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ABSTRACT

The fundamental aerodynamic phenomona of the flow
around sharp leading edge triangular planform wings is
reviewed. Analytical methods of predicting lift character-
istics of triangular wings are summarized and experimental
results of tests on wings of various planform are presented.

A bibliography of 258 references is included.



INTRODUCTZION

Aircraft designed for transonic and supersonic flight
require the use of delta, double-delta, arrow, or other
highly swept wings having triangular, or approximately
triangular, planforms. The advent of the supersonic trans-
port makes it mandatory that the aerodynamic characteristics
of these wings at low speeds be such that the airplane can
use commercial airports. This usage reqguires accommodation
in traffic control systems mixed with present generation
jet aircraft traffic; therefore, the airplane must be
tractable in the take-off, approach, and landing configur-
ations. The prediction of flight characteristics in these
operating configurations requires not only knowledge of

C,, » L/D and Cy variations at lift coefficients correspond-
max

ing to approach and take-off speeds, but it is also necessary
to be able to estimate side force and yaw derivatives, flow
stability, ground effects, and the manner in which these
parameters are time-dependent in accelerated maneuvers.

The airflow at low subsonic speeds (M < .3) about a
triangular planform wing having a thin cross-section and
sharp leading-edge is a complex mixture of many flows which
are individually definable but which, when interacting, are
almost impossible to analyze. This complexity causes the
triangular wing to differ distinctly from wings having

larger aspect ratio, such as the rectangular or tapered
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unswept wing and the conventional swept wing. Whereas
unique procedures are available for the design and aerodynamic
analysis of each of these foregoing wing types, the extreme
complexity of the flow around a triangular wing at moderate
or high angles of attack.(usually > 15°) has made it difficult
to evolve either a single or a combination of theories which
can- be dependably used for design.

NASA has, from time to time, surveyed and summarized the
state of the art in certain aerodynamic areas. Notable
reports are a summary of airfoil data (Ref. 1), a survey of
swept wings (Ref. 100) and a review of the stall characteristics
of swept wings (Ref. 2). The followinyg report is a review
of the state of the art with respect to the theoretical and
experimental investigation of the aerodynamic characteristics
of triangular or modified triangular wings. It has been deter-
mined, unfortunately, that it is not possible to present a
complete summary, but an attempt has been made to give a des-
cription of the physical phenomena of the flow on the basis
that a more complete understanding of the gualitative flow
field will assist in interpreting the summary data which has
been collected.

No attempt has been made to evaluate any of the wing plan-
forms as to their desirability for supersonic operation. It

is presumed that the requirements for supersonic operation are



overwhelmingly predominant and the choice of configuration
will be made to satisfy these criteria. It is probable that
the configuration will be such that the flow will include
such phenomena as leading-edge vortex shedding, streamwise
boundary-layer separation lines, and a complex combination
of trailing-edge vortex and conical vortex interaction.
It might be said that this report pertains to those wings
on which streamwise shedding of vorticity from the swept
leading~-edge is the common characteristic and on which this
shed vorticity radically affects the total flow pattern.

This report consists basically of two parts--first,
a discussion and analysis of the flow field about triangular
wings and the effects of that flow on the low-speed aero-
dynamic characteristics of the wings, and, second, an analysis
of published empirical data to determine wing planform effects
on the aerodynamic characteristics.

Classified material has not been surveyed in this summary
study, and, therefore, very little of the latest test data
on triangular or variable sweep wings has been included.
Since extensive experimental work has occurred on different
versions of the SST, it is presumed that a body of literature
exists which will, at some later time, permit a correlation
of some of the analytical and general theories with exper-
imental results. This correlation is now not possible in

an unclassified document.




THE FLOW FIELD ABOUT A TRIANGULAR WING
Extensive literature is available, as seen in the
bibliography (Refs. 8-58) in which methods are given to

r Coo + Cf
Lmax D0 Di

istics of straight wings, swept wings, and even slender

predict dCL/da, C Cm, and L/D character-

bodies serving as lifting surfaces. The work of De Young

and Harper (Refs. 18, 19, and 20) extending and amplifying
Weissinger's method of predicting span loadings and the

work of Lowry and Polhamus (Ref. 179) which further refines

the method of estimating lift increments due to flap deflections
are examples of this well-developed literature. The work of Sacks,

Nielson, and Goodwin (Ref. 48) and Brown and Michael (Refs. 11 and

12) give admittedly incomplete and approximate methods of predicting

the characteristics of triangular planform wings.

The aerodynamic feature of the delta or modified delta
wings which distinguishes them from other wings is the leading-
edge shedding of vorticity. This feature is illustrated in
the sequence of sketches in figure 2 which diagramatically
illustrate the manner in which vorticity is shed from a wvariety
of wings., Figure 2(a) shows a rectangular plan wing with a
series of bound vortices and spanwise continuous shedding of
vortex filaments aligned with the local flow at the trailing-

edge. A vortex filament is defined as a line along which the



entire vorticity of a vortex can be assummed to be con-
centrated, with the vector sense of vorticity determined

by the right-hand rule. The strength of a vortex T = ﬁv-df,
is identified as a vector directed along the filament.

The span loading of the wing is a measure of the
strength of the bound vorticity at all span stations. With
a non-uniform span loading, the increment of loading, A(Czc),
between any two span stations is directly proportional to
the magnitude of vorticity shed between those two stations.
The vortex filaments must align with the local flow at the
point of shedding, and eventually trail off downstream in
the free stream direction. The intensity, or density, of
the vortex filament sheet is proportional to the slope of a
tangent to the span loading curve at each point along the
span (dr/dy).

The bound vortices which extend along the complete span,
from wing tip to wing tip, are shed at the tip, and, therefore,
a concentrated vortex region exists at that point. The
details of this shedding and the subsequent roll-up of the
vortex sheet are graphically illustrated and analytically
described in reference 83.

Vorticity need not always be shed with the vortex filament
aligned with the local flow, however. When the boundary layer
growth has become such that the decreased kinetic energy in

the boundary layer is insufficient to move it against an




adverse pressure gradient, the boundary-layer velocity profile
is altered so that g% = 0 at the wing surface. At this
separation point, thé streamline is normal to the surface,
thus, the airflow at that point is also normal to, and away
from, the surface. The vorticity which has been generatgd

in the boundary layer upstream of the separation point,

with a spanwise vortex filament, also flows away from the
surface since it must remain associated with the fluid in
which it has developed. The vector sense of this shed
vorticity is the same as that of the bound vorticity. The
total strength of the bound vorticity is therefore reduced

as the boundary layer vorticity is shed and the 1lift over
this portion of the wing is reduced. Figure 2(b) illustrates
the closed vortex systems which would be shed by a wing

with intermittent stall near the trailing edge.

Kuchemann, in reference 71, discusses, at length, the
various types of vortex flow which occur on swept and
triangular wings and pays attention to the interaction of
sheet vorticity and boundary layer growth. With reference
to swept wings, i.e., wings of finite taper ratio as con-
trasted with triangular wings which have taper ratio of
zero (or nearly zero), the remarks of Kuchemann are valuable
in developing an understanding of the aerodynamic phenomena
which produce the characteristics of swept wings as summarized

by Harper and Maki in reference 2.



Kuchemann pays particular attention, however, to the
vortex sheets which are shed either at the wing tip or at
partial-span stations and differentiates between vortex
sheets which are shed as a result of boundary layer phenomena
and those which are shed as a result of invoking the Kutta
condition at the leading edge. It is usually necessary
to invoke the Kutta condition at the leading-edge of a
delta wing because a delta wing, having a small aspect ratio,
necessarily has a small relative airfoil thickness and a
sharp leading-edge.

A vortex sheet is defined as an infinite number of vortex
filaments, placed side by side, each of which has an
infinitesimal strength. The strength of the vortex sheet is
the circulation integrated across the width of the sheet.

The condition of small relative thickness and sharp
leading-edge requiring the Kutta condition at the leading-
edge prevails, also for other small aspect-ratio wings;
arrow, gothic, ogive, and even rectangular. It will be
shown, later in this report, that modification of the
leading-edge of a delta wing by increasing the effective
leading-edge radius using droop-snoot flaps, significantly
changes the pattern of vortex shedding and the drag due

to lift.




In the case of moderate- and large-span wings, straight
or swept, the relative section thickness is usually greater
than that of a delta wing, and the leading-edge can be con-
sidered rounded, rather than sharp. It would appear, at
first consideration, that the difference between a delta wing
and a swept-wing is one of planform only; i.e., a swept-
wing is a delta-wing with a swept trailing-~edge. The important
difference is, however, the condition of the leading-edge.

For the purpose of this report, delta wings (chiefly
with sharp-leading edges) and modifications of delta wings
such as arrow wings and sharp-edged low-aspect-ratio swept-

wings will be called triangular wings. Moderate and high

aspect ratio wings (straight or swept, 2R> 4.5) will be

referred to as conventional wings.

From a different point-of-view, triangular wings are
those which are most improved aerodynamically by leading-
edge modifications (and very little improved by trailing-
edge modifications).

The vorticity patterns during the normal 1lift and stall
of three different types of airfoils are shown in figure 3.
Figure 3a shows an airfoil, usually at 12% thickness ratio
or higher, on which initial boundary layer separation occurs
near the trailing—edge and moves forward. In figure 3b,
boundary-layer separation occurs very near to the leading-

edge, usually where the boundary layer is still laminar,



but the boundary layer undergoes transition and the flow
re-attaches to the airfoil surface as a turbulent boundary
layer. Figure 3c shows the case where boundary-layer
separation occurs at or near the leading-edge but the flow
does not re-attach and a turbulent bubble extends beyond
the trailing-edge.

The important point to note is that in cases A and
C the separated vortex sheet carries away with it vorticity
of the same direction as the bound vortex. This separated
vorticity is part of the previously bound vortex and this
action reduces the strength of the bound vortex and the net
lift of the wing. In other words, only the bound vorticity
produces lift (L/b = pVFb) and this bound vorticity is
weakened by the separated vortex sheet. It should be noted
that the vortex filaments are still parallel to the span in
all cases.

In case B, the chordwise extent and vertical displace-
ment of the separated vortex sheet is so small that little
effect is felt upon the airfoil lift or pressure distribution.
The main consegquence is that energy is dissipated in the
small detached vortex region, and this energy loss makes
the boundary layer susceptible to earlier downstream separation.

Thus, the leading-edge bubble acts to reduce section C2 .
max

10




On a finite span wing, boundary layer separation does
not necessarily occur along the entire span. 1In fact, a
wing designer will strive to cause stall to occur in # limited
region, hopefully inboard, so that the aircraft will have
satisfactory pitch and control characteristics. The dis-
position of vorticity along the span will be that as shown
in figure 4. Since the lift over the portion of the span
where stall has occurred will be less, the bound vorticity
on the unstalled portion must trail off downstream in
accordance with the theory of continuity of vorticity. A
rear view of the wing will show the conventional sheet of
shed vorticity disposed in the plane of the wing but will
also show a vertically disposed vortex sheet located at the
discontinuity between the stalled and unstalled portion of
the wing. The interaction of the horizontal and wvertical
vortex sheets not only modifies the spanwise distribution
of the load on the wing but also changes the downwash
characteristics at the horizontal tail. The vortex shedding
associated with tip stall may increase the downwash at the
tail, and thus aggravate nosing-up characteristics, whereas
inboard stall will reduce downwash and produce a nose-down
tendency.

The nature of boundary-layer growth and separation can
be seen to influence the pattern of shed vorticity. In
the case of conventional swept-wings, the spanwise flow

in the boundary layer aggravates boundary-layer growth at
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the tips while producing a form of stall-delaying boundary-
layer control on the inboard sections. This motion leads

to boundary-layer separation outboard with a shedding of a
part-span vertical vortex sheet. Both the loss of 1lift on
the tip area aft of the center of gravity, and the increased
downwash from the smaller span vortex sheets, induce unstable
pitching-up moments. Extensive efforts, as summarized in
reference 2, have been exerted to relieve, if not remedy,
this characteristic.

The nature of vortex shedding is basically different
between a conventional wing and a triangular wing as is
shown in figure 5. All characteristics, 1lift, drag, and
pitching moment, are substantially different; these differences
result from the different vortex sheets shed by each wing.
Whereas the Kutta condition is invoked at the trailing-edge
and tips of the conventional wing, it is invoked at the
leading-edge of the triangular wing. Whereas the conven-
tional wing undergoes a variety of vortex shedding patterns
from zero 1lift to the stall, the vortex pattern of the
triangular wing is stabilized at a small angle of attack
and remains constant in pattern up to the stall, merely
increasing in strength and shifting position slightly.
Whereas the vortex patterns of a straight or moderately
swept wing become stabilized into a mathematically pre-

dictable pattern once "roll-up" has occurred, the vortex
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patterns of a thin delta wing undergo a combination of inter-
actions with secondary vortices and are subject to a phenomena
called "bursting" or "exploding." Whereas the lift-curve
slope for a conventional wing is greatest at small 1lift
coefficients, the lift curve slope for the triangular wing
increases with lift coefficient until stall begins. Whereas
the 1lift curve may break suddenly at the stall of a con-
ventional wing, the peak of the 1lift curve is rounded for
a delta and occurs at angles of attack of 30° or higher.

The section of the bibliography on general description
of the flow and flow visualization, references 59 to 87,
illustrates the extensive effort that is being expended to
explore and understand the fundamental phenomena of the
flow around triangular planform wings. An interesting
experiment is described by Werle in reference 87 in which
colored fluid was emitted from the surface of a 60°
delta wing in a hydrodynamic flow facility. The filaments
of colored fluid demonstrated the typical separated
conical vortex flow, but at speeds of 5 to 10 cm/sec (.15
to .3 ft/sec) the fluid filaments were observed to "explode"
into a diffuse turbulent pattern in a manner very similar to
the sudden and classic transition from laminar to turbulent
flow of a laminar flow in a tube at the critical Reynolds
Number. It was found that external influences such as suction

in the region of the trailing edge, a barrier aft of the

13



trailing edge, or changing angle of attack all affected the
point of the "explosion."

References 73 and 87 give an unusually graphic des-
cription of the burst phenomenon in which the spiral vortex
sheet suddently transforms from a well-defined orderly spiral
motion, almost laminar in nature, to a larger diameter tur-
bulent and diffused vortex with a velocity distribution across
it much more like that of a single vortex. The phenomenon of
vortex breakdown has been explored by other investigators,
references 72 to 76 and reference 8l. Breakdown occurs at
all Reynolds Numbers and Mach Numbers but little or no
information was found which related the breakdown phenomenon
to the force or moment characteristics at the time of break-
down. Many questions can be posed regarding the specific
consequences of vortex breakdown and it appears that an
investigation of these questions is needed.

Most of the material reviewed in this section of the
report covers work which was done at very small Reynolds

Numbers, some as low as lOb, others in the range of 1 x lO6

to 4 x 106. This range is considerably different from
operating Reynolds Numbers of over 108. It is in order to
note that caution should be observed in interpreting wing

flow phenomena at low Reynolds Numbers. This same point is

emphasized in observing figures 5 and 6 of reference 63 in

14




which the flow at the trailing-edge of a delta wing in a
hydrodynamic tunnel was radically affected by the boundary
layer on the wall of a semi-span model. Nevertheless, such
tests are useful in depicting gross flow patterns and can

serve as a guide for more quantitative tests.
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METHODS OF ANALYSIS FOR TRIANGULAR WINGS

As mentioned previously, the distinguishing feature
of flow about a lifting triangular wing is the leading-
edge shedding of vorticity. Various persons have offered
analyses of this type of flow.

Wing analysis usually consists of establishing a model
of the combination of the bound and trailing vortex system,
defining (or assuming) the orientation and strength of the
vortex filaments and stating the boundary conditions. The
boundary conditions include the statement of no-flow through
the solid surface of the wing and the condition of tangential
flow at a sharp trailing, side, or leading-edge. References
48, 71, and 83 discuss the great variety of vortex systems
which exist about lifting wings and references 48 and 83,
in particular, advance theories for calculating downwash
and span loadings for triangular wings. No attempt will
be made to summarize these references. Instead, an attempt
will be made to describe the vortex systems which are shed
by a triangular wing at increasing angles of attack and to
relate these patterns to the aerodynamic results.

One of the more meaningful models is advanced by Sacks,
Nielsen, and Goodwin in reference 48. They postulate that
the triangular wing can be approximated by a series of
rectangular planform wings of varying aspect ratio, the

most forward wing being the smallest. Each rectangular
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wing sheds vortex filaments at its side edges (or wing tips)
in accordance with conventional straight wing theory and
these vortex filaments trail downstream, since, in accordance
with Helmholtz's theorem, they must remain associated with
the actual fluid in which they developed.

Another view which may be taken of the vortex field is
that of a series of horseshoe vortex filaments of increasing
span and decreasing altitude in the direction of the free-
stream flow (Fig. 6). The vortex filament which trails
downstream from wing element Xy lies inboard and above the
vortex filament which trails downstream from the next wing
element x.. Successive segments of trailing vortex filament

2

from x1 are, therefore, in the influence of the upwash of

the bound vortex at Xoy and, for the time element represented
X,=X
by 1V 2 , the vortex filament segment is deflected upward

at a velocity given by

where n is the fraction of the distance from Xy to X, at
which the vortex filament segment is located. The velocity
increases as the vortex filament segment from Xq approaches
the bound vortex at X, and the trajectory of the vortex

filament le is curved upward from the point of shedding.
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When a segment of the vortex filament rxy is at or
aft of the position of the shedding of vortex filament TXy,
the xl-segment comes into the downwash field of both the
bound and the trailing portion of filament at X, and the
trajectory of filament le, is then downward and outward
with the effect of the bound vortex at X, decreasing and
finally being counteracted by the next bound vortex at X3.
It may be deduced, as the physical model of a discrete
number of bound vortices approaches the mathematical model
of an infinite number of bound vortices, that the deviation
of the trailing vortex filament from the surface of the wing
is established at the time of initial separation of the
vortex filament from the leading-edge and that the trajectory
of the filament, or bundle of filaments, remains constant
with respect to the wing surface. Such a conclusion is
supported by measurements made by Bergesen and Porter at
Princeton University (Ref. 10) which show that the deviation
of the vortex core from the wing surface is at an angle of
.17 to .25 of the free stream angle of attack for a distance
back to 80% of the root chord for delta wings of an aspect
ratio of unity.

The trajectory of the vortex filaments, after the influence
of the bound vortices has become small, is a function of the
lateral spacing and strength of successive downstream shed

vortices. A transverse section on figure 6 between stations
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X, and X3, as shown in figure 7a, illustrates how the vortex

2
fi;aments, shed respectively at Xy and Xo interact with

each other, each spiralling about the other. Figure 7b is

a transverse section at a point farther downstream between
stations X, and Xg which illustrates how the two succeeding
vortex filaments shed at X and'x4 also becéme involved in

the spiralling motion.

The concept of a unique number of bound vortices, each
with its continuing trailing vortex filament, is a useful
mathematical approximation but the vorticity is actually
shed in a continuous sheet at the leading edge so that
instead of the separate vortex filaments interacting as in
figure 7b, a vortex sheet, as shown in figure 7c¢, is spirally
rolling-up. The "center of gravity" of this spirally wrapped
vortex sheet is taken as the "core" of the total vorticity
summed along the entire vortex sheet and it is the position
of this core which is most often referred to in the literature
(see reference 10 in particular).

Werle and Roy of O.N.E.R.A., in their hydrodynamic flow
facility, injected vari-colored fluids from the wing surface
into the flow about a triangular wing. The "barber pole"
appearance of these flow filaments are vivid demonstrations

of the shedding of leading~edge vorticity and subsequent roll-

up.
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* _ (dr/dc)i c

dra, V_ sin o
l o0

n
*
Y s = Yn

4 aiV sin a

-1
¥ = cos (-y/a;)
For the case of CN and g— , the summation is carried out
o
over the range i=n. In the case of the spanwise loading,

the summation is carried out over those elements whose span,
ajs is greater than the value of y at the chordwise station
where the loading is being computed. Specific, step-by-step
procedures are given for the computation of the coefficients,
Yn and the methods of performing the necessary iterations
are given in reference 48. The shedding angle, 8/a , 1is a
primary parameter which must be secured by iteration or
selected from some other appropriate source. Interestingly
enough a value of 6/a0 = .75 is specified as required for

an aspect ratio of 1.0 to secure accurate prediction of
normal forces, a value which is in remarkable agreement with
the test results of Bergesen and Porter (Ref. 10). The
vortex shedding angle, 8, becomes smaller with increasing
aspect ratios, as shown in figure 18 of reference 48, in-
dicating that the rolled-up vortex core lies closer and

closer to the surface as the aspect ratio is increased.
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A different basis for arriving at a vortex model was
adopted by Brown and Michael in reference 11. They recog-

nized the continuous shedding of vorticity at the leading-

Q
=
+ edge, but rather than attempt to mathematically treat the
.'._‘
o
o curved surfaces as in figure 8, they established a single
pre]
% rolled-up vortex core disposed above and inward from the
4
'S g leading edge with a continuous plane sheet of vorticity feed-
LS
S ing theVYvaried along the chord. The strength of the core
o
» 1
g was assumed to be a linear function of x, i.e., dr/dx = con-
+ —~ '
g'é stant and an expression for CL was developed as follows:
8o
o
% & Cl , 5/3 , ~ 2/3
o'm = £Tma o <z [&_
77 . +16"(4e) l:l+3(4e> J

This relationship holds for both supersonic and sub-
sonic Mach numbers as long as the leading edge is subsonic
and the result is not affected by viscosity except that
viscosity requires the setting of the Kutta condition at
the leading edge. Other than this influence of viscosity,
the calculations of both references 10 and 48 are based on
potential flow theory. The effects of viscosity, however,
are real, and caution should be exercised both in inter-
preting low Reynolds Number smoke or hydrodynamic traces
as well as analytic procedures which ignore the secondary

effects of viscosities.
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Bergesen and Porter (Ref 10), through visualization and
énalytical development, give a good insight into the specific
nature of the flow about a delta wing. Figure 9 is taken
from their work and illustrates the secondary vortex and the
accompanying boundary layer separation which lie below and
outboard of the primary spiral vortex sheet. The rotational
components about the vortex filaments shed from the leading
edge cause an outward flow beneath the conical vortex and a
reversal of pressure gradient in the lateral direction
occurs immediately below the vortex center. The outward
flow, which is induced by the vortex rotation, encounters
the adverse pressure gradient below the vortex. The combination
of the spanwise growth of the boundary layver and the adverse
pressure gradient causes, first, thickening of the boundary
layer and, finally, a boundary layer separation along a chord-
wise line at angles of attack of about 20°. Since the flow
is spanwise, the axes of the vortex filaments in the separated
flow are chordwise; and , accordingly, énother chordwise
vortex gradually grows below, parallel, and outboard of the
primary spirally-wrapped vortex sheet.

Figure 10 is a cross-section through the wing at some
point intermediate between the apex and the trailing edge.
This figure illustrates the double vortex, one resulting

from the filaments shed at the leading edge and the other
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resulting from spanwise flow separaﬁion. Figure 11 illustrates
how these two opposing vortices gradually merge éft of the
trailing edge.

Bergesen and Porter have examined the lift character-
istics of a delta wing and have evolved the following rela-
t.onship for the 1lift curve, accounting for the non-linear

nature of the C; Vs. a curve. The expression is

2
_ 271A o - o - - ‘f___
CL = m a+.0925 —_——-——t 1 A .0146 <——-—_ﬁ) (.5290. .034) t/C
an T tan T

This relationship accounts for the formation of the
spiral vortex which begins immediately as any lift is developed
on the delta. (In other words, linearized potential theory
will predict the 1ift curve only at zero 1lift.) The correlation
of the low Reynolds Number test data with this relationship
is good, and it is concluded that it accounts for the com-

bined effects of the primary and secondary vortices.
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EXAMINATION OF EMPIRICAL DATA

One of the purposes of the investigation reported in
this paper was to examine published data to determine what
relations exist between wing planform and the low speed
aerodynamic characteristics of the wing. Experimental re-
sults which were examined were for triangular planforms
including delta, double-delta, diamond, arrow, cranked, and
various polygon shaped planforms, and "conventional" wings
including straight, tapered, sweptback and W-shaped wings.
Practically all wings were of aspect ratios from 1.5 to 6.5
(a few exceptions included to assist in curve plotting).

In order to concentrate on planform effect only, sec-
tion modifications and high-1ift devices, such as droop-
snoots, leading-edge flaps, slats, spoilers, trailing-edge
flaps, suction and blowing boundary control, were not includ-
ed (again, with exceptions noted later).

It was felt that by amassing all the available data on
the high-speed planform wings the gross behavior due to plan-
form would emerge. Accordingly, data for wings was extract-
ed from all reports in sections D (Refs. 88-129) and E
({Refs. 130-155) but only from a few references (Refs. 3, 157,
159, 161, 164, 168, 173, 175, 178, 180, 197) in the other
sections because of the greater amount of data available.
These data include wings ranging from flat-plates to 15%

thick, with sharp and with rounded edges, and having airfoils
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sections including four-digit series, laminar-flow and
double~wedge types. In each case, the data for the "basic
wing" was used.

In particular, planform effects on the lift curve, drag-
lift ratio, and on the pitching moment derivative were ex-
amined and are treated below.

Lift Curve

The effects of planform on the 1lift curve (CL VS.a)
are difficult to clearly define because they are masked to
a great extent by the airfoil section variables. The pa-

rameters of interest are:

(1) Angle of zero-lift, o

(2) Lift-curve slope, dCL

do

(3) ¢,
max

dc

daL at C; = O is called C; in this report. In addition,
o2
dCL
Ta at CL = 0.8 was examined. CL = 0.8 was chosen because

this number is approximately the value of CL of the present

generation of jet transports in the approach configuration.

dc
Accordingly, D/L and - have also been examined at
dCL
CL = 0.8.
Cy is a joint product of airfoil section and plan-
max

form. The section variations, particularly leading-edge

curvature and the effective camber as produced by flapped
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sections, produce the largest increments in C The plan-

L .
form effect results from the planform producinga: spanwise
lift distribution which may be considerably different from
the spanwise distribution of section maximum lift distribu-
tions. Wing CLmax results when local stall is attained.
When a large amount of sweepback is involved, the three-
dimensional boundary-layer behavior complicates the problem

of predicting the position (and C. magnitude) of first local

L
stall, In addition, large sweepback usually involves the
appearance, well below maximum CL’ of extremely non-linear
pitching-moment curves which usually further limit the
usable Cr- This aspect of Cy, is very well discussed in

max
reference 2.

Figures 1l2a and 12b show typical effects of section
changes and of high-1ift devices on a swept-wing and on a
delta wing. Because of section effects, such as shown in 12a
and 12b, which tend to mask the planform effects, it was
particularly difficult to ferret out planform effects on CL .

Figure 13 gives some idea of the effect of aspect e
ratio in the case of two families of delta wings. At least
implied is the conclusion that the best aspect ratio for

delta wings is something less than 2.0. Figure 14 confirms

this conclusion; the "best" aspect ratio is about 1.87. [Eor

delta wings, A = %2. A = 1.87 corresponds to a delta wing
r
having a nose angle of about 50 degrees (e = 25°, A = 65°).
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Figure 15 shows C as a function of aspect ratio. Although
max
lines indicating the trend of untapered (A = 1) and tapered

(0.2 < A < 1,0) are shown, the trend does not show significant
variation with aspect ratio. The only conclusions which can

be reached are that C for tapered wings is slightly

L
max

better than for untapered wings at all aspect ratios, and in
the aspect ratio range from 1.4 to 2.4, the delta is the best

planform.

Sweepback angle is apparently a more meaningful variable

in relation to CL . Figure 16 shows CL for delta
max max

wings as a function of leading edge sweep angle, and the
previous conclusion is confirmed: the optimum leading-edge
sweepback for a delta wing is about 65 degrees.

Figure 17 shows C for wings having non-delta plan-

L
max

forms. The apparent trend indicates a slight increase of

CL as sweepback (or sweep~-forward) is increased. Delta
max

wings hold a slight superiority in the range of sweepback

from 60 to 70 degrees.
Figure 18 shows the wvariation in C for wings with
max
varying sweep along the leading~edge. The broken curves are

the wvalues of CL estimated from reference 134 for two
max

supersonic transport models (A, high aspect ratio model, and
B, moderate aspect ratio model). Reference 134 states, "The

computation of force and moment coefficients for all wing
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sweeps of a given configuration was based on the dimensions
corresponding to the total wing area, including fixed wing,
at the 75° sweep condition of that particular configuration."
This method is proper practice and produces results which
truly show the effect of wing sweep (just as coefficients
for wings with extended flaps are calculated using the basic
wing area).

However, for the purpose of comparing a wing at a given
sweep with other wing planforms (as is done in this report),
it is necessary to base each coefficient on the particular
planform area of each wing. Accordingly, the wvalues of

CL represented by the open symbols have been divided by
max

the ratio (S/S75°) producing the shaded symbols and shift-
ing the data from the broken curves to the solid curves.

The curves presented in figure 18 are for the plain
wing (cruise configuration -- no slats, flaps, etc.) so that
they may be compared with the previous curves. The curves
may be misleading; it should not be concluded that, for
example, wing B has the best configuration for low-speed

flight at A = 4 (about 35° sweepback). The high CL values
max

at the high sweep angles are accompanied by unfavorable

slopes of the pitching moment curves. For a configuration
using leading-edge flaps and trailing-edge double-slotted
flaps, reference 134 reports usable (that is, pitchstable)

CL values of 2.05 at 8 = 13.5 degrees for wing A.
max
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It has been proposed that, paralleling slender-body
lifting theory and highly-loaded wing theory, the correct
parameter for comparing wing performance should be CL/A

rather than CL.

L, S_
gs ° b2 2
This parameter has the advantage of eliminating wing area so
that a shift of curves, as in figure 18, is not necessary.
It is interesting to note that when the data from figure 18
is plotted, using SEEEE . the difference between the high
aspect ratio and modgrate aspect ratio wings disappear. (see
Fig. 19). It is logical that only one curve would appear in
figure 19, for the difference between wing A and B is due to
area only. ("The 1lift of the slender (planform) airfoil de-
pends only on the width and not on the area." -- Ref. 3)
Although in figure 19 CL/A is plotted as a function of out-
board sweep, a plot of CL / A against aspect ratio would
show the same result. e

Planform effects on the lift-curve slope have been
treated more extensively in the literature than have the ef-
fects on C . For this reason, the behavior of CL is
fairly wellmiﬁown. For example, the major parameteraaffect—
ing CL for rectangular wings is the aspect ratio with CL

a o
decreasing as A decreases. Figure 20 shows this relationship.
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For triangular wings and other high-speed wings of low
aspect ratio the 1lift curve may be analyzed using slender
wing theory. Jones and Cohen (Ref. 3) point out that CL
for these wings will only be satisfactorily given by this
theory for very low aspect ratios (A % 1). For higher
aspect ratios they present an empirical formula for rec-
tangular and tapered wings. This formula is:

x —22 ®
L PA + 2)

o —_—

57.3 (b

Figure 21 shows the excellent agreement of delta-wing
data with this equation; it also shows the satisfactory
agreement with C, = 5—%%773) up to A = 1.0.

Since lifting-line theory is inadequate to predict the
characteristics of wings having appreciable angles of sweep
and/or very low aspect ratio, lifting-surface theories have
been developed to predict the characteristics of these wings.
Most of references 8-58 are involved with these theories or
their simplification, extension, or application; most in-
volve an extensive volume of computing labor.

As previously noted, one of the first satisfactory
presentations of lifting surface theory was by Weissinger
(Ref. 58). A useful explanation and application of it was
presented by De Young and Harper (Ref. 20). This simpli-
fied lifting-surface theory can be used to predict the char-
acteristics of conventional wings as well as those having

swept and/or low aspect ratio planforms. Symmetric span
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load distributions may be calculated for wihgs which are
symmetrical about the root chord and have a straight
quarter-chord line over the semi-span; there may be arbi-
trary chord distribution, sweep, aspect ratio, and contin-
uous twist.

From the quantity of material published since 1948,
extending, explaining, or offering substitute methods, it
might appear as though the Weissinger method were inade-
quate. Figure 21, however, indicates that the Weissinger
method gives reasonably good agreement with empirical data
for delta-wings. At all points, the variation of the cal-
culated values from the actual values is less than the
spread in the measured values. .Howewvers—it—can—be—seen—that
the_empixical~reia%ieH{%}eannetube used—for delta=wings.

Also plotted on figure 21 are values for parawings
(Rogallo-type wings) which have a triangle-shaped planform.
Some of these have conical canopies and some have cylin-
drical canopies. They cannot be considered triangular
wings as defined earlier in this report because of the
tendency for the flexible canopy to align itself with the
wind direction at the leading-edge. It will be noted from
figure 21 that the behavior of these wings is considerably
different from that of delta wings.

Figure 22 is reproduced from T.R.921 (Ref. 20). It
is one of the most complete presentations of CL as affect-

o
ed by sweepback and taper. Figure 23 is a similar graph
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reproduced from Figure A,7t, reference 3, with additional
points added.

As noted earlier in this report most papers consider
dac

only one slope, i.e., CLa = EEE at CL = 0, whereas it is
typical of triangular wings that the slope of the lift-
curve is not constant. Close examination of the curves in
figure 24 will show that the slope of the curve of the
straight wing is constant for most of its length but the
slope of the sweptback wing and of the delta wing increases
before decreasing as the angle of attack increases. The

following values are obtained from the curves in figure 24:

C dcL
A (deg.) La (per deg.) Max do (per deg.)
0 .07 .07 (from CL=0 to CL=.8)
49.1 .047 .069 (at CL=.5)
59 (delta) .045 .052 (from CL=.6 to CL=.8)

Figures 25 and 26 show one examination of  this change

dc
in slope of the lift curve. The value of EEE at CL = .8

was recorded for the wings studied in this report. The
values for triangular wings were plotted in figure 25 and
for swept-back tapered wings in figure 26. Compared with

the values of Cy, it will be noted that at lower aspect
a

ratios, the slope at ¢, = .8 is greater than at Cy = 0 and
the reverse is true at high aspect ratios. This effect is
pronounced for triangular wings (deltas and tapered wings

swept 60°).
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Drag Polar
The parameters of interest which can be obtained from

2 .
a plot. of Cp vs. C (or of CD vs. Cp ) are:

L

(1) Minimum draqg coefficient, Ch

o
(2) €, and D/L at C, = 0.8 . 5
. s L
(3) Spandeff1c1ency factor, e; where CD = 53
C L
D 1
and —5 % Tis
dc, rae

As pointed out by Jones and Cohen the greatest prac-
tical consequence of the separation of the vortex surface
from the leading-edge is the rapid increase of drag with
angle of attack. "After the flow becomes detached from the
edge, the forward suction force no longer increases in pro-
portion to the 1lift, with the result that the theoretical
formulas for drag no longer apply and the resultant force
on the wing falls back toward a direction at right angles
to the chord plane. Prior to the occurance of separation
the drag is observed to follow roughly the theoretical mini-

mum value CLZ
C., =2C +

D D0 A
but at higher angles of attack the value

CD = CDo + CL tan a

is approached." ~(Ref., 3)
Figure 27 shows this effect for a delta wing of aspect

ratio 1.8, It will be noted that the CD variation agrees

very closely with CD + CL tan a at all angles of attack--
o
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not just at "higher angles." Figure A,8f of reference 3
purports to show a clear relationship between planform and
.drag due to 1lift; the actual relationship is not as clear
as that figure implies. Figure 28 gives an example of the
effect of planform on CD.‘ The plot of CD + CL tan a be-
comes a band rather thanla single curve begause.of the differ-
ence in lift-curve slopes for the various wing planforms.
The only conclusion which can be reached from figure 28 is
that the swept-forward wing has higher drag than the others;
there is no significant difference between the other plan-
forms.

The CD curve will lie between the CD + CLz/nA curve

(o}

and the CD + CL tan ao. It is desirable of course, to move
o

the curve toward the former boundary. Another way of con-

sidering this point is to consider the span efficiency factor.

For the delta wing in figure 27, the value of the slope is:

dCD 1
5 = 73e = . 348
dac

L

Thus, e = .508!

Figure 29 shows the effectiveness of working with the
leading-edge to improve the efficiency factor (i.e., to shift
the drag polar toward the polar for an ideal elliptical wing).
These data are from reference 129 by Wick and Graham. They
applied skewed plain nose flaps (actually a nose-droop) to a
large scale aspect ratio 2 delta wing and fuselage and reported

that with the nose flaps deflected, "the flow separation
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occurred at CL of .35 compared to approximately .1l for the
plain wing. The maximum drag reduction due to the separa-
tion delay was approximately 25 per cent.

Figure 29 shows this drag reduction to be a significant

proportion of the gain theoretically possible. At C; = 0.8:
CD + CL tan a = .27
o
c, (8, =0°) = .235
Cp (8 = 40°) = .203

C. +C. 2/mn = .112
p, © ‘L

2
‘L
l:CD (6 =0 )J—[CDO +W:|= .123

Thus, 0.123 is maximum possible Ch improvement.

[CD (8 = 0):| — l:CD (6. = 40°):' = AC, = .032

Improvement = ‘w57 = 26% of the possible AC,-

Figures 30, 31, and 32 show planform effect on D/L at
CL = .8. The penalty of triangular wings (delta-wings and
A = 60°) is the high value of D/L at low speeds. Conven-
tional wings (e.g., A = 0) have much lower values of D/L.
Figure 32 shows the characteristics of the variable sweep
type of planform. As expected, the "high aspect ratio"
model has lower drag and each model has decreasing D/L as

aspect ratio is increased.

Figure 33 compares two delta wings with two double-
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deltas. This is new, unpublished data obtained by W. H.

Wentz at Wichita State University.
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This bibliography includes the listing of the most valuable
of the references consulted during the preparation of this report.
In addition to the sources listed, over 200 other reports and
papers were examined and discarded as being not applicable. In
general, aspect ratios of 2 or more and Mach numbers less than
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An attempt has been made to make this bibliography more
useful by classifying the references. The following catagories
are used:

A. General Discussions and/or Reviews of the Low-Speed
Flight Characteristics of High-Speed Wings

B. Analytical Methods for the Determination of Span
Loading and/or the Prediction of the Aerodynamic
Characteristics of Various Wing Planforms

C. Descriptions of Flow and Flow Visualization
D. Aerodynamic Characteristics of Delta Wings
E. Characteristics of Various High-Speed Wing Planforms
(including Diamond, W-, M-, Arrow, Cranked, Curved-
Leading-Edge, and Other Planforms)
F. Effect of Various Leading-Edge Slats, Flaps, or
Nose Modifications and of Trailing-Edge High-Lift
or Stall-Control Devices on the Characteristics of
Swept Wings
G. Swept-Back Wings
H. Variable-Sweep Wings
I. Boundary-Layer Control Applied to a High-Speed Wing
J. Miscellaneous
The papers are arranged alphabetically by authors in each group.
In the many cases in which a paper fits in more than one catagory,
it was arbitrarily classified in one group only (usually the
first group to which it applied; e.g., a paper containing data

on delta, diamond, and sweptback wings would fit in groups D, E,
and G; it would be classified in D).
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FLAT PLATE DELTA: VOTICES FROM TRAILING EDGE TO 0.50 Cr DOWN-
' STREAM OF TRAILING EDGE.
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{c) 0.20 Cr DOWNSTREAM (d) 0.30 Cr DOWNSTREAM
(€) 0.40 Cr DOWNSTREAM (f) 0.50 Cr DOWNSTREAM
FIGURE 1/
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AND 37.

3



L

LIFT COEFFICIENT, C_

FIGURE [2a
ANGLE OF ATTACK<<,DEGREES
-8 -4 o] 4 8 12 16 20 24 28
1.6 :
1.4
W, A—’——_—_—aa\;\
12 — F= !
e éO’A) &~ M’S
T o T 1
e 5 O
.8 Samm - w%\q\ E ?
. [ 3 L
Nl TR
4 L d NI
N { ¥ o
R P : I3 Y
MR ¢/ y/r ¢l
) . e
al || L] 1 .
LN . L L || | l
o] 04 .08 .12 .16 .20 .24 .28 .32 .36 40 24 20 J6 A2 .08 .04 o -04 -08 -.[2 =16
DRAG COEFFICIENT, Cp PITCHING-MOMENT COEFFICIENT, Cm
® OR O = PLAIN WING
W OR O = CAMBERED, TWISTED WING AERODYNAMIC CHARACTERISTICS OF PLAIN SWEPT
@ OR O = PLAIN WING WITH FLAPS BACK WINGS, CAMBERED AND TWISTED WINGS, WITH AND
A OR & = CAMBERED, TWISTED WING WITH FLAP WITHOUT DOUBLE SLOTTED FLAPS.
8 OR 0 = PLAIN WING WITH L. E. DROOP

(FROM FIGURES 4 AND 5 OF REFERENCE 173)



SL

1 - f | - .| FIGURE 125 | B
| | | | A | —
| ‘ S T -
o eyl
e @
— — B4 // |
“ ViR a—
4 "/ VVZ / i .
- A
2 . fZ / 1 |
A/
T |
A7
L] T _
-4 8 %I g 0 4 8 12 16 20 24 28

O—PLAIN WING
- LEADING EDGE DROOP

v— LEADING EDGE FLAP
A~LEADING EDGE EXTENSION

>«

LIFT CHARACTERISTICS OF A DELTA WING
(FROM FIGURE 7b OF REFERENCE 113)



9L

1.0

C___ oF DELTA WiNGS
max

-—A—-- TOSTI, REF. 51
—=7— GRAHAM, REF. 102

1 2
ASPECT RATIO

FIGURE 13



L)

.5
2
://uzz
A-132 90%::
o —a /L’Eﬂ\\"z'ﬁ A—135
u2 ~
96 —ad 110:71 _t:o—""' A—i20
132 A—135 97
t A—115 ft-\ue
&151 Jor— 124 A—135
A0S _102
1.0 151 :/104
A—irs 135
_‘\us
A1
Lmax
0.5
PLAIN DELTA WINGS
(NO SECTION OR PLANFORM MODIFICATIONS, NOR BLC)
NUMBERS ARE REFERENCE NUMBERS
0
0 | 2 3 4

ASPECT RATIO
FIGURE 14



gL

0.5

!

A DELTA WINGS

& A< 2 (DIAMOND, ARROW, ETC)
o TAPERED: .2 <A<ILO

O A=1.0, STRAIGHT & SWEPT

3 4
ASPECT RATIO

FIGURE 15



.5

1.0

0.5

6L

CL OF DELTA WINGS
max

FIGURE 16

10 20 30 40

50 60 70 80

A\, SWEEPBACK ANGLE OF LEADING EDGE, DEGREES



FIGURE 17

VARIATION OF Clpax WITH SWEEPBACK

FOR WINGS HAVING PLANFORMS OTHER
M P RATI E
THAN TRIANGULAR. s”o_"°" A3 ::CI > 2° RANG
o 2.7-3.3
a 3.6-4.4
0 5.4-6.6
cL —————— APPARENT TREND -~ NON-DELTA PLANFORM
i TREND OF DELTA WINGS
.5

4] 0o e [s) S
a
—_ "5 1.0 o o ,/@’ﬁ/‘b,o o h

T e—— g ] _’———ﬁ [4) -~

“G~~___~-___a__—_______—-—-"’ ) a -
o o a a
[a]
0.5

-60 -50 -40 ~-30 -20 -0 0 10 20 30 40 50 60 70

A, LEADING EDGE SWEEPBACK ANGLE
(IN DEGREES)



18

1.6

Lllﬂl

.0

0.8

0.6

o=2s*

FIGURE 18

e=75°

REF. 131

3 4

ASPECT RATIO

0=53* _ <
09=54*

oy REF. 153
o=32°



0.8

0.6

Clpox

0.4

0.2

FIGURE 19

O LARGE ASPECT RATIO MODEL
O SMALL ASPECT RATIO MODEL

04

82

20 30 40 50 60 70 80
O, OUTBOARD SWEEP ANGLE, DEGREES

CL__ FOR RECTANGULAR WINGS
('S
FIGURE 20

T A
2(57.3)

—
e
o

2TTA
57.3(P/bA+2)

————LOCUS OF EMPIRICAL DATA
STRAIGHT, RECTANGULAR
WING REFS.

| 2 3 4 5
ASPECT RATIO



€8

07

.06

05"

.03

.01

0 1 2 3 4

DELTA WINGS Figure 21

LOW ASPECT RATIO PREDICTION - SEE R.T.JONES, NACA REPORT 835

] ~— —— ———— WEISSINGER METHOD - FROM DE YOUNG & HARPER, NACA REPORT 921 -
me—————--— EQUATION @ =T
”/’— /
A -
Pty —
—”ﬂ V /
/”’ — — A

O

A DELTA WINGS - PUBLISHED DATA FROM NACA RM'S
O PARAWINGS WITH TRIANGULAR PLANFORM
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LIFT-CURVE SLOPE, C, , PER DEGREE
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FIGURE 22

VARIATION OF LIFT-CURVE SLOPE WITH ASPECT
RATIO FOR VARIOUS VALUES OF SWEEP AND TAPER

RATIO.
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TAPERED WINGS

FIGURE 23

ASPECT RATIO
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FIGURE 24
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A=0, A=6, A =|, t/c=12% (REF. 109)

ALEg.=49.1° A=3.78, \=.586,
Y.=6% (REF. 164)

DELTA, A g =59 A=1.8,
t/c=2'% % (REF. 89)
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ASPECT RATIO
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FIGURE 26

Joc AT C_=.8 FOR TAPERED WINGS
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DELTA WING, A=62° A=1.8
(SEE REFERENCE 258)
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NOSE FLAPS (DROOP) ON A DELTA WING (WITH FUSELAGE}, As2
(DATA FROM REFERENCE 129)

FIGURE 29
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FIGURE 30

% AT C, =0.8 FOR DELTA WINGS

/
F 50 COMPLETE AIRPLANE A

e
7 A
7

& A
A 54

-~
——K A

AT
!

10 20 30 40 50 60 70 80

/\.. DEGREES



€6

D/. AT C_=0.8 FOR SWEPT-BACK WINGS

FIGURE 31
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FIGURE 32

D{ AT C_ =0.8 FOR VARIABLE-SWEEP WINGS
(REFERENCE 134)
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FIGURE 33

REFLFECTION PLANE DFITA WING

TESTS WITH FUSELAGE
-8  DATA FROM W.H. WENTZ

WICHITA STATE UNIVERSITY 1965 /
(REFERENCE 126) ! )
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