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The problem considered is that of finding a rule for 

deciding which of k known nonequivalent density functions 

fp f*, 000, fk is the density of a random variable Y, It 

is well known that a Bayes solution to this "k-decision" 

problem for the case k=2 is given by the sequential 

probability ratio test. The "generalized probability ratio" 

r (y)=(Cfi(y))-l(fl(y), f* (Y 1, O*", r,iy)) 

is used in this paper to define the 'generalized sequential 

probability ratio test" (GSPRT) for the case k22. The 

GSPRT is viewed as a random walk on a space X of k 

dimensional vectors (x 1 ,x2, 0 0 0 , xk) such that xxi=1 and 

xi20 for all i. The test terminates when the walk enters 

an absorbing barrier in x. Some properties of this 

absorbing barrier are discussed for a class of GSPRT's 

which is essentially complete in the class of Bayes rules 

for the k-decision problem, 

ABSTRACT 

Integral equations are obtained for the operating 

characteristics of the GSPRT. Conditions are given under 

which the test almost surely terminates, Monotonicity 
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properties of the operating characteristics with respect 

to certain changes in the absorbing barrier are obtained,, 

The distribution induced on the random variable r(Y) by 

the fi 's is discussed, and an identity is given which in 

some sense characterizes the distribution of probability 

ratios. 
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PREFACE 

In order to minimize the burden of reading the large 

amount of specialized terminology and notation requ.lred in 

this paper, a table of symbols and terms is inclu[lecl as an 

appendjx. The table can be used to find the page upon Mhlch 

each symbol and term i.s defined. Some of the notation is 

standard and is due mainly to Wald [8,$110 Considerable us\< 

has been made of notation introduced by Seo [6] and 

Skibinsky [71. 

Tn order to simplify notation, the following conven- 

tions will be followed: 

(i) All summation and union runs from 1 to k unless 

otherwise specifically stated. The index of summation or 

union may not be listed when there is no possibility of 

confusion. 

(ii) Unl.ess specifically denoted otherwise, all 

integration will be over the entire space under conriider- 

at--ton. 

(iii) The letters "a.c." may be omitted in statement:; 

whf>n it is clear from the context that the statement holds 

only with probability unity. 

(Iv) Displayed equations are numbered only when they 

are referred to elsewhere In the paper. 
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The theorems are numbered consecutively throughout this 

paper in the order in which they are stated. Numbers in 

brackets following a reference refer to corresponding com- 

plete references in the bibliography. In some cases, the 

pagination of a reference is included by inserting "p. ---" 

in the brackets following the number of the referencec 

Acknowledgment I.s due to the National Science Foundation 

and the National Aeronautics and Space Administration for 

financial assistance on work related to this investigation. 
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Chapter I 

INTRODUCTION 

The problem we consider is that of making one of k 

decisions, dl, 000, dk on the basis of observations on the 

components of a random vector Y=(Yl, Y2, Y3, ..,> whose 

distribution F is known to belong to a set 3 0 Suppose 

Y=(Y 1' Y2' 00. > is a point of the sample space 
7 

, and D 

is the set of decisions di which can be made in the problem, 

We seek a decision function 6:' #-'DS so that the resulting 

procedure has certain "optimal" properties, 

If the decision rule 6 is adopted and YE Y 
is observed, 

the smallest positive integer n=n(y> with the property that 

6(y)=6(yv) for any yv~'j 
(il 

for Which yl'yi, y2'y; ooo, y,"yA 

is called the sample size of the rule 6, given the observa- 

tion y0 (n(y) may be identically zero under certain 

circumstances,) If n(y) is not necessarily constant, we 

say that 6 is a sequential decision rule, Unless specifi- 

cally stated otherwise, we shall confine ourselves to 

sequential decision rules based on a sequence Yl, Y2, 000 

of independent, identically distributed random variables, 

whose distribution is specified undeb the various decisions, 

Thus the decision d. J 
indicates acceptance of the hypothesis 

that Fjc7 is the distribution of the components of Y, 



A sequential decision rule 6 for the problem considered 

here (hereafter called the k-decision problem) can be identi- 

fied with itvs sample size function n: -t 
7 t 

0,1,2, OOo 3 and 

a terminal decision function a:' 
7 +-x, where % is a space 

12 of vectors X=(x , x , 000, xk) satisfying the conditions 

and 
(i) '5 xi-0 for all i, 

(ii) C xi=l, 

It is assumed that the components of cp are measurable with 

respect to the smallest u-field z4. over 
Y 

containing all 

cylinder sets in 
7 

with finite dimensional bases, We also 

assume that O(y) is dependent only on the first n(y) 

components of y, and to emphasize this we write Q,(Y) for 

O(y) in what follows, 

The test (n, Qn> consists of taking one observation on 

each of the first n(Y) random variables Y 1, y2, 000, Y np 
finding the corresponding value of On, and making the de- 

cisions d 1 with respective probabilities 4' n" If the 

probability that n(Y) is greater than the integer m is zero 

or unity for each specifio m, and the range of Q,(y) is 

restricted to the k vectors with one component equal to 

unity, the test (n, On) is called non-randomized, In what 

follows we shall consider only non-randomized decision 

functions, so that application of the decision rule (n, On) 

consists of observing each of the first n(Y) components of 

Y -, and then choosing the i-th distribution function P i to 
be the true one if 0' ;(y)(")=li 
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Let EU denote the expectation operator relative to a 

probability measure u on ( )',"B,. Wh en there is no possi- 

bility of confusion, we write Ei for the expectation operator 

relative to the measure induced on ( y,a) by FiO Similarly, 

PI(A) will denote the probability of the event A given that 

Fi is the true distribution of Y 
3 

D The operating character- 

istics (O.C, vs> of the test (n, On) are defined as follows: 

Ni(G)=Ein(Y) is the expected sample size required by 

the decision rule 6, 

Qij(")=E @ ' i i is the probability that the rule 6 accepts 

the j-th distribution to be the true one, given that the 

i-th distribution is the true one. The Q.. 
=J 

's will be re- 

ferred to as "error probabilities" of the rule 6, 

Let w.. 1J 
denote the loss incurred by choosing the j-th 

distribution to be the true one when the i-th distribution 

is correct, We call W=(w ij) the loss matrix, and assume 

that w.. 1J 
20 for all i and j(i#j), and wii=O, i=1,2, 000, k, 

A criterion for judging the relative "goodness" of any rule 

6 is the risk of 6, If the cost of making observations on 

the components of Y is linearly related to the number of 

observations taken (as we shall assume it to be) the risk 

of the rule 6 is defined to be 

(1) R(Y,W,~) = ~ Yi CCNI(')'CWijQij(')I, 
i 3 

where c is the cost of a single observation and y is the 

'vector of a priori probabilities that the corresponding 

distributions are the true distributions of,the components 

of Y, 
3 



Remark. R(y,W,G) represents the expected loss (to the 

experimenter) when the rule 6 is used, Without loss of 

generality c could be taken to be unity, since this involves 

at most a scale change in the elements of W, 

Definition, Let T be a class of decision rules for 

the k-decision problem, A Bayes rule in 7 relative to the 

vector of a priori probabilities y and loss matrix W (a 

Bay- Y, W rule in '?J> is a rule 6*~% such that 

R(y,W,G*)iR(y,W,G) for all c!E~~ 

A, Wald [q, p,llO] has given a characterization of 

Bayes rules which we include here for completeness and later 

reference0 The notation required for a statement of Waldvs 

theorem is the subject of the next paragraph, 

We define three classes of sequential rules as follows: 

n(s)Cm] =l, i=1,2, 0 0 0 0 

: n(a)>_1 , and 3 
lm= {6 : nSmJ; m=0,1,2, 000 0 

Let 

(2) 

For convenience of notation in what follows, we shall write 

P(Y,w=P(Y,w,&, 

Note that 

(3) Po(y,W)=min 
je CL% 000, 
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and that 

(4) p(y,W)=min I P,(Y,W), P"(Y,W)} 0 

Wald's characterization of Bayes y,W rules in the 

class ,& of all decision rules for the k-decision problem 

(subject to the assumptions made above) is given as 

Theorem 1. A necessary and sufficient condition for 

a decision rule (n*, Q*,,) to be a Bayes y,, W rule in d 

is that the following four conditions be fulfilled for 

almost all (under y,) points ye Y : 

(i) For any integer men*(y) the a posterIori measure 

lJ(Y,r Yp Yp OoO, y,) satisfies the inequality 

P,h,W 2 P*(LQoo 

(ii> If P,(c(.v~,Y~, ooo, Y,),W) > 

P*wYo, Yp 0 0 0 , Y m I , w > , 

then 

n*(y) > m 

(iii) Poh(Yo, Yy 0 c 0 , Y,*),W) I 

P”hIYo, Yp 000, .Y n*Lw). 

(iv> R(v(.v oY Yp 000 Y Y,*L WY (n*, Q”,” >>= 

PMY,, Yp 0 0 . , Y,*LW 

Remark. The approach taken here for the class $ can 

be used for any subclass -t:ofQ. One could, for example, 

speak of a Bayes y,W rule In T, the definitions of the 

functions p, D*, and pm being given with $ replaced by XC 

Theorem 1 would then characterize Bay-es y,W rules in To 

When k=2, any Bwes Y,, W rule in J is equivalent to 

a sequential probability ratio test (SPRT), In one sense, 
5 



the SPRT provides the solution to the 2-decision problem, 

in that it has an even stronger property of optimality -- 

the so-called "optimal property". After a brief description 

of the SPRT, we shall discuss some of its, properties, 

Suppose that F and F 
1 

2 are absolutely continuous with 

corresponding density functions fl and f2, The SPRT is 

defined in terms of the "probability ratio" 

and two positive constants A and B, A<B, The sample size and 

terminal decision functions are determined as follows: 

Before an observation is taken, decide whether n> O,* 

If n=O, make the terminal decision minimizing the expected 

loss 3 If n>O, observe the value yl of Yl and compute 

f21'fllo If this ratio is ::reater than or equal to 5, 

accept f2 as the true density with one observation, If 

f21/fl15A, accept fl with one observation, If A'f21/fl14R, 

observe y2 and compute f22/f173 Continue sampling or ter- 

minate with the appropriate decision accordin.? to whether 

f22'f12 is in (A,B) or not, respectively, In general, 

continue sampling as lone: as f 2!?l'flm is between A and R, 

and terminate as soon as this condition is violated, Accept 

f 1 if '2n5A 
F-- 

, and acceptf2 if f2n/fln1-B. 
In 

*One can, for example, define f20/flo to be unity, 
so that n=O if and only if A 21 or BLL 



The optimal property of the SPRT is that it requires, 

on the average, under both hypothesis, fewer (or at most 

not more) observations than any other test with the same 

or smaller error probabilities, More precisely, the optimal 

property of SPRT is stated as 

Theorem 2. Let &ij and Ni denote the O.C.,s of a SqRT -uII 

defined by two fixed numbers A and l3, 0 <A<l<B, and let 

9n. 
1J 

and Nf denote the O.C. ,s of sny other test (n,g,) in ii 

for the 2-decision problem, Then 

implies that 

1gn. sq 1 ,I iii 
for all i,,j,i#j 

1~" L Ni for all i. 1 

Remark, A proof of Theorem 2 is given in !-lo]. 

Associated with the optimum property of the SPRT are 

the following two properties: 

Uniqueness, Two SPRT's with the same error proba- -. w.r-..-l- * 

bilities are eauivalent, 

Monotonicity, --r_.* ,,..ax-.GL If a SPRT with stopping bounds A and H 

is changed by decreasing A and increasing l3, and if the new 

test is not equivalent to the old one, then at least one 

of the error probabilities is decreased. 

The connection between the optimum property, the 

monotonicity property, and the uniqueness property of the 

SPRT is discussed by Wijsman [llJO In particular, Wijsman 

shows that the monotonicity property can be proved 

independently of the optimal property, and that it implies 

7 



the uniqueness property and the optimal property of the 

SPRT within the class of SPRT's, 



Chapter II 

TX GENERALIZED SEQUENTIAL PROBABILITY RATIO TEST 

It is the purpose of the present chapter to introduce 

the "gel eralized sequertial probability ratio test" (GSPRT), 

and of the following chapter to investigate some of its 

properties. 

Let fi be a probability density function with respect 

to a u-finite measure u on ( , ), i=l,2, 
w 

0 . 0 , k. In order 

to avoid trivialities, we shall assume that the firs are 

pairwise not equivalent. Let Fi, denote the probability 

distribution function corresponding to fi, i.e., 

Fi(B)= B i fi(y) d\l for all BEG. 

Let ?(, be the k-l dimensional simplex defined in 

Chapter I (see page 2). Define a mapping r from 
7 

to x 

by the equation 

(5) r(y)=(Cfi(y))-' (fl(y), f2(!r), oaoy fk(y)) 

for all YE 2& for which xfi(y)#O. We arbitrarily define 

r(y)=(k.k, 0 0 0 , i) if xfi(y)=O. If k=2, 

r=(l+f2/fl) -51, f2/fl), 

so the mapping is equivalent to the ordinary probability 

ratio in this case. Thus we will call r(y) the 

9 



"generalized probability ratio" for k 12, 

Let 3 denote the u- field over 3c induced by r, i.e., 

J I = A:r-l(A) ~31. 

It is easily seen that the k-l dimensional Bore1 sets are 

We shall define the Euclidean metric m on the space 

x . That is, -I 
.L -e.. 

m(x,y)=( C(xi-~~)~)~. 

Let Pi denote the distribution on (x,2) defined by 

Pi(A)= .-lCA)fidv, for AE>~ 
/ 

Let v denote the measure cPi on (3c, 3>. Note that 

Pi<< v and v is totally finite. Then by the Radon-Nikodym 

theorem, densities pl,p2, .00, pk exist such that 

Pj(A)= 
/ 

A pj(x)du for all AE>. 

If we restrict our attention to decision rules 

depending on Y.. only through r(Yj), we can state the de- 
J 

cision rule for deciding the true density of Y 
j 

in terms 

of a sequence X of random variables 

X=(X1,X,, . ..)=(r(Y.),r(Y,), . ..> 

in the space x, whose density is known to be one of the 

Pi's' The k-decision problem that we are considering can 

be stated in this context as the problem of finding a rule 

for deciding which of the pi's is the true density of 

r(Ycj), where the pi 's are the densities induced on the 

generalized probability ratio by the distributions which 

determine the alternatives to be considered,, We shall see 

10 



below that this restrlction on the class of rules to be 

considered does not result in an increase in the minimum 

attainable risk. 

We now show that the pi 's sati.sfv the following 

identity: 

Theorem 3. (~,(x>,p~(x), ooo, pk(x))=x a.e.v. 

Proof. For any inte,o;rable function u(x) we have* 

= 
i Y 

u {r(y)] r’(y)(xfj(y)du(y)) 

= 
i 

u(x)xidv(xS) 0 x 

Therefore, 

pi(x)=xi a,e,v. 

Remark. This identity was oriqinallv stated by 

Se0 r610 The present proof Is different from the one given 

by Seo, however: 

Definition, We define a h 

elements of X as follows: 

inary operat i.on "0" on the 

xoy=(~xiyi)-1(x1y1,x2y2, 000, xkyk)e 

It is easily seen that the Lnterior X0 of x forms 

an abelian group relative to this oneration. (The identl.ty 

element (;,a, 000, $ will be denoted by e in that which 

followsO) 

Remark, It is also true that the identi.ty of 

*For proof of the fjrst step see, for example, 
Halmos C5, p,1633. 
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Theorem 3 holds for the "cummulative sums" 

S n =x00x 1 0 00 o ox no That is, 

Pi('j))-'(j~o (Pl("j)), j~o(P2(sj)), 0 . 0 , 

Jo, (pk(sn)))=sn aoeove 

An argument similar to the proof of Theorem 3 can be USed 

to prove this assertion, 

Theorem 3 has several interesting consequences con- 

cerning properties of the random variable r(Y>O Some of 

these are given in the following theorem. For simplicity 

of notation, we shall use the letter X to denote a com- 

ponent of the vector X in what follows, provided that 

the context makes confusion impossible, 

Theorem 4, (i) Ei(Xj)=Ej(Xi); i,j=1,2, .OO, k, where 
. 

XJ denotes the j-th component of a member of the vector 

X of random variables, 

(ii) Ei(Xi)>i; i=1,2, 000, k, 

(iii) 1 Ej(Xi)=l; i=1,2, 0 0 0 , k, 
j 

(iv) E~(XOX)~> ' . 
Ei( 16 

j XJ 

(v) Pi(X=e)=k v(e)(l; i=1,2, 0 0 0 , k. 

Proof, (i) Ei(Xj)= 
i 

xjxidv by Theorem 3 0 But this 

is equivalent to 

xixjdv=E (Xi) 
J ' 

12 



(ii) By Schwarz's inequality, 

(xi)2dv ' j12d+xi ldv] 2=1, 

so that 

Ei(Xi)= (xi)2dv > ?. 1 

/ dv 
=p 

The strict inequality holds, since under the assumed 

nonequivalence of the Pits, i x cannot be equivalent (with 

respect to the measure v) to a constant. 

(iii) and (iv) are trivial consequences of 

Theorem 3 and part (i) of the present theorem. 

(v) Since the p. 
J 

Is are assumed to be distinct, 

they cannot all assign probability 1 to the set { e] , 

that is, 

heI xidv=hej ;dv = &(e)fl. 

But this, together with the fact that 

p,(e)=p,(e)= ooo = p,(e) = k, 

implies that none of the densities can assign probability 

The sequential rules we shall consider will be given 

in terms of random walks on x0 For each random walk a 

starting point xo and a sequence of measurable absorbing 

barriers [ LJIAln] are specified, (The components of x0 

may be considered to be a prl.ori probabilities of the 

corresponding pItsO) Such rules will be identified by the 

set t xo' uiAin ' I 
A test of the k hypotheses 

13 



Hi' The density of X. is pi; i=1,2, 000, k 
J 

using the rule x0, l uiAin1 operates as follows: The set 

I Ain:i=1,2, ooo, k; n=0,1,2, 000 3 and the vector x 0 are 

given. (We shall see below that in order to avoid 

trivialities we may assume that x,E~" and that the sets 

A in are mutually disjoint for each n.) If xocAiO for some 
. 1, the test accepts the i-th density to be the true one 

without taking an observation, If it is not, a value 

x1 of x1 is observed, If the vector of a posteriori 

probabilities sl=xo~xl is a point in Ail, the test accepts 

pi with one observation, If slkuAil, observe x2, compute 

s2 =s10x2, and determine whether s~EUA-.~~ If so the test 

terminates; if not it continues, and so on. 

The remainder of this chapter is devoted to an 

investigation of the tests I We shall show. 

that a slightly narrower class of such tests contains 

tests attaining risks as small as any Rages xo,W tests in 

2 0 Several of the theorems we give were originally 

proved by Wald [q], and rely heavily on the characterization 

of Bayes rules given in Theorem 1. These theorems are 

stated here in the framework of random walks on x. 

It follows from Theorem 1 that a Bayes xo,W rule in 

J can be given in terms the sequential rules 

i xo,QAin 1 defined above. Thus it is true that a Rayes 

X o,W rule in ,6! for the k-decision problem can be associ- 

ated with the random walk starting at x0 and stopping in 

the absorbing barrier Ain Y In fact, the sequence 
14 



Eu iAin 3 is constant over n for a Bayes x o,W rule in J , 

a fact which is stated as 

Theorem 5. For a Bayes xo,W rule in B , the stopping 

region \i Ain is independent of n. 

Proof. From Theorem 1, we see that the stopping 

region' can be defined as the set 

(6) VA i in= c XE7C:PO(X,W)Co*!X,W) 0 
3 

It follows from conditions (ii) and (iii) of Theorem 1 

that for each x0 and W there is a Bayes rule in $ which 

terminates when the walk enters \i( Ain Since the in- 

equality in the right hand side of eq,6 does not depend 

on n, neither does y A in" 
Remark. In view of Theorem 5, we shall henceforth 

designate the rule x0, \i Ain 
3 

by the set xoS VAT] 9 

since by restricting our attention to rules of the latter 

type we do not increase the minimal risk attainable, 

In what follows we assume that the starting point x0 

is in x0. If x0 is a point of the boundary of %, that is, 
. 

if at least one of the components x: is zero, the resulting 

procedure may be replaced by a test of correspondingly 

fewer hypotheses without increasing the risk, In 

particular, if one of the components of x o is unity, a 

Bayes xo,W rule in d accepts (with zero risk) the 

corresponding hypothesis without taking an observation, 

since the off-diagonal elements of W are assumed to be 

non-negative, and the diagonal elements are assumed to be 

zero0 This observation is equivalent to stating that 
15 



Aj contains the point (61j, 62j, 0 0 0 , Skj), the "j-th 

vertex of the space x0" 

Remark, We could assume, without loss of generality, 

that xo=e, since the test l '0' uAjj is equivalent to the . 
test x0, u (xiloAi) 0 i 3 We shall not do this, however, 

since we shall have occasion to consider the O,C.'s as 

functions of x0 for fixed stopping region, 

We next show that under certain circumstances other 

points(.il' they exist) should be included in A., 
J Suppose 

x is a point in x such that all random walks containing 

x at some stage almost surely eventually terminate in A., 
J 

Then it seems natural that this point should also be in 

A ., J 
a fact which is stated as 

Theorem 6, Suppose UC?cis a set defined by 

U= [x:Pi{ sN~Aj ( x0=x ] =1 for aJ.1 I] , 

where N denotes the number of observations required by the 

test x0, I Then we may consider only tests for 

which UCA., 
J 

inasmuch as any test for which this is not 

true can be replaced by one for which it is and the latter 

test has risk at most as small as the former test,, 

Proof: Let A&l, 000, Ak,Qij, and Ni denote stopping 

regions and O,Cvs of a test S, Suppose St is a new test in 

which A!=A VU, with O,C,'s denoted by Qv 
J j ij and NiO Assume 

some a priori point x0 is given, Now Qij (x0;=',. -(x0: 1J 
for all i, since 

16 
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for some n(N 1 x0] = ; { :Nv EA; / x0] = Qij :x0). 

Also, Qim(xo)=Qjm(xo) for m#j, since 

Pi [sN"Am 1 x0] = Pii sNcArn and s,dU, all n<N / x0] 

=Ps [s,dU all n<N / sN~Am,xo] l Pi {sNcAm / xo] 

=Pi 

Since uAic WA;, it fo1l.0~~ that 

Nj(xo)-N,;(xo)kO for j=1,2, .00, k, 

a fact which proved below (Theorem 18). In conclusion we 

observe that the test S has risk 

R(xo,W,S)= C x~ [cNi ' CWiiQii(xo)I 
i . j ‘ ' 

which is greater than or equal to the risk 

R(xo,W,Sv)= cx; rcNf + cw .Q!.(x~)] 
i ,i iJ 1J 

of the test Sv. 

Our next aim is to show that specifying the loss 

matrix W determines the stopping region UAi for a Bayes 

X o,W rule in J 0 In order to prove this, we make use of 

two theorems due to Wald [q, p.1051. We let p, denote the 
0 

probability density defined by 

px (x)=~xioxi. 
0 

17 



-. 

Theorem 7. 'm+l (xo,W)=min {p. (x,,W), 

1+ 
/ 

pm(sl,W)px (xl)dv] ; m=0,1,2, 0.0 D 
0 

Theorem 8. The function p(xo,W) satisfies the 

equation p(xo,W)=min 
I 

Po(Xo,W), 1 + / 
p(sl,W)px (xl)dv . 3 

0 

Theorem 9. For a Bayes xo,W rule in $ , the compon- 

ents of W  uniquely determine the Ai(Se 

Proof. For each xo and W, po(xo,W) and ~(xo,W) are 

uniquely determined by Theorems 7 and 8, Thus for each x, 

po(x,W) and p(x,W) are uniquely determined by W. The 

theorem follows by recalling that 

VAi= i x:po(x,W) c P(X,W , 3 
and by the fact that the Ai 's have at most boundary points 

in common. That the Ai *s have at most boundary points in 

common is seen as follows: 

A .= 
J t x:oo.(x,W) 5 p(x,W) and the test accepts II. J 3 

C iX: z xiwijc P(',')~ 

i 

c {x: 1 xiwij = P~(x,W] = A; (say>. 
i 

But the AS's have only boundary points In common. 

Theorem 10. -- If { xo,uAi] is a Rayes xo3W rule in 

J , the components Ai of the stopping region are convex0 

Proof. For each 6, the risk R(x,W,G) defined by 

equation 1 is linear in x, so that inf R(x,W,G) 1s a 
6 
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concave function of x. 

Another property of the A 3 's is that they can be 

considered to be closed. In order to prove this, we first 

need to show that the function p(x,W) is continuous in x. 

This is the aim of the following two theorems. 

Theorem 11, p,(x,W) converges to p(x,W) (as m+-) 

uniformly in xe The proof of this fact is given by 

Wald C9, p.1061. 

Theorem 12. Let xn i I , n=1,2,3, 000, be a sequence 

of points converging in the metric m to a point x o (also 

in 3c). Then 

?I iit P $9 w> = P(Xo,WL 

Proof. po(x,W) = min 1 xiwij is continuous in x, 
j i 

and by Theorem 7, pm(x,W) is continuous in x0 Since by 

Theorem 11 pm(x,W) converges to p(x,W) uniformly in x, it 

follows that p(x,W) is continuous in x0 

Remark. This implies that for a Bayes x,W rule in 2 , 

Ni + c 'ijwij j ' 

is continuous in x for each i such that xi> 0. 

Theorem 130 For a Bayes xo,W rule in J, the Ajls 

may be considered to be closed, 

Proof, For the convergent sequence xn i 3 of the 

preceding theorem we have, by the continuity of p(x,W) 

and o,(x,W) that 

P(X,,W) + P&W>, 
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and 

Po$.pW + Po(X,W) 

as n+m. Then xnaA. 
J 

implies that 

P,(X,’ w> 5 P”$, W) for all n, 

and thus 

P,(X,W IP”(X,W, 

so that XEA.. J 

Our next task is to state conditions sufficient to 

insure that the test i '0 SVAi ] eventually almost surely 

terminates, For convenience of notation, we shall restrict 

ourselves in the remainder of the paper to the case k=3, 

The arguments used can readily be adapted to any other 

finite k >l, however. 

Theorem 14. Suppose that each component Ai of the 

stopping region of the test {e,uAi] contains a spherical 

neighborhood (with respect to the topology induced on % 

by the metric m) centered at its corresponding extreme 

point (~11,6i2,6i3)’ Then the test terminates with pro- 

bability 1 under all hypotheses. 

Proof, We shall actually prove a slightly stronger 

statement: Under Hi the "cumulative sum" s n converges 

almost surely to the vertex (611,6i2,6. )0 13 Suppose we 

consider the case in which Hl is true, Maintaining our 

convention of using upper-case letters to designate random 

variables, we write S n=Xl~X20 000 OX,, so that 
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3 2 

1 
1 T x1 

= 1+=$+=$ 2 3’ T x; 2 ’ 'II x. 3 

rl x lr x 
1+-++ 

. 
J .j 

T x 
j 

'II x j 

The latter equality holds a.s., since under Hl, 

j& Xi>0 a.s. for any integer n. In view of this 

expression, we need only show that 

2 
T 

3 
( 7 1 ??$. a 0 and 

T x 
x3 aoso> 0 

J n x. J 

under Hla 

Let 

(8) 

X” 
z 

j 
=ln,--$-- O 

Y 'i ,I 
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- ,..I. ,111 I .,I. ~-,,-,,.-.,.m- m---a --.---_.--.. -- - 

(9) e- Zj -*, -00, 
j=l 

which implies the first part of expression (7). 

Since the logarithm  function is strictly concave, 

x? 
and since d is assumed to be not identically 1, it 

X1 
j 

follows by Jensen's inequality that 

EIZj<ln El 

Also, we have that El Z. I I J 
is finite or EIZtj = -=. To 

see this, it suffices to note that 

x'dv + x'dv 

c - - &]xldv + 1, 
X1 

If El Z. C m , I I J 
the Kolmogorov strong law of large 

numbers ensures that 

EIZj < 0 

so that expression (9) holds. 

I,' EIZj = -OJ, consider the "truncated" random  variable 

z; = 
Z  ., 

J 
if zj > c 

c otherwise 9 where c is a constant. The constant 

22 



c may be chosen sufficiently small so that E Z'<O, and 1 cl 
since El Zj" I I < 0 we again apply the strong law of large 

numbers (to the sequence Zc) to obtain J 

L-z, 5 p; a.s. --0 

A similar argument can be used to establish the second 

part of expression (7). 

This argument may be repeated under the assumption 

that H2 or H3 holds, so that we have 

under Hi0 By the assumption that Ai contains a neighborhood 

of (6 liSd2iS63i)S it follows that the walk Sn enters the 

stopping region uAi of the test with probability 1 under Hi' 

Remark. Theorem 14 holds if the test under consid- 

eration is the test 1 xo,UAif for any xO~XoO This 

follows by the fact that if the test { xo,uAi] satisfies 

the conditions of the theorem, then the equivalent test 

c e,U(xo -'oAi) I will also satisfy these conditions, since 

the transformation "x~"' preserves the existence of the 

neighborhoods required in the theorem. 

In the remainder of this paper we consider the class 

of tests xo' VA11 such that 

(1) XOE x0, 

(ii) the Ai 's are convex and closed, 

(iii) the Ai 's have at most boundary points in common, 

and 
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(iv) the test terminates as soon as the walk enters 

UAIS that is, randomization on the boundary of 

uAi is not considered, 

In view of Theorems 5,9,10, and 13, the class of such tests 

is essentially complete in the class B of sequential rules 

for the k-decision problem, so that this class is suffi- 

ciently wide from the standpoint of minimizing risk, 
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Chapter III 

MONOTONICITY PROPERTIES OF THE TEST c x0, 

In this chapter we show a connection between the 

stopping region and the O.C,lsO In particular, we show 

that if the stopping region WA1 of a test is made larger 

in certain ways to form a new test, certain combinations of 

the error probabilities for the new test will be larger than 

the corresponding ones of the old test, and the expected 

sample sizes of the new test will be smaller than the 

corresponding ones for the old test. The results given 

here are of the same type as some of those given by Wijsman 

[ll, p.6801, although he considered the special case k=2, 

Define ni(x) to be the set characteristic function of 

Ai' i=o,1,2,3, that is, 

y(x) = 
if XEA~ 

if xLAi, 

where A o is defined to be X- ()AiO If the stopping region 

VA1 of the test c xo,UAi] is held fixed, the O,C.'s of 

the test are functions of x0 only, and will be denoted by 

Qij(xo) and Nip 

Theorem 15. The O.C, 's of the rules c xo,UAi] (with 

stopping region held fixed) satisfy the integral equations 
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(10) Qij (X0) = rj(xo) + no(xo> 

and 

(11) Ni(xo> = ‘o(xo) + nobo) 
/ 

i Nib+ dv, 

for i,j = 1,2,3. 

Proof, Since the argument used to establish eq. (11) 

is essentially the sameasthat used for eq. (lo), we shall 

give only the latter. (This argument is similar to one used 

by Albert [ll.,> In order to establish eq, (lo), let 

(12) qkij(xo) = Pi {sk'Aj and smcAo for m <k (x0] 0 

Then (by Theorem 14) 

(13) 
k=o 

qkij(xo) = Pi lsnEAj 1x0) = Qij(Xo)~ 

The qkij (xo)Is satisfy the following relations: 

9 oij(xo) = am, and 

dPi(Sk+l sk) 0~~ dPi(s1 1x0) I 

= 51 0(X0) 9kiJ (sl)dPi(‘l 1 X0) 

= n qkij(Sl)X~d’, c 
where P i is the distribution of s when pi is the density of 

X0 The fact that dPi(sl 1 x0) can be replaced by xtdv in the 

above argument follows from Theorem 3. Now 
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(14) 
k=o 

qk,j(xo) = rj(Xo) + ~o(~oi $, j9irij(sl)xid", 

which (by the use of Lebesque's Monotone Convergence Theorem 

and the eq. (13)) may be written 

Qij(xO) = nj(xo) + vo(xo) 
/ 

Qlj(sl)xiddx), 

so that eq. (10) is obtained. 

In what follows, we shall make use of equations of the 

type seen in eq. (lo), so we next define the notion of lower 

and upper functions for the solutions of such equations, and 

examine the uniqueness of their solutions. 

Consider the integral equation 

(15) Qij(x> = nj(X) + no(X) 
/ 

Qij(XOXl )x;dv (x1). 

A nonnegative function h(x) is an upper function for the 

solution Qij(x) of eq, (15) if its 

by 

iterate hi(x), defined 

hi(x) = nj(x) + q. (x> [h 
L' 

(xoxl)x;dv xl) 

satisfies the inequality 

(16) hl(x)Lh(x) for' all x~xo 

Similarly, h(x) is called a lower function of Q 
,j(x) if < 

hl(x)lh(x) for all XEX. 

The usefulness of upper functions for the solution of 

eq. (15) follows from 

Theorem 16, An upper function h(x) for the solution 

Qij(X) Of eqo (15) is an upper bound for Qij(x> on x. 

Proof, Let h(x) be an upper function for Qij(x), and 
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assume that h(x) is not an upper bound for Q ij(') on%. 

Then 

U = lub 
XEX 

C Qij (X)-h(X) ~ > 0. 

By iteration of the integration in eq. (15), we see that 

Qij (X> = y1 I,(i,j,x) + OOO 
m=o / /[ 

n-l 
7-r 90(xoum) 

m=o 3 

Qij(xoun) ;i (+d, 
k=l 

where 

r e if m=o 
u = m 

i 

¶ 
x10x20 .a00 oxm ifm>o 

Io(i,j,x) = nj(x), 

and 

no(xouk$rj(xoum) ft b+h). 
t=l' 

Also, iteration in the upper function inequality (16) can 

be used to show that 

hn(x)ihn,l 

where 
n-l 

(x)5 000 5hl(x)5h(x), 

as above. Thus it follows that with the same 1,'s 

Qij (X)-h 
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(X> '&ij (X)-hn(X 

n 
77 (x;dv), 
k=l 



n-l 
~ n,(XOU,)[Qij (XOUn)-‘(XOU,)’ ;; (X~“) 

m=o 3 k=l 

n-l 
72' l~o(xoum)x;dv) o 

m-jo 

But by Theorem 14 the latter integral tends to zero with 

increasing n, so that Qij (x)-h(x)lO, a contradiction. 

Remark. A similar argument can be used to show that a 

lower function for the solution Qij (x) is a lower bound for 

Qlj(x> for all XE:~. 

Theorem 170 The solution Qlj(x) of eq. (15) is unique, 

Proof. Assume that there are two solutions Q ,j(‘) 

and Qlj(x)O Let 

AQij(x) = Qij(x)-Qfj(x)O Then 

AQlj(x) = T,(X) 1 AQijh++. 

We wish to show that AQij(x) = 0 for all XE~, By 

iteration of the above integral, we obtain 

n-l 
1 r r,(xou,), A& 

m=o 
ij(xoun) ;;Jx;dv), 

t=1 

Let lub 
XE:3c 

AQUA = all. Then 

"ij 
n-l 
77 ("o(xoum)x;dv). 

m=o 

It was observed in the proof of Theorem 16 that the right 

hand side of this inequality tends to zero with increasing 

n, so that AQij (xl 500 Since the choice 01 Qij(x)-Qjj(x) 

for AQij(x) was arbitrary, it also follows that 

- AQij (x)&O, and the proof of the theorem is complete. 
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Remark. Theorem 17 might also be proved by observing 

that if nj(x> = 0 for all XEX, then Q ,j(x> = 0, The 

uniqueness of the solutions to eqs, (10) and (11) is 

important in our case, since in order to prove certain 

properties of the O,C, 's we shall argue in terms of their 

integral representations, Thus we can ensure that in 

dealing with a solution of an equation of these types, we 

are dealing with the corresponding O,C.vs, 

It has been observed [ll] that if the upper stopping 

bound of a SPRT is increased and the lower one decreased, 

and if the new test is not equivalent to the old one, then 

at least one of the error probabilities is decreased, In 

the remainder of the present chapter, the analogous 

properties of the GSPRT will be investigated,, Some im- 

plications of these "monotonicity properties" of the O,C,vs 

are explored below, 

In order to prove that increasing the size of the 

stopping region strictly changes certain of the O,C,'s, we 

make the following 

Definition., Let A be the symmetric difference of the 

stopping regions for the two GSPRT's c xo,uAi] and 

1 
X 09 WA; 10 These tests are said to be not equivalent if, 

for some integers n and i, 

‘i c SnEns s,ER; /IA0 for all m<n >O, 

Remark, Roughly speaking, the definition states that 

two GSPRTvs are equivalent if they have the same O,C,vs;, 
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II 

We are now in a position to prove 

Theorem 18. If two nonequivalent GSPRT's c Xo'UA~ 3 
and x0, c uA;j (with expected sample sizes Ni(xo) and 

Nj(xo>, respectively) are such that UAic UA;, then 

ANI = N;(xo)-Ni(xo)10 

for all i, with strict inequality for at least one i, 

Proof, From Theorem 15 we see that ANi satisfies 

the equation 

(17) ANi = -6(x0)(1 + Ni(xoox)xidv) + +x0) 
i 

/ 

. 
ANi(xoox)x=du, 

where 6 is the characteristic function of n 0 Since zero 

is an upper function for ANi we have (by Theorem 16) 

that ANi( for all i, Iterating the integration in 

(17) n times with zero as a first approximation, we obtain 

the expression 

n-l 
1n = C I - 

j=o j 
n~(sj)]~(sn)(l+Ni(sntl)) 

where I J 
denotes the j-th iterate and 

IO = 4(x0)(1+ Ni(sl)+h). 

Since AN~(x~)~I~~~~,,~I~IO, it suffices to show that for 

some i and some n, InLO, that is, that 

i /i 

n-l 
0 0 0 ~~~(sj~6(sn)(l+Ni(sntl))~;~(x;dv) >O 

j=o = 
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for some i and n. But this is guaranteed by the condition 

of nonequivalence of the tests, since nonequivalence of 

E X o, UAi] and {x0, UAi] implies that 

n-l 
77'- +j$bn) k;l(x;dv) >O 

j=o = 

for some i and n. 

Monotonicity theorems on the error probabilities are 

our next consideration, For the first two theorems, we 

consider increasing only certain parts of the stopping 

region uAI. The first result is given as 

Theorem lg. Given a test { x0, u Ai] , let a new 

stopping region VA i be defined so that AlCAi, A2 = As, 

and A 3 = A;. 

rule by Qij. 

for all i and 

Proof: 

(18) 

Denote the error probabilities for the new 

Then &II-- 'Q il for i = 1,2,3, and Qij- CQ ij 

j#l. 

Let 

where li is the characteristic function of the new region 

Ai, Define 

(19) AQij (x0) = QIJ (xo)-Qij (x0) 0 

Then using equations (lo), (181, and (19) it follows that 

(20) AQil(xo) = t(x,)-$(x0) 
/ 

AQil(sl+, 

where 

t(x,> = a,(x,m- 
/ 

Qilbl)+d~O. 

It follows that zero is a lower function, and hence a lower 

32 



bound, for the solution to eq. (20). Thus the first part 

of the theorem follows. 

To complete the proof of Theorem 19, we consider Qi, 

and QIJ for j#l. An argument analogous to that given for 

eq.(20) yields 

- AQij (x0) = 61(X0) Bij(Sl)X~dv ’ “~‘“0, 
s 

i - AQij(sl;xldv. 

Since 61(x0) 
/ 

Qij(sl)x:dv 20, the second part of the theorem 

follows, 

Remark, The inequalities in Theorem 19 can be 

strengthened if we make the additional assumptions that: 

(i> the two tests I 
x 0’ 

not equivalent, 

and 

(ii) Q,,(x)<1 on some subset of a with positive 

mear;ure under H. ., 1 
In particular, if 

Qil(x) = 1 for all i imnlies that XEA~, 

then the assumption of nonequivalence of the tests is suf- 

ficient to guarantee that AQil(x) >0 for some i. In view 

of Theorem 6, condition (ii) above can be considered to be 

a condition on the shape of the stopping region UAiO If 

this condition is not satisfied, the performance of the 

test can be uniformly improved by changing the configuration 

of UAi" A proof of strict inequality under conditions (i) 

and (ii) above can be obtained by iterating the integration 
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in eq. (20) and arguing as in the proof of Theorem 18, 

Theorem 20, If in the test {x0, UAi} a new stop- 

ping region UAj is defined so that AlCAi and A2CAi, 

with A 3 = A' 3' then 

AQUA + AQi2>0 for i = 1,2,3, 

Proof. Let Si(xo) = nj(xo)-vi(xo) for i = 1,2, We 

have 

(21) AQil(xo) = 61(xo)-('l(xo) ' '2(x0)) 
I- 

Qil(Sl)X~du 

+ am 
i 

AQil(sl)X~'u 

with a similar expression for AQi2" Thus 

(22) A&i1 + A&i2 = (61+62)(1- 
/ 

(QIl+Qi2)dPi) 

--T ; 
i 

( AQil+ AQi2)dPi" 

Since c Q ij = 1, it follows that l- 
j 

(Qil+Qi2)dPi 20, and 

zero is a lower function for the solution to eq, (22), 

which completes the proof, 

Remark, The inequality of Theorem 20 may be 

strengthened under the condition of nonequivalence of the 

tests. The argument is outlined in the remark following 

Theorem 19. It should also be noted that Theorem 20 remains 

true if the assumption that A3 = A; is replaced by the 

assumption that A31As0 A similar remark holds for 

Theorem lgO 

The derivation of the integral equation for Q ij('o) 

involves the assumption of independent identically 
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distributed elements in X = (Xl,X2p 000), and from the 

equation certain monotonicity properties have been obtained 

(Theorems 18, 19, and 20). These results can also be 

obtained without assumptions on the distribution properties 

of x. Instead of explicitly using the error probabilities 

Qlj(xo), one can argue in terms of the performance of the 

test under various sample sequences0 

As an example of this type of argument, consider the 

following situation: 

Given two GSPRT*s T = I xo,uAi) and T* = {xo,(JA;], 

where AlCAl, AsCA2, A'cA 3 3” Then QiliQll, i = 1,2,3, 

and Q! <Q lj- ij for i = l,2,3, j#l, where 

&I1 = Pi {T* accepts Hl] , and 

Q il = Pi {T accepts Hl] D 

Every sample sequence yl,y2, 000 yN leading to the 

acceptance of H1 under T will also lead to its acceptance 

under T*, Thus the event {y:T accepts Hl] is contained in 

the event t y:T* accepts Hl] , so that 

Q il = Pl fy:T accepts Hl] r Qilo 

Also, it is possible that for some sequences such that T 

accepts H2 or H 3 T* will accept Hl, so that the inequality 

is strengthened, 

The situation for j#l (say j=2) can be argued as 

follows: A sequence y resulting in acceptance of H2 by T 

may no longer result in its acceptance by T*, There are two 
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reasons: 

(i> entrance of the walk sm into A2 is no longer 

sufficient (but is necessary) for acceptance of 

H2 under T*, and 

(ii) T* may accept Hl before the walk enters A2" 

Thus we have: 

i YZ T accepts H2 f 
contains points y not in 

i Y: T* accepts H2 D 3 

However, we do not have the strict inclusion between these 

events, as was the case in the first part of this argument, 

The difficulty is that { y: T* accepts H2] may contain 

points not in {y: T accepts H2] D Thus we must consider 

events of the type i YZ T accepts H2 or H3j , and obtain 

an inequality involving Qi2+&. 13 and Q? +Q: 12 13 as was the case 

in Theorem 20, 

It is interesting to note that Theorems 18, 19, and 20 

hold for any GSPRT, These theorems are quite general in 

that the measure space (x,s, v) may be considered to be 

the image (through r) or a quite general measure space 

qa3, A so that the sequential test defined in terms of 

a random walk on x may be applied to a wide class of 

problems, Unfortunately, there does not seem to be a 

monotonicity,theorem as general as Theorems 19 and 20 for 

the case in which all components Ai of the stopping region 

are simultaneously enlarged, Under certain restrictions on 
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the shape of the Ails, however, such a monotonicity 

theorem can be proved, We devote the next several 

paragraphs to a discussion of two such shapes, and their 

application to a more general monotonicity theorem, 

Suppose in particular that A0 is convex as well as 

Al,A2, and A3" Then the boundaries of the Ai's are 

straight lines in x characterized by their points of 

intersection with the boundary of 'X0 Suppose, for example, 

that 

max 1 XL XE:A~ and x2=0 = "31, 

(23 

max t XL xcAl and x3=0] = a 21" 

Then an equation of the line forming the boundary between 

Al and A0 (that is, the line containing the two points 

(a21s 1421’ 0) and (a31, 0, l-a31)) is given by 

(24) x1 = 1 a2;,, x2 + 1 a31 x3 
- a31 

assuming that ail<10 Similarly, equations of the lines 

forming the boundaries between A2 and Ao, and A3 and Ao, 

are given by 

x3 
32 

.3 = 1 al3 
- al3 

x1 + 1 a23 
- a23 

x2 

where the a.. gs are defined in a manner similar to that 
1J 

used in eqs. (23j0 Thus in this case, 
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. 
(25) Ai = X,x‘, 

aY j 
x=2+x + 

ski xk ; i,j,k distinct D 
ji l-ski 

Remark,, Al and A3 are disjoint if and only if 

a13 + a31>10 A similar statement holds for the other 

combinations of AiPsO Also, e&A0 if and only if 

2a ji-3ajiaki+2aki> 1 

for all distinct i,j, and k, 

Theorem 21, Suppose the components Ai of the 

stopping region of the test ixo,uAi] are defined as in 

eq, (251, Then the probabilities Qij(xo) satisfy the 

inequalities 

(26) x~Q~~(x~)~ 
al2 x;Q12(xo) + a32 

1-a12 1-a32 
xzQ32(xo)s 

Proof: If x~EA., then Q 
J ij(xo) = 1 for i = l,2,3, and 

Qik(xo) = 0 for k#j, Thus the probabilities in two of the 

above inequalities are all zero, and in the remaining 

inequality the probabilities are all one, so that 

a xjz " ' akj 
0 l-iJ 

ij 
Xi + 1-akj xi (i,j,k distinct) 

which (in view of eq,(25)) is equivalent to the assumption 

that xoeA., J 
Suppose, then, that x,EA~., We shall use an argument 

similar to that used by Wald [8, p,41] to establish similar 
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inequalities for the SPRT, For any sample x1,x2, 0 0 a , X n 
such that the walk sn = xooxlo OOa ox n enters Al (say), 

it is true (by eq, (25)) that 

sl> a21 s2 + 
n l-a21 n 

a3l ,3 
l-a31 ns 

or equivalently, 

(27) x,' t& x;L a21 2 n 2 a3l 
1-a21 xo 61 Xt + l-a x3 ? 3 31 0 t=1 Xt" 

For q kij(xo) as defined in eq, (12), we have 

k-l 
77 ho 

v=o 
nj(Sk> ~ (X,idV). 

t=1 

Equations (27) and (28) imply that for each k, 

c29) x;qkll(xo)2 a21 2 
1-a21 xoqk21(xo) + ,":;, x;qk3l(xo) ' 

Summing both sides of inequality (29) over all values of k 

we obtain the first of the inequalities (26) by eq. (13). 

The remaining inequalities in (26) are established in a 

similar manner, 

Theorem 22, Suppose the components Ai of the 

stopping region of the test are defined by 

eqo (251, where the atm ,s are greater than l/2, Then for 

any test i "o,uA~ ] such that uAiC UA;, 

Proof, By equations (10) and (19) we have 

(30) A&is (xo) = 'j (xo)-k&k(xo) Qij(sl)x;dv+$(xo)* 
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. 
/ '&,j (&d~, 

where 6 
J 

is the characteristic function of A.-A!, By 
J J 

eq, (10) it also follows that for x,EA~, 

J Q ij 

so that eqO (30) may be written 

(3’) AQij (X0) = aj(xo)' f 6 (x )Q kzl k 0 ij (Xo)“~(Xo> AQij (Sl)XlidV, 

Iterating the integration in (31) once, we obtain 

AQij(xo) = C'j(Xo)- ~ 'k( 
k=l 

Xo)Qij(Xo)I 

+ n;cxol C'j(Sl)-~ 6 (S )Q..(Sl)IX~dv k=l k 1 1J 

+ v;(xO)~n;(sl)[~AQij(s2)x;dv]x;du. 

Similarly, by iterating the integration n-l times, we 

obtain 

(32) AQij(xo) = n~lIm(i,j,xo)+ 
m='o m=o 

aQij (sn) ;i b+d 
t=1 

for all i and j, and for n=1,2,3, OOo, where 

3 
Sj(Xo) - 

J&k O 
y‘ 6 (x )Qij(xo) for m=O, 

Im(i,j,xo) = ( 

Qij(sm)]; (x:dv) for m=1,2, 00,(1 o 
v=l 
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In view of eq. 

(33) c 
Lj 

X~AQij 

i#j 

(31), an integral equation for 

(x0) = 1 x;[Sj (x,)-~~~~~(x~)Q~~ (x0 
W 

>I 

i#j 

ij (sl)x; x;dv. 

Iteration of the integration in eq, (33) leads to an 

equation of the form 

.>I x;AQij(xo) = nfl :' ' 
1,) m=o i;j 

x,II,(i,j ,x0) 

i#j i#j 

+ J J 0 0 0 0.: dv, 

ifj 
where Im(i,j,xo) is as defined in eq, (32), 

In view of the remark following Theorem 16, it will 

suffice to show that for all m, 

(35) C x~Im(i,j,xo) 200 . . 
;;; 

For each m, this sum may be written as 

(sk)l[(Q22(sm) i?x~-Q1,(s,,;xl) 
v=o v=ov 

m 
+ (&33 km) ; 3 v=oxv -Q13(sm) flx;)ldv ooo dv + 

v=o 
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+ ~m~l’$(~k~~~~Q,l(s,) i? +Q2,(sm) ‘n’ Xv) m 2 
k=o v=o v=o 

s,gA;-A2 

m 3 
+ (Q33(Sm)v~oxv -Q23(sm) ; Xc)Idv ooo dv 

v=o 

+ ‘- ,’ [“;i’ (s >lC(Q 
i 

OOBi 
j k=o % k ( 1; ’ 11 'rn v=oxv 

m 3 -Q31(sm) T xv) 
v-o 

srn~A;-A3 

+ (Q22(sm) I? xz-Q32(sm) ; x:)Idv ooo dv. 
v=o v=o 

Using the assumption that atm>1/2 (so that 

inequalities (26) imply that in particular 

s~Qjj(sm)?s~Qij(sm) for all i,j, and m, 

or equivalently, 

(37) Qjj (Sm) ~ Xj, 2Qij (Sm) ~Xi for all i,j and m, 
v=o v=ov 

Thus each integrand in (36) is nonnegative for all m, 

so that 
. 

1 x~Im(i,j,xo)20 
W 
i#j 

for all m and x0, which in turn implies that 

C X~AQij(Xo) ‘0 
W 
i#j 

for all xoO This completes the proof of Theorem 22, 

Theorem 2j0 The inequality of Theorem 22 is strict 
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if the tests 1 xo,uAi] and [xo,uA;] are nonequivalent,, 

Proof, The nonequivalence of the tests implies that, 

for some i, j and m, 

(38) ;(x;dv) >o, 
v=l 

smcA!-A 
J j I 

and since this integral is no larger than 

(dv>m (m-fold integral), 

smcA?-A. 
J J 

one of the integrals (36) is strictly positive provided 

the integrand is positive on A?-A., 
J J 

Suppose, for example, that the inequality (38) holds 

for j=2, We wish to show that the corresponding integrand 

(39) ~Qll~sm)v~Ox~-Q21~sm)v~o x:1 + CQ33~~m)v~o~~-Q23(sm) 

in expression (36) is strictly positive on A;-A~" In view 
atm of inequalities (26) and the fact that 1 >l, it follows 

tm 

that expression (39) is positive for srn~As-A2 if one of the 

error probabilities Q21 m (s >, Q31(~m), Q23(~m),Q13(sm) 1s 

positive or if one of the probabilities Q ll(~m>, Q33(~m) is 

positive, But this is always true, since a contradiction 

results from the assumption that these probabilities are 

all zero0 This is seen as follows: 

If Q,,(s,) and Q23(~m) are both zero, then Q,,(s,) = 1, 
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Similarly, 

Qll(sm) = Q13(sm) = 0 implies Q12(sm) = 1, 

and 

Q33(~m) = Q31(~m) = 0 implies Q32(~m) = 1, 

Now from the second inequality (26) we must have 

s2>“12 J + a32 ,3 
m -l-al2 m l-a32 m 

which implies that SHEAVE contradicting the assumption that 

s,EA;-A~~ 

It follows that at least one of the integrals (36 > is 

strictly positive for some m, so that 

'3 X~Im(i,j,xo) >0 
i,j 
ifj 

for some m, which completes the proof, 

Remark, The assumption that the constants atm are 

greater than l/2 is equivalent to the condition that 

AjC{ ' x:xJ L x k for all k 1 

in the present case0 The latter condition would be 

satisfied for Bayes xo,W rules in 2 , for example, if the 

loss matrix W had equal.off-diagonal elements, 

Theorem 24, Given two tests I xo,\iAi] and 

X0’ VA;] such that UAiC VA4 and A4 is defined as in 

equation (251, where the atm 's are greater than l/2, Then 

lI 
LJ 

x;AQij(xo)20. 

i#j 
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Proof, The proof is similar to that given for 

Theorem 22, except that the integral equation (30) for 

"ij (x0) is replaced by 

(40) AQij (X0) = [Sj(Xo>- f 6 (X )j&iJ(Sl)X:dVI 
k=l k o 

+ no(xo) AQij(sl)x;dv. 

Iteration of the integration in eq, (40) yields 

n-l 
) = x I~(i,j,xo)+ 

m=o 
(‘1) AQij (X0 

where 

AQij (Sn)t~l i x~'V 1 , 

/ 
- &k(Xg)lylj(Sl)x;dv 

= 

Im(i,j,xo) = C7;iln (‘k)I[‘j(sm) 
k=o o 

for m=O, 

- 56 km) ;Q;j(sm+1)x;+ldvlv$x6du). 
t=1t -/ 

As was the case in the proof of Theorem 22, we have 

2 x~Im(i,j,xo) 30 
i,j 

for 

(42 

i#j 

all m, since 

< I- ;- m-l 

i#j 

.m+l 2 
S m+l'v20xv L: 77 no(S,)lC(c$,( 

k=o 
s,EA;-"~ 

- &i2(Sm+l)~$~X~) + (Q13(Sm+l)~~~X~-Qi3(Sm+l) 

m+l 1 v~oxv)](d~.!m+l 
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plus integrals over As-A2 and A;-A3 corresponding to those 

in eq, (361, where the integrands in eq, (42) are all 

nonnegative by inequality (37). 

Thus it follows that 

c 
LJ 

x;AQij(xo) 20, 

i#j 

which completes the proof, 

Remark, The preceding three theorems imply the 

following statement: If the stopping regions of the two 

tests x0, I UAi] and [x0, uA$ 1 are such that for each i, 

and 

(i) AicAq, 

(ii) there is a line of the type described by 

eq, (24) in the set Al-A., where the akivs 1 
are greater than l/2, 

then 

T 
i ,>j 

x;AQij(xo) 20, 

ifj 

with strict inequality if the region UAi and the region 

formed by the lines define nonequivalent tests, 

The arguments in the preceding three theorems 

(Theorems 22, 23, and 24) in which a certain shape of 

stopping region is considered rely upon this shape only 

through use of the fundamental inequalities of Theorem 21, 

Thus, the arguments can be used for any shape for which 

such inequalities can be obtained, As an example, we 
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consider next another particular shape of stopping region 

for which we can obtain such irequalities, 

Suppose that Ai is defined by the intersection of 

two lines in %, each containing an extreme point opposite 

the one in AiO We shall assume that the i-th component 

of each non-vertex point of intersection of these lines 

with the boundary of % is greater than l/2,, Thus, for 

example, Al is given by 

(43) Al = 
3 , 

where c 12 and c 13 are constants greater than 1, 

The shape of the stopping region mentioned above 

arises quite naturally from a consideration of the 

probability ratio test as follows: We wish to test the 

hypotheses 

Hi : fi is the density of Y ; i=l,2,3 

against each other, Suppose we use the test defined by the 

probability ratios: 

Accept Hi if min 
j#i c 

fjn/fin 3 5 Gin ; i=1,2,3, 

continue otherwise, 

It is easy to show that this test is equivalent to the 

GSPRT ps UA~] s where the A i,s have the shape we are 

presently considering, 

The monotonicity theorems stated above (Theorems 22 

through 24) for the case in which the components of the 
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stopping region are defined by single straight lines can 

be given also for stopping regions with components of the 

type defined by eq, (45),, In this case, we make use of 

the inequalities 

(449 x~Q,,(xo9 2cijx~Qji(xo); i,j=1,2,3, 

where c..=l if i=j, 
iJ 

These inequalities are proved as 

follows: 

If x0&A., 
J 

the inequalities follow immediately as in 

the proof of Theorem 21, 

x1,x2, ooo, xn such that 

in i 
xo tzlxt 

so that by eq, (129, 

If xO~AO, then for any sample 

sn&Ai, we have (by eq, (4319 

ZC ij 
xj Q xJ 

0 t=l ts 

. 
x~qkii(xo)’ C i.Jx~qk.Jiixoj 0 

But this implies eq, (44)0 

In this case, the analogue of Theorems 22 and 23 can 

be stated as follows: Given two tests i x0, iJAil and 

such that UAiC WA;, where the AfPS are defined 

as in eqO (43j0 Then 2 x~AQij(xo)ZO with strict 
idi 
i#j 

inequality if the tests are not equivalent, 

In order to prove this, we argue as in the proofs of 

Theorems 22 and 230 Note that expression (36) does not 

depend upon the shape of iJAi, and that the developement 

of the proof of Theorem 22 through expression (36) holds 

also in the present case,, By inequalities (44) it follows 
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that the integrands in expression (36) are nonnegative for 

all mS so that 

(45) C x~Im(ipj;xo) 30, 
i,j 
i#j 

The inequality in (45) is strict under the assumption of 

nonequivalence of the tests by the argument of Theorem 2j0 

For example, if expression (39) is zero on.A;-A2 we obtain 

the inequalities 

2 2 3 srn .i? c~~sA and srn > ~23~~ 

which implies that sm~A29 a contradiction, 

The remainder of the present chapter is devoted to 

stating a characterization of the condition under which 

enlarging all components of the stopping region leads to an 

increase in at least one of the A& 
U 

ss, and to giving some 

implications of such an increase, We shall show that the 

general monotonicity property mentioned above is equivalent 

to 

Condition I, Given the two tests r xo91iAi] and 

I xos U A$( such that UAiC WA!, there exist integers 

fsJ s and m such that 

Qij !s,) 1 ; b+W#Oo 
q=l 

Remark, Note that if Condition I is satisfied, then 

the tests 
i Xos VAi] and [Xos VA;] are not equivalent, 



..I I . . . . 1-11.. . . ,. .---.--.- .- ._.- -- __-_ 

if it is  assumed that xOeAA. This  c ,an be seen by observing that 

if the integral of Condition I is  not zero, then 

m-l 
- [r +,)I >7 G t('sm); (x;dv)>O 

k=o t v= l 

for some i and mp which is  the condition of nonequivalence, 

Condition I is  a condition on the way in which the regions 

\ J  Ai and ;JA$ differ, In particu lar, if AiC A4 for one 

or two iv s s  nonequivalence of the tes ts  implies  Condition I, 

(In fac t, this  is  a result of Theorems 19 and 20,) If, 

however, AiLAl for ail is  Condition I has the following 

interpretation in terms of sample sequences in the space 

7 
D 0 For some i and j9 the event 

SHEA; for k<m, 'j(Sm)='s SNE 'J  At 
t#j J  

has probability  under the hypothesis Hi different from the 

event 

SHEA; for k(m, sN'Aj 

for some s tage m(N, (N is  the sample s ize function of the 

tes t xoB L UAi] .> Thus Condition I is  the condition that 

the increase from UAi to W A; is  not "symmetr ic "  in the 

above sense,, 

G iven the tes ts  I x0, I/Ail and 

X osuA;] s  where uAiC (.JA; and xo~AAO Then for some 

i and j, A& ij 
>0 if and only  if Condition I is  satisfied, 

Proof, Note that by eq, (10) we have 
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A~ij(xo)=n~l~m(i,js~o)+ ‘000 :-‘cn+1T8(s,)~ 
m=o i 1 m=o O 

AQij(sn)t~l'x:dV'~ 
= 

for all i and j, and for n=1s2s30 OOOs where 

f sj(xo) - t: ~k(Xo)Qlj(Xo) for m=O 
k 

Im(isj,xo) =', 

o 9 o Cm~l~~(~k)lC*j Isrn)- F st(Sm)Qij(Sm)l 
J k=o 

v~l(x~dv)s for m=1,2, ooo o 

Since by Theorem 14 

I [“;i’ 
I m=o 

T;(s~) IAQ,~ (s,) 7: (xkdv) 
t=1 

tends to zero as n+m, 
00 
ii I,(fsj sxo )=AQij (x0) u 

m=o 

Thus it follows that if AQij(xo)>Op then Im(i,j9xo)#0 

for some i,j and m, which is Condition I, 

On the other hand, if Condition I holds, then at some 

stage y' (' Im l,j9xo) is bounded away from zero which implies 
m=o 

that AQij (x0) is bounded away from zero for some ipj, Since 

this implies that AQij(xo) >0 for some i and jp 
51 
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Suppose we consider a subclass T of 2 such that 

the stopping regions of any two tests in 7 are "similar" 

in the following sense: For any two tests ix09 uAi] and 

i xop ()A;] in Ts at least one of the inclusions 

Aic Al3 Ai3A; 

holds for all i, A test TEE will be said to have the 

"optimum property in T" if, for any other test T*E 2' such 

that Condition I holds, and such that Q,j(TI) <Qij(Tj 

for i#j, 

Nf(T*) ?.NilT) 

for all is with strict inequality for at least one i, 

A test TEE wiil be called "unique in T" if, among all 

other tests in T such that Condition I holds, T is the 

unique test with error probabilities Q iglT)~ 

Theorem 26, A GSPRT )xo9 UAi] with error 

probabilities Qij (x0) has the optimum property in the class 

T of GSPRT"s with similar stopping regions, 

Proof, Consider any GSPRT f x0" VA!] such that 

Condition I is satisfied, and such that the stopping 

regions uAi and u Al are similar, Then by Theorems 19, 

20, and 25, the condition that 

Qij tX 
0 

)5Qij(xo) 

for i#j implies that \JAtC JAiO But then by Theorem 18, 

N;(xo)2NNf(xo) for all is with strict inequality for at 

least one i, 
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Remark, It similarly follows that a GSPRT {xos uAi] 

is unique in the class of GSPRTPs with similar stopping 

regions, 
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Chapter IV 

AN EXAMPLE 

As was noted above, Theorems 18, 19, and 20 of the 

preceeding chapter hold for any GSPRT, However, the 

monotonicity property for the case in which all three 

components of the stopping region are simultaneously 

enlarged seems to require additional assumptions, In this 

chapter we give an example of a three choice problem for 

which such a theorem does hold, with strict inequalities, 

under only the assumption of nonequivalence, 

We shall consider the problem of deciding among the 

three uniform densities 

J l/i,OC-yIi 
'i(Y) = ' ; 1=1,2,3o 

1 0 otherwise 

The testing procedure we use can be specified by two 

integers t and m, We assume, for simplicity, that t>m. 

The test operates as follows: The test accepts Hl when 

the first t observations fall in the interval [0,110 It 

accepts II2 if an observation falls in the interval [1,2] 

before t observations have been taken, and the remaining 

observations (at least m-l, but not more than t-l in 

number) fall in the interval [0,210 The procedure accepts 

H3 otherwise, that is, when an observation falls in the 
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interval [2,3]before it accepts Hl or H2" 

In terms of a random walk in the space x9 this test 

is equivalent to one which starts at xo=e=(l/3,1/3,1/3)0 

At the first stage, the induced distribution of X is given 

by the table 

In general, states which the walk may occupy are of the 

following three types: 

(a> (6n+3n+2n) ‘1(6n,3n,2n); n = 0, 1, 2, Oao, t, 

(b) (3"+2")-'(0, 3n, 2”); n = 1, 2, 0 0 0 , m, 

cc> (0, 0, l>o 

Since the states that the walk may occupy with positive 

probability under some hypothesis are of the form of 

discrete points lying on curved paths intersecting the com- 

ponents Ai of the stopping region i)Ai, the number of 

points (t-l and m-l) lying outside these components 

determine the test, that is, the shape of each component 

does not affect the test, as long as they meet certain 

mild conditions, The shape we shall use is that considered 

in Chapter III in which Ai is given by the intersection of 

two lines in X, each containing one of the opposite 

extreme points ofX(figure 1>0 (We drop the condition 

imposed on these lines in Chapter III,,) Bayes rules for 
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tesLiIlg tlie 'i;;l'c? unfform densities can be given in this 

fO7'Ill O 

t points of 

SW) (0,091) 
Figure 1 

Figure 2 

(b). 

Frigure 3 
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The components of the error probability matrix (Qij) 

for this test may be computed directly,, They are: 

Qll =I, Q 12=Q13=Q23=L 

Suppose we increase UAi to UAi, stopping region for 

a test defined by t, and m'. The new test may have a 

stopping region of the same type as the old (fig0 l), 

although it may not be true that t'>m'. There are also 

other possibilities, some of which are shown in figures 2 

and 3. The error probability matrix (Qij> of the new test 

may also be computed directly for each of its possibilities. 

It is easily verified that in each case 

tr(AQij)=tr(Q~j-Qij) <OS 

provided that the tests are not equivalent, that is, 

provided that t+m >t'+m', 

Thus, in this example, any "reasonable" increase in 

(JAi leads to a strict increase in at least one of the 

error probabilities in the set ~Q21,Q31,Q32} 0 
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