shape
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S ._.

S -- Co 4" C I c-os8 ÷C_. c_s_..e

so - (0.,46^ - o.oss,_ _+o.=q5_') _o_e

where

is called the sy_netric term

.)'L=' = :Z._,(.,,SSo -- t.ZO0 S_

Axis of Symmetry

of Shock

X

Figure 33. Coordinate Transformation for Sphere Flow Field at Angle-of-Attack
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This shock is presented in Figure 3&. The shock shape is shown in five

-planes. Also plotted are the zero angle-of-attack shock and two special

analytic functions, C O and Co+ C2.

It is of interest to note the following physical features of this shock:

1. The values of the symmetric and cos e terms are both an order

of magnitude larger than the values of the com_G term.

e The shock shape in the 0 = 90 ° plane, the zero angle-of-attack

shock, and the shock shape defined by the symmetric terms only

all differ from each other by roughly the magnitude of the

cos Lo terms.

e The use of the zero angle-of-attack shock as a first approxima-

tion to the symmetric term is in error by as much as approximately

15 percent of the local stand-off distance.

-llS-
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Figure 34. Ana]_vtic Sphere Shock Shape

- 3.3.9 -

sip 65-1353



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

RESULTS FOR TEST CASES

SPHERE FLOW FIELD, OQ = 40 DEGREES

As stated previously, Lhe sphere _-"......._,, _..._11o_+ _=_......÷n 1:_e in develop-

ing a three-dimensional flow field computer program, since the results obtained

can readily be compared to OQ = 0 ° results by proper coordinate transforma-

tions. The results obtained for the sphere atoQ = 40" are presented in

Figures 35, 36, and 37. Figure 35 presents the complete pitch plane and

front view of the sphere flow field including the sonic lines and a set of

typical streamlines. The upper sonic line was easily obtained and thoroughly

substantiates the NASA/Ames results of Reference 4. The lower sonic line in

the pitch plane was more difficult to obtain because of the greater marching

distance and the fact that there is a continual reduction in the number of

grid points remaining with which to form lateral derivatives as the body is

approached. As a result, the accuracy of the calculations becomes less in

this region. However, a portion of the lower sonic line in the flow field

was obtained and the agreement as to location checks with the position of

the upper sonic line. The stagnation point obtained with the program lies

on the flow axis as it should, adding further substantiation to the S&ID
results.

The body locations obtained by the program are presented in Figures 35

and 36 for three meridian planes, _= 0"/180", 45"/225", and 90"/270". The

shock shapes for each of these planes are also included. The body, circular

arc of 0.76 ft radius obtained from the Ames result, is shown for comparison.

The Ames shock standoff distance of 0.103 ft was used to properly orient the

circular arc.

Figure 37 presents the body pressure distributions in each of the three

meridian planes. Agai_u, _=o_+_ t_ko_._...........9_m +.he Ames _ = 0° case have been

transformed by coordinate rotation and presented as substantiation of the

S&_3 program results. The sonic pressure is also shown for reference. The

approximate radial positions of the sonic points in the pressure distribution

plot for the pitch plane appear to agree with the results shown in Figure 35.

Good agreement is also obtained with the Ames data for the stagnation pressure.

APOLLO FLOW FIELD, _= 22 DEGREES

An equilibrium real air flow field over the Apollo Co,rotund Module was

computed for the following flight condition,

= 22 Degrees

Velocity = 22,754 Feet/Second

Altitude = 150,_0 Feet
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As previously described, a scaled schlieren shock shape was found and

was used for the initial shock estimate in the pitch plane. The shock shape
in the 90° meridian plane was estimated by Kaattari's methods. Since this

case also served in program checkout, it proved simpler to correct the shock

shape by hand as the program checkout proceeded for this difficult angle-of-

attack case rather than use the iterative convergence procedure. For example,

the problem of integration instability caused by too large an integration

_ute._._alwas encountered and studied during the course of shock shape

improvement. A much better understa_d_ug _s a_o obtained of the best

values for Qtest and Mtest. These considerations could only be evaluated on

single program runs. As the effort continued it became apparent that, at

least for high speed real gas flows, a reasonably rapid hand perturbation

procedure could be used to converge to the desired body shape.

The grid point locations are shown on Figure _l where each original

point in the cutoff grid is shown with a body surface velocity vector. The
spacing is a uniform 15°. Points are closer together near the outer radii

to ensure accuracy in the stagnation region as well as the shoulder flow where

high property gradients occur. The choice of the radial spacing proved a

problem. For ant greater point spacing than that shown, the accuracy of the

stagnation region was degraded rapidly. The close radial spacing required

resulted in an integration step size of 0.0175 ft to maintain a stable integra-

tion near the shoulder. Since the program uses a fixed step size, a total of
about 55 integration (k) planes were needed to define the entire flow field.

Single run time was about 90 minutes for the real gas runs. The grid cutoff

limits were selected to avoid unnecessary calculations in the high supersonic
flow regions, particularly in the G =180 ° plane.

The initial shock was fitted by the standard shock equation using the

explicit form of the symmetric term. Both symmetric, cos 9, and corn m_
terms were used. If one represents the shock shape as a function of

in a given meridian plane by S subscripted as defined in Figure 3&.

St -- Co + CI + C_.

S;L= Co - C;L

3 3 = Co -C I + C_L

where

Co, C_, and C% are the functions of Y_ that are the coefficients of

the ¢os_)e ,cos @ , and ca_ _e terms respectively. Solving for Co , C, ,

and C_ in terms of the predicted shock shape coordinates one obtains,
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S_-

Co- 4 _" 2. 4-

£_ S= S_
c_.- 4 -E- 4" 'W -

These equations were used to compute Co, Cl , and C a which were in turn

fitted by polynomials to obtain the initial coefficients for the analytic

shock fit. Analytic corrections to the shock were made by first finding

corrections required in the individual planes e = 0°, 90", and 180 ° and

then using the following equations to obtain the corrected values of Co,

CI, and C,..

z_Co - 4 +_ "+" 4

Z_C I _.. 2,

This approach works best if shock shape perturbations result in only local

body shape perturbations, a situation which is approached as the free stream

Mach number and shock density ratio both approach infinity. The Apollo flight
condition was such that this method worked well.

The use of a small integration step size allowed the Qtest to be

selected at the rather low value of O.1. The Mtest was selected at 0.6, a
value which seemed to work well on several cases investigated. Smoothing

started on plane _%= 15 and was terminated by the normal test. Two smoothings

per plane were used. The weighting factors are shown in Table 3.

The hand correction of the shock started logically with the lowest order
terms in _. The local shock standoff distance was corrected by a percentage

of the predicted body error on the same normal. To move the predicted body

the shock was moved in the same direction. 25% of the body error was applied

at the shock. The correction was expressed as a polynomial in _ for ease

in correcting SI, S&, ors 3 . The correction can either be positive (the

shock moves toward the body) in which case no problem occurs, or negative,
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in which case a problem may exist. The objective is to avoid an unrealistic

irregular shock, especially one with a reversal of curvature. The correction
was fitted by the equation

If the correction was in the negative alrection iL -_-_s first verifi_

analytically that the shock did not exhibit an inflection point. Early runs
on this case utilized the perfect gas option built into the program. A value

of _ was chosen that duplicated the real gas normal shock density ratio.

Only after obtaining a fairly good body prediction were real gas runs made.

This procedure proved that the use of a perfect gas simulation of a real gas

flow could save machine time. When the change to a real gas calculation was

made, the predicted body shape did not change radically.

The flow field results are shown in Figures 38, 39 , and _0. The

pressure distribution is compared with Newtonian in Figure &O. The data

variations all appear reasonable and consistent. The input data to the
program is summarized below in Tables 2 and 3.

Table 2

Apollo Anal_ic Shock Shape Coefficients

Terms in

Polynomial (Symmetric Term) (Coefficient of@ ) (Coefficient of 20)

;Z

jy2

A3

._

/&8
/%IO

,,12

]%16

o

.o3o21
-2.5xlO-&

3.8SxlO-5

8xlO-9

I.28xlO -I0

9.063x10 -12

2.56x.10-15

.O32
0

_I0-_

5x.I0-5

-1.6x10-9

0

7.25x10 -12

5.125xlO-15

0

0

-2.5xl0-&

5.125x10-5

8.0xlO-9

-1.28x10-10

-1.813xi0 -12

2.56xi0-15

Table 3

Smoothing Weighting Factors

3"/L 1 2 2.9 3.7 _..) A.75

F ! ! .95 .8 .2 .I

2.

F

5.5 5.67 5.83 6 -_.l_. 6.33
0 0 0 0 0 O

5

.05

5.5
3

5.25
0
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MODULE, e =0*_ 180 °
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Stagnation
Point

Sonic Line

Cut off L_e

Figure 41. Body S_r£aee Streamline Pattern, Apollo Celmnd Module
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BEHAVIOR OF ITERATIVE CONVERGENCE TECHNIQUE

The iterative convergence technique for improving the shock shape and

predicted body shape has been tested on several sample cases. Functional

checks were performed on a perfect gas zero angle-of-attack sphere flow.

Both a one- and two-coefficient approximation of the shock were used and

results indicated an improved shock was obtained by the automatic procedure.

An early test of the procedure was made for a perfect gas, _ = I._,

flow over the Apollo shape at _<= O°. The implicit shock shape was used;

and it was found that for this three-coefficient shock fit the shoulder

region did not improve on the first iteration, although the large face

radius was improved. Subsequent iterations were not attempted, because

although slow convergence was possible it did not appear satisfactorily

rapid. The cause of the poor performance was traced to the inherent

behavior of perturbed shocks of the implicit fit. It was concluded that

the explicit fit would have less cross-coupling effects between different

coefficients. This explanation was borne out on an iterative run on a real

gas Apollo flow field for Dg = O'. One iteration was run in which a two

coefficient (explicit shock fit) was initially perturbed very slightly from

the correct shape which was found by hand perturbation. The shock and body

shapes resulting from the automatic iteration were improved in comparison

with the initial shapes.

- 132 -

SID 65-].353



NORTH AMERICAN AVIATION, INC, SPACE and INFORMATION SYSTEMS DIVISION

NOMENCLATURE

0..

E

d

h

speed of sound; shock coefficient defined in Equation (83);

body cc_fficient defined in Equation (129)

coefficients defined in Equation (185)

maximum diameter of Apollo

non-radial flow factor

X-B; shock equation parameter defined by Equation (83)

specific enthalpy

LxL

I¢.)k

L

grid coordinate defining value of Jh

unit vector along X -axis

unit vector along direction of increasing

unit vector along 7¢-axis

unit vector along direction of increasing e

grid coordinate defining e

cos_ 4-_Cos_S1__ _ALSI_@ %1_; integration plane index

surface arc length

Mach number

N

Yl

shock equation parameter defined by Equation (85)

1 + B_(_)_l ; any positive integer

shock equation parameter defined in Equation (83)

normal to body surface

unit vector normal to shock surface

; distance

133-
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P
Q

R

S

S

T

U

V"

ff--

_r

t_

X

x)_,¢

,6

g

o

pressure; shock equation parameter defined in Equation (85)

gas constant per unit mass of undissociated air; distance from

body axis to point on surface; radius of curvature

a body-oriented cylindrical coordinate (see Figure 2 );

streamline radius (see Figure 12 )

function describing shock, (Equation lO )

specific entropy

temperature

total velocity

velocity in the X-direction

velocity in the %-direction

tra_aformed velocity defined by Equation(27)

velocity in the Q-direction

transformed velocity defined by Equation(28)

shear coordinate; distance measured from the shock surface in
the _-direction

body-oriented Cartesian coordinates (see Figure 2 )

free-stream-oriented Cartesian coordinates (see Figure 2 )

compressibility factor

angle-of-attack

angular location of streamline (see Figure 12 )

specific heat ratio

distance between data points (see Figure 27 ); shock standoff
distance

density ratio access shock, error defined in Equation (127)

a body-oriented cylindrical coordinate (see Figure 2 ); slope

defined by Figure 14.
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density

a stream function defined by Equation (77)

a stream function defined by Equation (78)
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SUBSCRIPTS

8

C

e

Z

%J

H,

_q

fl

0

P

S

t

×

X

measured in body-oriented system as defined by Equation (128)

corrected shock coefficient; coordinate of free stream stagnation

streamline; control point

equilibrium

shock coefficient identification index defined in Equation (83)

refers to intersection of body normal and predicted body line

segment

number of independent variables

hemisphere radius

shoulder radius

shock coefficient identification index defined in Equation (85)

normal to shock) shock coefficient identification index defined
in Equation (85) ; exponent in general body fit equation

reference condition; intersection of shock with )_-axis; origin

of body-oriented system

shock coefficient identification index defined in Equation (85);

number of shock coefficients; body segment of translation point

body segments of control points

partial derivative with respect to

behind shock; measured in shock-oriented system as defined by
Equation (153 )

tangential to the shock, translational point

partial derivative with respect to X

partial derivative with respect to X or X-component

partial derivative with respect to _ or _-component

partial derivative with respect to _ or _-component

- 136 -

slr)65-1353



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

,,%3

partial derivative with respect to 0

free stream

vector quantity

denotes shock equation form defined by Equation

number of independent va_-iabl_s, e p!_ne

sonic condition
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APPENDIX A

TRANSFORMATION OF CONSERVATION EQUATIONS IN VECTOR NOTATION

INTO A CYLINDRICAL ORTHOGONAL COORDINATE SYSTEM

For any orthogonal coordinates (but not necessarily cartesian), i.e.

_" CXI) _._.)X-_) the divergence of a vector function

(_, _ _ )_ is, from Reference 23 ,

(]90)

where _'!, ) _.jazld _13 are obtained from

_ being an elementary length in such a coordinate system. For cylindrical
coordinates,

So that

And Equation (190) becomes

or

_x +_J- _ rL d-_- ae (191)
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The application of Equation (191) to the continuity equation, Equation

(i) , in which _, _/o c&, _ =/a V", and _3 =P ux is straightforward and
results in the expresslon

• = -Ik
(192)

as previously given in Equation (5)

The momentum equation, Equation

The gradient of a scalar function is given in Reference 23

(2) , can also be written as,

as

(193)

(194.)

So that in cylindrical coordinates

(195)

the right hand side of Equation (193) is thus,

(196)

To evaluate the left hand side of Equation (193) we note that

(197)

Forming the scalar product _.V using the gradient operator defined by

Equation (195), we obtain,

-]42-
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and thus,

The right hand side can be expanded and s_apilfied to _eld the fo!lowing
components,

(19s)

+ O u._- +___+

The final form of the momentum equations are obtained by writing the three

equivalent scalar equations, using Equations (196) and(198).

u. _---_- +u--_--- .4- - P _x
(199a)

(199b)

(199c)

-Ih3 -
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The evaluation in cylindrical coordinates of the term _._ in the energy

equation, Equation (3) , comes directly from Equation (197). Thus,

U .U = a t u- -I-Lv"

and so the energy equation becomes,

(2oo)

-1_4-
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APPENDIX B

VALIDITY OF THE INFLUENCE COEFFICIENT METHOD

In Reference A it has been found that a shock equation of the form

! +  AF, _

where

5s = A5 $ (_'_)1912= shock wave parameter

kS = radius of the shock wave at the centerline

will produce spherical or elliptical nosed, axisy_netric bodies in a perfect
gas to a high degree of accuracy. This equation can be considered to be a
reduced form of

with A-/,$ = O.

An equation of similar form in a body-oriented coordinate system can be

used to represent the body obtained,

- 1]45 -
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The various coefficients can now all be related by the Taylor Series

expansion;

= _a 3
rl=l j=l

L=I
)

where now

As= = CL_. Ash-- E,__

A7$-- 51._ ATb = g_,

( 20_ )

( 204.b)

(204.c)

It is of interest to determine the magnitude of the coefficients of the

Taylor Series for )1>I since the terms using these coefficients have been

neglected in the iterative convergence technique used in this computer program.

The second order terms have been computed using the results of Reference

( ATs _ 0 ) in conjunction with new results obtained using the computer

program of Reference lO for A7_# O.

Equation (203) can easily be fitted to an elliptical body if the ratio of

the major to minor axis is known, defining_ =b/_ • Knowing the equation
of an ellipse;

or

Using the binomial expansion;

and considering only the first three terms

=

-146 -
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to within 4.5% and knowing _b-- b7 _= )Rb _-_/_ for an ellipse,
then

or in the form of Equation (203)

._...L. Bb = (205)A - 8 A.q, B s

In Figure 29 of Reference _ are given the various _b of bodies obtained

from various A_= values in Equation (202). Thus, the results of Reference

4 can be used to obtain the body coefficients for various values of A_$.,

b_y- 0 . However, in order to compute second derivatives of the varmous
coefficients other results are needed for ATs_O.

The Ames computer program was used to obtain bodies for non-zero values

of AT= • The output is a series of points representing the body associated

with the specific Ass and A7¢ _ k S = l of Equation (202). A curve is then

fitted through three appropriate body points and R b j A5 b and Axb
algebraically obtained.

Then the functions

Rb = _b (Ass _ AT s > P_s")

A5 -Ash(Ass, ,4-,s , Rs)

A7 b 7b _ - %

(206a)

( 206b )

(206c)

can be plotted for various points if the effect of _$ on the body variables

can be found. The initial values (at which the derivatives are found) for

each of the variables are AS_ -----O. OS_ Avs=OjK_=l. Figure 29 of Reference

shows A5S vs B_ for h4_ = constant l_es and A.7$foS 0_ _ : I.
Figure 30, of the same reference, shows Rb/KS vs 155 _= constant

lines and ,475 =O • Thus the desired relationship can be found using IV_m=lO
and _b --B& _5_) from Figure 29, yielding _ =_b _) for _53

= constant, _7 s = constant =0. It must now be realized that _$ is merely
a scaling factor and that a change in _b would only provoke a change in Ks

and would not effect _$b or ATb which determine the non-dimensional shape

of the body and are not functions of what scale is to be used. Thus

-147 -

SID 65-3353



NORTH AMERICAN AVIATION, INC. SI'ACE and INFORMATION SYSTEI'_IS DIVISION

and Equations (206) reduce to;

= A ,.C AT:)

The resultant plots are shown in Figures _2, _3, and M+ .

Figures 29 , 30 of Reference _ , coupled with Equations (205), are used for

Figures h2 and _3 where ATa=O. The analytic curve fit is used in

Figure _3 to obtain the plotted results where A75 =0 . Where ATs --0

in this figure, the appropriate results indicated by Reference h are shown

but not used. The apparent discrepancy between these two methods results

from the fact that on the NAA runs of the Ames program the sonic part of the

flow field was truncated to facilitate runs using finite Av$'S which other-
wise would give unstable solutions. A second source of difference is the

arbitrary location of the three points analytically fitted to solve for the

three body shape parameters. Although absolute values may be in error, the
trends are believed correct.

(207a)

( 207b )

(207c)

The results of

The second derivatives may be found from Figures _2, _3 , and _.

From Equation (20_), the derivatives of the body parameters needed are seen
to be :

-_ l_ first order effects:

 e-s ) s ' aAT 
and

b

also;

fl= 2,) second order effects :

Some of these derivatives may be eliminated since for any variables a a,_

-::].ks-
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and 30

_!Nii_ i_}_tt_ _m_ ......

_!zinTt +i)

o. _ _ _ l__

0 0.i 0.2 0.3 O.h

Figure h3. Varia%io_ of Body Sha_e Parame%ere wi_h A_S

- lh9 -
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+:

_J

I11

Ii

LL

Figure 4.3. Variation of Body Shape Parameters with h7s
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and similarly

k Avs_its _ its_ hTs

Thus the needed derivatives for first and second order effects become;

for AMb ) A7b ) I_ and in addition

for A 5 b ) A7b

Now the derivatives may be obtained:

For _

=0.7(=

JlC.b ( _" F.-b ._

-o._o

m

- = 0

-- O.SO

"" 0

--_.SG

Figure 4.2

Figure 42 or_3

Figure hh

Figure h2 or_3

Figure _J_

Figure _J_
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The final equations may be computed by substitution in Equation (20_).

Thus, at _s= I_ ASs _-0.08 and AT_--O , the equations for the influence
coefficient method become

I-

including second order terms

Thus it is seen that unless the errors _ _b ) _Ag j_ are small,
b b, .

thereby making the shock corrections, _s ,_A_=_/_-M small, it zs very
possible that higher order terms will effect the convergence of the influence
coefficient method.
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