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ABSTRACT 

The  fundamental  aerodynamic  phenomona  of  the  flow 

around  sharp  leading  edge  triangular  planform  wings is 

reviewed. Analytical  methods of predicting  lift  character- 

istics  of  triangular  wings  are  summarized and experimental 

results  of  tests  on  wings  of  various  planform are  presented. 

A  bibliography of 258 references is  included. 



INTRODUCTION 

Aircraft  designed  for  transonic  and  supersonic  flight 

require  the  use of delta,  double-delta,  arrow, or other 

highly  swept  wings  having  triangular, or approximately 

triangular,  planforms. The advent of the  supersonic  trans- 

port makes it mandatory  that  the  aerodynamic  characteristics 

of  these  wings at low  speeds  be  such  that  the  airplane  can 

use  commercial  airports.  This  usage  requires  accommodation 

in  traffic  control  systems  mixed  with  present  generation 

jet  aircraft  traffic;  therefore,  the  airplane  must  be 

tractable  in  the  take-off,  approach,  and  landing  configur- 

ations. The prediction  of  flight  characteristics  in  these 

operating  configurations  requires  not  only  knowledge  of 

C , L/D and CM variations  at  lift  coefficients  correspond- 
Lmax 
ing to approach  and  take-off speeds,  but  it  is also  necessary 

to be  able to estimate  side  force  and yaw derivatives,  flow 

stability,  ground  effects,  and  the  manner in which  these 

parameters are time-dependent  in  accelerated  maneuvers. 

The  airflow  at  low  subsonic  speeds (M < . 3 )  about  a 

triangular  planform  wing  having  a  thin  cross-section  and 

sharp  leading-edge  is a complex  mixture of many  flows  which 

are  individually  definable  but  which,  when  interacting,  are 

almost  impossible to analyze. This  complexity  causes  the 

triangular  wing to differ  distinctly  from  wings  having 
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unswept  wing  and  the  conventional  swept  wing.  Whereas 

unique  procedures  are  available  for  the  design  and  aerodynamic 

analysis of each  of  these  foregoing  wing  types,  the  extreme 

complexity of the  flow  around  a  triangular  wing at moderate 

or high  angles of attack.(usually > 15O)  has  made  it  difficult 

to evolve  either  a  single or a  combination of theories  which 

can.be dependably  used  for  design. 

NASA  has,  from  time to time,  surveyed  and  summarized  the 

state  of  the  art  in  certain  aerodynamic  areas.  Notable 

reports  are  a  summary  of  airfoil  data (Ref. 1) , a  survey of 
swept  wings (Ref. 1.00) and a  review  of  the  stall  characteristics 

of swept  wings (Ref. 2). The followilly report  is  a  review 

of the  state of the  art  with  respect to the  theoretical  and 

experimental  investigation  of  the  aerodynamic  characteristics 

of  triangular or modified  triangular  wings.  It  has  been  deter- 

mined,  unfortunately, tha.t it is not  possible to present a 

complete  summary,  but  an  attempt  has  been  made  to  give  a  des- 

cription of the  physical  phenomena  of  the  flow  on  the  basis 

that  a  more  complete  understanding  of  the  qualitative  flow 

field  will  assist  in  interpreting  the  summary  data  which  has 

been  collected. 

No  attempt  has  been  made to evaluate  any  of  the  wing  plan- 

forms  as  to  their  desirability  for  supersonic  operation. It 

is presumed  that  the  requirements  for  supersonic  operation  are 
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overwhelmingly  predominant  and  the  choice of configuration 

will  be  made to satisfy  these  criteria.  It  is  probable  that 

the  configuration  will  be  such  that  the  flow  will  include 

such  phenomena  as  leading-edge  vortex  shedding,  streamwise 

boundary-layer  separation  lines,  and  a  complex  combination 

of trailing-edge  vortex  and  conical  vortex  interaction. 

It  might  be  said  that  this  report  pertains  to  those  wings 

on which  streamwise  shedding of vorticity  from the swept 

leading-edge  is  the  common  characteristic  and on which  this 

shed  vorticity  radically  affects  the  total  flow  pattern. 

This  report  consists basi.cnl.ly of two  parts--first, 

a  discussion  and  analysis of the  flow  field  about  triangular 

wings  and  the  effects of that  flow on the  low-speed  aero- 

dynamic  characteristics of the  wings,  and,  second,  an  analysis 

of published  empirical  data to determine  wing  planform  effects 

on the  aerodynamic  characteristics. 

Classified  material  has  not  been  surveyed  in  this  summary 

study,  and,  therefore, very  little of the  latest  test  data 

on triangular  or  variable  sweep  wings  has  been  included. 

Since  extensive  experimental  work  has  occurred  on  different 

versions  of  the SST, it  is  presumed  that  a  body of literature 

exists  which  will,  at  some  later  time,  permit  a  correlation 

of some of the  analytical  and  general  theories  with  exper- 

imental  results. This correlation  is  now  not  possible  in 

an  unclassified  document. 
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TIIE FLOW F I E L D  ABOUT A  TRIANGULAR  WING 

Extensive  literature  is  available,  as  seen  in  the 

bibliography (Refs. 8-58) in  which  methods  are  given  to 

predict  dCL/da, C , C D  , Cm, and L / D  character- 
Lmax' i 

istics of stra.ight wings, swc?pt wings, and  even  slender 

bodies  serving  as  lifting  surfaces. The work  of  De  Young 

and  Harper  (Refs. 18, 19, and 20) extending  and  amplifying 

Weissinger's  method  of  predicting  span  loadings  and  the 

work of Lowry  and  Polhamus  (Ref. 179) which  further  refines 

the  method  of  estimating  lift  increments  due  to  flap  deflections 

are  examples of this  well-developed  literature.  ,The  work  of  Sacks, 

Nielson,  and  Goodwin  (Ref. 4 8 )  and  Brown  and  Michael  (Refs. 11 and 

12) giveadmittedly  incomplete  and  approximate  methods of predicting 

the  characteristics of triangular  planform  wings. 

The  aerodynamic  feature of the  delta or modified  delta 

wings  which  distinguishes  them  from  other  wings  is  the  leading- 

edge  shedding of vorticity. This  feature  is  illustrated  in 

the  sequence of sketches  in  figure 2 which  diagramatically 

illustrate  the  manner  in  which  vorticity is shed  from  a  variety 

of wings.  Figure  2(a)  shows  a  rectangular  plan  wing  with a 

series of bound  vortices  and  spanwise  continuous  shedding  of 

vortex  filaments  aligned  with  the  local  flow  at  the  trailing- 

edge.  A  vortex filament  is  defined as  a  line  along  which  the 
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e n t i r e   v o r t i c i t y   o f  a vort.ex  can  be assummed t o   b e  con- 

c e n t r a t e d ,   w i t h   t h e   v e c t o r   s e n s e   o f   v o r t i c i t y   d e t e r m i n e d  

by   t he   r i gh t -hand   ru l e .  The s t r e n g t h   o f  a vo r t ex  r = 

i s  i d e n t i f i e d  as a v e c t o r   d i r e c t e d   a l o n g   t h e   f i l a m e n t .  

The span   loading   of   the   wing  i s  a measure of t h e  

s t r e n g t h   o f   t h e  bound v o r t i c i t y  a t  a l l  s p a n   s t a t i o n s .  With 

a non-uniform  span  loading, t h e  increment  of loading ,  A ( C g c ) ,  

between  any  two  span  s ta t ions i s  d i r e c t l y   p r o p o r t i o n a l   t o  

the   magni tude   o f   vor t ic i ty   shed   be tween  those   two  s ta t ions .  

The v o r t e x   f i l a m e n t s   m u s t   a l i g n   w i t h   t h e   l o c a l   f l o w  a t  t h e  

p o i n t  of shedding ,   and   eventua l ly  t r a i l  o f f  downstream i n  

t h e   f r e e  stream d i r e c t i o n .  The i n t e n s i t y ,   o r   d e n s i t y ,   o f  

t h e   v o r t e x   f i l a m e n t   s h e e t  i s  p r o p o r t i o n a l  t o  the   s lope   o f  a 

t a n g e n t   t o   t h e   s p a n   l o a d i n g   c u r v e  a t  each   po in t   a long  t h e  

span  (dr /dy) .  

The  bound v o r t i c e s  which  extend  along  the  complete  span, 

from  wing t i p   t o  wing t i p ,  are shed a t  t h e  t i p ,   a n d ,   t h e r e f o r e ,  

a c o n c e n t r a t e d   v o r t e x   r e g i o n   e x i s t s  a t  t h a t  p o i n t .  The 

d e t a i l s  of th i s   shedd ing   and   t he   subsequen t   ro l l -up   o f  the  

vo r t ex  sheet are g r a p h i c a l l y   i l l u s t r a t e d   a n d   a n a l y t i c a l l y  

d e s c r i b e d   i n   r e f e r e n c e  8 3 .  

Vor t i c i ty   need   no t   a lways  be shed w i t h  t h e  vo r t ex   f i l amen t  

a l i g n e d   w i t h   t h e   l o c a l  f l o w ,  however. When t h e  boundary  layer  

growth  has become such t h a t  t h e  d e c r e a s e d   k i n e t i c   e n e r g y   i n  

the   boundary   l ayer  i s  i n s u f f i c i e n t   t o  move it aga ins t   an  

6 



a d v e r s e   p r e s s u r e   g r a d i e n t ,   t h e   b o u n d a r y - l a y e r   v e l o c i t y   p r o f i l e  

is a l t e r e d  so t h a t  - = 0 a t  t h e  wing surface. A t  t h i s  

s e p a r a t i o n   p o i n t ,   t h e   s t r e a m l i n e  i s  normal t o  t h e  surface, 

t h u s ,   t h e   a i r f l o w  a t  t h a t   p o i n t  i s  also normal to ,  and away 

f rom,   t he   su r f ace .  The v o r t i c i t y  which  has  been  generated 

i n   t h e   b o u n d a r y   l a y e r   u p s t r e a m   o f   t h e   s e p a r a t i o n   p o i n t ,  

w i t h  a spanwise   vo r t ex   f i l amen t ,  also flows away from t h e  

s u r f a c e   s i n c e  it must  remain associated w i t h   t h e   f l u i d   i n  

which it has  developed.  The v e c t o r   s e n s e   o f   t h i s   s h e d  

vor t ic i ! .y  i s  t h e  same as t h a t   o f   t h e  bound v o r t i c i t y .  The 

t o t a l  s t r e n g t h  of t h e  bound v o r t i c i t y  i s  the re fo re   r educed  

as t h e   b o u n d a r y   l a y e r   v o r t i c i t y  i s  s h e d   a n d   t h e   l i f t  over 

t h i s   p o r t i o n   o f   t h e  wing i s  reduced. F igure  2 ( b )  i l l u s t r a t e s  

t h e  closed vortex  systems  which  would be shed  by a wing 

w i t h   i n t e r m i t t e n t  s t a l l  n e a r   t h e   t r a i l i n g   e d g e .  

dv 
dY 

Kuchemann, i n   r e f e r e n c e  7 1 ,  d i s c u s s e s ,  a t  l e n g t h ,   t h e  

var ious   types   o f   vor tex   f low  which   occur   on   swept   and  

t r i angu la r   w ings   and   pays   a t t en t ion  t o  t h e   i n t e r a c t i o n  of 

shee t   vo r t i c i ty   and   boundary   l aye r   g rowth .  With r e f e r e n c e  

t o  swept  wings, i .e. ,  w i n g s   o f   f i n i t e   t a p e r   r a t i o  as con- 

t r a s t ed   w i th   t r i angu la r   w ings   wh ich   have   t ape r  r a t i o  of  

z e r o  (or  n e a r l y   z e r o ) ,  t h e  remarks of Kuchemann are v a l u a b l e  

in   deve lop ing   an   unde r s t and ing  of the  aerodynamic phenomena 

w h i c h   p r o d u c e   t h e   c h a r a c t e r i s t i c s  of swept  wings as summarized 

by  Harper  and Maki i n   r e f e r e n c e  2. 
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Kuchemann p a y s   p a r t i c u l a r   a t t e n t i o n ,  however, t o   t h e  

vor tex   shee ts   which  are shed e i the r  a t  t h e  wing t i p   o r  a t  

p a r t i a l - s p a n   s t a t i o n s   a n d   d i f f e r e n t i a t e s   b e t w e e n   v o r t e x  

s h e e t s  which are shed as a r e s u l t   o f   b o u n d a r y   l a y e r  phenomena 

and  those  which are shed as a r e s u l t  of  invoking t h e  Kutta  

c o n d i t i o n  a t  the   l ead ing   edge .  I t  is usua l ly   necessa ry  

t o   i n v o k e   t h e  K u t t a  cond i t ion  a t  the  leading-edge  of  a 

d e l t a  wing  because a de l ta   wing ,   having  a small a s p e c t   r a t i o ,  

n e c e s s a r i l y   h a s  a small r e l a t i v e   a i r f o i l   t h i c k n e s s  and a 

sharp  leading-edge.  

A v o r t e x   s h e e t  i s  de f ined  as an i n f i n i t e  number o f   vo r t ex  

f i l amen t s ,   p l aced   s ide   by   s ide ,   each   o f   wh ich   has   an  

i n f i n i t e s i m a l   s t r e n g t h .  The s t r e n g t h   o f   t h e   v o r t e x  sheet i s  

t h e   c i r c u l a t i o n   i n t e g r a t e d   a c r o s s   t h e   w i d t h   o f   t h e   s h e e t .  

The cond i t ion   o f  small r e l a t i v e   t h i c k n e s s  and  sharp 

l ead ing -edge   r equ i r ing   t he   Ku t t a   cond i t ion  a t  the   l ead ing -  

e d g e   p r e v a i l s ,   a l s o   f o r   o t h e r  small a spec t - r a t io   w ings ;  

a r row,   go th ic ,   og ive ,   and   even   rec tangular .  I t  w i l l  be 

shown, l a t e r   i n   t h i s   r e p o r t ,  t h a t  m o d i f i c a t i o n   o f   t h e  

leading-edge  of a d e l t a  wing  by i n c r e a s i n g   t h e   e f f e c t i v e  

lead ing-edge   rad ius   us ing   droop-snoot   f laps ,   s ign i f icant ly  

changes   the   pa t te rn   o f   vor tex   shedding   and   the   d rag   due  

t o   l i f t .  

8 
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I n  the  case  of   moderate-   and  large-span  wings,   s t ra ight  

o r   s w e p t ,   t h e   r e l a t i v e   s e c t i o n   t h i c k n e s s  i s  u s u a l l y   g r e a t e r  

t h a n   t h a t  of a de l ta   wing ,   and  t h e  leading-edge  can  be  con- 

s ide red   rounded ,   r a the r   t han   sha rp .  I t  would  appear, a t  

f i r s t   c o n s i d e r a t i o n ,   t h a t   t h e   d i f f e r e n c e   b e t w e e n  a d e l t a  wing 

and a swept-wing i s  one  of  planform  only; i . e . ,  a swept- 

wing i s  a delta-wing w i t h  a swept   t ra i l ing-edge .  The important  

d i f f e r e n c e  i s ,  however ,   the   condi t ion  of   the  leading-edge.  

F o r   t h e   p u r p o s e   o f   t h i s   r e p o r t ,   d e l t a   w i n g s   ( c h i e f l y  

wi th   sha rp - l ead ing   edges )   and   mod i f i ca t ions   o f   de l t a   w ings  

such as arrow  wings  and  sharp-edged  low-aspect-ratio  swept- 

wings w i l l  be   ca l led   t r iangular   wings .   Modera te  and  h igh  

a s p e c t   r a t i o   w i n g s   ( s t r a i g h t   o r   s w e p t ,  P R >  4.5) w i l l  be 

r e f e r r e d   t o  as convent ional   wings.  

From a d i f f e ren t   po in t -o f -v i ew,   t r i angu la r   w ings   a r e  

those  which  are  most  improved  aerodynamically  by  leadiqg- 

edge  modif icat ions  (and  very l i t t l e  improved  by t r a i l i n g -  

edge   mod i f i ca t ions ) .  

The v o r t i c i t y   p a t t e r n s   d u r i n g   t h e   n o r m a l   l i f t  and s t a l l  

o f   t h r e e   d i f f e r e n t   t y p e s   o f   a i r f o i l s   a r e  shown i n  f i g u r e  3 .  

Figure  3a shows  an a i r f o i l ,   u s u a l l y   a t  1 2 %  t h i c k n e s s   r a t i o  

o r  h ighe r ,  on  which i n i t i a l  boundary   l ayer   separa t ion   occurs  

nea r   t he   t r a i l i ng -edge   and  moves forward.   In   f igure  3b,  

boundary- layer   separa t ion   occurs   very  near t o  t h e  leading-  

edge ,   usua l ly   where   the   boundary   l ayer  is still laminar ,  

9 



bu t   t he   boundary   l ' aye r   unde rgoes   t r ans i t i on   and   t he   f l ow 

r e - a t t a c h e s  t o  t h e   a i r f o i l   s u r f a c e  as a tu rbu len t   boundary  

layer .   F igure   3c   shows  the  case where  boundary-layer 

s e p a r a t i o n   o c c u r s  a t  o r  n e a r   t h e   l e a d i n g - e d g e   b u t   t h e  f l o w  

does   no t   r e - a t t ach   and  a turbulen t   bubble   ex tends   beyond 

t h e   t r a i l i n g - e d g e .  

The impor t an t   po in t  t o  n o t e  i s  t h a t   i n  cases A and 

C t h e   s e p a r a t e d   v o r t e x   s h e e t  carr ies  away w i t h  it v o r t i c i t y  

of t h e  same d i r e c t i o n  as t h e  bound  vor tex .   This   separa ted  

v o r t i c i t y  i s  p a r t   o f   t h e   p r e v i o u s l y  bound v o r t e x   a n d   t h i s  

a c t i o n   r e d u c e s   t h e   s t r e n g t h  of t h e  bound vor t ex   and   t he   ne t  

l i f t  o f   t he   w ing .   In   o the r  words, on ly  t h e  bound v o r t i c i t y  

produces l i f t  (L/b = p V T b )  and t h i s  bound v o r t i c i t y  i s  

weakened  by t h e  s e p a r a t e d   v o r t e x   s h e e t .  I t  should be noted 

t h a t   t h e   v o r t e x   f i l a m e n t s  are still p a r a l l e l   t o   t h e   s p a n   i n  

a l l  cases. 

I n   c a s e  B ,  the   chordwise   ex ten t   and  ver t ica l  d i s p l a c e -  

ment   o f   the   separa ted   vor tex   shee t  i s  so small t h a t  little 

e f f e c t  i s  f e l t  upon t h e   a i r f o i l   l i f t  o r  p r e s s u r e   d i s t r i b u t i o n .  

The  main  consequence i s  t h a t   e n e r g y  i s  d i s s i p a t e d   i n   t h e  

small de t ached   vo r t ex   r eg ion ,   and   t h i s   ene rgy  loss makes  

the  boundary l a y e r  s u s c e p t i b l e  t o  ear l ier  downstream  separat ion.  

Thus,   the   leading-edge  bubble  acts t o  r e d u c e   s e c t i o n  CR . 
max 
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On a f in i t e   span   w ing ,   boundary   l aye r   s epa ra t ion   does  

n o t   n e c e s s a r i l y   o c c u r   a l o n g   t h e   e n t i r e   s p a n .   I n  fact ,  a 

wing  designer  w i l l  s tr ive t o  cause  s t a l l  t o  o c c u r   i n  a l i m i t e d  

r eg ion ,   hope fu l ly   i nboa rd ,  so t h a t   t h e   a i r c r a f t  w i l l  have 

s a t i s f a c t o r y   p i t c h   a n d   c o n t r o l   c h a r a c t e r i s t i c s .  The d i s -  

p o s i t i o n   o f   v o r t i c i t y   a l o n g   t h e   s p a n  w i l l  be t h a t  as shown 

i n   f i g u r e  4 .  S i n c e   t h e   l i f t   o v e r   t h e   p o r t i o n   o f   t h e   s p a n  

where s ta l l  has   occur red  w i l l  be less, t h e  bound v o r t i c i t y  

o n   t h e   u n s t a l l e d   p o r t i o n   m u s t  t r a i l  o f f  downstream i n  

accordance   wi th   the   theory  of c o n t i n u i t y  of v o r t i c i t y .  A 

rear  view  of  the  wing w i l l  show t h e   c o n v e n t i o n a l   s h e e t  of 

s h e d   v o r t i c i t y   d i s p o s e d   i n   t h e   p l a n e  of t h e  wing b u t  w i l l  

a l s o  show a v e r t i c a l l y   d i s p o s e d   v o r t e x   s h e e t   l o c a t e d  a t  t h e  

d i s c o n t i n u i t y   b e t w e e n   t h e  s ta l led and   uns t a l l ed   po r t ion   o f  

t h e  wing.  The i n t e r a c t i o n  of t h e   h o r i z o n t a l   a n d  ver t ical  

v o r t e x   s h e e t s   n o t   o n l y   m o d i f i e s   t h e   s p a n w i s e   d i s t r i b u t i o n  

of t h e  load on t h e  wing   bu t   a l so   changes   the  downwash 

c h a r a c t e r i s t i c s  a t  t h e   h o r i z o n t a l  t a i l .  The vortex  shedding 

a s s o c i a t e d   w i t h   t i p   s t a l l  may i n c r e a s e   t h e  downwash a t  t h e  

t a i l ,  and   thus   aggrava te   nos ing-up   charac te r i s t ics ,   whereas  

inboard  s t a l l  w i l l  reduce downwash and  produce a nose-down 

tendency. 

The na ture   o f   boundary- layer   g rowth   and   separa t ion   can  

be   seen  t o  i n f l u e n c e   t h e   p a t t e r n   o f   s h e d   v o r t i c i t y .   I n  

t h e  case of   convent iona l   swept -wings ,   the   spanwise   f low 

in   the   boundary   l ayer   aggrava tes   boundary- layer   g rowth  a t  
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t h e   t i p s   w h i l e   p r o d u c i n g  a form  of   s ta l l -delaying  boundary-  

l aye r   con t ro l   on   t he   i nboa rd   s ec t ions .   Th i s   mo t ion   l eads  

to boundary- layer   separa t ion   ou tboard   wi th  a shedding  of  a 

p a r t - s p a n   v e r t i c a l   v o r t e x   s h e e t .   B o t h   t h e   l o s s   o f   l i f t  on 

t h e   t i p  area a f t  o f   t h e   c e n t e r   o f   g r a v i t y ,   a n d   t h e   i n c r e a s e d  

downwash from t h e  smaller span   vor tex  sheets, induce   uns tab le  

p i tch ing-up  moments. E x t e n s i v e   e f f o r t s ,  as summarized i n  

r e f e r e n c e  2 ,  h a v e   b e e n   e x e r t e d   t o   r e l i e v e ,  i f  n o t  remedy, 

t h i s  characterist ic.  

The nature   of   vortex  shedd4ng i s  b a s i c a l l y   d i f f e r e n t  

between a conventional  wing  and a t r i a n g u l a r   w i n g  as i s  

shown i n   f i g u r e  5. A l l  c h a r a c t e r i s t i c s ,  l i f t ,  drag,  and 

p i t c h i n g  moment, are s u b s t a n t i a l l y   d i f f e r e n t ;  these d i f f e r e n c e s  

r e s u l t  from the   d i f f e ren t   vo r t ex   shee t s   shed   by   each   w ing .  

Whereas the   Ku t t a   cond i t ion  i s  invoked a t  t h e   t r a i l i n g - e d g e  

and t i p s   o f   t h e   c o n v e n t i o n a l   w i n g ,  it i s  invoked a t  t h e  

leading-edge of t h e   t r i a n g u l a r   w i n g .  Whereas t h e  conven- 

t i o n a l  wing  undergoes a v a r i e t y   o f   v o r t e x   s h e d d i n g   p a t t e r n s  

from  zero l i f t   t o   t h e  s t a l l ,  t h e   v o r t e x   p a t t e r n   o f   t h e  

t r i a n g u l a r  wing i s  s t a b i l i z e d  a t  a small angle   o f  at tack 

and   remains   cons tan t   in   pa t te rn  up t o  t h e  s t a l l ,  merely 

i n c r e a s i n g   i n   s t r e n g t h   a n d   s h i f t i n g   p o s i t i o n   s l i g h t l y .  

Whereas t h e   v o r t e x   p a t t e r n s   o f  a s t r a i g h t   o r   m o d e r a t e l y  

swept  wing become s t a b i l i z e d   i n t o  a mathematical ly   pre-  

d i c t ab le   pa t t e rn   once   " ro l l -up"   has   occu r red ,   t he   vo r t ex  
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p a t t e r n s  of a t h i n  del ta  wing  undergo a combination of i n t e r -  

ac t ions   w i th   s econda ry   vo r t i ce s   and  are s u b j e c t  t o  a phenomena 

c a l l e d   " b u r s t i n g "  o r  "exploding. It Whereas t h e   l i f t - c u r v e  

s l o p e   f o r  a convent ional   wing i s  g r e a t e s t  a t  small l i f t  

c o e f f i c i e n t s ,  the l i f t   c u r v e   s l o p e   f o r   t h e   t r i a n g u l a r  wing 

i n c r e a s e s   w i t h   l i f t   c o e f f i c i e n t   u n t i l  s t a l l  begins.  Whereas 

t h e   l i f t   c u r v e  may break  suddenly a t  t h e  s t a l l  of  a con- 

vent iona l   wing ,   the   peak  of t h e  l i f t  curve  is rounded for  

a de l t a  and  occurs  a t  a n g l e s   o f   a t t a c k   o f  30° o r  h ighe r .  

The s e c t i o n  of t h e   b i b l i o g r a p h y   o n   g e n e r a l   d e s c r i p t i o n  

of t h e  f l o w  a n d   f l o w   v i s u a l i z a t i o n ,   r e f e r e n c e s  59 t o  8 7 ,  

i l l u s t r a t e s   t h e   e x t e n s i v e   e f f o r t   t h a t  is be ing   expended  to  

explore   and   unders tand   the   fundamenta l  phenomena o f   t h e  

f low  around  t r iangular   planform  wings.  An i n t e r e s t i n g  

experiment  is descr ibed   by  Werle i n   r e f e r e n c e  87 i n  which 

c o l o r e d   f l u i d  was e m i t t e d   f r o m   t h e   s u r f a c e   o f  a 60' 

de l t a  wing i n  a hydrodynamic   f low  fac i l i ty .  The f i l a m e n t s  

o f   c o l o r e d   f l u i d   d e m o n s t r a t e d   t h e   t y p i c a l   s e p a r a t e d  

c o n i c a l   v o r t e x   f l o w ,   b u t  a t  speeds   o f  5 t o  1 0  cm/sec (.15 

t o  . 3   f t / s e c )   t h e   f l u i d   f i . 1 . a m e n t s  were observed t o  "explode" 

i n t o  a d i f f u s e   t u r b u l e n t   p a t t e r n   i n  a manner  very similar t o  

the  sudden  and c lass ic  t r a n s i t i o n   f r o m   l a m i n a r  t o  t u r b u l e n t  

flow of  a l amina r   f l ow  in  a tube a t  t h e  c r i t i ca l  Reynolds 

N u m b e r .  I t  was f o u n d   t h a t  external i n f l u e n c e s   s u c h  as s u c t i o n  

i n   t h e   r e g i o n  of t h e   t r a i l i n g   e d g e ,  a b a r r i e r  a f t  of t h e  
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t r a i l i n g   e d g e ,   o r   c h a n g i n g   a n g l e  of a t t a c k  a l l  a f f e c t e d   t h e  

p o i n t   o f   t h e   " e x p l o s i o n . "  

References  73  and 87 g ive   an   unusua l ly   g raph ic   des -  

c r i p t i o n   o f   t h e   b u r s t  phenomenon i n  w h i c h   t h e   s p i r a l   v o r t e x  

s h e e t   s u d d e n t l y   t r a n s f o r m s  from a w e l l - d e f i n e d   o r d e r l y   s p i r a l  

mot ion ,   a lmost   l aminar   in   na ture ,  t o  a l a r g e r  diameter t u r -  

b u l e n t   a n d   d i f f u s e d   v o r t e x  w i t h  a v e l o c i t y   d i s t r i b u t i o n   a c r o s s  

it much more l i k e  t h a t  o f  a s i n g l e   v o r t e x .  The  phenomenon of  

vortex  breakdown has been  explored by o t h e r   i n v e s t i g a t o r s ,  

r e f e r e n c e s  72 t o  76 and   re ference  81. Breakdown occurs  a t  

a l l  Reynolds Numbers and Mach Numbers b u t  l i t t l e  o r  no 

informat ion  w a s  found  which  related  the  breakdown phenomenon 

t o   t h e   f o r c e   o r  moment c h a r a c t e r i s t i c s  a t  t h e  time of   break-  

down. Many ques t ions   can  be posed  regarding t h e  s p e c i f i c  

consequences  of  vortex  breakdown  and it a p p e a r s   t h a t   a n  

i n v e s t i g a t i o n   o f   t h e s e   q u e s t i o n s  i s  'needed. 

Most  of  the material r e v i e w e d   i n   t h i s   s e c t i o n   o f   t h e  

r e p o r t   c o v e r s  work  which w a s  done a t  very  small   Reynolds 

Numbers, some as low as l o 5 ,  o t h e r s   i n   t h e   r a n g e   o f  1 x 1 0  

t o  4 x 1 0  . This   range is cons ide rab ly   d i f f e ren t   f rom 

operat ing  Reynolds  Numbers o f   o v e r  1 0  . It is i n   o r d e r  t o  

n o t e   t h a t   c a u t i o n   s h o u l d   b e   o b s e r v e d   i n   i n t e r p r e t i n g   w i n g  

flow  phenomena a t  low  Reynolds Numbers. Th i s  same p o i n t  i s  

emphas ized   in   observ ing   f igures  5 a n d   6 ' o f   r e f e r e n c e   6 3   i n  

6 
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I 

which  the flow at the  trailing-edge  of  a  delta  wing  in  a 

hydrodynamic  tunnel  was  radically  affected  by the  boundary 

layer  on  the  wall  of  a  semi-span model. Nevertheless,  such 

tests  are  useful  in  depicting  gross flow patterns and can 

serve  as a guide  for  more  quantitative tests. 
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METHODS O F  ANALYSIS FOR TRIANGULAR WINGS 

As ment ioned   p rev ious ly ,   t he   d i s t i ngu i sh ing   f ea tu re  

of   f low  about  a l i f t i n g   t r i a n g u l a r  wing i s  t h e   l e a d i n g -  

edge   shedding   of   vor t ic i ty .   Var ious   persons   have   of fe red  

ana lyses   o f   t h i s   t ype   o f   f l ow.  

Wing a n a l y s i s   u s u a l l y   c o n s i s t s   o f   e s t a b l i s h i n g  a model 

o f   t he   combina t ion   o f   t he   bound   and   t r a i l i ng   vo r t ex   sys t em,  

de f in ing   (o r   a s suming)   t he   o r i en ta t ion   and   s t r eng th   o f   t he  

vo r t ex   f i l amen t s   and   s t a t ing   t he   boundary   cond i t ions .  The 

boundary   condi t ions   inc lude   the   s ta tement   o f   no- f low  through 

t h e   s o l i d   s u r f a c e   o f   t h e  wing   and   the   condi t ion   o f   t angent ia l  

flow a t  a s h a r p   t r a i l i n g ,   s i d e ,   o r   l e a d i n g - e d g e .   R e f e r e n c e s  

48 ,  71,  and 8 3  d i s c u s s   t h e   g r e a t   v a r i e t y   o f   v o r t e x   s y s t e m s  

which e x i s t   a b o u t   l i f t i n g   w i n g s   a n d   r e f e r e n c e s  4 8  and 8 3 ,  

i n   p a r t i c u l a r ,   a d v a n c e   t h e o r i e s   f o r   c a l c u l a t i n g  downwash 

and   span   l oad ings   fo r   t r i angu la r   w ings .  N o  a t tempt  w i l l  

b e  made t o  summarize these   r e f e rences .   In s t ead ,   an   a t t empt  

w i l l  be made t o   d e s c r i b e   t h e   v o r t e x   s y s t e m s   w h i c h  are shed 

by a t r i a n g u l a r  wing a t  i n c r e a s i n g   a n g l e s   o f   a t t a c k   a n d   t o  

re la te  t h e s e   p a t t e r n s   t o   t h e   a e r o d y n a m i c   r e s u l t s .  

One o f   t h e  more meaningful  models i s  advanced  by  Sacks, 

Nielsen,   and Goodwin i n   r e f e r e n c e  4 8 .  They p o s t u l a t e   t h a t  

t he   t r i angu la r   w ing   can   be   approx ima ted  by a series of  

rec tangular   p lanform  wings   o f   vary ing   aspec t   ra t io ,   the  

most  forward  wing  being  the smallest. Each r e c t a n g u l a r  
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wing  sheds  vortex  filaments  at  its  side  edges  (or  wing  tips) 

in  accordance  with  conventional  straight  wing  theory  and 

these  vortex  filaments  trail  downstream,  since,  in  accordance 

with  Helmholtz's theorem, they  must  remain  associated  with 

the  actual  fluid  in  which  they  developed. 

Another  view  which  may  be  taken  of  the  vortex  field  is 

that  of  a  series of horseshoe  vortex  filaments  of  increasing 

span  and  decreasing  altitude in the  direction  of  the  free- 

stream  flow  (Fig. 6 )  . The vortex  filament  which  trails 

downstream  from  wing  element  x1  lies  inboard  and  above  the 

vortex  filament  which  trails  downstream  from  the  next  wing 

element  x2.  Successive  segments  of  trailing  vortex  filament 

from  x  are,  therefore,  in  the  influence  of  the  upwash  of 

the  bound  vortex at. x2, and,  for  the  time  element  represented 
1 

by 7 x1-x2 , the  vortex  filament  segment  is  deflected  upward 
at a velocity  given  by 

rx 2 
- - 

vZ (x1-x2)  n 
x1 

where  n  is  the  fraction  of  the  distance  from x1 to x2 at 

which  the  vortex  filament  segment  is  located.  The  velocity 

increases  as  the  vortex  filament  segment  from x1 approaches 

the  bound  vortex  at x2 and  the  trajectory of the  vortex 

filament rxl is  curved  upward  from  the  point of shedding. 
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When a segment of t h e   v o r t e x   f i l a m e n t   r x l  i s  a t  o r  

a f t   o f   t h e   p o s i t i o n   o f   t h e   s h e d d i n g   o f   v o r t e x   f i l a m e n t   r x 2 ,  

t h e  x1 segment comes i n t o   t h e  downwash f i e l d   o f   b o t h   t h e  

bound  and t h e   t r a i l i n g   p o r t i o n   o f   f i l a m e n t  a t  x2   and   the  

t r a j e c t o r y   o f   f i l a m e n t   r x l ,  is t h e n  downward and  outward 

wi th   t he   e f f ec t   o f   t he   bound   vo r t ex  a t  x2  decreasing  and 

f i n a l l y   b e i n g   c o u n t e r a c t e d   b y   t h e   n e x t  bound v o r t e x  a t  x3. 

I t  may be  deduced, as t h e   p h y s i c a l  model o f  a d i s c r e t e  

number of  bound vor t i ce s   app roaches  t h e  mathematical model 

o f   a n   i n f i n i t e  number o f   b o u n d   v o r t i c e s ,   t h a t   t h e   d e v i a t i o n  

of  t h e  t r a i l i n g   v o r t e x   f i l a m e n t   f r o m   t h e   s u r f a c e   o f  t h e  wing 

is e s t a b l i s h e d  a t  t h e  time o f   i n i t i a l   s e p a r a t i o n   o f   t h e  

vor tex   f i l ament   f rom  the   l ead ing-edge   and   tha t  t h e  t r a j e c t o r y  

of t h e  f i l a m e n t ,   o r   b u n d l e  of f i l amen t s ,   r ema ins   cons t an t  

w i t h   r e s p e c t   t o  t h e  wing  surface.   Such a conclus ion  i s  

supported  by  measurements made by  Bergesen  and  Porter a t  

Pr ince ton   Univers i ty   (Ref .  1 0 )  which show t h a t   t h e   d e v i a t i o n  

of  t h e  v o r t e x   c o r e  from t h e  wing s u r f a c e . i s  a t  an   angle   o f  

. 1 7  t o  . 2 5  o f   t h e  free stream angle   o f  at tack f o r  a d i s t a n c e  

back t o  80% of t h e  r o o t   c h o r d   f o r   d e l t a   w i n g s   o f   a n   a s p e c t  

r a t i o   o f   u n i t y .  

The t r a j e c t o r y   o f   t h e   v o r t e x   f i l a m e n t s ,   a f t e r  t h e  i n f l u e n c e  

o f  t h e  bound v o r t i c e s   h a s  become small, i s  a func t ion   o f  t h e  

la te ra l  spacing  and  s t rength  of   successive  downstream  shed 

v o r t i c e s .  A t r a n s v e r s e   s e c t i o n  on f i g u r e  6 be tween   s t a t ions  
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x2 and  x3, as shown i n   f i g u r e   7 a ,   i l l u s t r a t e s  how t h e   v o r t e x  

f i l a m e n t s ,   s h e d   r e s p e c t i v e l y  a t  x1 and x2, i n t e r a c t   w i t h  

e a c h   o t h e r ,   e a c h   s p i r a l l i n g   a b o u t   t h e   o t h e r .   F i g u r e  7b is 

a t r a n s v e r s e   s e c t i o n  a t  a poin t   fa r ther   downst ream  be tween 

s t a t i o n s  x4 and x5 w h i c h   i l l u s t r a t e s  how t h e  t w o  succeeding 

v o r t e x   f i l a m e n t s   s h e d  a t  x.3 a n d . x 4  also become i n v o l v e d   i n  

t h e   s p i r a l l i n g   m o t i o n .  

The concept  of a unique number of bound v o r t i c e s ,   e a c h  

w i t h  i t s  c o n t i n u i n g   t r a i l i n g   v o r t e x   f i l a m e n t ,  i s  a u s e f u l  

m a t h e m a t i c a l   a p p r o x i m a t i o n   b u t   t h e   v o r t i c i t y  is a c t u a l l y  

s h e d   i n  a con t inuous   shee t  a t  t h e   l e a d i n g   e d g e  so t h a t  

i n s t e a d   o f   t h e   s e p a r a t e   v o r t e x   f i l a m e n t s   i n t e r a c t i n g  as i n  

f i g u r e  7b, a v o r t e x   s h e e t ,  as' shown i n   f i g u r e  7 c ,  i s  s p i r a l l y  

ro l l i ng -up .  The " c e n t e r   o f   g r a v i t y "   o f   t h i s   s p i r a l l y  wrapped 

v o r t e x   s h e e t  i s  t aken  as t h e  "core" o f   t h e  t o t a l  v o r t i c i t y  

summed a l o n g   t h e   e n t i r e   v o r t e x   s h e e t   a n d  it i s  t h e   p o s i t i o n  

o f   t h i s  core which i s  most o f t e n   r e f e r r e d   t o   i n   t h e   l i t e r a t u r e  

(see r e f e r e n c e  1 0  i n   p a r t i c u l a r ) .  

Werle and Roy o f  O.N.E.R.A. ,  i n   t h e i r  hydrodynamic  flow 

f a c i l i t y ,   i n j e c t e d   v a r i - c o l o r e d   f l u i d s   f r o m   t h e   w i n g   s u r f a c e  

i n t o   t h e   f l o w   a b o u t  a t r i angu la r   w ing .  The "ba rbe r   po le"  

appearance   o f   these   f low  f i laments  are v iv id   demons t r a t ions  

of the   shedd ing  of lead ing-edge   vor t ic i ty   and   subsequent  rol l -  

UP - 
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ri - 
* - (dr/dc) c 

4nai Vm sin a 

* n 
Yi - Yn - 

47~ a.V sin a 
1 

9 = cos (-y/ai) -1 

For  the  case  of 

over  the  range i=n. 

- 
CN and - , the  summation  is  carried  out 

In  the  case of the  spanwise  loading, 

X 
C 

0 

the  summation  is  carried  out  over  those  elements  whose  span, 

ai, is  greater  than  the  value  of  y at the  chordwise  station 

where  the  loading is  being  computed. Specific,  step-by-step 

procedures  are  given  for  the  computation  of  the  coefficients, 

Ynr and  the  methods of performing  the  necessary  iterations 

are  given  in  reference 4 8 .  The  shedding  angle, e / a  , is  a 
primary  parameter  which  must be secured.by  iteration or 

selected  from  some  other  appropriate  source.  Interestingly 

enough  a  value  of e / a  = .75 is  specified  as  required  for 

an  aspect  ratio  of 1.0 to  secure  accurate  prediction  of 

normal  forces,  a  value  which  is  in  remarkable  agreement  with 

the  test  results of Bergesen  and  Porter (Ref.  10). The 

vortex  shedding  angle, e ,  becomes  smaller  with  increasing 

aspect  ratios,  as  shown  in  figure 18 of  reference 4 8 ,  in- 

dicating  that  the  rolled-up  vortex  core  lies  closer  and 

closer  to  the surface as the  aspect  ratio  is  increased. 

21 



A d i f f e r e n t  basis f o r   a r r i v i n g  a t  a v o r t e x  model w a s  

adopted  by Brown and  Michael i n   r e f e r e n c e  11. They recog- 

n i z e d   t h e   c o n t i n u o u s   s h e d d i n g   o f   v o r t i c i t y   a t   t h e   l e a d i n g -  
al 
E 
4 e d g e ,   b u t   r a t h e r   t h a n   a t t e m p t   t o   m a t h e m a t i c a l l y  t reat  t h e  
.L l  
0 

.G c u r v e d   s u r f a c e s   a s   i n   f i g u r e  8 ,  t h e y   e s t a b l i s h e d  a s i n g l e  
-9 

E! 

rnk l ead ing   edge   w i th  a cont inuous   p lane  sheet of v o r t i c i t y   f e e d -  

Q) 

- P a  k 

0 

rolled-up  vortex  core  disposed  above  and  inward  from t h e  

2 a lng   thedvar ied   a long   the   chord .  The s t r e n g t h  of t h e   c o r e  
4 :  

9 

SCQi 
-Qrl 
64 

Q) 0 .- 

ala was  assumed t o  be a l i n e a r   f u n c t i o n   o f   x ,  i .e . ,  dr/dx = con- 

% s t a n t  and  an e x p r e s s i o n   f o r  CL was developed  as   fol lows:  

4 o Q )  
s 

This   r e l a t ionsh ip   ho lds   fo r   bo th   supe r son ic   and   sub -  

s o n i c  Mach numbers a s   l o n g   a s  t h e  lead ing   edge  i s  subsonic  

and t h e  r e s u l t  i s  n o t   a f f e c t e d  by v i s c o s i t y   e x c e p t   t h a t  

v i s c o s i t y   r e q u i r e s   t h e   s e t t i n g  of t h e   K u t t a   c o n d i t i o n  a t  

the   l ead ing   edge .   O the r   t han  t h i s  i n f l u e n c e   o f   v i s c o s i t y ,  

t h e   c a l c u l a t i o n s   o f   b o t h   r e f e r e n c e s  1 0  and 4 8  are   based  on  

p o t e n t i a l   f l o w   t h e o r y .  The e f f e c t s   o f   v i s c o s i t y ,   h o w e v e r ,  

are r e a l ,  and   cau t ion   shou ld   be   exe rc i sed   bo th   i n  i n t e r -  

p r e t i n g  low Reynolds Number smoke o r  hydrodynamic traces 

as w e l l  as ana ly t ic   p rocedures   which   ignore   the   secondary  

e f f e c t s  of v i s c o s i t i e s .  
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Bergesen  and  Porter  (Ref l o ) ,  t h rough   v i sua l i za t ion   and  

ana ly t i ca l   deve lopmen t ,   g ive  a good i n s i g h t   i n t o   t h e   s p e c i f i c  

n a t u r e  of t h e  f l o w  about  a d e l t a  wing.  Figure 9 i s  taken  

from t h e i r  work  and i l l u s t r a t e s   t h e   s e c o n d a r y   v o r t e x   a n d   t h e  

accompanying  boundary  layer  separation  which l i e  below  and 

o u t b o a r d   o f   t h e   p r i m a r y   s p i r a l   v o r t e x   s h e e t .  The r o t a t i o n a l  

components   about   the  vortex  f i laments   shed  f rom  the  leading 

edge   cause   an   ou tward   f low  benea th   the   conica l   vor tex   and  a 

r e v e r s a l   o f   p r e s s u r e   g r a d i e n t   i n   t h e  l a te ra l  d i r e c t i o n  

occurs   immedia te ly   be low  the   vor tex   cen ter .  The outward 

flow,  which is induced   by   t he   vo r t ex   ro t a t ion ,   encoun te r s  

t h e  adverse p res su re   g rad ien t   be low  the   vo r t ex .  The combination 

of the   spanwise   g rowth   of   the   boundary   l ayer   and   the   adverse  

p r e s s u r e   g r a d i e n t  causes, f i r s t ,   t h i c k e n i n g   o f   t h e   b o u n d a r y  

l a y e r   a n d ,   f i n a l l y ,  a boundary   l aye r   s epa ra t ion   a long  a chord- 

w i s e  l i n e  a t  ang le s   o f   a t t ack   o f   abou t  2 0 ° .  Since   the   f low 

i s  s p a n w i s e ,   t h e   a x e s   o f   t h e   v o r t e x   f i l a m e n t s   i n   t h e   s e p a r a t e d  

flow are chordwise,  and  , accord ingly ,   another   chordwise  

vor tex   g radual ly   g rows   be low,   para l le l ,   and   ou tboard   o f   the  

pr imary   sp i ra l ly-wrapped   vor tex   shee t .  

F igu re  1 0  i s  a c ross - sec t ion   t h rough   t he   w ing  a t  some 

po in t   i n t e rmed ia t e   be tween   t he   apex   and   t he   t r a i l i ng   edge .  

T h i s   f i g u r e   i l l u s t r a t e s   t h e  double v o r t e x ,   o n e   r e s u l t i n g  

from t h e   f i l a m e n t s   s h e d  a t  t h e   l e a d i n g   e d g e   a n d   t h e   o t h e r  
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r e s u l t i n g  from  spanwise  f low  separat ion.   Figure 11 i l l u s t r a t e s  

how t h e s e  t w o  oppos ing   vo r t i ce s   g radua l ly   merge  a f t  of t h e  

t r a i l i n g   e d g e .  

Bergesen  and  Porter   have  examined  the l i f t   c h a r a c t e r -  

i s t ics  of a de l t a  wing  and  have  evolved  the  fol lowing rela- 

t - o n s h i p   f o r   t h e   l i f t   c u r v e ,   a c c o u n t i n g   f o r   t h e   n o n - l i n e a r  

n a t u r e   o f   t h e  CL vs. a curve.  The expres s ion  is 

2 - 

a+.0925(  tan r1 ,)-.0146 ( t a n  El d-(.529a-.034 

T h i s   r e l a t i o n s h i p   a c c o u n t s   f o r   t h e   f o r m a t i o n   o f   t h e  

s p i r a l   v o r t e x  which  begins  immediately as any l i f t  i s  developed 

o n   t h e   d e l t a .   ( I n   o t h e r   w o r d s ,   l i n e a r i z e d   p o t e n t i a l   t h e o r y  

w i l l  p r e d i c t  t h e  l i f t   c u r v e   o n l y  a t  z e r o  l i f t . )  The c o r r e l a t i o n  

o f   t h e  low Reynolds Number t es t  d a t a   w i t h   t h i s   r e l a t i o n s h i p  

is good,  and it i s  conc luded   t ha t  it a c c o u n t s   f o r   t h e  com- 

b ined   e f f ec t s   o f   t he   p r imary   and   s econdary  vortices. 
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EXAMINATION O F  EMPIRICAL DATA 

One of the  purposes  of  the  investigation  reported  in 

this  paper  was  to  examine  published  data  to  determine  what 

relations  exist  between  wing  planform  and  the low speed 

aerodynamic  characteristics of the  wing.  Experimental  re- 

sults  which  were  examined  were  for  triangular  planforms 

including  delta,  double-delta,  diamond,  arrow,  cranked,  and 

various  polygon  shaped  planforms,  and  "conventional"  wings 

including  straight,  tapered,  sweptback  and  W-shaped  wings. 

Practically  all  wings  were  of  aspect  ratios  from 1.5 to 6.5 

(a  few  exceptions  included  to  assist  in  curve plotting). 

In  order  to  concentrate  on  planform  effect  only,  sec- 

tion  modifications  and  high-lift  devices,  such  as  droop- 

snoots,  leading-edge  flaps,  slats,  spoilers,  trailing-edge 

flaps,  suction  and  blowing  boundary  control,  were  not  includ- 

ed  (again,  with  exceptions  noted  later). 

It  was  felt  that by  amassing  all the  available  data  on 

the  high-speed  planform  wings  the  gross  behavior  due  to  plan- 

form  would  emerge.  Accordingly,  data  for  wings  was  extract- 

ed  from  all  reports  in  sections D (Refs. 88-129) and  E 

(Refs. 130-155) but  only  from  a  few  references  (Refs. 3 ,  157, 

159,  161, 164, 168, 173,  175,  178,  180,  197) in  the  other 

sections  because of the  greater  amount of data  available. 

These  data  include  wings  ranging  from  flat-plates  to 15% 

thick,  with  sharp  and  with  rounded  edges,  and  having  airfoils 
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sections  including  four-digit  series,  laminar-flow  and 

double-wedge  types.  In  each case,  the  data  for  the  "basic 

wing"  was used. 

In particular,  planform  effects on the  lift  curve,  drag- 

lift  ratio,  and on the  pitching  moment  derivative  were  ex- 

amined  and  are  treated  below. 

Lift  Curve -~ 
The effects  of  planform on the  lift  curve  (CL  vs.a) 

are  difficult  to  clearly  define  because  they  are  masked  to 

a great  extent  by  the  airfoil  section  variables. The pa- 

rameters of interest  are: 

(1) Angle  of  zero-lift, a 

( 2 )  Lift-curve  slope, 5 
da 

L = O  

( 3 )  CL 
max 

- dCL 
da at  CL = 0 is  called  CL in'this report,  In  addition, 

a 

dCL 
da at  CL = 0.8 was  examined.  CL = 0.8 was  chosen  because 

this  number  is  approximately  the  value of CL  of  the  present 

generation  of  jet  transports  in  the  approach  configuration. 

Accordingly, D/L  and - have  also  been  examined  at 

CL = 0.8. 

dCM 

dCL 

cL is a joint  product  of  airfoil  section  and  plan- 
max 

form. The  section  variations,  particularly  leading-edge 

curvature  and  the  effective  camber  as  produced by flapped 
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sections,  produce  the  largest  increments  in C . The  plan- 

form  effect  results  from  the  planform  producing  a  spanwise 
Lmax 

lift  distribution  which  may  be  considerably  different  from 

the  spanwise  distribution of section  maximum  lift  distribu- 

tions.  Wing C results  when  local  stall  is attained. 

When  a  large  amount of sweepback  is  involved,  the  three- 

dimensional  boundary-layer  behavior  complicates  the  problem 

of predicting  the  position  (and CL magnitude) of first  local 

stall. In  addition,  large  sweepback  usually  involves  the 

appearance,  well  below-  maximum CL, of extremely  non-linear 

pitching-moment  curves  which  usually  further  limit  the 

Lmax 

usable CL. This  aspect  of C is  very  well  discussed  in 
Lmax 

reference 2 .  

Figures  12a  and  12b  show  typical  effects of section 

changes  and  of  high-lift  devices  on  a  swept-wing  and  on  a 

delta  wing.  Because  of  section  effects,  such  as  shown  in  12a 

and 12b, which  tend  to mask  the  planform  effects,  it  was 

particularly  difficult  to  ferret  out  planform  effects  on CL . 
max 

Figure  13  gives  some  idea of the  effect  of  aspect 

ratio  in  the  case  of  two  families of delta  wings.  At  least 

implied  is  the  conclusion  that  the  best  aspect  ratio  for 

delta  wings  is  something  less  than 2.0. Figure 14 confirms 

this  conclusion;  the  "best"  aspect  ratio  is  about 1.87. E o r  - 
delta  wings,  A = G. I A = 1.87 corresponds  to  a  delta  wing 

cr 
having  a  nose  angle  of  about  50  degrees ( E  = 25O, A = 65O). 

" 
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Figure   15  shows CL as a func t ion   o f   a spec t  r a t io .  Although 

l i n e s   i n d i c a t i n g   t h e   t r e n d   o f   u n t a p e r e d  ( X  = 1) and  tapered  

( 0 . 2  < X c 1 . 0 )  are shown, t h e   t r e n d   d o e s   n o t  show s i g n i f i c a n t  

max 

v a r i a t i o n   w i t h   a s p e c t   r a t i o .  The only  conclusions  which  can 

be  reached are t h a t  CL fo r   t ape red   w ings  i s  s l i g h t l y  

b e t t e r   t h a n   f o r   u n t a p e r e d   w i n g s  a t  a l l  a s p e c t   r a t i o s ,  and i n  

t h e   a s p e c t   r a t i o   r a n g e   f r o m  1 . 4  t o  2 . 4 ,  t h e   d e l t a  i s  t h e  best 

max 

planform. 

Sweepback ang le  i s  a p p a r e n t l y  a more  meaningful   var iable  

i n   r e l a t i o n   t o  C . Figure  1 6  shows CL f o r   d e l t a  

wings as a func t ion   of   l ead ing   edge   sweep   angle ,   and   the  

prev ious   conclus ion  is  conf i rmed:   the  optimum leading-edge 

Lmax  max 

sweepback f o r  a d e l t a  wing is  about   65  degrees .  

Figure  17 shows CL for   wings   having   non-de l ta   p lan-  
max 

forms. The a p p a r e n t   t r e n d   i n d i c a t e s  a s l i g h t   i n c r e a s e  of 

cL as sweepback (or  sweep-forward) i s  inc reased .   De l t a  
max 

wings  hold a s l i g h t   s u p e r i o r i t y   i n   t h e   r a n g e   o f  sweepback 

from 60 t o  70 degrees .  

F igure  1 8  shows t h e   v a r i a t i o n   i n  CL fo r   w ings   w i th  
max 

varying  sweep  a long  the  leading-edge.  The broken  curves are 

the   va lues   o f  C es t imated  f rom  reference  134  for   two 

supe r son ic   t r anspor t   mode l s  ( A ,  h igh   a spec t   r a t io   mode l ,   and  

B,  moderate   aspect   ra t io   model) .   Reference  134 s ta tes ,  "The 

computat ion  of   force  and moment c o e f f i c i e n t s   f o r  a l l  wing 

Lmax 
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sweeps of a  given  configuration  was  based  on  the  dimensions 

corresponding  to  the  total  wing  area,  including  fixed  wing, 

at the 75O sweep  condition  of  that  particular  configuration." 

This  method  is  proper  practice  and  produces  results  which 

truly  show  the  effect of wing  sweep  (just  as  coefficients 

for  wings  with  extended  flaps  are  calculated  using  the  basic 

wing  area) . 
However,  for  the  purpose of comparing  a  wing  at  a  given 

sweep  with  other  wing  planforms (as  is  done  in  this  report), 

it  is  necessary  to  base  each  coefficient on the  particular 

planform  area  of  each  wing.  Accordingly,  the  values  of 

cL represented by the  open  symbols  have  been  divided by 

the  ratio ( S / S 7 5 0 )  producing  the  shaded  symbols  and  shift- 

ing  the data  from  the  broken  curves  to  the  solid  curves. 

max 

The  curves  presented  in  figure 18 are  for  the  plain 

wing  (cruise  configuration -- no  slats,  flaps, etc.) so that 
they  may  be  compared  with  the  previous  curves. The curves 

may  be  misleading;  it  should  not  be  concluded  that,  for 

example,  wing B has  the  best  configuration  for  low-speed 

flight  at  A = 4 (about 35O sweepback). The  high CL values 

at the  high  sweep  angles  are  accompanied  by  unfavorable 

slopes  of  the  pitching  moment  curves.  For  a  configuration 

using  leading-edge  flaps and trailing-edge  double-slotted 

flaps,  reference 134 reports  usable  (that is, pitchstable) 

max 

cL values of 2.05 at e = 13.5 degrees fo r  wing A.  
max 
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It  has   been   proposed   tha t ,   para l le l ing   s lender -body 

l i f t i n g   t h e o r y   a n d   h i g h l y - l o a d e d  wing t h e o r y ,   t h e   c o r r e c t  

parameter  for  comparing  wing  performance  should  be C /A 

r a t h e r   t h a n  CL. 

L 

This   parameter   has   the  advantage  of   e l iminat ing  wing area so 

t h a t  a s h i f t   o f   c u r v e s ,   a s   i n   f i g u r e  1 8 ,  is no t   necessa ry .  

I t  i s  i n t e r e s t i n g   t o   n o t e   t h a t  when t h e   d a t a  from f i g u r e  1 8  

is p l o t t e d ,   u s i n g  max , t h e   d i f f e r e n c e   b e t w e e n   t h e   h i g h  

a spec t   r a t io   and   modera t e   a spec t   r a t io   w ings   d i sappea r .  (see 

Fig .  1 9 ) .  I t  i s  l o g i c a l   t h a t   o n l y   o n e   c u r v e  would  appear  in 

cL 

A 

f i g u r e  1 9 ,  f o r  t h e  difference  between  wing A and B i s  d u e   t o  

a r e a   o n l y .   ( " T h e   l i f t   o f   t h e   s l e n d e r   ( p l a n f o r m )   a i r f o i l   d e -  

pends  only  on  the  width  and  not on t h e  area." -- Ref. 3 )  

Although i n   f i g u r e  1 9  CL/A i s  p l o t t e d  as a, func t ion   o f   ou t -  

board  sweep, a p l o t   o f  CL / A a g a i n s t   a s p e c t   r a t i o  would 

show t h e  same r e s u l t .  
max 

P l a n f o r m   e f f e c t s  on t h e   l i f t - c u r v e   s l o p e   h a v e   b e e n  

t r e a t e d  more e x t e n s i v e l y   i n   t h e   l i t e r a t u r e   t h a n   h a v e   t h e   e f -  

f e c t s  on CL . F o r   t h i s   r e a s o n ,   t h e   b e h a v i o r   o f  CL i s  

f a i r l y  w e l l  known. For   example,   the   major   parameter   affect-  
max a 

i n g  CL fo r   r ec t angu la r   w ings  i s  t h e   a s p e c t   r a t i o   w i t h  CL 

dec reas ing  as A dec reases .   F igu re  2 0  shows t h i s   r e l a t i o n s h i p .  
a a 
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" 

For  triangular  wings  and  other  high-speed  wings  of  low 

aspect  ratio  the  lift  curve  may  be  analyzed  using  slender 

wing  theory.  Jones  and  Cohen (Ref. 3)  point  out  that CL 

for  these  wings  will  only  be  satisfactorily  given by this 

theory  for  very  low  aspect  ratios (A 4 1). For  higher 

aspect  ratios  they  present  an  empirical  formula  for  rec- 

tangular  and  tapered  wings.  This  formula is: 

2vA @ 
Figure  21  shows  the  excellent  agreement  of  delta-wing 

data  with  this  equation:  it  also  shows  the  satisfactory 

agreement  with CL = TA 
2 (57.3) up  to  A = 1.0. 

Since  lifting-line  theory  is  inadequate  to  predict  the 

characteristics of wings  having  appreciable  angles of sweep 

and/or  very  low  aspect ratio,  lifting-surface  theories  have 

been  developed  to  predict  the  characteristics of these  wings. 

Most  of  references 8-58 are  involved  with  these  theories  or 

their  simplification,  extension,  or  application;  most  in- 

volve  an  extensive  volume of computing  labor. 

As  previously  noted,  one  of  the  first  satisfactory 

presentations of lifting  surface  theory  was  by  Weissinger 

(Ref. 5 8 ) .  A  useful  explanation  and  application of it was 

presented  by De Young  and  Harper  (Ref. 2 0 )  . This  simpli- 

fied  lifting-surface  theory  can  be  used  to  predict  the  char- 

acteristics  of  conventional  wings as well  as  those  having 

swept and/or low  aspect  ratio  planforms.  Symmetric  span 
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load  distributions  may  be  calculated  for  wings  which  are 

symmetrical  about  the  root  chord  and  have a straight 

quarter-chord  line  over  the  semi-span;  there  may  be  drbi- 

trary  chord  distribution,  sweep,  aspect  ratio,  and  contin- 

uous  twist. 

From  the  quantity  of  material  published  since 1948, 

extending,  explaining, or offering  substitute  methods,  it 

might  appear  as  though  the  Weissinger  method  were  inade- 

quate.  Figure 21, however,  indicates  that  the  Weissinger 

method  gives  reasonably  good  agreement  with  empirical  data 

for  delta-wings. At all  points,  the  variation of the  cal- 

culated  values  from  the  actual  values  is  less  than  the 

spread  in  the  measured  values. .-An illa t  - 

Also plotted on figure  21  are  values  for  parawings 

(Rogallo-type  wings)  which  have  a  triangle-shaped  planform. 

Some of these  have  conical  canopie,s  and  some  have  cylin- 

drical  canopies.  They  cannot be considered  triangular 

wings  as  defined  earlier  in  this  report  because  of  the 

tendency  for  the  flexible  canopy  to  align  itself  with  the 

wind  direction  at  the  leading-edge. It will  be  noted  from 

figure 21 that  the  behavior  of  these  wings  is  considerably 

different  from  that of delta  wings. 

Figure 22  is  reproduced  from  T.R.921  (Ref.  20). It 

is one of the  most  complete  presentations of CL as  affect- 

ed  by sweepback  and  taper.  Figure 2 3  is a similar  graph 
a 
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reproduced  from  Figure A , 7 t ,  r e f e r e n c e  3 ,  w i t h   a d d i t i o n a l  

points   added.  

As no ted  ear l ier  i n  t h i s   r e p o r t  most p a p e r s   c o n s i d e r  
dCL o n l y  one s l o p e ,  i .e . ,  CL - - - a t  CL = 0 ,  whereas it is 

t y p i c a l  of t r i a n g u l a r   w i n g s   t h a t   t h e   s l o p e   o f   t h e   l i f t -  
da a 

curve  is n o t   c o n s t a n t .  Close examina t ion   o f   t he  curves  i n  

f i g u r e  2 4  w i l l  show t h a t   t h e   s l o p e  of t h e   c u r v e   o f   t h e  

s t r a i g h t  wing is c o n s t a n t   f o r  most of  i t s  l e n g t h   b u t   t h e  

s lope   o f   t he   swep tback   w ing   and   o f   t he   de l t a   w ing   i nc reases  

b e f o r e   d e c r e a s i n g  as t h e   a n g l e   o f   a t t a c k   i n c r e a s e s .  The 

f o l l o w i n g   v a l u e s   a r e   o b t a i n e d  from t h e  curves i n   f i g u r e  2 4 :  

A (deg.)  cL Max da dCL (per   deg.  ) a (per   deg .  ) 

0 . 0 7  .07 (from CL=O t o  CL=.8) 

4 9 . 1  .047  .069 ( a t  CL=.5) 

59 ( d e l t a )  .045  .052  (from CL=.6 t o  C = .8)  L 

Figures  2 5  and 2 6  show o n e   e x a m i n a t i o n   o f . t h i s   c h a n g e  
dCL i n   s l o p e   o f   t h e   l i f t   c u r v e .  The va lue   o f  - a t  CL = .8 

w a s  r e c o r d e d   f o r   t h e   w i n g s   s t u d i e d   i n   t h i s   r e p o r t .  The 

v a l u e s   f o r   t r i a n g u l a r   w i n g s  were p l o t t e d   i n   f i g u r e  25  and 

da 

fo r   swep t -back   t ape red   w ings   i n   f i gu re  26.  Compared w i t h  

t h e   v a l u e s   o f  CL it w i l l  b e   n o t e d   t h a t  a t  lower a s p e c t  

r a t i o s ,  t h e   s l o p e  a t  CL = .8  i s  g r e a t e r   t h a n  a t  CL = 0 and 

t h e  reverse i s  t r u e  a t  h i g h   a s p e c t  ratios.  T h i s   e f f e c t  i s  

a 

pronounced f o r  t r i a n g u l a r   w i n g s   ( d e l t a s   a n d   t a p e r e d   w i n g s  

swept 60'). 
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Drag P o l a r  
” 

The p a r a m e t e r s   o f   i n t e r e s t  which  can  be  obtained  from 

a p l o t . o f  CD vs .  CL ( o r  of CD vs.  CL ) a r e :  2 

(1) Minimum d r a g   c o e f f i c i e n t ,  CD 
0 

( 2 )  CD and D/L a t  CL = 0 . 8  2 C-  
( 3 )  Span e f f i c i e n c y   f a c t o r ,   e ;  where C = - -JJ 

V A e  dC, DL 
and -2 = -- 

‘TI Ae 
U .L 

dC- L 
A s  p o i n t e d   o u t  by Jones  and Cohen t h e  g r e a t e s t   p r a c -  

t i c a l  consequence  of t h e  s e p a r a t i o n  of t h e  v o r t e x   s u r f a c e  

from the  leading-edge is t h e  rapid i nc rease   o f   d rag  w i t h  

ang le   o f   a t t ack .  “ A f t e r  the   f low becomes detached from t h e  

edge, t h e  forward   suc t ion   force  no longer i n c r e a s e s  i n  pro- 

p o r t i o n   t o  t h e  l i f t ,   w i t h   t h e   r e s u l t   t h a t  t h e  t h e o r e t i c a l  

formulas   for   d rag  no longer  apply  and the r e s u l t a n t   f o r c e  

on t h e  wing f a l l s  back  toward a d i r e c t i o n   a t   r i g h t   a n g l e s  

t o   t h e   c h o r d   p l a n e .   P r i o r   t o  t h e  occurance   o f   separa t ion  

the   d rag  is obse rved   t o   fo l low roughly the t h e o r e t i c a l  m i n i -  

mum va lue  
CD = CD “L2 

8 
+ rrA 

b u t   a t   h i g h e r   a n g l e s   o f   a t t a c k  t h e  value 

CD = CD + (2% t an  a 
0 

i s  approached. ” - (Ref. 3 )  

Figure  27  shows t h i s  e f f e c t  for  a d e l t a  wing of a s p e c t  

r a t i o  1 .8 .  I t  w i l l  be   no ted   t ha t  t h e  CD v a r i a t i o n   a g r e e s  

v e r y   c l o s e l y   w i t h  CD + CL t a n  a a t  all ang les   o f   a t t ack - -  
0 
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n o t   j u s t  a t  " h i g h e r  angles." F i g u r e  A,8f of r e f e r e n c e  3 

p u r p o r t s  t o  show a c lear  re la t ionship   be tween  p lanform  and  

.drag  due t o  l i f t ;   t h e   a c t u a l   r e l a t i o n s h i p  i s  n o t  as clear 

as t h a t   f i g u r e   i m p l i e s .   F i g u r e  28 gives  an  example of t h e  

effect  of   planform  on CD . The p l o t   o f  CD + CL t a n  a be- 
i 0 

comes a b a n d   r a t h e r   t h a n  a s ing le   cu rve   because  of t h e   d i f f e r -  

e n c e   i n   l i f t - c u r v e   s l o p e s   f o r   t h e   v a r i o u s   w i n g   p l a n f o r m s .  

The only  conclusion  which  can be reached from f i g u r e  28  i s  

tha t   t he   swep t - fo rward   w ing   has   h ighe r   d rag   t han   t he   o the r s ;  

t h e r e  i s  n o   s i g n i f i c a n t   d i f f e r e n c e   b e t w e e n   t h e   o t h e r   p l a n -  

forms . 
The CD curve  w i l l  l i e  between  the CD + CLz/nA curve 

0 
and  the  CD + CL t a n  a. I t  i s  d e s i r a b l e   o f   c o u r s e ,  t o  move 

0 
t he   cu rve   t oward   t he  former boundary.  Another way of  con- 

s i d e r i n g   t h i s   p o i n t  is t o  c o n s i d e r   t h e   s p a n   e f f i c i e n c y   f a c t o r .  

For t h e   d e l t a   w i n g   i n   f i g u r e  2 7 ,  t h e   v a l u e  of t h e   s l o p e  i s :  

dCD - 
"" 

2 n A e  - .348 
dCL 

Thus, e = .508! 

Figure  29 shows t h e   e f f e c t i v e n e s s   o f ' w o r k i n g   w i t h   t h e  

leading-edge t o  i m p r o v e   t h e   e f f i c i e n c y   f a c t o r  ( i . e . ,  t o  s h i f t  

t h e   d r a g   p o l a r  toward t h e   p o l a r   f o r   a n   i d e a l   e l l i p t i c a l   w f n g ) .  

These   da t a  are f r o m  r e fe rence   129  by Wick and Graham.  They 

a p p l i e d   s k e w e d   p l a i n   n o s e   f l a p s   ( a c t u a l l y  a nose-droop) t o  a 

large scale a s p e c t  r a t i o  2 d e l t a  wing   and   fuse lage   and   repor ted  

t h a t   w i t h   t h e   n o s e   f l a p s   d e f l e c t e d ,   " t h e  f l o w  s e p a r a t i o n  
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occurred  a t  CL of .35 compared t o  approximately .1 f o r   t h e  

p l a i n  wing.  The m a x i m u m  d r a g   r e d u c t i o n   d u e   t o   t h e   s e p a r a -  

t i o n   d e l a y  was approximately 25 p e r   c e n t .  

F igure  2 9  shows t h i s   d r a g   r e d u c t i o n  t o  be a s i g n i f i c a n t  

propor t ion   of  t h e  g a i n   t h e o r e t i c a l l y   p o s s i b l e .  A t  CL = 0.8: 

CD + CL t a n  a = . 2 7  
0 

CD ( 6  = 0') = .235 € 

CD ( 6f = 40') = .203 

-I 

C + CL /ITA = . 1 1 2  L 

DO 

Thus,  0.123 is  maximum p o s s i b l e  CD improvement. 

ED ( bf = O;] - [CD (6f  = 4 0 ' )  = ACD. = .032 1 
Improvement = - - - 2 6 %  of t h e   p o s s i b l e  ACD. .123 

Figures  30,  31,  and 32 show p lan fo rm  e f f ec t   on  D/L a t  

CL = .8.  The p e n a l t y  of t r iangular   wings   (de l ta -wings   and  

A = 60') is  t h e  h igh   va lue   o f  D/L a t  low speeds.  Conven- 

t i ona l   w ings   ( e .g . ,  A = 0 )  have much lower  values  of D/L. 

F igu re  32 shows t h e   c h a r a c t e r i s t i c s   o f   t h e   v a r i a b l e  sweep 

type  of  planform. As expec ted ,   t he   "h igh   a spec t   r a t io"  

model  has  lower  drag  and  each  model  has  decreasing D/L as 

a s p e c t   r a t i o  is  increased .  

F igure  33  compares  two d e l t a   w i n g s   w i t h  two  double- 
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deltas. This  is  new,  unpublished  data  obtained by W. H. 

Wentz at Wichita  State  University. 
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SLOPE OF THIS  LINE, d , d(C1 C l  

IS PROPORTIONAL  TO  VOR- 
TlClTY SHED  AT THIS 

SPAN  LOADING 

SHEET 

FIGURE Za RECTANGULAR  PLAN  FORM  WING AT LIFT 
COEFFICIENTS WELL  BELOW  THE STALL. 

F/GUR€ 26 RECTANGULAR PLAN FORM  WING WITH IN- 
TERMITTENT  TRAlLlNG.EDGE  STALL AT 
THE CENTER SECTION. 
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TRAILING  VORTEX  SHEETS 

BOUND VORTEX 
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SEPARATED 
VORTEX  SHEET 
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CASE a 

BOUND  VORTEX 

CASE b 

SEPARATED  VORTEX  SHEET 

BOUND VUK I L A  
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VIEW FROM BEHIND TRAILING EDGE 

FIGURE 4 
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FIGURE 5 OVERALL FORCES AND MOMENTS ON A DELTA  WING AND ON 
AN  UNTAPERED WING. 

(FROM FIGURE 16 OF REFERENCE 71) 
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SCHEMATIC  DRAWINGS OF SEPARATED FLOW OVER 
SLENDER DELTA WINGS '. 

(a) ASSUMED FLOW FIELD 

(b) APPROXIMATED FLOW FIELD 

FIGURE 8 

FROM  REF. : NACA TECHNICAL NOTE 3430, PAGE 18. FIGURE I 



FIGURE 9 

SPIRAL VORTEX SHEET  SHED 
FROM LEA[:"" " 

/ oc f \  

PING LUGL 

INITIAL FORMATION OF 

I SECONDARY  VORTEX 



FIGURE IO 



FLAT  PLATE  DELTA:  VOTICES  FROM  TRAILING  EDGE  TO 0.50 Cr DOWN- 
STREAM OF TRAILING EDGE. 

(a) TRAILING  EDGE (b) 0.10 Cr DOWNSTREAM 

(c) 0.20 Cr DOWNSTREAM (dl 0.30 Ct  DOWNSTREAM 

(e) 0.40 Cr DOWNSTREAM (f) 0.50 Cr DOWNSTREAM 

FIGURE I1 

FROM REF: PRINCETON REPORT No. 510, FIGURE II. PAGES 35. 36. 
AND 37. 
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FIGURE /2a 
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A OR A = CAMBERED. TWISTED WING WITH FLAP WITHOUT DOUBLE  SLOTTED  FLAPS. 

OR n = PLAIN WING WITH L. E. DROOP 
(FROM  FIGURES 4 AND 5 OF REFERENCE 173) 
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FIGURE I7 

VARIATION  OF CL,,, WITH SWEEPBACK 
FOR  WINGS  HAVING  PLANFORMS  OTHER 
THAN TRIANGULAR. 

LLmor 

1.5 

SYMBOL ASPECT  RATIO  RANGE 
0- I .e - 2.2 

2.7 - 3.3 
0- 3.6 - 4.4 
0- 5.4 - 6.6 

13- 

-"" APPARENT TREND - NON-DELTA  PLANFORM """""_ TREND OF DELTA WINGS 

0.5 
n 

I 
-60 -50 -40 -30 -20 -10 0 IO 20 30 40 50 60 70 

A. LEADING EDGE  SWEEPBACK  ANGLE 
(IN DEGREES) 



FIGURE I8 

I .6 

1.4 

1.2 

cLm,, 

1.0 

0.e 

0.6 

e= 

0 r 
 REF. 131 

I 2 3 4 5 6 7 0 

ASPECT  RATIO 
REF. 153 



I .o 

0.8 

0.6 

0.4 

0.2 

.IO 

D8 
\I 
d 

.06 

.04 

.02 

FIGURE 19 

IO 20 30 40 50 60  70 80 

0, OUTBOARD  SWEEP ANGLE,  DEGREES 

C FOR  RECTANGULAR  WINGS LOC 

FIGURE 20 

"" LOCUS OF EMPIRICAL DATA 

STRAIGHT,  RECTANGULAR 
WING REFS. 

I 2 3 4 5 

ASPECT  RATIO 

82 



.Od 

n 

0 
I 1  

U 
J .04 

U 
A 

0 

D E L T A  WINGS Figure 21 

”- LOW ASPECT  RATIO  PREDICTION - SEE R.T.JONES, NACA REPORT 835 

””_ WEISSINGER  METHOD - FROM DE YOUNG 6 HARPER. NACA RRPnRI a ? l  

0 

DELTA  WINGS - PUBLISHED DATA FROM NACA RM‘S 
0 PARAWINGS  WITH  TRIANGULAR  PLANFORM 
0 FROM FIGURE A,7U, JONES 6 COHEN,  “HIGH  SPEED  WING  THEORY” 

I 

0 

0 

1 2 3 

ASPECT RAT IO 

4 5 



FIGURE 22 

.O 8 

.07 

W 
W 
U 

.06 

i3 
a .05 

a 
U 
W 

‘tl 
.04 

w’ 

v) .03 
W > a 
3 

c 

a 
3. 

.02 
LL 
-l 

.o I 

”_ 

:31 ””” ””“ 

7- . .. . ” 

0 I 2 3 4 5 6 7 8 
ASPECT  RATIO A 

Oh 
””” .5 

1.0 ”- 

VARIATION OF LIFT-CURVE SLOPE WITH  ASPECT 
RATIO FOR VARIOUS  VALUES OF SWEEP AND TAPER 
RATIO. 

8 4  



FIGURE 23 

- 
W 
W a 
0 
W 
Q 
a 
a W 

-p 

.08 

.07 

TAPERED WINGS 

0 

/ 2(57.3) T A  
."-" 

SHADED SYMBOLS - DATA FROM JONES b COHEN (REF. 4 

.01 

0 I 2 3 4 5 6 

ASPECT RATIO 



FIGURE 24 

86 



.08 

.07 

.06 

.05 

" A T  C~s0.8 dCL 

(PER  DEGREE) 

d o c  .04 

.03 

.02 

.o I 

FIGURE 25 

- dCL AT C ~ = 0 . 8  FOR DEUA WINGS 
d o c  

a 

APPARENT  TREND  OF  DATA 

"""" C L ~ F O R  DELTA  WINGS.  FIGURE 21 

--- TT A - 
2(57.3) 

0 i 2 3 

ASPECT RATIO 

4 



.08 

.07 

.06 

.05 
I w 
W a 
0.04 

a - .03 
ar! 

W 
0 

W a 

? 
3 
$2 

q u  3 -  

.o I 

FIGURE 26 

- dCL AT C L = . ~  FOR TAPERED WINGS 
d o c  

, I  

0 

/ \ \ / - 

" "". APPARENT  TREND  OF DATA 

cLoc 
FROM FIGURE 23 

I 2 3 

ASPECT RATIO 

4 5 



FIGURE 27 
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