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SUMMARY 

Recent  investigations  on  the  influence of edge  conditions on the  cr i t ical  axial load of 
cylindrical   shells are extended  here  to  include  cylinders  with  elastic  edge  restraint. 
It is shown  that  weak  edge  conditions are unlikely  to  affect  the  critical  load  signifi- 
cantly  in  experiments o r  in  practice.  Also  the  effects of symmetr ic   ini t ia l   imper-  
fections  were  investigated.   The  cri t ical   load  for  cylinders  with  init ial   imperfections 
in   the  form of a cosine  function  was  found  to be somewhat  lower  than  was  indicated  in 
a previous  analysis by Koiter.   The  analysis  also  disclosed  that   very  short   cylinders 
would  not be sensit ive  to  the  types of imperfections  which  were  considered. A few 
tests  were  performed  and  their   results  tend  to  support   this  conclusion. 
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NOTATION 

*1' A2 integration  constants 

Et3/[ 12(1 - Y ~ ) ]  D 
'> 

E Young's modulus 

F s t r e s s  function [See Eq. (S l ) ]  

F. 
1 

values of F at discrete point 

I-I radial  force at shell  edge  [See Eq. (G) ]  

L shell  length 

M total  number of discrete points 

Mx, My, Mxy, Myx bending  and  twisting  moments  per unit width 

N 

N 
- 

compressive axial load per  unit width 

N/(WEt) 

Nx, N N 
Y'  XY 

normal  and  shear  forces  per  unit width 

cl'Jx>o value of Nx in  prebuclding  range 

'CR critical  axial  load on cylinder 

W lateral  displacement  [See Eq. ( a l ) ]  

wi valuc of W at   discrete point 

Z L 2 (1 - Y2)1/2/(rt) 

k(l -I- N) - l / 2  

- l / 2  
al 

a2 k ( l  - N) 

b length of initial  imperfection  wave [See Eq. (3411 
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C i 

di 

e. 

f 

h 

1 

i, m ,  q 

k 

n 

P 
- 
P 

r 

t 

W 
0 
- 
W 

- 
W 1 

x, Y 

coefficients [ See Eq. (19)] 

end  ring area divided by t 

coefficient in displacement  function  [See Eq. (29)J 

coefficients  [See  Eq.  (IS)] 

coefficients  [See  Eq. ( 2 0 ) ]  

stress function 

2 

distance  between  neighboring  discrete  points 

integers 

number of waves  in  circumferential  direction 

internal  pressure 

(pr)/(Et) 

shell  radius 

shell  thickness 

axial,  circumferential,  and  radial  displacements 

value  of w in  prebuckling  range 

initial  displacement 

value of initial  displacement  [See Eq. ( 3 2 ) ]  

axial  and  circumferential  coordinates 

value of F o r  W [See Eq. (23)] 

(a+)/Pr) 

@2L)/Pr) 

coefficient  in  prebuckling  displacement  [See  Eq.  (14)] 
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A length of initial  imperfection  wave  [See Eq. (32)] 

ti 
x.. 
1J 

i7r r/L 

spring  constants  [See Eq. (7)] 

XI, A2, h3 nondimensional  spring  constants  [See Eq. (S)] 

'i m i  

pi 

I.1 nondimensional  amplitude of sinusoidal  initial  displacement 

- 

nondimensional  amplitude of initial  displacement  component 

U Poisson's  ratio 

0 initial  displacement  [See Eqs. (33,  34)] 

aCR critical  axial  stress 

aCL classical  value of aCR 

4 4  4 2 2  v4 a /ax -+ 2a  /ax  ay + a4/ay4 

When subscripts x and y follow a comma, they indicate  partial  differentiation of the 
principal  variable with respect  to x o r  y . Primes  indicate  total  derivatives with 
respect to x . 
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INTRODUCTION 

Due  to the  lack of agreement  between  theory  and  test,  empirical  curves,  based  on a 
large  number of tests,  are usually  employed  in  the  design of axially  compressed  cyl- 
inders. However,  many of the  test  specimens  were  probably  manufactured  poorly 

and the  design  curves are generally  conservative. Of course, as more  tes t  results 
are made  available,  questionable  test  points  may  be  disregarded  and  better  design 
curves  may  be  constructed.  However,  the  designer will still  be on uncertain  ground 
until  the  buckling  problem  for  the  axially  loaded  cylinder is fully  understood.  The 

effects of initial  imperfections  and of differences  in  edge  conditions,  for  instance, 
cannot  be satisfactorily  evaluated  through  experimental  analysis  alone. 

The  influence of edge  conditions as a  possible  explanation of the discrepancy  between 

theory and test  was  explored by Nachbar and Hoff (Ref. l), Stein  (Ref. 2) , and 
Fischer (Ref. 3).  Nachbar and Hoff considered  the  case of free edges  and found the 
critical load  to  be 37 percent of the classical  buckling  load.  Stein  presented  an  analysis 

of cylinders with supported  edges  which,  for  the  first  time,  included  an  accurate  pre- 
buckling  analysis.  For  the  particular  set of boundary  conditions  considered by Stein, 

the  computed critical  load  was about  half  the classical  buckling  load.  Fischer  pre- 
sented a similar  analysis but  with  different  in-plane  boundary  conditions. Fischer's 

critical load  was a s  high as 85 percent of the  classical  buckling  load. With boundary 
conditions  identical to those by Stein  but  with a membrane  prebuckling  solution  Ohira 

(Ref. 4), Hoff (Ref. 5) , and Hoff and  Rehfield  (Ref. 6) obtained  results  close  to  those 
by Stein.  The  investigations by Stein and by Fischer  were  extended by Almroth  (Ref. 7) 

to  cover  eight  different  sets of boundary  conditions.  It was shown that,  except in the 
free edge  case, a substantial  reduction of the  buckling  load  occurs only when the  con- 
ditions of simple  support  and of zero  tangential  displacement are applied.  Neither 

the case of zero  transverse  shear  force  (Nachbar and Hoff) o r   z e r o  tangential  shear 
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force  (Stein) is Iikely to be completely  realized  in tests o r   i n  practical applications, 

but it is possible that  considerable  reduction  may be due to elastic restraint. Therc- 

fore, a buckling  analysis  with elastically supported edges is presented  here. 

Although weak  edge restraint and  also  disturbances  such as accidental lateral loads 

may  be of importance  in  some  practical  applications,  these  factors are certainly of 

minor  importance  in tests performed  under  laboratory  conditions.  Consequently, 

the  presence of initial geometrical  imperfections still appears  to be the  major  reason 

for  the  discrepancy  between  theory  and test. 

Effects of imperfections  in  the  cylinder  were  investigated  by Donne11 and Wan (Ref. 8). 

Their  nonlinear  analysis  demonstrates  clearly  the  importance of the  initial  imperfec- 

tions,  but,  due to the  approximations  involved, it does  not  appear  possible  to  use 

their  analysis  directly  for  design  purposes. 

Some  analyses  consider  cylinders  with  axially  symmetrical initial imperfections  only. 

Koiter  (Ref. 9) first  presented a general  theory which  was  valid  only  for  imperfections 

of small  amplitude, and later a less restricted  theory  (Ref. 10). Babcock  and S e c l ~ e r  

(Ref. 11) derived a solution  to  the  problem  which is quite  similar  to  Koiter's latest 
theory.  Both  analyses  consider only the case in  which  the  initial  displacements are 
described as a simple  trigonometric  function of the axial coordinate.  Babcock  and 

Sechler  restricted  their  analysis  to  the  case  in which  the  axial  halfwave  length of the 

initial  displacement  equals  the  shell  length.  Koiter  restricted  his  numerical  analysis 

to  include  only  imperfections  which are proportional  to  the  symmetrical  buckling 

pattern of an  infinitely  long  perfect  cylinder. Also Fischer  (Ref. 3) considered  the 

effect of axially  symmetrical  initial  imperfections.  The  approach  used by Fischer 

allows  more  freedom  in  the  choice of the  shape of the  imperfection.  However, 

numerical  results are presented only for  one case. 

Unless the  analysis is restricted to symmetric initial imperfections,  the  numerical 

work  will  require  the  solution of nonlinear  differential  equations.  Therefore, it  is 
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reasonable to explore  first the symmetrical case fully although such an an ialysis m ‘aY 
not constitute a final solution of the problem. In the present  analysis,  only  axially 
symmetrical  imperfections are considered. The imperfections are represented by 
trigonometric series, and the effect on the buckling load of imperfection of various 
shapes is studied. 
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BASIC EQUATIONS 

The  so-called Donne11 equations are used  in  the  present  analysis.  Thus for a cylinder 

with an  initial  imperfection, w 
- 

Nx = ~ [(u + L w 2  +w w Et 

1 - v  2 , x  2 , x  7x , x  7 Y  7 Y  

By use of these  equations  the  total  potential  energy of the  loaded  cylinder  can be 
expressed  in  terms of the  displacement  components  u  v  and  w . From this  energy 

expression  we find through  the  variational  approach  the  three  equilibrium  equations: 

4 
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An Airy's stress function  f is introduced  such  that 

Nx = f ; N Y = f  - 
9 Y Y  ? x x  

; Nxy - - f7xY 

The  first two equations  may  then  be  replaced by the  compatibility  equation 

" V f  = w   - w  w + 2 w  w - w  w - w  w + - w  (4) 
1 4  2 

Et 7XY 7 =  7 Y Y  ,xy  ,xy 7 =  ,yy ,yy ? x x  r ,xx 
- - 1 

Since  the  analysis is restricted  to  axially  symmetrical  initial  imperfections,  the 
equilibrium  and  compatibility  equations  may  be  written as 

1 
DV4w = f y y y ( w , ,  + y x x )  + f,xxW,yy - 2fyxyWyxy - i; f,, + p 

1 4  - V f = W 2   - w  w 
- 1 

Et  Y X Y  9- YYY 
- w  w + - w  ,XX ,YY r ,XX 

In addition  to  the  equilibrium  equations,  the  variational  approach  yields  the  following 
natural  boundary  conditions a t  x = i L/2: 

f 
7 Y Y  = Nx = - N  

- f  
7 XY XY 

Mx - - - D ( w , = +  vw ) = 0 

= N  = O  I ( 6 )  
7 YY 

H = f  
- 2 

,yy(w7x + w7x) - f7xyw7y - [w?xxx + (2 - V) w 7 XYY 3 Ety2 = 0 
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All admissible sets of boundary conditions are given by 

w = AllH + h12Mx + Al3NxY + A14Nx 

w = AZIH + A M + A23Nxy + A24Nx ,x 22 x 

v = A H + A M + A33Nxy + h34Nx 

u = A H + A42Mx + A43Nxy + A44Nx 

31 32 x 

41 

It  will be  sufficient  for  the  purpose of this  analysis to consider only the effects of the 

diagonal terms in Eqs. (7). Consequently in the  numerical  analysis  we  assume 

A. .  = 0 'if i z j . Also, as the  choice of boundary  condition  for  loads o r  displace- 

ments in the axial direction  generally  has little effect on  the critical load we will use 
1J 

Nx = - N at x = f L/2 

Nondimentional  spring  constants are defined as follows: 

AI = All E t / r  

A = A  Et 2 
2 22 

A = A33 Et/r  3 

Thus the  boundary  conditions  may  be  written (for total  displacements) 

Nx = - N  

w + A1(Hr)/(Et) = 0 

w ,x + A2Mx/(Et2) = 0 

v - A (N r)/Et = 0 
3 XY 
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PREBUCKLING  DISPLACEMENTS 

As only  axially  symmetric  imperfections are included  in  the  analysis  the  prebuckling 
displacements will be independent of the  circumferential  coordinate.  Derivatives of 
prebuckling  displacements  with respect to y will  vanish  and  from Eqs. (5) we  obtain 

where  the  subscript  zero is used  to  signify  prebuckling'  quantities, w represents  the 

initial  lateral  displacement,  and N = - N . 

- 

X 

Prebuckling  displacements  must  be  symmetric  about x = 0 , and  therefore  only  even 

functions are included  in  the  solution of the  differential  equations  and  the  boundary 
conditions  need  only be  enforced  at x = + L/2 . The  homogeneous  solution  consequently 

is 

where 
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and AI , A are constants of integration. It is assumed  that  the  initial  displace- 

ments  may  be  expressed as a trigonometric series as follows 
2 

- 
w = 2 tp. 1 cos (F) 

i = o  

Consequently,  Eqs. (10) have a particular  solution 

00 

w = 2 pi cos (F) - 0  
i = o  

where 

5. = - i7rr 
1 L 

Due to  the  existing  symmetry  only two boundary  conditions are needed,  the  second  and 

third of Eqs. (9). For  the  case of axial  symmetry  they  may  be  written 

W - r h  w = o  
0,x 2 0,xx 

By addition of the  previously found solution,  Eq. (ll), and  the  particular  solution, 

Eq. (14), and substitution of the sum into  the  boundary  conditions, Eq. (15), we find 

for  the  prebuckling  displacements 

00 

' + A2 cos (y) cosh (y)] + 1 Pi COS (F) 
i = o  
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where 

d .(e + d5) - dle2 
A2 - 

- 3 1  

d2d3 - dld4 

a 1 = (alL)/(2r) 

a 2  = (a2L)/(2r) 

bl = s i n a l  sinhag 

b2 = COS a cosh a 

b3 I = k (1 - fi)'/12 sin a l  cosh a2  + (1 + cos al sinh a 2 ]  

= - k [ (1 + fi)ll2 sin a cosh a2 - (1 - E)1/2 cos CY sinh a 2] 
b4 1 

b6 = - 2k2 [ (1 - N ) s i n a l  sinh a1 + 3 cos al cosh a2] -2  1/2 

b8 = - 2k3 [(l + (1 - 2E) s i n a l  cosh cy2 - (1 - k)1'2 (1 + 2%) cos <yl sinh cy2] 

9 
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BUCKLING  ANALYSIS 

Buckling  equations are derived  from  the  nonlinear  differential  equations  through 
decomposition of stresses and  displacements  into  prebuckling  and  incremental 
quantities.  Then  in  the  resulting  equations,  the  terms  containing only prebuckling 
quantities  may  be  subtracted  out by virtue of prebuckling  equilibrium,  and non- 

l inear  terms in the  (infinitesimal)  incremental  quantities  may  be  disregarded. 
This  procedure  results  in  the  replacement of nonlinear  equations of equilibrium 
by linear  equations of stability. 

The  space  variables  in  these  equations  may  be  separated by means of the  following 

representation  for f and w : 

f = F cos  (ny/r) 

w = w cos  (ny/r) 

The  problem is thus  reduced  to  the  solution of a set of linear  ordinary  differential 

equations  with  variable  coefficients. A finite  difference  approach wil l  be  used  to 

effect a numerical  solution.  The  differential  equations  and  the  boundary  conditions 
are converted  into a system of algebraic  equations by use of the  following 

approximations: 

11 
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The unknowns of the  problem are the  values of :*,T and F (Wi and Fi) at a finite 
number of points,  including  the  fictitious  points  outside  the  cylinder  which are needed 

for definition of the  boundary  conditions.  The  points are spaced at a constant dis- 
tance h . The  total  number of points is M = L/(2h) + 5 . 

The  number of unknowns equals  2M.  The  equilibrium  and  compatibility  equations 

at each of the real points  on  the  cylinder  and  the  eight  boundary  conditions  provide 2M 

equations.  For  convenience  in  the  numerical  analysis,  the unknowns (W and Fi) 

a r e  denoted by  yi such  that 
i 

Y2m m = w  

Y2m -1 - Fm - 

The  finite  difference  equations of equiiibrium  and  compatibility are identical  to 

Eqs.  (31)  and (32) of Ref. 7, except  that (W;), is replaced by (W;), + W;I-7 . 
DUE: to  symmetry of loading  and  boundary  conditions,  the  incremental  displacements 

are either  symmetric or antisymmetric  about x = 0 . For the  symmetrical  case, 

the  boundary  conditions at mid-length are given by Eqs.  (30)  in  Ref. 7. In the case 
of antisymmetry  the  boundary  conditions at x = 0 are 

- 

w = o  

v = o  

It can be  shown that  the condition  v = 0 is identical  to  the  condition  that 

F" + vn F = 0 . By virtue of the  third condition of Eqs.  (24),  then  v = 0 can 2 

12 



here by replaced  by F = 0 . In t e rms  of finite  differences  the  boundary  conditions 

The  equilibrium  and  compatibility  equations  together  with  these  boundary  conditions 
define a linear  homogeneous  equation  system of size 2M. This  equation  system  can 
have  nontrivial  solutions  only if the  determinant of the  coefficients  equals zero. The 

lowest  value of for which the  determinant  vanishes  corresponds to the critical load 
of the  cylinder.  This  value of will  be found by a trial and error method. 
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RESULTS 

Perfect cylinders 

Numerical results  were  obtained  from  an IBM 7094 digital  computer.  The  accuracy 

of these results depends on the  use of a sufficiently  fine  mesh  size in the  finite  differ- 

ence  scheme.  The  investigations of Ref. 7 have  essentially  established  the  number of 

points  needed  for  satisfactory  accuracy  and  therefore  the  number of points was  varied 

here only  in a few check cases. 

The  limiting cases of complete  restraint are obtained if  the  corresponding  non-dimen- 

sional  spring  constants are set equal to zero. In order  that free edge  conditions  could 

also  be included  in  the analysis,  the  program  was  branched  such that the  inverse of 

these  constants  could be used.  Complete  agreement  was found with the results of 

Ref. 7 for  perfect  cylinders  in  the  limiting  cases. 

Figure l.* shows  the  variation of the  critical  load with shell length for  the  case in  which 

the  edges are free in the  radial  direction.  This  case w a s  not  included in Ref. 7. 
Results  for  long  shells are available in Ref. 1 for  this  edge  condition. Although the 

boundary  conditions  in the two analyses  were  somewhat  different,  the  numerical re- 

sults are in good agreement. 

Buckling  loads  for  shells with elastic  edge  restraint are shown  in Figs. 2,  3, and 4. 

The  variation of the critical  load with the  tangential  restraint  parameter A is shown 

in Fig. 2 for different  values of the  number of circumferential  waves.  Curves which 

fall above their  neighbors in  the  entire  range are generally  not  shown in order  that 

the  figure  be as clear as possible. When the  rotational  edge  restraint A2 was  varied, 

it was assumed  that  the  shell was free in the  tangential  direction as otherwise the 

spread of the  values of the  critical  load  over the A -range would be  quite  small.  The 

results are shown in Fig. 3. The  variation of the critical load with radial  edge 

3 

2 

*Figures  are  presented  at the  end of this  section 
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restraint A is shown in Fig. 4. Only cylinders with v = 0 are considered  because 

with N = 0 at the edges, the  critical  load is almost  independent of the  amount of 

elastic restraint. From these figures it is seen  that  the  curves  for  different  numbers 
of waves are sometimes  arranged in a disorderly  manner.  The  reason  for  this is that 
the  critical  load as a function of the wave number  may  have two minima as illustrated 

in Fig. 5. 

1 

XY 

The results shown in Figs. 2, 3, and 4 can  be  used  to  determine  the  critical  load of a 
perfect  cylinder  whenever  the  stiffness of the substructure is known. In order  to 

facilitate a quantitative  understanding of the curves, buckling  loads  have  been  computed 
for cylinders with an  end  ring. Two different  cases  have  been  considered. In the 

first  case,  the  cylinder  edge is supported in  the radial  direction  and  the  torsional 
stiffness of the  end  ring is omitted  such  that  it  provides  support only against  tangential 

displacement. In the  second  case, the torsional  stiffness of  the ring is included but 

the  radial  support is removed. 

The  end ring  cross  section is assumed  to  be  square.  For  such a ring with area equal 

to  ct , the  nondimensional  elastic  constants are 2 

There is, of course,  also a coupling term between  tangential and radial  displacements 

but,  according  to  previous  assumptions,  this  term  is  omitted. 

The  variation of the  critical  load with the  size of the  end ring is shown  in Figs. 6 and 
7. For  the case in  which  the ring is radially  supported  (Fig. 6) as well as thc case 

in which the  ring is free (Fig.  7),  it is seen  that a very  small  ring is sufficient  to 
make  the  critical  load of the  shell  appproximately  equal  to  the  critical  load  for a shcl l  
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with complete  restraint. In both cases  the  restraint  against axial displacements was 
omitted. 

Figures 8, 9, and 10 show  buckling  modes  for  cylinders with different  boundary 

conditions. 

The  mode  shape  shown  in  Fig. 8 corresponds  to  a simply  supported  cylinder v = 0. 
Parameter   va lues  are the   same as those  considered by Fischer  in  Ref. 3. Although 
the  critical  loads  found  in  the  two  analyses are identical ,   there is a slight  difference 
in  the  mode  shapes,  inasmuch as the  corresponding  curve  in  Ref. 3 appears   to   have a 
horizontal  tangent at the  end of the  cylinder.  Figure 9 shows  the  mode  shape  for a 
cylinder  with  the  edges  free  in  the  tangential   direction  only.  In Fig. 10 is demon- 
s t ra ted  how the  mode  shapes  vary  with  the  size of an  end  ring.  The  curve  with 
c = 0 shows  the  mode  shape  for a cylinder  with  free  edges  and  the  curve  for  c = 16 
approximates  the  mode  shape  for a clamped  cylinder. 

Some  consideration was given  to  the  question of which  boundary  conditions are  generally 

applicable in practice. A large  number  of  cylindrical shells constituting  structural 

parts of missiles and spacecraft  were  studied. In view of the  above results  for  cylh- 

ders with end rings,  it  was  concluded  that in no case would the  critical load of a 
perfect  cylinder be significantly below  the critical  load  for  the  simply  supported 

cylinder with v = 0 and w = 0. It is judged  that  cylinders with extremely weak edge 

conditions will rarely  occur in practice. 

Cylinders with imperfections 

Koiter  in Ref. 9 gives  the  critical  load of infinitely  long  cylinders with an initial  dis- 

placement in the  form of a  simple  trigonometric  function.  According 
the critical  number of waves is given by 

to this  analysis, 
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For  reasonably long, simply  supported  shells (Nx = 0 , v = 0) , and  with this  value 
of n , it was found that  the  numerical  results  from  the  present  analysis are in good 

agreement with  those by Koiter.  However,  in  the  present  analysis,  lower critical 
loads  were found for  other  values of .n . For instance,  in  the case of a cylinder with 
r / t  = 100 and  the  amplitude of the  imperfection  given by p = 0.2,  Koiter's analysis 

as well as the  present  analysis  indicates a critical load  equal to 0.447 times  the 
classical  buckling  load  when  n = 9 . The  lowest  buckling  load  which  occurred at 
n = 4 was found to  be .389 times  the  classical buckling  load.  The  mode shapes 
corresponding  to  n = 4 and  n = 9 are shown in Fig. 11. It is interesting to note 
that with  n = 9 , the  cylinder  has  nodes at all points of maximum  outward  initial  dis- 

placement.  Koiter  assumed  that  the buckled shape could be  represented by 

i = l  

for  the  case in  which the  initial  displacement is given by 

w(x) = - 
- 

pt  cos (F) 
This  buckling  mode is in good agreement with  the  mode found here  for n = 9 but 

evidently  Koiter's  analysis is too restrictive  to  include  the  buckling  pattern  corres- 
ponding to  n = 4 . Therefore,  Koiter's  analysis was  modified here,  such  that  the 
incremental  displacements are now represented by 

i = l  

Koiter's  original  analysis (m = 1) assulrnes that  nodes  in  the lateral displacement 
occur  at  each point of maximum  outward  initial  displacement. With the  modified 
displacement  function,  the  nodes  occur at every  mth  maximum  point. The modified 

formulation  was  programmed for the  digital  computer  and  m  was  varied  to  minimize 

the  critical  load.  The  results so obtained  were  in good agreement with results from 
the  finite  difference  analysis for reasonably  long  shells.  The  program  was  used also 
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to determine  the critical load for long  cylinders as a function of  the  amplitude of the 

initial imperfections.  The  results, which are valid for all r/t values, are shown by 
the  middle  curve  in Fig. 12. It was found for p = 0 . 2  that  the critical load  has a 
minimum at m = 9. This  means, of course,  that  the critical axial wavelength is 
finite and  that, for sufficiently  long  shells,  the  finite  difference  approach,  also with 

n = 4, should  lead  to a nodal  buckling pattern.  This was shown to be  the case for a 
shell with L/r = 8.4, and  the  corresponding  buckling  mode is shown in Fig. 13. 

Figure 14 shows  some results which were  obtained by use of a two-term  representa- 

tion of the initial displacements.  It  can  be  seen  that with a fixed  amplitude,  the  buckl- 

ing  load is smaller for a more blunt  shape of the  initial  imperfection.  It  thus  appears 

reasonable to assume  that a lower bound to the critical load for cylinders with periodic 

axially  symmetric  imperfections of fixed  amplitude w can  be  obtained  through  analysis 

of the case in which 

={I;, , for i A < x - - - <  ( i + l ) A  i = odd A 
2 

A 

- 
(32) 

for iA < x - < (i-tl)A i = even 

Obviously this  discontinuous function does  not  represent  meaningful  initial  displace- 

ments.  However, a finite  segment of the  Fourier series representation of this function 

is continuous. With increasing  number of terms  in  such a series the  corresponding 

critical  load  increases  monotonically but  within a narrow  load  range.  Consequently 

the  critical  load  based on a one-term series may  be  considered a reasonably  close 

lower bound to  the  buckling  load of cylinders with periodic  initial  imperfections of 

amplitude GI. The  amplitude of the first te rm is about 1 . 2 5  w and the  lower bound 

shown in Fig. 12 can  easily  be  constructed. 
1 '  

For long cylinders with sinusoidally  varying  initial  imperfections results were obtained 

also with other  boundary  conditions.  Figure 15 shows  the  critical stress versus  ampli- 

tude of imperfections for cylinders with the  edges free in  the  tangential  direction. 

Figure 16 shows  the  corresponding  stresses  for  cylinders with completely free edges. 
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It may  be  seen  that  the  influence of edge  conditions on the  critical stress diminishes 

with  growing  amplitude of initial imperfections. 

In Ref. 3 Fischer  gave a solution  for an initial imperfection of the  form 

w cos3 (7rx)/(2b) 
w = (  0 

0 1 x < b  

b I x 5 L/2 
(33) 

Fischer's  numerical  results  indicate  that an initial  imperfection as described by 
Eq. (33) is considerably less critical  than a periodic  imperfection of the  same  amplitude. 

However,  the  numerical  analysis  was  very  restricted. Only two values of b were 
considered and only positive  values of w were considered,  and it appears  likely  that 

negative  values  (inward  bulge)  should  Se  more  critical. 

Therefore,  the influence of nonperiodic  imperfections is investigated here.  The  form 
of the  imperfection  was  chosen 

( w  cos2 (7rx)/(2b) - 
w =I 

0 

O 5 x 5 b  

b I x I L/2 

It was found that  an  imperfection of this type, for all values of b , is slightly less 

harmful  than a periodic  imperfection  with  the  amplitude w/2 .  

(34) 

It  appears  feasible  that  the  lower  curve in Fig. 1 2  really  represents a lower bound 

even if cylinders  with  nonsymmetric  imperfections  are  included. If this could  be 
shown  to be the  case by use of suitable  experiments or by additional  theoretical  analy- 
sis, then  the  present  results  could  be  made  directly  useful for the  designer. 
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Figure 17 shows  the  influence of initial imperfections on the critical load of cylinders 

of  different  lengths. It appears  that a sufficiently  short  cylinder is not  sensitive  to 

initial  imperfections. A few tests of ring  stiffened  cylinders  have  been  performed 

and  tend  to  confirm  this  conclusion. 

The  cylinders were manufactured  from  0.02  inch  aluminum  sheet (AL 6061-T8) and 

rectangular  aluminum  rings were bonded to the  skin as shown in Fig. 18. Three 

cylinders  had  outside  rings  spaced at 1.33  inches  and  three  cylinders  inside  rings 

spaced at 1.14  inches.  Three  cylinders without  stiffening were tested for comparison. 

A s  the  ring-stiffened  cylinders are such  that  buckling  between  rings is critical  the 

classical  buckling  load  for all three  different  types of cylinders  should  be 

'CR = 27~  [3(1- v ) ]  2  -1/2 Et2 
(35) 

Test results are shown in Table I. The  values of Z given in the  table are based on 

the  ring  spacing  rather  than on the  shell  length.  It  can  be  seen  from  the test results 

that  the  ring-stiffened  cylinders  carry  the classical buckling  load  for  monocoque 

cylinders,  hence  also the experiment  indicates  that  very  short  cylinders are not sen- 

sitive to initial  imperfections. 
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Fig, 2h Critical Loads of Cylinders With Elastic  Tangential  Restraint: r/t = 100, L/r = 2 . 2  
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Fig. 2c Critical Loads of Cylinders With Elastic  Tangential Restraint: r / t  = 1000, 
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Fig. 8 Buckling Mode for Simply  Supported  Cylinder 
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Fig. 9 Buckling Mode for Cylinder With the  Edges Free in the Tangential  Direction 
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Table I 
TEST OF RING-STIFFENED  CYLINDERS 
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~ .~ 

0.0200  1500 
.0200 1500 

.0200  1500 

.0200 5.2 

.0205  5.2 

. 0190 

7.5 .0200 

7.5  .0205 

7.5 .0200 

5.2 

~. 

Theory 

16000 
16000 
16000 

16000 
16800 

14400 
16000 

16800 
16000 

~~ . 

- 

Test 

10500 
12300 

8900 
153 00 

14880 

15030 

15100 
16030 
15730 

. .  

E = 10.5 * 10 psi 

v = 0 . 3  

6 
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