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ABSTRACT
SUPPLEMENT TO NASA CR-192

DERIVATION OF MAPPING FUNCTIONS FOR STAR-SHAPED REGIONS

This report presents an extension of the method derived in NASA CR-192
to the problem of interior-to-interior mapping by the Schwarz-Christoffel
transformation. The information presented herein is restricted to the same
class of star-shaped regions analyzed in NASA CR-192, although the methed
of analysis can be readily extended to problems with any polygonal boundary.

This supplement and its original report, NASA CR-192, constitute a
complete report on the derivation of mapping functions for a large class of
star-shaped regions by means of the Schwarz-Christoffel transformation.
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SUPPLEMENT TO NASA CR-1932;
DERIVATION OF MAPPING FUNCTIONS FOR STAR-SHAPED REGIONS
By Kwan Rim and Roger O, Stafford

Department of Mechanics and Hydraulics
The University of Iowa
Iowa City, Iowa

SUMMARY

In the previous report on mapping functions, NASA CR-192, March, 1965,
a general method based on the Schwarz-Christoffel transformation was developed
for mapping the exterior of a unit circle onto the exterior of a star-shaped
polygon. The present report is an extension of the previous work to include
the mapping of the interior of a unit circle onto the interior of a star-
shaped polygon.

INTRODUCTION

The purpose of the main report (NASA CR-192) was to present a simple method
of deriving the approximate mapping functions in the form of low-order poly-
nomials, which transacted the conformal mapping of the exterior of a unit
circle onto the exterior of a star-shaped polygon., The derivation was based on
the well-known Schwarz-Christoffel transformation.

Now, an almost identical method has been developed for mapping the interi-
or of a unit circle onto the interior of a star-shaped polygon. This method
leads to equations which are identical in form to those derived in NASA CR-192.
Thus, most of the techniques of application and remarks set forth in the origi-
nal report apply directly to the conformal transformation of interior regions.
In fact, practically the same algorithm can be used to transact either exterior-
to-exterior or interior-to-interior mappings.

The generality can be further extended to include the mapping of either
the interior or the exterior of a unit circle onto either the exterior or the_
interior of a star-shaped polygon, through the simple substitution of § = 1/%.
Therefore, we have developed one simple technique which would handle various
types of transformations of star-shaped polygons. In terms of physical prob-
lems, this provides a means of solving solid propellent rocket motors, gears,
interior and exterior splined shafts, etc,

Because of the great similarity in the derivations, many of the details
given in' the original report will not be duplicated here, For the definitions
of symbols and conventions, references, and equation and figure numbers, refer
to NASA CR-192, The equation and figure numbers used in the Supplement have
the prefix S if they first appear here, otherwise they are the same equation
numbers as are given in the original report.



DERIVATION OF EQUATIONS

The conformal mapping of the interior of a unit circle onto the interior
of a closed polygon is accomplished by the application of the Schwarz-
Christoffel transformation:
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2 = f(;) = A (C o o o (Cm - C) dzg (s-1)

1

0
in which nKj is the exterior angle of the polygon at the vertex Zj’ and
zj is the image of the j-th vertex on the unit circle. Refer to figure 1
for other details,
Consider the group of geometric shapes that may be well approximated by
the type of polygon shown in figure 2, The mapping function for this kind of

polygon is sufficiently simple so as to facilitate a lucid derivation, yet it
retains those details which allow an easy generalization to an arbitrary star.

Proper substitution and regrouping of terms in equation (S-1) reduces
the mapping function to
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Since a and dm are the m-th roots of +1 and -1 respectively, the

mapping function reduces to

4 . .
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The integral in equation (S-2) 1is evaluated by expanding the integrand
in a power series and integrating it term by term. To do so, a general series
associatad with the j-th vertex is first developed, then the integrand is
formed from the product of these series, The terms associated with the j-th
vertex can be written as

-imy. m imy., n K. o Km
[(L-e JgMa-e IMIT= ] ¢ (v, k) o 0™ = F(g, vs, KDy (S-4)
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which is identical to equation (4). The terms associated with the first and
last vertices may be regarded as special cases of equation (S-u4), as they may
be written as

-Kg K

- =G, 0, -5,
Ks K
(1+g™  =FG, o, -2-1).

Thus equation (S-3) may be expressed as the product of (n + 2) series's de-
fined by equation (S-u4):
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where n 1is the degree of the star-shaped polygon, i.e,, the number of ver-
tices between two adjacent lines of symmetry. Thus the mapping function is
finally given by

2= £(g) =a § ——e g1tKM, (5-7)



where o 1is the normalizing coefficient, As expected, equation (S-5) for the
mapping of interior domains is identical to the corresponding equation for ex-
terior domains, equation (5), except the signs of Kj are reversed,

The polynomial mapping function for a simply-connected star may also be
used for the mapping of a certain doubly-connected star since the function

2= £ = | Egc
k=0

l+km

reduces to the following equation for ¢ < < 1;

z = £(2) 2 E - g (5-8)
Hence a circle of radius |g| < < 1 will map onto an approximate circle in
the z-plane. In most cases the image of |z] = 0.5 will vary from a circle

by not more than u%.

The method presented in NASA CR-192 and in this Supplement may be readi-
ly extended to the derivation of a wider class of mapping functions by perform-
ing an additional linear fractional transformation on §. A linear fractional
transformation is of the following form:

aw + b

E-w—;-—d, ad - bec # 0,

Z;:

For example, substitution of f = 1/w (w is the complex conjugate of w) into

w +
z = z E ;l-km
k
k=0

will transact the mapping of the exterior of the unit circle on w-plane onto the
interior of the star-shaped polygon when the exponent is (1 + km), and the
interior of the unit circle onto the exterior of the star-shaped polygon with the
exponent (1 - km).

PARAMETERS CONTROLLING SIZE AND SHAPE

The behavior of the mapping function is controlled by three types of
parameters. They are the normalizing coefficient o, the vertex angles
(kl and k2) and the spacing of the vertex images (Yl and Y2) on the

unit circle. Qualitatively, these parameters control the congruency of an
interior-to-interior mapping in exactly the same manner as they did in the case
of exterior-to exterior mapping. Therefore the discussion given in NASA CR-192
under the section entitled "Parameters Controlling Size and Shape" will not be
repeated here,

In the quantitative sense, however, the relationship between Sk and

Yj for interior-to-interior mapping is considerably different from that for

y



exterior-to-exterior mapping. Hence a new set of graphical relations of S
versus Yy for the interior-to-interior mapping of second-degree stars is pre-
sented in Appendix S-A,

EFFECT OF TRUNCATION

The determination of the effects of truncation on interior mapping
functions is accomplished in exactly the same way that exterior mapping
functions are analyzZed., Hence Remark I applies directly to interior
mapping functions and is repeated here for clarity:

Remark I: Mapping in the vicinity of the Jj-th vertex is primarily con-
trolled by the J-th binomialj hence the accuracy of the map-
ping function in that vicinity depends on the accuracy (the
extent of truncation) of the corresponding polynomial, e.g.,
equation (4) or (S-u4),.

In the case of interior-to-interior mapping, however, the convergence
characteristics of the polynomial for a vertex are considerably different
from the corresponding case of exterior-to-exterior mapping. An inspec-
tion of the typical series for positive and negative vertex angles for each
case will clearly delineate the differences, For exterior-to-exterior
mapping:

K> 03 (L-2)K=1-xk+ 5£§Tl—£l g2 - KK - g?‘K =2 3, ... (5-9)
7K < 03 (L+ ) K =1-kg+ K(K2T 1) ;2 _ KK+ l;fK *2) 3, L. (S-10)

For interior-to-interior mapping:

aK > 03 (1 -2)F=14+Kg+ K(Kzf L) 2, KK+ l;fK *2) 3L, (S-11)
K<os (LaorK=1skes K(Kz; L 2, KK - l;SK =2) 3, . (s12)

The ratio of successive terms for each series is given by

gt =D - K (for positive vertex angles in exterior-to-exterior mapping]
n n + 1 ‘for negative vertex angles in interior-to-interior mapping

R~ = D + K ,for negative vertex angles in exterior-to-exterior mapping)
n n+ 1 ‘for positive vertex angles in interior-to-interior mapping’.

This ratio is a measure of the rate of convergence and we conclude from



that series (S-9) or (11) and (S-12) converge faster than series (S-10)
or (12) and (S-11). Hence the following remark is in order for interior-

to~interior mapping:

Remark II: For the same accuracy of mapping, the polynomial for a vertex with
a positive exterior angle requires & greater number of terms than
the polynomial for a vertex with a negative exterior angle.

It should also be noted that exterior-to-exterior mapping yields series
with alternating signs, while the equivalent series for interior-to-interior
mapping has the same sign throughout. Hence, in order to maintain the same
level of accuracy, one has to retain more terms in the polynomial mapping
function for interior-to-interior mapping than for the corresponding exterior-
to-exterior mapping.

CONSTRUCTION OF MAPPING FUNCTIONS

The construction of mapping functions for interior-to-interior mapping
from the known data (Kj and Sj) can proceed in exactly the same manner as

for exterior-to-exterior mapping. Therefore, the five steps set forth in
NASA CR-192 will not be duplicated here., Note that one must use the plots in
Appendix S-A to determine the image spacings.

CONCLUDING REMARKS

The methods presented in NASA CR-192, March, 1965, and this Supplement
may be considered to be a complete generalization of the application of the
Schwarz-Christoffel transformation to the mapping of star-shaped domains,

The advantages and disadvantages of the use of the Schwarz-Christoffel
transformation were set forth in the "Concluding Remarks" of NASA CR-192,
Since those remarks also apply to interior-to-interior mapping, they will not
be recapitulated here, However, some perspective can be gained by the compari-
son of the two cases,

In the case of exterior-to-exterior mapping, the coefficients of the
series for a vertex will have alternating signs; namely the series will be
absolutely convergent. Now, in the case of interior-to-interior mapping, the
corresponding series does converge but not absolutely. Therefore, the mapping
function for interior-to-interior mapping would be more slowly convergent than
that for exterior-to-exterior mapping.

In the case of interior-to-interior mapping, it is evident from Remark II
that the re-entrant corners of a polygon can be rather accurately mapped, while
the vertices with positive exterior angles are usually rounded. Exactly the
converse was true in the case of exterior-to-exterior mapping.



In practice this rounding of certain vertices does not significantly affect
the accuracy of analytic solutions. For instance, the critical stress concen-
trations in elasticity problems occur almost always on the boundary of more
accurately mapped corners for both the interior and exterior problems. A
similar statement is also true in the case of heat conduction problems.



APPENDIX S~A., ANALYSIS OF SECOND-DEGREE STARS

A detailed analysis was performed on a second-degree star with Ky = K3 = 0,

It is similar to what was described in Appendix A of the original report (NASA
CR-192), Presented herein is an equivalent set of plots of Sk versus v,

for interior-to-interior mapping. Even though the plots of S versus y for
interior-to-interior mapping are quite different from those for exterior-to-
exterior mapping, the same procedure can be used to determine Yy and Yo from
the given data m, Kl, Sl and 82.

The truncation limits for interior mapping functions can be obtained di-
rectly from table 1 of NASA CR-192., The speed of convergence of an interior
mapping function at a vertex with a positive angle is nearly equal to that of
an exterior mapping function at a vertex with a negative angle. Hence it has
been found that the number of terms required for Sl in an interior mapping

function is equal to about 1.5 times what was required for S2 in an
exterior-to-exterior mapping function., A similar relation holds between 82

in interior-to-interior mapping and S. in exterior-to-exterior mapping. The

1
approximate factor of 1.5 1is due to the fact that interior mapping functions
always converge more slowly than exterior mapping functions.
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APPENDIX S-B. EXAMPLES OF VARIOUS STARS MAPPED BY EQUATION (S-5)

The following plots are included to illustrate the type and variety of
maps which can be simply obtained from equation (S-5). Each example was con-
structed by following the algorithm presented in the section of "CONSTRUCTION
OF MAPPING FUNCTIONS,."

These plots were made on an IBM paper printer with a capacity of six
characters per inch vertically and ten characters per inch horizontally.
Thus each point (asterisk) may be in error by * 1/12" vertically and
¥ 1/20" horizontally, making these plots somewhat crude in places, Hence
these plots should not be used to examine the mapping near vertices, but
they will give qualitative information on the degree of congruency of the map.
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Figure S.11.- A %-point second-degree star.
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APPENDIX S-C. COMPUTER PROGRAMS

This Appendix is concerned with development of a polynomial mapping func-
tion on a digital computer. The programming has been broken down for clarity
into a main or control program and a set of subprograms, each of which performs
a calculation which corresponds to an equation in the text. These programs are
written in FORTRAN IV for the IBM 7044, No attempt has been made to define
input-output or plotting techniques as these are usually subject to rapid
change and vary from installation to installation.,

The control or main program essentially carries out the computations indi-
cated by equations (4) through (7). Each subprogram accomplishes one logi-
cal block within that group. In all cases the symbolism used in the programs
corresponds directly to that listed in the equations. Hence each subprogram
is prefaced by only a brief explanation of its function.

INPUT DATA

SGN Defines the type of mapping; -1 for exterior-to-exterior map-
ping, and +1 for interior-to-interior mapping.

M The number of star points.

KK The number of vertices required to define the shape of the star-
shaped polygon.

AK(20) Vector of vertex exterior angles (% of ),

GAMMA(20) Vector of vertex image angles (% of 7/m).

NC(20) Vector which defines the order of polynomial desired at each
vertex,

COMPUTED DATA

B(300) An intermediate storage vector.

€(100) Vector in which the polynomial coefficients for each vertex are
generated.

D(300) Vector containing the mapping function coefficients.

X & Y(300) Vector containing the x and y coordinates of the star-shaped
polygon produced by the mapping function,

NN Number of terms minus one in the mapping function.

ALPHA Normalizing. coefficient.

FORTRAN PROGRAMS

1. Main Program:

This program is merely a device to pass control to the appropriate sub-
programs in the sequence required to generate and plot a mapping function.
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DIMENSI@N B(300), c(300), D(300), X(300), Y(300),
AK(20), GAMMA(20), NC(20)
READ (5,1) SGN, M, KK, ( AK(I), GAMMA(I), NC(I), I =1, KK )
NN = 1
bp(1) = 1.0
AM = SGN%FLPAT(M)
Dg 10 I = 1, KK
AG = GAMMA(I)%3,1415927
CALL PGEN ( C(1), NC(I), SGN, AK(I), M, AG )
CALL PMUL ( D(1), NN, C(1), NC(I), B(1) )
NN = NN + Nc(I)
DP 10 J = 1, NN
10 D(J) = B(J)
NNP1 = NN + 1
CALL PINT ( D(1), NNPL1, 0.0, AM )
CALL PNPRM ( D(1l), NNP1l, ALPHA, 1.0 )

(@]

The mapping function is now stored in vector D,
CALL PMAP ( D(1), NN, 1.0, AM, 1.0, 100, X(1), Y(1) )

WRITE (6,2) ALPHA, ( D(I), I = 1, NNP1 ), ( X(I), Y(I), I = 1, 100 )
END

2. Subprogram PGEN:

This subroutine generates the polynomial for each vertex; i.e., equation
(4) or (S-u).

SUBRPUTINE PGEN ( C, NC, SGN, AK, M, AG )
DIMENSI@N C(300)
AK1 = SGN#AK
IF( AG .EQ. 0.0 PR, AG .GT. 3,1415 ) AK1l = AK1/2.0
IND = NC + 1
DF 1 I = 1, IND
1 ¢(I) = cSUM( I, AKl, M, AG )
RETURN
END

3. Subprogram CSUM:

This function-type subroutine generates the k-th coefficient Ck(Y., K.)
defined by equation (4) or (S-4). : 1 1

FUNCTI@N CSUM ( I, AKl, M, AG )

CSUM = 0.0
KEND = (I+1)/2
AN = I + 1

M1 = I

M2 = -1

D 2 K = 1, KEND
AN = AN - 2.0

22



4,

M1 =ML -1
M2 = M2 + 1
TERM =
IF( AN
CSuM =
IF (I
RETURN
END

.NE., 0.0 )
CSUM + TERM
.EQ.

Subprogram CQ@EF:

(X -

defined by equation

5.

CPEF( AKl, M1l )*C@EF( AK1l, M2 )

TERM = 2,0%TERM*C@S(AN*AG)

(I/2)%2 ) CSUM = -CSUM

This function-type subroutine computes the factor K(K - 1)(K - 2)...

N)/T(N + 2)
()

or (S-u),

FUNCTI@N C@EF ( AKl, N )

CPEF = 1.0

IF ( N .EQ. 0 )
Dp 1L I=1, N
AN = I-1

C@EF =
RETURN
END

Subprogram PMUL:

coef

cated by the integrand of equation

18
20

This subroutine will multiply series A
order N.

The result is
ficients.

RETURN

CPEF*(AKL - AN)/FL@AT (I)

stored in vector C (order M + N)

(s).

SUBR@QUTINE PMUL ( A, M, B, N, C )
DIMENSI@N A(300), B(300), C(300)

NM = N+M

C(1) = A(1)#B(1)
Dp 20 I = 1, NM
KP = 1

IF(I .GT. N) KP =
KQ = I+l

IF( KQ .GT. M ) KQ
CcC = 0.0

Dg 18 J = KP, KQ
KMI = I+2-J

CC = CC+A(J)#B(KMI)
C(I+l) = cC

RETURN

END

I+1-N

= M+l

of order M by series

and has

which is required in the calculation of coefficient Cy

B of
M+ N+ 1

This subroutine is used to accomplish the multiplication indi-

23



6. Subprogram FPINT:

This subroutine evaluates the integral
X

DiX(A+1°B)dx

o~

0

This subroutine is used to accomplish the integration implied by equations (6)
and (7), or (S-6) and (S-7).

SUBR@UTINE PINT ( D, N, A, B )
DIMENSI@N D(300)
DEN=C+ 1,0 - D
Dp 1 I =1, N
DEN = DEN + D
1 D(I) = D(I)/DEN
RETURN
END

7. Subprogram PN@RM:

This subroutine will calculate and multiply a polynomial mapping function
z = f(g) by a constant a such that at ¢ = 1.0 =z = BA,

SUBRPUTINE PN@RM ( D, N, ALPHA, BA )
DIMENSI@N D(300)
ALPHA = 0.0
DP 1 I = 1,N
1 ALPHA = ALPHA + D(I)
ALPHA = BA/ALPHA
D 2 I = 1,N
2 D(I) = D(I)*ALPHA
RETURN
END

8., Subprogram PMAP:

This subroutine will compute the x and y coordinates in the first
uadrant of the star-shaped polygon (produced by the mapping function) at any
zl. This subroutine is included because it eliminates all redundant sine and

cosine calculations, which are usually a lengthy calculation on a digital
computer.

C C+D C+2D C+nD
AO; + Alc + A2; + eee t Anc

N
"

RPEXP(I*P); RP = I;I, I =+v -1, @ = Theta,

(a
1]
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D = The vector containing the mapping function coefficients.
NN = The number of terms minus one in the mapping function.
NP = The number of points to be plotted.

X &€ Y = The vector where the points to be plotted are stored.

SUBR@UTINE PMAP ( D, NN, C, D, R@, NP, X, Y )
DIMENSI@N D(300), X(300), Y(300)

KP = NN+1
JND = NP+l
R = R@#%C
RD = R¢**D
DT = 1.5707963/FL@PAT(NP)
ccg = 1.0
sC@ = 0.0
CDg = 1.0
Spg = 0.0
CCT = C@PS(C*DT)
SCT = SIN(C#*DT)
CDT = C@S(D*DT)
SDT = SIN(D*DT)
D@ 10 J = 1, JND
RCD = R
Cl = CC@
31 = SCP
DD = A(1)®RCD
BX = DD#*CC®
BY = DD#SC@
Dp 5 I =1, NN
ST = S1#*CDP + C1#SD@
Cl = Cl%CD@ - S1%SD@
51 = ST
RCD = RCD#*RD
DD = A(I+1)%RCD
BX = BX + DD*Cl
5 BY = BY + DD%S1l
X(J) = BX
Y(J) = BY

ST = SC@®CCT + CCP=SCT
cco CC@*CCT - SCP*SCT
sScy ST

ST = SD@#*CDT + CD@#SDT

CD@ = CD@#CDT - SD@#*SDT
10 sSDg = ST

RETURN

END

NASA-Langley, 1966 CR-192(01)



