
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19660013128 2020-03-16T22:54:12+00:00Z



P
F L"
4^J
iz

J	 r

EE	 N^
FEDAL g

tf'
t11

® I~.J

FEB 28

I'ECHNICAL REPORT 65-5 

4FOSR (;5_23j13
	 U

H. KUSHNER
	

STOCHASTIC STABILITY AND THE

DESIGN OF FEED BACK CONTROLS

MAY 1965	
CQI

CENTER FOR DYNAMICAL SYS



STOCHASTIC STABILITY AND THE

DESIGN OF FEEDBACK CONTROLS

H. Kushner t

t
This research was supported in part by National Aeronautics and

Space Administration under Grant No. NGR-40-002-015 and in part by the
United States Air Force through the Air Force Office of Scientific Research
under Grant No. AF-AFOSR- 693_6+.



BLANK PAGE

I



r

r

Stochastic Stability and the

Design of Feedback Controls

H. Kushner

1. INTRODUcrION

The object of this paper is to describe the stochastic extensions of

the various techniques for using the second method of Liapunov to aid the

construction and analysis of feedback controls [ 1-81. The method appears

to be useful for' design and analysis, although it is too early to :sake a

final Judgnent. Much depends on future success in finding suitable Liapunov

functions, and understanding the relationship between the loss function and the

desired behavior of the control system.

The deterministic methods have been motivated by considerations of the

following nature. Consider the optimal control problem with control u,

and system

X = f (X, u)

and coat

Cu(x) _ f T k(x, u) dt, Cu( as ) = 0
0

where T is the time of contact with c)S, the boundary of a target set

S. The minimum cost

Cox) = min Cu(x),
u
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-	 1
is achieved by u = w. If C(x) is sufficiently differentiable, then the

Hamilton-Jacobi equation

dr(x) /dt = C' 
X( 
x) f(x, w) = -k(x, w)

is satisfied (where 	 is transpose and C
x 

is the gradient of C),
—

and w is the u minimizing

[C' (x)f(x, u) + k(x, u)].

In lieu of attemptILIg to solve this problem, an alternative procedure

has suggested itself to many authors (e. g. [ 1]-[8]) . Choose a Li apunov

function V(x), and 	 some u(x) so that the system has suitable stability

properties, and compute (X is the state space)

T (x) f (x, u) _ - k
1 (X

., u) .

where kl (x, u) ? 0 in X + 3S. X is the state space.

A comparison of k l(x, u) and k(x, u) can yield useful information; e.g.,

whether V(x..) is greater or less than C(x) ', or stability properties of

the controlled system, the nature of the problem for which V(x) and u

are optimum, and whether some other ca.lculatable control would minimize the

cost C u(x), etc.

. 
Ir
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	 Similar results are achievable in the stochastic situation. Stochastic

stability seems to be a more complicated subject than its deterministic

counterpart, since the corresponding Liapunov functions do not decrease

t
monotonically for each sample function. The effect of controls on the

statistical behavior of the system can be made rather explicit in terms of

a reduction of a bound on the probability of arbitrary deviations in the

sample paths before hitting 26.

In part II several comparison and optimality theorems are proved. In

part III the theorems are applied to the problem of choosing and analyzing

the effect of feedback controls for several stochastic systems.

2. THE SYSTEM TO BE CONTROLLED

The object to be controlled is represented b the vector stochasticJ	 p	 Y

differential (Ito) equation

(la)	 dx = f(x, u)dt + Q(x, u)dz,

by which is meant (using the Ito [9] interpretation of the stochastic integral)

t	 t
(1b)	 X  = X  + f O f(xt, u(xt ))dt + f  o(xt , u(at))dzt.

z is a vector Wiener process with independent components, z is commonly

called white Gaussian noise;

-	 x u+ Crx u z.(lc)	 x	 f( ,	 )	 ( ,	 )

f is a vector with components f i , and o is a matrix with components

a.The process xt is confined to X.	 •
1

1	 ^
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Without the control parameter u, the meaning of (1b) and the conditions

under which a solution (a stochastic process) exists and is unique is discussed

in [9], [10]. To be secure in the mathematical development we assume these

conditions. Let 11 11 be the Euclidean norm. For some finite positive K, let

II f ( x + a, u +	 f(x, U) 11 s ^1 C41 + 1011

(2) IIQ( x + ce, u + e) - Q (x, u)II 5 K14 + KIN

Il f ( x , u)II f-K[1 + 11^i 2 + 11u11212

(3) II u( x + a) - u(x)II 5 41041

A control satisfying (3) is termed admissible. (3) implies continuity of u(x).

Note that u, = sign x is not admissible. Since the K in (3) cen be large,

admissibility is probably not a serious restriction.

In certain cases, our results are vrlid if (2) and (3) replaced by

local Lipshi^z conditions. This is the case when the trajectories have appro-

priate stability properties (e.g., when the origin is stable w.p.l in the sense

of [15]).

The primary attractions of the model (1) are thE.t it represents a rather

large class of Markov processes with continuous sample paths, there is a large

body of theory concerning it, and it seems that many physical problems can be

modelled by it. The question of modelling will not be discussed. The identifi-

cation of particular forms of (1) with particular physical problems is still an

open problem in general (especially in the non-linear case). (Some interesting

results in [ 11] cLarify some of the questions of modelling.)

For each integer r, define the stochastic process

(4) xn+1 - xr + f(xn, u(xn) )A 	+ Q(xn, u(x n)) &zn,

where bz n - z((n+1)a) - z(n0), and define x r (t) = xn in the interval

(n+l)A > t ? nz1. Then, for a suitable sequence of A -4 0, we have x r (t)_, x(t)

with probability one for each t, where x(t) is the solution to (1).



ISome facts, to be used later, will be quoted. If u(x) is admissible,

x 	 is continuous with probability one, and is a Markov process; i.e.,  for

any measurable set A in X,

(^)	 P[ x
t+ s F P, I 

xa' a s t ] - P[ xt+ s E A I xt ] ,

where tr-a bar I denotes conditional probability. A major, relatively

recent, development in probability theory is the analysis and extensive

use of the concept of random time ( see [ 10],	 [ 12],	 [13]  for details) .	 An

example of a random time is the first time that 	
x 
	 leaves an open set	 A;

T = min (t:	 xt j A).	 T	 is a random variable.	 Loosely speaking, whether

or not the event	 (T < t}	 has occured (in the example, whether 	
x 
	 has

left	 A	 by time	 t)	 can be determined by observations on the 	
x 
	 process

up to and including time 	 t.	 (The set	 (T < t)	 is in the a-field

determined by	 x s ,	 s s t. )

The significance to control applications, of the concept of random

time, will be seen in the sequel.	 If the process	
x 
	 is confined to a

set	 X	 which is compact,	 and if	 u	 is admissible,	 the process.,	 x
t	

is,	 in

fact, a strong Markov process.	 A strong Markov process has the MarkoNian

property relative to random times.	 Let	 T	 be a random time, then

F,[x
T

c A I	 xb'	 6 
5 

T]	 P[X,s E A I	 xT].+s

For example,	 let	
x 
	 start in an open set	 B Y	let	 T	 be the least time

B	 forof leaving	 then	 an	 non random	 s	 the probability that	 x	 E Aa	 g	 ,	 Y	 P	 Y T+ s
given	

x 
	 and the paths up to 	 T	 equals the probability given only	 xT.

The strong ML. kov property is proved in [10]. 

^^. ^!^9.	 V	 .	 ^r	 i p ^^'. ^,.—...mss ^. ^.—.. ^—^^	 .1^'	 ^.. ^^ •^	 ^^...^.	 fe. w.^.^
♦. W' 1
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3. THE CONTROL PROBISM 	 C

The process x  is defined in a set X in a Euclidean space. There 	
1

is a set S in X given, and the main object of the control is to trans-
1

fer x  = x to a S in finite average time. In certain cases, infinite

average times will be allowed. The proofs of the theorems we require as-

sume that X is compact (e.g., the proof of (8) for the operator Lu).

This does not seem to be a restriction from the practical point of view

since X may be as large as desired. We may stop the process upon leaving

some very large set, and estimate the probability of this event by (10).

Also, to each u and initial point x o = x, there is the associated cost

1
T

(^)	 Cu(x) = Eu f u k(xt , ut)dt
0	 1

Eu is the expectation and Tu is the random time of arrival at a S.

(provided hat it is defined) and k(x, u) is continuous and non-negative,

and is referred to as the loss.

Define C(x) = min C u(x), provided that the minimizing u is admissible.
u

Part of the control problem is the comparison of C u(x), and Eu Tu for

various controls. Various restrictions may be placed on the control; it 	
i

may be bounded, or its functional form may be restricted; e.g., it may be
i

allowed to be a f anction of some, but not all, components of x.. Some sta-

bility properties may also be of interest; e.g., an estimate of the probability

that xt	 oever leaves some set X', if x	 is in X', or some other quali-

tative information on the random paths.

A number of relevant results and examples on stability are in r'141-[16].

[17] is concerned with ergodic properties of the processes and utilizes cer-

tain properties of stochastic Liapunov functions.

r
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4. OTHER MATHEMATICAL PRELIMINARIES

Let u be admissible. Define the operator

^

I 11=- +	 fi ( x )	 ,11
1

Si . (x,	 u)
j

2a

( 7 ) i 1 ^^

S.j- k	 aik o j k

Lu	 is the differential generator of the
x 
	 process, with control	 u.

We say that	 V(x)	 is in the domain of Lu (V(x)	 E D(L)) if 'V(x)	 is a

g$,	 non-negative, scalar valued function with continuous second derivatives

t	 and the sets (x : V(x) s c) are compact and connected, t for all c less

than some co > 0. Such a V(x) will also be called a Liapunov function,

or a Liapunov function in % region R, if L uV s 0 in R for the given

U. Note that LuV(x) = dV(x) /dt = Vx(x) f(x, u) in the deterministic

case.

Since X is compact and x  is a strong Markov process,

Dynkin' s formula [ 101

(8) E  V(x ) - V(x) = E u f" LuV(x )ds
X	 T	 x p	 s

holds for all random times T with E  'r < 00. (8) underlies many of the

1 results of the sequel. It says, in effect, that V(x) is the average

value of the integral of the 'stochastic derivative' L uV(x). The com-

pactness of X and the finiteness of EXT are important in establishing

its validity. In other cases the operator L  , for which (8) is valid,

will be an extension of (7), but this is beyond our purpose.

Let V(x) be in D(Lu ) in the region R E X,

1
tThe domain of Ltl is obviously larger than our D(L), but D(L) suffers
less.

i
46
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R = (x : V(x) < X) - (x : V(x) s XC, ,	 > X 

a R = (x : V(x) = X 1 V(x) = X 0}.

Let LuV < 0 in R and LuV(x) s 0 on a R. Let Tu be the random

time to d R, starting at x E R. It can be proved, using the continuity

of X  and LuV(x), and the compactness of X, that T  will exist

( although EXu may not be finite), and that the integral in (8) is defined

and finite, and that (8) is valid.. ( See [ 151).  Since x 	 is continuous

with probability one, x  cannot leave R without touching d R (with

probability one). We have

E X V(x) ^ = 1,b P[ sup V (xt) s Xo ]
T ? t?0

+ X P[ sup V(xt ) z X j .
•r ?t?0u

Letting X  = 0, and noting that the integral in (8) is non-positive in R + 6R,

T

(10)	 P[ sup V(xt } ? X] _ 'V(x) - EX f 
ou 

LUV(x)dt)/k
T _t_

s
 0

u
s V(X)/X.

(10) can also be derived by showing that V(y0 is a non-negative
II

super martingale, where vt is the xt process stopped at time Tu; then	 1

the inequality (10) is the non-negative super martingale inequality. Rotb

n	 I
methods may be used when time is discrete. If L / (x) a 0 in R for any

real number n ? 1.9 	
1

i
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(11)	 P [ sup V(x t ) ? X] s Vn(x)/Xn

T ?t?0
U.

which is an improvement over (10).

In general, we will try to improve (10) by finding the maximum n

for which L 1Vn (x) s 0 in R. This method is rmt generally the best for

obtaining probability bounds on the behavior of components of x.

Part II. COMPARISON AND OPTIMALITY THEOR04S

It is always assirned that X is compact, k(x, u) ? 0 and continuous,

and that (2), (3) are satisfied. The purpose of the theorems is to allow

a comparison elf the costs ani stability properties resulting from the use

of different controls, and to obtain upper and lower bounds on C(x) with-

out actually solving the minimization problem. The symbols T O , T  are

the random times to transfer x  = x (in some given initial set) to 6S,

the boundary of the target set S, in the cases of no control, and Control

u, respectively.

The theorems use the assumption E XT U < oo . When LuV(x) < 0 in X - S

and LuV(x) s 0 on 6S and does not depend on time, the finiteness assumption

may be dropped. The modification will be used occasionally in the examples.

It is usually of little consequence, since a slight enlargement of the target

set will usually assure that E uT < 00.
x u

Theorem 1

Assume that there is an optimal admissible control w with E wT < ^.
X w

Let u be admissible and EXT U < co . Let V 1(x) be in D(L) and V 1 ( dS) = 0,

and

(1^+)	 LUV1( x) + k( x, u) < 0

,V
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in X - S. Then

( 15)
	

VI(x) > C(x).

Also, for any X > 0,

( 16)	 P[ sup V1 (x t ) ? X) s EV1(x)/X.
T Z t?o

u

If there is a V 2 (x) in D(L) with V2(aS) = 0 and, for all admissible u,

(17) LuV2(x) + k(x, u) > 01

in X - S, them

(18) V2(x) < C(x) .

(In the event that there is a non-admissible control for which the problem

has a meaning, and which minimizes C
u t 
x), then the first part of the theorem

still holds.)

Proo f:

(8) may be applied to V 1 (x) and T u . Thus,

V
1
 (x)- E UV l (x^ . ) > Euf 

ou 
k(x, u)dt ? C(x) .

u

Since E  T u < 00, xT	 is on 6S w. p.1. Since X is bounded and

U
V 1 OS)	 0, we have EX V

1 
(X) = 0, and (15) follows.

1]

Since w is admissible, and V 2(x) is in D(L) and EXT w < 00, the ap-

plication of (8) to V 2(x) and T 	 yields

T
V

2
 (x)— EX V2 (x T ) < EX f 

o 
k(x, w)ds = C(x),

w

E  V„ ( x ) = 0 by a repetition of a former argument. (i6) follows from (10).
x , T

u

J
7
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Corollary 1

Let the optimal admissible control exist, and let V(x) satisfy the condi-
5

tions on V 1(x) . Let u and w be admissible controls, EXT w < ao, EXTu < 0,

j	 and, for all such u,

L"V(x) + k(x, u) ? 0

iwith equality when u = w. Then

iV(, x) = C(x)

and w is optimal.

i

Proof:

The statement follows from Theorem 1, by setting V(x) = V 1(x) = V2(x) and

if	 replacing all > by k -

Remark:

If there is an admissible control which is optimal and a V(x) satisfying

the conditions of the corollary is available, then the corollary partially jus-

tifies the usual result of dynamic programming; i.e., than the optimum control

^	 minimizes (19) and that the solution of (19) is V(x) = C(x) .

1
(19)	 min[ L uV(x) + k(x, u) ] = 0

Corollary 2

(10) is valid and Tu is defined with probability one, when k(x, u) > 0r

in X - S. Under this condition, the condition on definiteness of the average

arrival times can be dropped, and we have a true optimality theorem, (the stochas-

tic	 ncounterpart of the Hamilton-Jacobi equation theorem i 	 20F	 q	 _ [	 ]).

Theorem 2

Let

1
	 Cu(x) _ E u f o" [k(x) + 1(x, u)]dt



where k? 0 , ^ ? 0 and I (x, 0) = 0. Let Lo correspond to u = 0. Let

E°T O < 00 "P V(x) in D(L) and V( a S) = 0 and

L0V(x) + k(x) = 0.

For some u, let E u T < 0, and
x u

(20) LuV(x) + k(x) + I(x, u) < 0.

Then

T	 T
(21) Co(x) = E  f 

oo 
k(x)dt > EX fou [k(x) + I (x, u) j dt = C u(x) .

If ? replaces > in (20), it does so in (21).

Proof:

The proof is essentially that of Theorem 1. From (8)

	

T	 T	E  
f0	 0U[ Ll-'V(x) + k(x) + I (x, u) ] dt < 0 = E o f o o l, LoV(x) + k(x) jd t

- V(x) + Euv(x T ) + Cu(x) < - V(x) + EXV (x T ) + Co (x) .
u	 o

Since x 	 and x 	 are on d S W. P. 1, and V(x) is bounded in X - S,
u	 o

the theorem follows.

Remark:

Consider the special case

dx _ f(x, u)dt 4 o(x)dz,

r TV,
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where a noes not depend on u, and where (with V(3 S) = 0)

(22) k(x) _ - L0V(x) _ - V'(x)f(x, 0) - ^;	
C	 Si (X).x 	 ^i ^ci 1j

With u ^ 00

(23) -Luv(x) = -V'(x)f(x, u) - 1	 (x S, .(x).
x	 2	 i^

41 i

By Theorem 2, for any u such that

LUV( x) - LoV( x) + 1( x, u) s 0
or

(24) VX(x) [ f(x, u) - f(x, 0) ] + 1(x, u) < 0,

we have

Cu(x) < C o (x) .

Although the theorem states that a control will decrease the cost

under certain conditions, accurate estimates of the decrease are usually

difficult to obtain. Estimates of the effect of the control on the pro-

bability (16) are readily available ( see the examples) . We obtain the

best improvement of the value of (16) with the u which minimizes (?_O)

Otherwise, the problem of selecting one, from among the many controls which

may satisfy (24) ', is open.

Theorem 3 gives a condition under which E X r < m is assured.

R
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Theorem 3

Let V(x) be in D(L) . If, for some E > 0,

LUV(x) = -k 1 (XY  u) s - E

in X - S, then T 	 exists w. p. l and

F  
T s V(x)/E < 00.

x u

Let there exist an optimum w and	 C(x)	 with loss function

k(x,	 u) . Let k(x, u) s	 k l ( x, u) and

inf k( x, u) ? E > 0.
X ) u

Then

E  T s V(x)/E < 00.
x w

Proof.

Let i b.-any random time with EXT < oo. The first statement follows

from

V(x) - E XV(x T ) = EX fo	 kl(x, u)dt ? E EXT

and from the boundedness of V(Y) in X. ( If EXT U = co, we could increase

T until E EXT > V(x) in X. )

Now, by Theorem 1,

pQ
i
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0

T
V(x) ? C(x) = Ew f w k(x, u) ^ E EwT

-	 x o	 x w

and the second statement follows. The existence of a IT 	 is part

of the statement on the existence of an optim^im w.

Theorem 4 gives a method of selecting S so that the corresponding

problem can be studied by means of Liapunov functions.

Theorem 4

Let u be admissible and let V(x) be in D(L). Define the sets

R  - ( x : LuV(x) ? 0) and S r = (x : V(x) s r) .

Let the sets be non-empt y and let R 	 be a proper subset of Sr.

Let x = x be in X - S and define T as the random time of
o	 —	 r	 u

arrival at dS ^. Then

(^5)	 EuT < °°•
x u

(26)	 P[ sup V(x t ) - r ? X] s E[V(x) - rj/X
T i t?0

u

If w minimizes LuV(x) in X - S r, and LWV(x) = -k(x) s - E < 0 in

X - S 	 then w is the optimal control for the loss k(x) and target

set S r. The cost is

(^7)
	

C(x) = V(x) - r = Ew f a~ k(x) dt.

Also, if LuV(x) + k(x) s 0 in X - S r then

4

ONNOW	 "!j!jjrfVFMWr	
. .

`	

7	 r
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(26)	 V(x)	 -	 Y ? C u(x) = Eu f Tuk(x) dt.

i

0

i Proof:

Since	 LuV(x)	 is continuous,	 acid	 Ru	 is a proper subset of	 SY
{

LuV(x) s - E < 0,	 for some	 E,	 in	 X - S Y	 Consequently (25) follows

from Theorem 3.

Since , V(x) -	 Y ? 0	 in	 X - S	 and	 L"[ V(x) -	 Y] s 0	 in	 X - S
Y	

Y ,

(26) follows from (10).	 The fact that the	 u	 which minimizes	 LuV(x)

is an optimal control for loss	 k(x) _ - min LuV(x)	 and target	 d S Y	fol-
u

lows from Corollary .l. 	 (27) and (28) follow from Theorem 1 and Corollary

1, by using	 V(x) -	 Y	 in their proofs.

1

Discussion:

For a given Liapunov function 	 V(x),	 the control Frobiem may be

studied in several ways.

Let the loss be	 k(x, u .) .	 Now compute	 R
U
	 (x	 L l`V ? 0).	 Now choose

a	 Y	 such that	 S	 -D R 	 and check that	 X •- S	 is not empty.	 Check
Y	 o	 Y

that	 LuV(x) + k(x, u) s 0	 in	 X - S T 	Then, Theorem 4 says that,	 start-
'

ing from a point in	 X - S y
 ,
	 the total cost,	 C 

u 
(x)	 of transferring

' X  = x	 to a point on	 a S 	 is no g, eater than	 V(x) - Y.	 If	 LuV(x) +

+ k(x,	 u) = 0,	 then the cost is	 V(x) -	 Y = Cu(x).
u`

Now let	
u 
	 and	 u	 be given and check that	 S Y	(RU U R l)	 and that

X - 
S 
	 is not empty.	 If	 sLuV(x) + k(x,	 u)	

Lu 
lV(x) + k(x,	 ul ) = 0 ) 	then

the theorem says that the cost of transferring	 x = x 	 in	 X - S	 to	 a S
Y	

Y

is no greater with	 u	 than with	 u1 0	 Theorem 2 may be used to try to find

improved controls,	 provided that	 V(x)	 and	 k(x)	 are given.

s

now-
 4d.
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if,	 for some S,	 two Liapunov functions	 Vl(x) and V2(x)	 are

given with the properties	 Vi ( a S) = ri ,	 and L"V l (x) + k(x,	 u)	 s 0,

L'1112(x)	 + k(x,, u) ? 0 1 	LuVi (x) < 0 in	 X - S, then the cost of trans-

ferring	 x	 = x	 to	 3 S	 is hounded by
0

V2(x) - r2 
-;:I. 

Ca(x) 
_e

	 - rl

Obviously, the cost of transferring to a point interior to S is no

less than the cost of transferring to S (by the continuity of x t). The

f
`

	

	
cost of transferring to a set enclosing S is no greater than the cost of

transferring to S. The observation yields bounds for terminal sets other

t	 than the S.

Other forms of boundary conditions and loss functions and possible (for

example, in case of instability we may minimize the probability of being lost) and

will be considered in the examples. Choosing suitable V(x) is, of course,

no easier in the stochastic case than in the deterministic c p.se. We have

the double problem of finding V(x) so that both	 k(x,	 u) and S	 are

suitable.

'

	

	 In the (homo beneous) deterministic case when V(x) s 0 with equality

implying x = 0, it is possible to transfer x  = A to the origin. This

isossible in the stochastic case	 sp	 (pith probability ore) if L1V(x) - 0

with equality onl • when x = 0.

The following theorem is useful for obtaining probability bounds on the
sa

rate of convergence of x  to a S. The quantity CY may depend on the

control.

	

r	 Theorem 5

	

"`	 Let Vn(x) be in D(I,) and
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v rI	 n
L V ( x) s - cz V ( x), 

at 	 0,

in X - S. Let t(T) = min [t, T], for t non-random. Then

P[ sup	 V(xt) ?s X]	 e-asVn (x) / ),n,
'ru?t?s(Tu)

where x = x
0

Proof

Modify the system in S only, so that L uV(x) f- - dV(x) in X. Let

X? be the modifie6 trajectory and T' the time to the origin for the

modified trajectory. By tte continuity of the paths

P[ sup	 V11(xt) ? Jan ] ? P[ sup	 Vn(xt) ? X 
T' ?t? S( T' )	 Tint? S( -1u)

'By Theorem 5 of [15], the left side is less than e - scx Vn(x)/ n^ , if x  = x,

and the proof is concluded.

IIL EXAMPLES

Example 1. Lett

(29)	

dx1 = x2dt

dx2 = (-x - x2 + u)dt + Q(x)dz

with

t The spaces X of the examples are not compact. However, by letting
0 2 = 0 for large NIP and confining x o = x to some large, but compact,
set, the spice may be co..pactified with little loss in generality.

,._. ...-'^^. -	 ..	 -	 '^^^'^"^.  ----•+.ter-- .^.. ^.	 -•,^,,...^^.._.r ^-^•	 "^;- .
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Q2 (x) = xi Cr 	 Q2 < 2

k(x, u) = xi + x2 + u2

If a2 < 2 and u = 0, then x  --*0 with probability one [151.  Owing to

this, the target set may be the origin. Theorem 2 will be applied to the com-

putation of a control. With u = 0, there is a positive definite quadratic

form [ 15]

V(x) - b 11 1. + 2b 12 x2 xl + b22x2

b11 = 2 + (2 + a2 )1( 2 - Q2)

12 = 2 + Q2^( 2 - °2b	 )

b22 = 2/(2 - a2)

so that

L0V (x) - - k (x, 0) _ - x2 - x2
T

C o (x) - EX f oo ( x2 + x2)dt = V(x" .

By Theorem 2 (Eq. (24)), for any u such that

	

(30)	 u( C)V/ C)x2 ) + u2 < 0,

we have

j	 (31)	 Cu(x) _ Coo(x) < C.
i

low



l
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In particular,

( 32 )	 u = - ( aV/ax 2 )/2 = - ( b ll x l + b22x2)

satisfies (30) . Although the improvement (31) is difficult to estimate,

an estimate of the stability improvement may be obtained with the use of

(11) . Now, with (32) , and any real number n ? 1,

L'V' = nVn_1 [av x2 +aV (-xl-x2 + u) ]
ax 1	 ()x2

2 2

o Y1(33) +	 [nVrl-1 a2V + n(n-1)Vn 2 aV 2-(	 )]
2	 2	 ax 

nVn-1[-x1 -x2	 2(b12 x1 + b22 x2 ) 2 + 2(n-l)u2(b xl + b22x2)2(x1/V)]•

The middle entry, -2(b 12x1 + b22x2 ) 2 , is due to the control. The noise

contributes to all other terms. Also (xl/V) 
s (o ll - l^' b22 )-1 -

Since the control contribution is proportional to the term containing

a2 , and is of opposite sign, some cancellation occurs; this cancellation

increases the maximum value of n for which L LY1 is non positive in X.

As n increases, the estimate

(34) P[ sup	 V(x t ) ? X] s Vn(x)/>,n
T ?t?0
u

improves. With properly chosen V(x), estimates of the form of (34) can

yield useful information on the effect of the particular controls. By

Theorem 3, if S is a set containing the origin as an interior point, then

the average time to S is finite. In any case, xt -*0 w.p.l.

A useful general form is

i^
L

J
l
1
1
1
1

1

'OPT
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LuVn = nVn 1 [ LoV + ( Lu - Lo ) V + (n-1) E
i, j

S i . = E oik a'k
k

In our case,

( Lu - Lo )V = u(aV/6x2) = 2(b 12 x 1 + b21 xc ) u

Let numbers 8 > 0 and E < X be given, and assume that x  = x is

in (x: V(x) s E). We will compute the'smallest'control which guarantees

( according to our estimates and method) that x  -4 0 w. p. 1 and

P[ sup V(x) ? X] s 6
T ? t ? 0
u

First compute the least n ? J_ such that

sup Vn(x) /Xn = ( E/ ') n = b.
x

Then LuVn s 0 in X if

(35)	 -x1 - x2 + 2u(b 12xI + b22x2 ) + 2(n-1)Q2 (b 12 x  + b22x2 ) 2 (xl/V) s 0.

A suitable control can be determined from

2u(b 12 x1 + b22x2 ) = min[0, x  + x2 - 2(n-1)Q2 (b 12 x I + b 22 x2 ) 2 ( xl/V ) ]^

which always yields a bounded control (in any compact set) (if b 12x1 + b22x2 = of

then u = 0) .

ROW ^,^„ ..	 r .	 _	 •,,,,mss

,._

( aV/ axi ) ( av/ax0

2V	 Si j
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Example 2. Same as Example 1, but let a (x) = a- 	 a constant. We

would prefer a V(x) such that L°V(x) = - k ( X) 0). Not being able to find

such a V(x), we select one which yields an approximation. If

V(x)=3/2x2 + X X +x2
1	

'1 2
	 2

then

L0 V(x) = -X i - x2 + Q2,

To satisfy the conditions of 'Theorem 4, let

S 7 (x: xl + x2s	 Q2 )= Ro

L0V(x) < 0 in the complement of R o . Although Ru can be made smaller than

R o , the minimum eigenvalue will b p the same, and the allowable reduction in

the size of the target set may not be appreciable. Following the procedure

of Theorem 4,

To
(36)	 C°( x) : EX	 ( X2 + x2 - Q 2) 	dt = V(x) - r,

where TO is the random time to the assumed target set

S = (x: V(x) 5 X) ) Ro.

C u(x) < C o(x) if

E
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u2 + ( aV/6x 2 ) u < 0,

which is satisfied (and is minimum) if

(37)	 u = -(x l/2 + X2)'

Also

L^(x) = nVn 1(x)[-xl - x2 + Q2 _ 2(x 1/2 + x2)2

+ 2Q2 (11.-1)(x 1/2 + x2)2/V(x)],

The -2(x12 + x2 ) ` term is contributed by the control (37). As in example

1, the control improves stability--in the sense that the probability of an

arbitrary increase in V(x t ) (before absorption on 6S) is decreased.

The method may be used to obtain bounds on moments.

Replace TO in (36) by a non-random variable t, let Q2 = 0 for very

large jjx^j (so that X is compact), and assume that each E x2 converges

to a constant as t w . Since xi + x2i s bounded in X. the order of

integration may be changed for any finite t. Then, (36) and the boundedness

of V(x) in X yield that

ti n. E ( x2 + x2) s Q 2

and the limit converges to a^2 its the point f IxIl of truncation of v 2 goes to
infinity.

Example 3. Assume the system,of example 2. We consider another type of

criteria by which V(x) may be chosen. Let x o - x = (0 1 x20 ). Then
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V(xo) - b22x20. 	Find a u which will transfer x2 to some small value

^2 and such that, for a given 6 and E > x20

1

P[ sup x	 E2t ?  
T ?t?0	 ;-u

Let LuVn (x) < 0 for x2 > ^2 , and let T u be well-defined.

Any quadratic form in two variables may be written as

(38) V(x)	 b' x2 + (bllxl + b12x2)2/bll I
b - (b22	 b 212 /bll)_,

where the first tern of V(x) is positive definite, and the second is

positive semi-definite. Since

(39) P[ sup W x2 ?X] 5P[ sup V(x) ? X] s (b22x20)n^,n'
T Zt20	 T 2t2O

u	 u

where X/b' = E, it seems reasonable to use the positive definite quad-

ratic form with the maximum value of

b' b22 = 1 - b 
2
12/b11b22'

provided, of course, that

(4o)	 LuVn(x) < 0 for x2 > P2

and a suitable n. The problem suggests that we seek a V(x) such that

L0V(x) = _x 2 + constant. Thus , let

.x

0
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V(x) = (x2 + x2)/2,

LUV(x) = -x2 + a2/2 + ux2.

If f^ 2 < a2/2, then the use of

(41)	 u = _X (ar2/ 2 - 2 )1 ^ 2,	 2 s x2 s o2/ 2

0	 otherwi st,

assures that (40) is satisfied for n = 1. Thus, there is a control for

which x2 = ^2 is attainable. Note also that b'/b22 is maximum. If

b' /b22 were not maximum, then either some systematic procedure for maximiza-

tion would be followed, or else several V(x) would be tried and compared.

To complete the analysis, find the least n ? 1 for which

(b22x20/ Eb' ) n = b

and choose the most convenient u for which

_1 2	 2 (n-1)2x2
L^ (x) = nVn [ - x2 + Q + — 2 -- 5-- + ux2 ]

( x 1 + x2)

2is negative in the desired region x2z 0 .

There are, of course, similar procedures for more general initial condi-

tions. The quadratic forms may be chosen by selecting the non-constant, non-
x

positive quadratic part of L0 V(x), and solving for V(x).

Other forms of experimentation with the type of quadratic form is pos-

slble, e.g., choose a control first (say, of an arbitrary linear form with

...
	 coefficient to be determined), then choose x' Bx, so that the target

..
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(x: x'Bx E X) is of some useful shape, and, finally, compute the control

coeffici ents.

Remark:

Generally, the Liapunov functions Vn(x) do not give the best probabi-

lity bounds on, say, the excursions of some component 1xii, since it

couples the effects of the various components of x more than is necessary.

For example, instead of choosing n = 2, a suitably chosen homogeneous

positive-definite quartic form will usually yield better estimates on

the probabilistic behavior is being investigated. The powers of the quadratic

form are used here purely for numerical simplicity.

Example 4. Let

dx = (Ax + Cu)dt + adz

V x, u) = F(x) + g(u)

n
F ( x ) = E F^)i(x)

1

where F21(x) is a homogeneous positive definite form of order 21, and A

is stable. By a theorem of Liapunov [18], if Q = 0, and u = 0, there is

a homogeneous positive definite function V21 (x) of 2i-th order, with

^2i (x) - - F2i (x). When a is a constant matrix not identically zero,

LoV21 (x) _--FC i (x) + Q2(i-1) (x)

_ 1	 ^2V2 i
p
-"2(i--1) (x)	 2 m ^x J m Jjm

I

1
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i
Q.O

S jm

Q2 i' i ^ 0, is a

A Liapunov functio:

constant.

i aji^mi

homogeneous non-negative definite form of order 21.

n

(42) V(x) _ ^ V2i1

with

(43) L0V (x) _ -F(X)  + Q 

is easily determined: set Q = 0 and solve, by_ Liapunov' s theorem,

V2n (x) _ -F2n(x)

and, in general, for the case 0 < i < n,

V21 = -F21 (x) - Q2i (x) .

If the target set S = (x: V(x) = Y} includes (x: F(x)Q 0 	then

T
C o (x) = Eo f oo (F(x) - Q0 ) dt = V(x) - Y.

By Theorem 2, if

LUV(x) + g(u) < LOV(x) ,

s
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$^

Cu(x) = E
X I o u ( F ( x ) + g ( u ) - Qo ) dt < Co ( x ) -

For the deterministic problem, this approach was investigated in con-

siderably more detail in [8].

Example 5. Let

(44)	 dx = (Ax + u)dt + Q,jz

k(x, u) _ - p

A' + A - 0, CyiJ = a2SiJ

and u' u = P2 . The target set is

radius r > 0. The deterministic

variant'. Let the components of

which is the minimal cost of tran

deterministic problem, is

to be a sphere about the origin, with

part of (44) has been termed 'norm-in-

z be independent. The Liapunov function

sferring x = x 	 to the origin, for the

vl ( x )	 (x' x)112

We have

Lu' 
x __ x' u + 02

1( )	 j	 x,

which is minimized by

(45)	 U = - Px/11 x11 ,     
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the optimal detarministic control, and

( 46 )	 L V 1 ( x ) = -P + (s-l)o2/211-iI,

where s is the dimension of x. If the target set has a radius at

least Q2 /2p, then Theorem 1 yields

;' 1 (x) - Y < C(x) ,

The fact that (46) is still a function of jj xj suggests that C(x)

is a function of (! xij . Let us try

( ^+^)	 V(x) = 11 ^ j + a log x' x + c,

where a and c are constants. (47) is suggested by the form of (46).

(It is also suggested by the observation that the 'deterministic' contribu-

tion to LUV, of log x' x, 2Ax' /x' x, is of the proper form to cancel part of the

'stochastic' contribution of V 1(x) to LuV, which is (s-1) Q2/211 xij . )

X1 u	 a2 (S-1 ) 	 ax' u	 ao,2 (s-2)LuV(x) - ^ +	 + x , x + x , x

With (45),

2
Luv(x) = -P - a + LT tllX	 + a" ( s-2) .

Let s = 2	 and a = a2/2p, then LuV(x) = -p. At -r.he target set boundary,

IMF' . ^	
.• ^ ^	

-^ •.•--	

- - .. _
	 ...^	 _	

_---_ - - -	 r,
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(x: x' x - r2 ; , we have V(x) = 0. Thus, for arbitrary r > 0, set

C = - r- a log (r 2 ) .

Now, V(x) > 0 and Lull (x) = -p	 i n X - S, and

T

C u(x) = V(x) = E X f o Upd-i = EU-1

Also, since (45) minimizes LuV(x) over all admissible controls, by

Corollary 1, (45) is the average-time-optimal control over the class of

admissible controls. If s > 2, the procedure may be repeated. This will

be developed elsewhere.

Example 6. Take the scrilar case

dx = -xdt + udt + vdz

uI s 1,	 S = {0},

T

C u(x) = E  f 
OU 

(k + I ul ) dt.

The optimal deterministic solution is (the deterministic version is a problem

in [21])

V' (x) _ (k + 1) log(I xI + 1), 1 xI < k, u = - sign x

V" (x) _ (k + l) log(k+l) 1 og x , I x! ? k, u = 0.

l,)g k

( 49)	 LUV' (x)	 -(k+l) - v2(k+l)/2(I xI + 1 ) 2 , u = - sigri x

LUV" (x) _ -x - a2k/x2 , u = 0.

aS =

W
A.
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At I xj = k, Cd (x) does not have a derivative. This is not important

in the scalar case. (It can be assumed that a 2 (x) satisfies (2) and is

zero in a small neighborhood of j xj = k, with an insignificant change in

the process.) Since LuCd (x) < - k(x, u) for ' xj / k, Theorem 1 yields

Cu(x) < CC (x)

The loss for the stochastic problem is less than Cd (x), since the

problem is scalar and Cd (x) is -=vex downward. Such an improvement is

uncommon for vector problems.

By Corollary 1, if V(x) and u satisfied L uV(x) + k + I t;j = 0 and
Lut 

V(x) + k + u' I -,*!0  for u' i u, then u is an optimal control and

V(x) = C(x). Then, u must satisfy

(50)	 u = - sign dV/dx, dV/d x > 1

u = 0 ,	 otherwise,

exactly the form of the deterministic optimal control. The form (50) is

not admissible, but may be approximated arbitrarily closely by an admis-

sible control. Since the problem can be well defined and solvable with a

slight modification of Q 2 (x), the inadmissibility will be ignored. Since

Cu(.) < V' (x), I xj < k, it is suggested that ( dC(x)/dxl < I dV' (x) /dxl ,

xj < k, arid, hence, that the optimal control would be of the form

u	 - sign x. I xj < k' < k

u = 0 ,	 Ixl i k'.

W AWAUr •-,

19
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The qualitative information inferred above can be substantiated by

solving the exact stochastic problem (which is easy and will not be done here).

Define S r - {x. I x  5 r), r > 0 and let X be a large set con-

taining the origin with o2 - 0 outside X. Now, since L° log (1 + I xI) < 0

in X - Sr for any r > 0, (10) yields

P[ suplog(1 + I xt I) ? ] s log (1 + I xI )/X.T ? t?0	 I0

Better bounds can be obtained if S r is more restricted. Let V(x) =._ I xI n,
I

n ? 2 . Then

LuV(x) = nI xI n 2 A(x)

A(x) = -x2 + ux + (n-1 o-22.))

If A(x) < 0 in X .. S r , then

P[ sup I xt,	 ^,] s I 

xI n/fin

T ?t?0
U

The smallest Sr ( such that L•uV < 0 in X - Sr and I uI s 1) corresponds

to	 -

r = T, = [-1 + (1 + 2(n-1)u2)112]12

and then we requ:.re u = - sign x for rl 5 I xI	 r°, where rO	 Q_ (n-1)212.

^I

_	 __
400-	

-	 .•---.w..^^
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