
. 

. 

Abstract 

Transmission and Reilecticr, of Electrcrnagnet.ic Waves 

Normally IncideEt on a Wz,rm Pla.sma 

B y 

Craig C o m s t x k  

The Pennsylvania State University 
Ionosphere Res e a r  ch Lab0 rato ry 
University Park, Femsyivania 

The solution for an electric field normally incident onto a warm, 

semi-infinite plasma is obtained by means of a mcdified Wiener-Hopf 

technique. The warm plasma is taken irito account by means of the 

relativistic Vlasov equation. It is folind that the previously obtained 

solution of Taylor gives the correct t e rm for the wave number in  the 

plasma, but not the correct  answer for  the field. It is shown that the 

method of considering an "equivalent': ft;l?y infinite pla sma corresponds 

to a physically unrealistic matching cf the plasrna to the vacuum. The 

field inside the plasma is found. The field just inside the plasma is 

discussed and the non-uniform limit f rom warm t r ~  cold plasma found 

by Taylor is not found in our solution. 
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I '  I. Introduction 

1 In a recent article Taylor hzs presented a solution to the 

transmission and reflection of an electromagnetic wave normally incident 

on a semi-infiaite warm plasma. His approach, and the approach of 

several  others to similar problems, involves converting the given 2 -4 

half-space problem into a full-spacc problem and assuming +b2t the 

solutions to the two problems are equivalent. We wil l  attack the same 

problem as  Taylor without this assumptim, by us? of a modified 

1 Wiener -.Hopf technique. Taylor obtains three results : the warm 

temperature correction to the wave number of wave propagation in  the 

plasma; the amount of the incident wave transmitted and reflected a t  the 

interface; and the fields just inside the interface. 

his first result is valid sufficiently f a r  inside the plasma, but not near 

We shall show that 

the interface. W e  shall show that his other two results a r e  not valid. 

In particular Taylor's conclusion aSout a non-uniform transition 

f r o m  warm plasma to zero temperature plasma dr3es not appear. 

11. Formulation of the Equations 

Following Taylor we consider a rectangular coordinate sys tem 1 

such that the plasma is contained in the half space z > 0. An incident 

transverse wave with frequency w propagates in the vacuum in the z 

direction, with its electric field aligned in the positive x direction. 

It is noadditional complication to consider +he plasma to have a current 

sheet in the plane z = 0. 9 is% Setting E = 4 E[z)e , then the relevant x 

1. Edward C. Taylor, Radio Science 69, - 735, 5;965). 

2 .  E.  C. Taylor, Phys. Fluids I 6,  1305, (1963). 

3 .  V. D. Shafranov, J E T P  (USSR) - 6 ,  1010 (1?58) .  

4. G. E. H. Reuter and E. H. Sondheimer, P r x .  Ray. SGC. A, 195. 336,  (1948). 



equation is 

where j(z) is the current density a t  the poiwi {x, y, z)  and A is the strength 

of the current density sheet. If a relativistic cc2lisionless plasma is 

considered, then the piasma current is given by 

j = e  3 f 3 c u x f d 3 u  

where f 3 =  1 t u2, 

and f is the solution of the relativistic, linearized, collisionless Vlasov 

equation 5 

- i w f + B c u z ~ = - - E ~ y  af  e a fo 
m c  

X 

Assuming specular reflection cf the pl=-sna particles a t  the 

boundary we obtain the integral equation f c r  E 

where 

5. R. C. Clemmow and A. J. W i l s c p ,  FPW. R<3!~. Scc. (London) 
A237, 117, (1956). - 
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which equations a r e  Taylor's (4) and. (5) reqpectively. 

To solve equation (3)  transfrgirm-s Seem an obvious choice. 

Unfortunately the range of integration of the integrals in (3) is only 

1 semi infinite; in  any case equation ( 3 )  is valid ~ n l y  for z > 0. Taylor 

ge ts  around this problem by the assumption that E(z) = E(-z) (and the 

implicit asgumption that f (z) = f o ( - a ! )  thus combining the integrals. 

He thus considers the different problem where the medium is infinite 

0 

and the fields are  symmetrical. He th2n in'.er,ds to match the solution 

for  z >O to this problem to the solution for an incoming wave. It is not 

a t  all  c lear  that the symmetry which is inherent in this different problem 

is relevant to the original problem. 

W e  note that equation (3) i s  really valid only for z > 0. 

given problem seems a logical candidate for a Wiener-Hopf approach. 

Thus the 

Because of the d + z' in  the las t  integral, the sclution is not a straight 

forward application of the ordinary Fourier tramform. We need to use 

the generalized concept of a Fourier transfcrm.6 W e  ther, define the 

four integral transforms 

0 

F - ( k )  = eikz E(z).dz 

03 

0 

c ( k )  = 1 e-ikzE(e) dz 
-03 

6 .  See, for example, J. Irving and N. Miilli~eux, Ms.?hematics in Physics 
and Engineering, Academic Press ,  1959. 



I 1 . -  

Let 

and 

- 4 -  

Q) 0 

Then equation (3) becomes the 4 equa5 ons I 
- - (w' /c '  - k2 - K + )  rt - E;(o) t i k Elo) - k + r + * -  HI t Hz = - A/2  

( 0 2 / c 2  - k2)  - *  - -i? - Et + E'(o) - - i k E( t )  - K - E+ t HI - Hz = -A/2 

- 
( 0 2 / c 2  - k2 - F-)r: ( 0 )  - i k E(o)  - ~ - r ~  - Hz 4- HI = -A/2  

- 
(a2 / C  - k 2 ) e  -T:K+ + E'(o) - t i k E(o) - K+ Et+ H2 - HI = -A/2 

where we have used the syrnmetry of KT (tr ,dK* 

of KT) to eliminate wf and EL (0) = 

is the appropriate transform 
. -*  a E  f 

(z = 3 1, while E(o) is E ( z =  0 ) .  

* s form a linear set fer  the four quantities E,, E,. 
It is convenient'to eliminate the difr'icul: quartities Ha and Hz. We obtain, 

after some algebra, 

2 Kq (0) 

+ 2A E + t F T  = -  
(a2 /c2 - kZ -m (w' / cZ  - k2) (0' / c2  - kZ - K) - 

1 
I 
1 

( 6 )  

( 7 )  

This simplifies to 

Now E t - is not really the ordinazy F:-:rle~ transform of E, for  the 

entire space, since the paths of i n t e g r z t i m  involved in the integrals a r e  

t 
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different . r+ is the Fourier transform of a function 

and conversely for E . - + 
the upper half k plane If E(z) vanished for z sufficiently large, then, as  

can be readily seen from the transform defirriticns (5) (k) will actually 

be analytic for  the imaginary part of k slightly negative. On the other hand 

E-(k), which is the Fourier transform of a function 

Thus the analytic f u n c t i o n r  (k) is analytic in  

t 

- 

is analytic, from i t s  definition (5), in the entire lower half plane. The 

boundary conditions which we will impose on +he solution E(z) to our problem 

will be the following: E(z) i s  to be oscillatory, o r  perhaps damped, but not 

exponentially growing, in both half pianes. 

be analytic up to and including the real k axis, except perhaps a t  isolated 

singularities on the real  axis, or branch lines which extend into the lower 

Then both r+ (k) and E ( k )  - will 

o r  upper half planes respectively. Thus there is a t  least  a common line, 

namely most of the real axis, with an uncountable number of points, along 

which both r+(k) and 'E - (k) a r e  analytic. 

W e  now will apply a Wiener-Hopf argument. That is ,  we t ry  to 

separate equation (18) into plus functiocs, fu:ic5~rts analytic in the 

upper half plane, and minus functions, arLalytic in the lower half plane. 

2 E p  
The term has pc2e.; OTZ the real  axis. It is not 

0 2 / c 2  - k2 
immediately obvious whether it is a -t fvmctiior, or a - function. We employ 
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the boundary condition that a wave of the fres space wavelength 

cannot propagate in the plasma. Thus It muLc:be assigned as a 

- function. The term 

A - ~E'+(o) 

w'/c' - kZ - K (k) - I (k) - 

has both poles and two infinite lines of singuhritie's, s o  it i s  not obviously 

+ o r  -. 
possible cases. 

draw two lines, depicted as 1 and 2. 

a r e  on the real  axis one can still draw such a pair of l k e s ,  only around 

the poles and branch points in an obtT-:i;;s waj7.1 In the cress hatched 

region, I (k) is analytic. 

for  mula, 

Its singularities a r e  depicted below in figure 1. Consider the 

As long a s  the poles and brdnch lines a re  split, one can 

(If the poles and "branch points" 

Thus we can write, using Cauchy's integral 

We now have I (k) written as  the sum of t w g  functions. Looking at 

the first integral, a s  a function of k, we see that its only singularity is 2 

pole, and that 

can be differentiated under the integral sign, and the resultant iritegral will 

converge for  all k lying abcve that pcle. [k) is actually a plus F:US 1. 
-I- 
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function. Similarly 

is a minus function. Thus we have written 

To evaluate these integrals w e  complete 3 clcsed contour for each, and 

chose to close up for each integral; then use JordaK's Lemma. Then 

where k is the positive zero of 
P 

kZ t K(k) - u2 / c 2  

(It is anticipated that, to  the f i r s t  approximation, there is only one), 

and 

Thus 

2E; (0) - A 
C =  

2 k  
P 
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The right hand side of (14) is analytic i E  the laver  half plane, and the 

left hand side analytic in the upper half. 

represencations of a single function, which i j  anslytic everywhere. 

E(z) is integrzble a t  the origin, then by the Riemann-Lebesgue theorem 

its Fourier transform vanishes for I k I -a. Ey inspection, the other 

Thvs the twosides a r e  different 

If 

t e r m s  in (13)  vazlish at ir.!i=ity. n e  n d y  s&re F a c t i o n  .;t.hich varJshes 

everywhere at infinity is zero. So 

Using the inverse transforms for equations (19) and ( Z O ) ,  

and adding them we obtain 

where the path c1 is necessarily above all the singularities of 

the path c2 is below all those o f F  - (k). 

(31) can be evaluated, using Cauchy's formula, by clasing a contour 

downwards. Since the second integral has no singularities there, it 

is sufficient to write 

(k) and t 
For z > 0 the integrals in 

a, 

1 -ikz - E+ (k) d k , z 0.  

I 

The integral for E - (z) is not meaningful for CUT problem since equation (3) 

is valid for z >/ o only. 
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III. Solution to the Equations 

The problem is then reduced to evalm5ng the integral (16a) 

for  the electric field in the plasma. 

this integral, to analyze the approximate nature of the results. 

It is useful, before evaluating 

From (11), (13) and (15) 

Equation (17) has poles a t  the zeros of 

k2 + r ( k )  - w2/c2 

Anticipating, a s  we already have done in the previous section, that there 

a r e  only two such poles, symmetriczlly placed, we see tki t the second term 

in (17) cancels the pole a t  k = k . 
to k = - k , which is propagating into the plasma. In the above statement 

we have tacitly assumed the zero of (18) is rea?. If it is complex, then the 

wave is, of course, damped. There is also a contribution to the field from 

the branch line type singularities. In general, this would mean a decaying 

contribution to the solution, whose exact nature wil l  have to be determined. 

Thus there is only one wave, corresponding 
P 

P 

We note that the field in the plasma is linearly dependent on the 

zero field E 0 

current sheet strength. 

as  well a s  (contrary to TayLor's fcrmuiation',) on the 1)  
We see then that the branch line b5hat;,on must be that shown in 

Figure 1. 

path of integration, while possible, would resGt in either an incoming 

Any other location of the p c J k 5  ard Srznch lines relative to the 
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wave due to the other pole, o r  a growing eqpxential due to the ether 

branch line lying in the upper half phne .  

The solution to (17) wi l l  be matched to .:he solution to equation 

( 1 )  for z 0, namely an incoming and reflected wave. 

W e  must now turn to  the task of evaluating the integral above. 

W e  Ire first faced with the cdclLlzti9?l ofx-%\ k i s  which is given by eq2a+;on 

(7). Using the definition (4) it is easy tc see that 

(19)  

Thus it is easily seen t h a t x k )  has singu1ariYe.s due to the vanishing 

denominator of the integrand. -4s will be shown later,  these singularities 

w appear at all k such that f k 3 / c ,  which curves a re ,  effectively-, branch 

lines. 

If fo is taken to be Maxweilian in  \ I ? l > i . l t Y  space, then the integral 

(19) is easily converted to the t r iply idhi% ixtegral  

If we let 

it is shown in the appendix that this L S * ~  t.: w~:;.':F.TB 

2 mc 
kT where X = -. 
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This ir,tegral shows clearly tha tqk: ,  h s  branch lines exf:ending :xtward 

on the real axis f rom k = f 

explicitly in closed form. 

temperature c y  tEe plasma is fairly ~ C I W  (ie: 

can be evaluated asymptoticaEy for X - e. 

w 
/c .  Tl---: i n k g n 1  ( 2 0 )  can ~ c . 5  be evafuated 

However, if f is Maxwellian, and the 
0 

X > > 11, then tke irteegral 

This is  done in the appendix 

the first order (in k T l - - z )  1 L L L L  term ea:2-irlz;tcd cxpy-:+i-v . 4 L I C L Y ,  ;is a f-~~ictio;; 

of n and X . The answer is 

-i Y’X erfc ( 
IJ 2(n2 -1) 

Equation (21) is too complicated to be useful. 

either of two cases,  f i / n  >>1 and d X!n <r <1. 

to low temperatures at some distance from the plane z = 0 ,  while the 

la t ter  corresponds to  low temperatures very close to the plane z = 0 

(from Tauberian theorems about Fourier transforms). 

One can simplify (21) for - 
The former corresponds 

One obtains 

limE(k) r\, [ 1 + (n2  - 5/2) - k T  3 M p - 2  
2 TT-C C / n  + a3 

1 ,  which is the answer obtained by r j s - ~ y l r ~ r  . 
f rom the interface z = 0, q k )  i s  ess-nth:l>- qLaZraSc in k, $0 that 

,E,;._: is ,  a t  s(2rne dcsknce 

(21%) 
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T'bns we obtain 1 

rnc - k =- @ I  ' I  
I 

' 2 '  w mc ' / 

Thus, far f rom ~ - e  interf.=,ce there exist::. f c r  tr)= > u2 (1 - 5/2 X )  
P 

a propagating, unattenuating wave with w3ve number given by (22). F o r  

lesser  frequencies this "wave" is dam-p=id with a characteristic length 

given by the reciprocal of the abso1ut.e value of (22). 

The limit (21a) is equivalent tcz an expansion o f m k f  for small k.  

AS seen from the definition of the invc.rsc2. transfnrm (i6a), and the 

usual ideas involved in  the method cf c",.=.timmry phsse, for  z large 

compared to '/ ($5;- , it is  those values c.f E[k) for small (compared to 

'1 1\1 x ) k which contribute to the integral. OR the o 5 e r  hand, for z 

small  compared to '/c, the e n 5 r e  rmge  c,f values of E(k) 

- 

and in particular the values for  k r g e  n a r e  sigr-ificant. We obtain 

so that 

__. 

Thus, f o r  large enough k, the  branzln- IirA ci K(K) ;e the most significant 

part  and the t e rm w 2 / c 2  - k2 - KlkI 

the f i rs t  two t e rms  of the :r.i.-rse tracsfcrm f i 7 )  3::rne 

-- 
doe? n:f appear ta have a pole. Thus, 
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dn € - i n z d  c 
E(z) (A - 2E:(o)) 5 

0 .  

F o r  sufficiently large n the denominator may be expanded, and then 

integrated term by term. 

( 2) where f4, (x) is the Hankel function of order v . 
asymptotic solution and is clearly not convergent unless X < 1. 

Quantitative answers cannot be obtaiced from this expression for the 

value of E. W e  shall return to this point later. We note, however, that 

both terms of (23) a r e  essentially waves of the free space wavelength. 

Thus, the incident wave appears to penetrate the plasma with its wave- 

length essentially unchanged for  a suffic5ently small distance, 

The solution (23) is an 

We have yet to consider the branchline integral in (17). This is 

Let c4 be the curve on one side of curve 3 and c5 the curve on the other 

-(see Figure 1). Then 
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2 Using the integral representation for we obtain, following Taylor, 

The important feature in (26) is the presence of the exponent5al 

- 
Foru'X/E - co then this is a very rapidly o2 

cz - a2 
decreasing function. Since E 

type integral in the variable 

is w/c then the integral (25) is a Laplace 
0 
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2 

1 "p x 3 4 -  c 3  - kc , and again n = - . where B = - - 
Ld o3 4a 2 

The evaluation of (27) i s  not available for arbi t rary values of n. 

Hcrwever, since what is desired is the inverse transform of ( 2 5 ) ,  we will 

compute 

by inverting the order of integration. For z > 0, 

dx 

w 2  a2 
( l t x  - KI(X))(ltX P.K2 (x) ) 

2 a2 w 

B(2E'+(O) - A) 
E2  (z)  = '2 

( 2 8 )  

This is evaluated by steepest descent (for large 2. in the appendix. We obtain 

( 2 9 )  
2 

as  before. The exponential factor and X = - I17_C 
c3 (2E;-A) 1 - i  where D = - 

decays s o  rapidly fop  small temperature (large X ) that the multiplicative 

factor of 

kT zn 312 w 2  

has no effect. Likewise for small z ,  E2 decays exponentially 

as z -. 0.  As in the previous calculatiors there is a difference in detailed 

behavior depending on whether the lim ( X- and z - 0) i s  taken a s  - 
dX - 0 or  - -* O D .  However, bcth limits have an exponential decay to zero dr 

_. 
Z Z 

for  z - 0. 
Thus in the evaluatior, of the ,two p.;r:ixs cf the electric field on the 

plasma we find several  di+tir,ct differences from Taylor's results, and one 

identical result. The wave zz-krnber f(3r the wzve ~rC~qgz . t ing  f a r  enough 
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in the plasma is the sam3. 

differs f rom Taylor. 

The value of the amplitude of this wave 

Our  result gives 

axd f,=s depends 0x1 the as yet  -;n,de:er~~incd E ' & O )  2 s  well as A *  
4- 

The field just  inside the plasma boundary is not that obtained by 

Taylor. 

which gives Taylor his non-uniform limit. 

vanishes. 

can not be continued to the boundary. 

the warm plasma solution mar  the bcandzry in a form which allows a 

limit T > o and 2: --c o to be taken. 

since the form of the distribution functim for  the plasma (A3) is a 

F i r s t  we do not obtain a contribution from the branch line integral, 

W e  find this contribution 

We find that the solution several  Debye lengths into the plasma 

W e  are, however, unable to obtain 

This non-uniformity is not surprising 

singular function of T. To obtain the correct  expression for  the field 

near  the boundary, the f u l l  expression (21)  must be used in the inverse 

transform. This is a task which tke a?;%\sr has been unable to accomplish. 

W e  can only state that the wave appezrs to per;_e:rate a t  the free space 

wavelength and then, in a distance of the e rder  of a Debye length, a l ter  

to the plasma wavelength. However we can state that Taylor's 

non-uniformity is not valid. 
.. , ,  

IV. Matching to F r e e  Space 

W e  show kiow %e might match aur solutim to the incident wave in 

f ree  space, which can o r ly  be iri the fcym 



. .. 
- 17 - 

where R is the ref7,ectim ccef r ' i cknt .  Let 2EI(O)-A = 2i k 

T is thus the trar,srnissi--I: cceiZ2ciect. 

appropriate continuity e$~,zt ld~ns f 3 r  the fields. 

that E must be continucus zcross z = 0 .  

and thus B is not cm2nuous. 

TE , where 

The mztching conditions a r e  the 
P O  

From (1) it follows 

is clearly not, aZ However, 

It follou9s from the presence of the current 

sheet, ~r from integra"-'-- -LA&& i 1.1 Ii C- OTA - E C ' J  + 8 ,  that 

Then 

Eo (1 t R) = E  (C") 

+ A  
a ~ ( 0 ~ )  az i k E  (1 - R ) =  

0 

a r e  the matching c onditicns, and the amplitude of the wave sufficiently 

far  inside the plasma i s  given by 

2E'+[O) - A 
E(z > > 0) = e-xp -i (rat - k z). 

2i k P P 
(33) 

Fo r  T > 0 we have been mable to  evaluate E' (0) further.  

In the zero temperature limit where the solution (33) can be extrapolated 

to the plane z = 0, then one obtairzs 

+ 
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. .- 

reflection a r e  obtained by tzking A = 0. We note that the transmission 

can be blocked by ek ing  A = 2 i k Eo . 
temperature awaits an invarsilsn of rhe transform valid for small z .  

A sAution for non-zero 

V. Summary and Conclusions 

The usual approach to waves incident on a semi-infinite plasma 
\ 

has been to convert the problem. to  an infirits domain probiem as Taylor 

has done. 

duced a t  the origin, of strength A f 0. W e  have here solved the problem 

by considering the semi-infinite problem directly. 

sheet has been refained, 

inside the plasma has been Calculated. 

except near the interface, is given by (22) and the amplitude by (33) in 

te rms  of the field a t  the boundary and &he strength A of the current sheet. 

The zero temperature transmission and reflection coefficients have been 

explicitly calculated. 

To do so,? an artificial sheet current source must be intro- 

The current source 

although tbere is na need for it. The field 

The wave number k in the plasma, 
P 

We obQ,ain Taylor's zero tempe rature results by 

taking A = 0. Thus it wodd appear that we have successfully avoided the 

necessity of creating a current sheet, and we can investigate what a real  

current sheet will do. As we point out, such a non-zero sheet will  block 

some of the transmission, and increase the reflection. 

F o r  non-zero temperatures the wave number sufficiently far 

inside the plasma agrees with Taylor. 1 However, the calculations for  the 

field do not agree. 

Taylor does not have. 

We have a soh?icm f o r  the field strength, which 

The behavior near  the boundary is quite different. The te rm 

which gives r ise  to a non-udcrzrn lim-it In Taylor's calculation- vanishes 

in ours. 

on the Fourier trar-sf:'rrrz (21). 

We have an integri l  repr+sec+a";on of the field near the boundary, 

The LeLziPed study of the field near the 



I bclundary requires the inverzlcin cf %Es t r > e g r d .  

s o  in a form suitable for  comptsfcn .  

field a t  the bollndary is  ne: ;,et a v z l h b k ,  except for the zero temperature 

W e  have been unable to do 

Thus a nxmerical value for the 

I '  

I 

I iirnit. W e  conjectrzre fmm- m e  sti-dy cX this transform that the wave enters 

the plasma with its wavelength unch&ng%d, but generates other waves which 

then alter the wavelength to l/k W e  note, however, that in the derivation 

of 

of z .  This is certainly not s o  near z = 0. Thus even-%hen -.*. we obtain 

an inversion of (21) near z = 0, it must be suspect. We can conclude 

P' 

(k) we have assumed that the distrib-;Xr3n f-mction f is independent 
0 

that the previously obtained z.rewer.s of Taylor appear to be wrong. 
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A p p ~ d i x  I 

1 
Fc2owing Taylor w5 wr1:e the ir-tegral (19) in spherical 

v~';?ocl+iT coordinates. Then 

htegrating OR q~ and changing variables = cos 0, we obtain 

W e  define 

2h(u) = f 2-5- 1 
- 1  -pu 

df 
H(u) = u2 a x -as- 



Let p2 = (n2 - 1)  u 
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F o r  n finite, the limit for large 1\ (small temperature) is obtained by the 

asymptotic expansion of the complementary e r r c r  function 

1 
Thus lim c 2 K  (X, n) = 1 4- ( n 2  - % ) 

x-03 2 

P 
w 

However, for  n -a, for fixed x ,  one ne&& the ser ies  expansion of the 

e r r o r  function. We obtain 

t 

Appendix 11 

W e  wish to evaluate equat:i.m (28) by the method of steepest 

descent. Let 
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and le t  

i ) \ I ~ s x  2 z w  

4 7 -  c x  
h(x) = x t 

dh i z c d  1 
-7 S . \ 1 l t x  

Then = o = 1 

Thus the saddle points a r e  a t  the solutims of 

x 2  c2 

a 2  z2 
x 3  (1 t x o ) =  - - . 
0 

A t  the saddle points 

The quartic equation (B3) is  very difficult io  solve. However, for large X 

or  small  z, it is easy to see that x is  lzrge, arrd thus the solutions to (B3) 

a r e  approximately the four fourth rocts of a negztive number. And for  large 

X the function h(x) is approximately x, s o  that the paths of steepest descent, 

that is the paths of Im h(x) = constant, a r e  the horizontal lines through xo. 

Thus the original path of integration from o - CD can be deformed to the 

path of steepest descent. 

small  z) w e  approximate our answers by 

0 

- 
Thus for sufficiently large X (or  sufficiently 
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expansion of E(k) for large value of the argument. 

is large, then the denominator should be simplified, using the 
0 

Then 
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PATH 3 

INfEGRATlON PATHS IN THE COMPLEX k PLANE 

FIGURE I 


