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ABSTRACT

The problem considered i1s that of finding a rule for
deciding which of k known nonequivalent density functions
1° f2: @vcoy

nown that a Bayes solution to this "k-decision"

fk is the density of a random variable Y. It

2 L s nl
15 wel

}_J

problem for the case k=2 1is given by the sequential

probability ratio test. The "generalized probability ratio"
r(y)=(Sf (y)7 e (y), £o(v) £ (y))
y AR 1 Y7 2N 9 ey K

is used in this paper to define the "generalized sequential
probability ratio test" (GSPRT) for the case k=2, The
GSPRT is viewed as a random walk on a space X of k

2

dimensional vectors (xl,x s ooy x¥) such that }:x1=l and

xi§20 for all i, The test terminates when the walk enters
an absorbing barrier in "X, Some properties of this
absorbing barrier are discussed for a class of GSPRT's
which is essentially complete in the class of Bayes rules
for the k-decision problem.

Integral equations are obtained for the operating

characteristics of the GSPRT. Conditions are given under

which the test almost surely terminates. Monotonicity

iii



properties of the operating characteristics with respect
to certain changes in the absorbing barrier are obtained,
The distribution induced on the random variable r(Y) by

the fi's is discussed, and an identity is given which in
some sense characterizes the distribution of probability

ratios,

iv



PREFACE

In order to minimize the burden of reading the large
amount of specialized terminology and notation required in
this paper, a table of symbols and terms is included as an
appendix. The table can be used to find the page upon which
each symbol and term is defined. Some of the notation is
standard and is due mainly to Wald [8,9]. Considerable usu
has been made o notation introduced by Seo [6] and
Skibinsky [7].

In order to simplify notation, the following conven-
tions will be followed:

(i) All summation and union runs from 1 to k unless
otherwise specifically stated. The index of summation or
union may not be listed when there is no possibility of
confusion,

(1i) Unless specifically denoted otherwise, all
integration will be over the entire space under consider-
ation,

(i11) The letters "a.e." may be omitted in statements
wken 1t 1s clear from the context that the statement holds
only with probability unity.

(iv) Displayed equations are numbered only when they

are referred to elsewhere in the paper.




The theorems are numbered consecutively throughout this
paper in the order in which they are stated. Numbers in
brackets following a reference refer to corresponding com-
plete references in the biblliography. In some cases, the
pagination of a reference is included by inserting "p. ---"

iIn the brackets following the number of the reference,

Acknowledgment is due to the National Science Foundation
and the National Aeronautics and Space Administration for

financial assistance on work related to this investigation.
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Chapter I

INTRODUCTION

The problem we consider is that of making one of k
decisions, dl, cooy dk on the basis of observations on the
components of a random vector Y=(Y1’ Y2, Y3, «00) Whose
distribution F is known to belong to a set f§o Suppose
y=(yl, Yoo eoe) 1s a point of the sample space %%, and D
is the set of decisions di which can be made in the problem,
We seek a decision function 6:%u+D, so that the resulting
procedure has certain "optimal" properties.

If the decision rule § i1s adopted and ye%% is observed,
the smallest positive integer n=n(y) with the property that
§(y)=8(y") for any y‘e’% for which y =y}, ¥5,5¥5 ceos Y =V)
is called the sample size of the rule §, given the observa-
tion y. (n(y) may be identically zero under certailn
circumstances,) If n(y) is not necessarily constant, we
say that 6 is a sequential decision rule. Unless specifi-
cally stated otherwise, we shall confine ourselves to
sequential decision rules based on a sequence Yl, Y2, e
of independent, identically distributed random variables,
whose distribution is specified unde?r the various declisions,
Thus the decision dj indicates acceptance of the hypothesis

that Fjsi} is the distribution of the components of Y,



A sequential decision rule § for the problem considered

hefe (hereafter called the k-decision problem) can be identi-
fied with it's sample size function n:é{+ fo,1,2, oao} and

a terminal decision function ¢:y +X, where X is a space

2

of vectors X=(xl, X7y cooy xk) satisfying the conditions

(1) x>0 for all i,
and

(11) 3 xi=1,
It is assumed that the components of ¢ are measurable with
respect to the smallest o-field 7 over %% containing all
cylinder sets in }% with finite dimensional bases, We also
assume that ¢(y) is dependent only on the first n(y)
components of y, and to emphasize this we write ¢n(y) for
¢(y) in what follows,

The test (n, ¢n) consists of taking one observation on

Y Y

l’ 2’ coos n’

finding the corresponding value of ¢n’ and making the de-

each of the first n(Y) random variables Y

cisions di with respective probabilities ¢io If the
probability that n(Y) is greater than the integer m is zero
or unity for each specific m, and the range of ¢n(y) is
restricted to the k vectors with one component equal to
unity, the test (n, ¢n) is called non-randomized., In what
follows we shall consider only non-randomized decision
functions, so that application of the decision rule (n, Qn)
consists of observing each of the first n(Y) components of
Y, and then choosing the i-th distribution function Fi to

be the true one if ¢l

n(y)(y)=1°



Let Eu denote the expectation operator relative to a
probability measure u on (7, ). When there is no possi-

bility of confusion, we write E, for the expectation operator

i

relative to the measure induced on (}1,Zi) by F Similarly,

i°
P1<A) will denote the probability of the event A given that
Fi is the true distribution of YJu The operating character-
istics (0.C.'s) of the test (n, ¢n) are defined as follows:

Ni(6)=Ein(Y) is the expected sample size required by
the decision rule §.

Qij(6)=Ei¢g is the probability that the rule § accepts
the j-th distribution to be the true one, given that the
i-th distribution is the true one. The Qij's will be re-
ferred to as "error probabilities"™ of the rule §,

Let wij denote the loss incurred by choosing the j-th
distribution to be the true one when the i-th distribution
is correct. We call w=(wij) the loss matrix, and assume
that wijEiO for all i and j(i#j), and w;.=0, 1=1,2, ..., ko
A criterion for judging the relative "goodness" of any rule
§ is the risk of 8., If the cost of making observations on
the components of Y is linearly related to the number of
observations taken (as we shall assume it to be) the risk

of the rule 6 is defined to be

L(8)1,

(1) R(y,W,8) = Swyi [cNi(6)+ )W, Qy
i 3 J

ij
where ¢ 1s the cost of a single observation and y is the
vector of a priori probabilities that the corresponding
distributions are the true distributions of the components

of Y,



Remark. R(y,W,8) represents the expected loss (to the
experimenter) when the rule § is used, Without loss of
generality c¢ could be taken to be unity, since this involves
at most a scale change in the elements of W,

Definition., Let " be a class of decision rules for
the k-decision problem, A Bayes rule in T’ relative to the
vector of a priori probabilities y and loss matrix W (a
Bayes y, W rule in T ) is a rule &%¥¢ U such that

R(y,W,6%) £ R(y,W,8) for all 6T .

A, Wald [9, p.110] has given a characterization of
Bayes rules which we include here for completeness and later
reference, The notation required for a statement of Wald's
theorem is the subject of the next paragraph.

We define three classes of sequential rules as follows:

£?=géﬁi{nw)<w}=l,i=h2,go” k},
L = gse,ﬁf n(6)2_1} , and
J,= {6 :rlsny}; m=0,1,2, o60o o
Let

(2) p(y,W, T)=inf R(y,W,68).
se T

For convenience of notation in what follows, we shall write
o(y,W)=o(y,W,4),
p*(y,W)=p(y,W, %), and
o (v W) =o(y,uW, 4 ).

Note that

(3) oo(y,w)=min

Ejyiw..
Je 11,2, oo, k}{i 1) s



and that
(4) o (y,W)=min {o (y,W), o*(y,W)} .

Wald's characterization of Bayes y,W rules in the
class 4 of all decision rules for the k-decision problem
(subject to the assumptions made above) is given as

Theorem 1. A necessary and sufficient condition for
a decision rule (n*, ¢* ,) to be a Bayes y_, W rule in y;
is that the following four conditions be fulfilled for
almost all (under yo) points ye%¢3

(i) For any integer m <n¥*¥(y) the a posteriori measure

u(¥os Y15 Yos eoes ¥,) satisfies the inequality

oo(u,W)on*(_u,W)°

(11)  If o (v 3 ¥qs coes Y ),W) >
p¥(u(y s Yys coes Yis¥),
then
n¥(y)>m,
(iii) po(u(yo, Yys ocos yn*),W) <

D*(U\y0’ y1: coo g .Vn*)ﬁw)“

(1v) ROu(y s ¥qs oves Yx)s W, (n¥, 0% ,))=
p(u(y s Y95 covs Ypu)sWo

Remark. The approach taken here for the class,i can
be used for any subclass T of,é . One could, for example,
speak of a Bayes y,W rule in T , the definitions of the
functions o, o¥, and Pm belng given with AZ replaced by T.
Theorem 1 would then characterize Bayes y,W rules in T .

When k=2, any Bayes Yoo W rule in )J is equivalent to

a sequential probability ratio test (SPRT). In one sense,



the SPRT provides the solution to the 2-decision problem,

in that it has an even stronger property of optimality --

the so-called "optimal property". Aftef a brief description

of the SPRT, we shall discuss some of its' properties.
Suppose that Fl and F2 are abéolutely continuous with

corresponding density functions fl and fga The SPRT is

defined in terms of the "probability ratio"

fom T pyp) wee Tyly)

n’l = : - - . [
fln fj(yl)-f1(y2Y oo flem)

and two positive constants A and B, A<B., The sample size and
terminal decision functions are determined as follows:

Before an observation is taken, decide whether n>0.¥

If n=0, make the terminal decision minimizing the expescted

loss., If n>0, observe the value Y, of Y. and compute

1

f?l/fll° If this ratio is =reater than or equal to B,
accept f2 as the true density with one observation., If

f21/fllng, accept fl with one observation., If A<f21/f‘11<B9

observe Yo and compute f? Continue sampling or ter-

2/f'lpa

minate with the appropriate decision according to whether

f‘22/f_‘12 is in (A,B) or not, respectively. In seneral,

continue sampling as lons as f?m/flm is between A and B,
and terminate as soon as this condition is violated, Accept

fl if r2n <A, and acceptf‘2

1 . S
- if f‘zn/f‘ln._Bc
1n

. = - s

/L

¥One can, for example, define f
so that n=0 if and only if A21 or B£1,

to be unity,

20" 710



The optimal property of the SPRT is that 1t requires,
on the average, under both hypothesis, fewer'(or at most
not more) observations than any other test with the same
or smaller error probabilities., More precisely, the optimal
property of SPRT is stated as

Theorem 2. Let Qij and Ni denote the 0.,C.'s of a S°RT
defined by two fixed numbers A and B, 0<A<1<B, and let
Q;i and N¥ denote the 0.C.'s of any other test (n,¢n) in x&
for the 2-declision problem. Then

% < . . s
Qij__Qij for all i,j,1i#]
implies that

N¥ =N, for all 1i.
i i

Remark. A proof of Theorem 2 is given in [10].

Associated with the optimum property of the SPRT are
the following two properties:

Unigqueness. Two SPRT's with the same error proba-
bilities are eqguivalent.

Monotonicity. If a SPRT with stopping bounds A and B
is changed by decreasing A and increasing B, and if the new
test i1s not equivalent to the old one, then at least one
of the error probabilities is decreased.

The connection between the optimum property, the
monotonlicity property, and the uniqueness property of the
SPRT is discussed by Wijsman [11]. In particular, Wijsman
shows that the monotonicity property can be proved

independently of the optimal property, and that it implies



the uniqueness property and the optimal property of the

SPRT within the class of SPRT's,



Chapter I1II

THE GENERALIZED SEQUENTIAL PROBABILITY RATIO TEST

It 1s the purpose of the present chapter to introduce
the "ger eralized sequertial probability ratio test" (GSPRT),
and of the following chapter to investigate some of lts
properties.

Let fi be a probability density function with respect
to a o-finite measure u on ('y,ZS), i=1,2, ..., k. In order
to avoid trivialities, we shall assume that the fi's are
pairwise not equivalent., Let F, denote the probability

3

distribution function correspondlng to fi’ i.e.,

F,(B)= JB £,(y) du for all Be 8.

Let X be the k-1 dimensional simplex defined in
Chapter I (see page 2). Define a mapping r from %7 to X
by the equation

-1

(5) r(y)=( L (y))7™" (£7(y), To(v)y woey £,(y))

for all ye ';# for which Zf‘i(y);‘o. We arbitrarily define

r(y)=(i—,§1€, coos -113) if Zf‘i(y)=0. If k=2,
r=(1+£,/8)7H (1, £,/1)),

so the mapping is equivalent to the ordinary probability

ratio in this case. Thus we will call r(y) the



10

"generalized probability ratio" for k 22,

Let 7J denote the o-fleld over X induced by r, i.e.,

BE {A:r_l(A) eﬁ}o
It is easily seen that the k-1 dimensional Borel sets are
in T}.
We shall define the Euclidean metric m on the space

X . That is,
1

mx,y)=( 5 (xtoy1)2)2,

Let P, denote the distribution on (X ,"§) defined by

P, (A)= /;-I(A)fidu, for Ae 7.
Let v denote the measure EjPi on (X, #). Note that

Pi<< v and v is totally finite. Then by the Radon-Nikodym

theorem, densities DP1sPss ooy Dy exist such that

P,(A)= j; p;(x)du for all AeF.

If we restrict our attention to decision rules
depending on Y, only through r(YT), we can state the de=-

J
cision rule for deciding the true density of Y, in terms

J

of a sequence X of random variables

X=(X1,Xps o0a)=(r(Y),r(Y,), o..)
in the space X, whose density is known to be one of the
pi'sg The k-decision problem that we are considering can
be stated 1in this context as the vroblem of finding a rule
for deciding which of the pi's is the true density of
r(Yj), where the p;'s are the densities induced on the
generalized probability ratio by the distributions which

determine the alternatives to be considered., We shall see



below that this restriction on the class of rules to be
considered does not result in an increase in the minimum
attainable risk.

We now show that the pi's satisfv the following
identity:

Theorem 3. (pl(x),pe(x), cosy pk(x))=x a.e.v.

Proof. For any integrable function u(x) we have¥*

J;u(X)pi(X)dv(X)= J;u {r(y)} £5(v)duly)

r

= | uf{r et (yan))
'l? €
= j‘u(x)xidv(x)e
X

Therefore,

pi(x)=xi Q.€.V,

Remark, This identity was originally stated by
Seo [6]., The present proof is different from the one given
by Seo, however.

Definition, We define a hinary overation "o" on the

elements of X as follows:
i i,- 1 2.2 k k
xoy=(Y xtyhy~txlyt,x%%, ..., x5,

It is easily seen that the interior )CO of X forms
an abelian group relative to this operation. (The identity
element (l,%, oo oy %) will be denoted by e in that which
follows.)

Remark, It is also true that the identity of

¥For proof of the first step see, for example,
Halmos [5, p.163].

11
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Theorem 3 holds for the "cummulative sums"

= o ¢ x o Th
8,7X,0%X0 & OX, at is,

1

n
T
Jj=

-1 : n
(Zi o P1(55) TG (py0sy))y 52 (py(sy))y oue,

s X

P (pk(Sn)))=sn a.€.V.,

(o]

An argument similar to the proof of Theorem 3 can be used
to prove this assertion.,

Theorem 3 has several interesting conseguences con-
cerning properties of the random variable r(Y¥). Some of
these are given in the following ﬁheorema For simplicity
of notation, we shall use the letter X to denote a com-
ponent of the vector X in what follows, provided that
the context makes confusion impossible,

Theorem 4, (1) Ei(Xj)=Ej(Xi); i,3=1,2, ..., k, where
Xj denotes the j-th component of a member of the vector
X of random variables,

(11) B (XD >3 1=1,2, ..., k.

(1i1) ) EJ.(Xl)=l; i=1,2, ..., K.
J

1

Xi
SRR

(1v) Ei(XOX)i>

(v) Pi(X=e)=% v(e)< 1; 1=1,2, ..., ke

Proof. (1) Ei(XJ)=-foxldv by Theorem 3, But this

is equivalent to
~[¥lx3dv=Ej(Xl)o



(1ii) By Schwarz's inequality,
f(xi)'?dv -I12dv > [fxl 1dv] 21,

i i.?2 1
E. (X )=-[(x YTdv D> e
i Y fdv

The strict inequality holds, since under the assumed

so that

~i-

nonequivalence of the Pi's, xi canncot be equivalent (with
respect to the measure v) to a constant,

(iii) and (iv) are trivial consequences of
Theorem 3 and part (i) of the present theorem,

(v) Since the pj's are assumed to be distinct,

they cannot all assign probability 1 to the set { e} ,

that is,

J

~

o) xid\)= l,&-ﬂ %dv = %\’(e)#lo
=3 A B

But this, together with the fact that
1
py(e)=p,(e)= ... = p (e) = L,
implies that none of the densities can assign probability
1 to {e} .
The sequential rules we shall consider will be given
in terms of random walks on X . PFor each random walk a
starting point X and a sequence of measurable absorbiling
barriers { UiAin} are specified. (The components of X,
may be considered to be a priori probabilities of the
corresponding pi'so) Such rules will be identified by the

set { X UiAin} °
A test of the k hypotheses

13
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Hi: The density of Xj is Py i=1,2, 0., Kk

using the rule { X UiAin} operates as follows: The set
{ Ain:i=1,2,',°o, k; n=0,1,2, ooo} and the vector x_ are
given. (We shall see below that in order to avoid
trivialities we may assume that xoeaéo and that the sets
Ain are mutually disjoint for each n.) If onAiO for some
i, the test accepts the i-th density to be the true one
without taking an observation, If it is not, a value

x, of Xl is observed., If the vector of a posteriori

1

probabilities s.,=x,.9%

17071
p; with one observation. If slﬁij

is a point in Ail’ the test accepts

observe x compute

i1

and determine whether s2eUAi

2’

SA=S,0X If so the test

2 “1772 2°
terminates; if not it continues, and so on,
The remainder of this chapter is devoted to an
investigation of the tests z xo,\JAin} . We shall show
that a slightly narrower class of such tests contains
tests attaining risks as small as any Bayes xo,w tests in
,X » Several of the theorems we give were originally
proved by Wald [9], and rely heavily on the characterization
of Bayes rules given in Theorem 1. These theorems are
stated here in the framework of random walks on X,
It follows from Theorem 1 that a Bayes xo,w rule 1In
3 can be given in terms the sequential rules
{ xo’UiAin} defined above, Thus it 1s true that a Bayes
xo,w rule in ,A for the k-decision problem can be associ-

ated with the random walk starting at X, and stopping in

the absorbing barrier Y Aino In fact, the sequence



Z UiAin} is constant over n for a Bayes ko,w rule in £ ,
a fact which is stated as

Theorem 5., For a Bayes xo,w rule in ,3, the stopping
region g A;, 1s independent of n.

Proof. From Theorem 1, we see that the stopping

region can be defined as the set
(6) Y A= ] xe Ko (x,10) 0¥ (x,W) {

It follows from conditions (ii) and (iii) of Theorem 1

that for each X and W there is a Bayes rule 1in AX which

terminates when the walk enters VYV A Since the in-

i "in®

equality in the right hand side of eq.6 does not depend
\/

on n, neither does Y Ain“

Remark. In view of Theorem 5, we shall henceforth

V)
designate the rule {-xo, Y Ain} by the set ixo,ijiS N

since by restricting cur attention to rules of the latter
type we do not increase the minimal risk attainable,

In what follows we assume that the starting point X,
is in X°. 1If X, 1s a point of the boundary of X, that is,
if at least one of the components xi is zero, the resulting
procedure may be replaced by a test of correspondingly
fewer hypotheses without increasing the risk., In
particular, if one of the components of X is unity, a
Bayes x _,W rule in 4£ accepts (with zero risk) the
corresponding hypothesis without taking an observation,
since the off-diagonal elements of W afe assﬁmed to be
non-negative, and the diagonal elements are assumed to be

zero., This observatlon is equivalent to stating that
15
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Aj contains the point (Glj’ 62j’ cooy Skj)’ the "j-th
vertex of the space X ."

Remark. We could assume, without loss of generality,
thgt xo=e, since the test { xo,\}Ai} is equivalent to the
test { X k}(x;loAi)} . We shall not do this, however,
since we shall have occasion to consider the 0.C.'s as
functions of X, for fixed stopping region,

We next show that under certain circumstances other
points (if they exist) should be included in Ajn Suppose
x is a point in X such that all random walks containing
X at some stage almost surely eventually terminate in Aj“
Then it seems natural that this point should also be in
Aj’ a fact which is stated as

Theorem 6. Suppose UC X is a set defined by
U= {x:Py § syeh, | x =x } =1 for all 1},

where N denotes the number of observations required by the
test { Xos U Ai} o Then we may consider only tests for
which UCZAj, inasmuch as any test for which this is not
true can be replaced by one for which 1t is and the latter
test has risk at most as small as the former test,

Proof: Let AjshAss ooy Ak’Qij’ and Ni denote stopping
regions and O.C's of a test S. Suppose S' is a new test in
je Assume

. . 0 * 1 \=0 .
some a priori point x_ is given. Now Qij(xo; qu(xO

]
which Aj=Ajk)U, with 0.C.'s denoted by Qii and N!

\
7/

for all i, since

Qij(xo)=Pi ZSNEAJ‘ xo} =Pi {sNeAj or sneU,



3

[

< - < '
for some n<N ‘XO} g{.N'eA.

Also, Qim(xo)=Qim(xo) for m#j, since

Pi{ Ayl x,} = f €A and s_

=P, § 5 _£U all n<N |s.eA ,x {-
n I "N m* ol

1l C
=P, {sN,eAm ‘ xo} .
since UA ;< UA!, it follows that

N1 > ] =
Nj(xo) Nj(xo)"o for j=1,2,

a fact which proved bslow (Theorem 18).,

observe that the test 5 has risk

xi [eN.
o

i " Za""i]

l

—~
b
=
-
N
[}
=]

which is greater than or equal to the

xo} = Qj'J. 1xo).

£U, all n<N’x

>, I sy
.LL N m

m\xA}
J

e ooy k,

Tn conclusion we

(x,)1]
1] -

risk

R(x_,W,8")= E;x' [eN} + E:wiJ (x )]

of the test 3!,

Our next aim is to show that specifying fthe loss

matrix W determines the stopping region UAi for a Bayes

xo,w rule in 420 In order to prove this, we make use aof

two theorems due to Wald [9, p.1l05].

probability density defined by

- i,ji
DXO(X)—Z X X o

We let Py denote the
o}

17
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Theorem 7. P e (xO,W)=min {po (xO,W),

1+ fpm(sl,W)pxo(xl)dv} s M=0,1,2, oeo .

Theorem 8. The function p(XO,W) satisfies the

equation p(xo,W)=ndxagoo(xo,W), 1+ J(p(sl,W)pxo(xl)dv} .

Theorem 9, For a Bayes xo,w rule in AX, the compon-
ents of W uniquely determine the Ai's.

Proof. For each x_ and W, po(xo,W) and o(XO,W) are
uniquely determined by Theorems 7 and 8. Thus for each x,
po(x,W) and p(x,W) are uniquely determined by W. The

theorem follows by recalling that
UAi= zx:po(x,w)f;p(x,W)} s

and by the fact that the Ai's have at most boundary points
in common. That the Ai's have at most boundary points in

common is seen as follows:

A.= {x:oo(x,w)i p(x,W) and the test accepts Hj}

J
i
< %x: %:x wijs o(x,w)}
C:{x: %:xiwij = pO(X,W)} = A§ (say).

But the A§'s have only boundary points in common.

Theorem 10, If { xo,k)Aiz is a Bayes x_,W rule in
zg, the components Ai of the stoppling region are convex.
Proof. For each 6, the risk R(x,W,8) defined by

equation 1 is linear in x, so that inf R(x,W,8) is a
8



concave function of x.

Another property of the AJ's 1s that they can be

r

considered to be closed. In order to prove this, we first
need to show that the function p(x,W) is continuous in x.
This 1is the alm of the following two theorems,

Theorem 11, pm(x,W) converges to p(x,W) (as m»w)

uniformly in x. The proof of this fact is given by

Wald [9, p.1l06].

~

Theorem 12, Let Exné s n=1,2,3, ..., be a sequence

of points converging in the metric m to a point xo (also

in X)., Then

83
O
~~

"

W) = p(XO,W).

e

Proof. po(x,W)

min )’ xlwij is continuous in x,
J i

and by Theorem 7, pm(x,W) is continuous in x. Since by
Theorem 11 pm(x,W) converges to p(x,W) uniformly in x, it
follows that p(x,W) is continuous in x,.

Remark., This implies that for a Bayes x,W rule in 42,

Ny + JZQij‘“’ij

is continuous in x for each 1 such that xi>-0°

Theorem 13. For a Bayes X W rule in AX, the Aj's
may be considered to be closed,

Proof, For the convergent sequence {xn} of the
preceding theorem we have, by the continuity of o(x,W)
and oo(x,W) that

p(x ,W) » o(x,W),

19
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and

0 (x W) » o (x,W)
as n-»», Then anAj implies that
po(xn,W)f;p*(Xn,W) for all n,

and thus

po(X,W) Sp¥*(x,W),
so that Xequ

Our next task is to state conditions sufficient to
insure that the test {XO,UAi} eventually almost surely
terminates. For convenience of notation, we shall restrict
ourselves in the remainder of the paper to the case k=3,
The arguments used can readily be adapted to any other
finite k >1, however,

Theorem 14. Suppose that each component Ay of the

stopping region of the test {e,UAi} contains a spherical
neighborhood (with respect to the topology induced on x
by the metric m) centered at its corresponding extreme
point (611,612,6i3). Then the test terminates with pro-
bablility 1 under all hypotheses.

Proof. We shall actually prove a slightly stronger
statement: Under Hi the "cumulative sum" s, converges

almost surely to the vertex (§ Suppose we

112840908537
consider the case in which Hl is true. Maintaining our

convention of using upper-case letters to designate random

variables, we write Sn=XloX2o 600 OXn’ so that



n 1 2 3
X X X3
R O L N T T
n T oaxr Yo xi Yowoxg
A S T A ol S A ol B
w X?
_—
) ( 1 ’ L X; ’
n X? n %3 ﬂ Xf L X?
—
s T X1 * w Xl LY w X1 ¥ w Xl
J J J J
3
n X
—d
] X1
5 T
n X, n X3
1+ —u—% + —u—%
T X T X,
J J

The latter equality holds a.s., since under Hl’

7 Xll>0 a.s. for any integer n. In view of this

JE1 %3
expression, we need only show that

T X? a.s T X$ a.s
(7 —% °2°5 0 and % °2°s 0
T X 7 X,
J J
under Hl'
Let
2
- J
(8) ZJ 11’1—;-1—- °
%2
(zj is defined to be == if -%— is zero.,) We shall show that
X

J



n
(9) D, 7, BeSey o)
j=1

which implies the first part of expression (7).
Since the logarithm function is strictly concave,

X2

and since —% is assumed to be not identically 1, it
X5

J

follows by Jensen's inequality that

X5
il _
EyZy<1n El[-‘ﬂ 0.

J
Also, we have that E, [zjl is finite or E Z, = -=. To

see this, 1t suffices to note that

2 2
_ X 1 X 1
El ’Zj’ = - ln(—T) x“dv + ln(—T) X dv
X X
x'<xl x22xl
< x2 1
= - ln\—iox dv + 1,
X
x2<xl

1f El ,Zj,<iw, the Kolmogorov strong law of large

numbers ensures that

n
L v gz 28z <o
nooyo 177
so that expression (9) holds.
If Elzj = -, consider the "truncated" random variable
c Z, 1f Zy>c
ZJ = ¢ otherwise °? where ¢ is a constant. The constant

22



3’<o, and

slince El |Z§| < » we again apply the strong law of large

¢ may be chosen sufficiently small so that ElZ

numbers (to the sequence Zj) to obtain

szs D23 BB,
A similar argument can be used to establish the second
part of expression (7).
This argument may be repeated under the assumption

that H2 or H, holds, so that we have

3

a°s°
Sh >(87498515635)

under Hi° By the assumption that A, contains a neighborhood

i

of (§ it follows that the walk Sn enters the

11282128317
stopping region UAi of the test with probability 1 under Hi.
Remark. Theorem 14 holds if the test under consid-

. . o] .
eration is the test {xO,UAi} for any xoe'X.° This
follows by the fact that if the test {xo,UAi} satisfies
the conditions of the theorem, then the equivalent test
fe,U(x;loAi)} will also satisfy these conditions, since

the transformation "xgl"

preserves the existence of the
neighborhoods required in the theorem,
In the remainder of this paper we consider the class

of tests {’xo,()Ai} such that

(1) xoe XO’

(i1) the A;'s are convex and closed,

(iii) the Ai's have at most boundary points in common,

and

23
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(iv) the test terminates as soon as the walk enters
UAy,

UAi is not considered,

that is, randomization on the boundary of

In view of Theorems 5,9,10, and 13, the class of such tests
is essentially complete in the class 42 of sequential rules
for the k-decision problem, so that this class is suffi-

ciently wide from the standpoint of minimizing risk.



Chapter III

MONOTONICITY PROPERTIES OF THE TEST {XO,L)Ai}

In this chapter we show a connection between the
stopping region and the 0.C.'s. In particular, we show
that if the stopping region ()Ai of a test is made larger
in certain ways to form a new test, certain combinations of
the error probabilities for the new test will be larger than
the corresponding ones of the old test, and the expected
sample sizes of the new test will be smaller than the
corresponding ones for the old test. The results given
here are of the same type as some of those given by Wijsman
[11, p.680], although he considered the special case k=2,

Define wi(x) to be the set characteristic function of

A,, 1=0,1,2,3, that is,

i’

1, if XEAi

wi(X) =
0, 1f x£A,,

where AO is defined to be X - UAi° If the stopping region
UAi of the test { xo,k)Ai} is held fixed, the 0.C.'s of
the test are functions of X only, and will be denoted by

Qij(xo) and N, (x_).

Theorem 15. The 0.C.'s of the rules { x_,UA,} (with

stopping region held fixed) satisfy the integral equations

25



(10) <x>-w<x)+u<x>fQ (sxlav,

and
(11) Ny (x)) = w (x) + no(xo)JfNi(sl)xidv,
for i,j = 1,2,3.

Proof. Since the argument used to establish eq. (11)
is essentially the sameas that used for eq. (10), we shall
give only the latter. (This argument 1s similar to one used

by Albert [1].) In order to establish eq. (10), let
(12) qkij(xo) = P, {sksAj and s €8, for m<k lxo} .
Then (by Theorem 14%)

(13) Z: li(XO) = P, {sneAj jxo} = Qij(xo)°

k=0

The qkij(xo)'s satisfy the following relations:

OlJ(X ) = wj(xo), and

Uk+1)15 %o _[ Jﬂ t o "ols %" (pe1”

dP (s

dp, (s 1 1%

K+l !sk) oo o

"o(xo)Jquij(sl)dPi(sl EN

1
“o(xo)J(qkij(sl)dev’

where Pi is the distribution of s when D is the density of

X, The fact that dPi( 1 ’x ) can be replaced by xidv in the

above argument follows from Theorem 3. Now



WY ayg(xg) = mg) * g(x) Y jqkij(sl)x dv,

which (by the use of Lebesque's Monotone Convergence Theorem

and the eg. (13)) may be written
Qij(xo) = 'rrj(xo) + no(xo)fQij(Sl)xidv(x),
so that eq. (10) is obtained.
In what follows, we shall make use of equations of the
type seen in eq., (10), so we next define the notion of lower
and upper functions for the solutions of such equations, and

examine the uniqueness of their solutions.

Consider the integral equation
(15) Qij(x) = wj(x) + WO(X)J[Qij(xoxl)xidv(xl).

A nonnegative function h(x) is an upper function for the

PR I A TEETY -~
SOLULLIOIl W. . \A) O

1J

£ f1EY 2 £ 2o 2dhAavod PYIAY Ay £2 e A
I €. \(4i1D) 11 1uS 1v 7 A)y Qellnied

()
=
~

by
hl(x) = vj(x) + ﬂo(x);[h(xoxl)x%dv(xl)

satisfies the inequality

(16) hl(x):gh(x) for all xe X,

Similarly, h(x) is called a lower function of Qij(x) if
hl(x)Eih(x) for all xeX .

The usefulness of upper functions for the solution of
eq. (15) follows from

Theorem 16, An upper function h(x) for the solution

Qij(x) of eq., (15) is an upper bound for Qij(x) on X,
Proof, Let h(x) be an upper function for Qij(x)’ and
27
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assume that h(x) is not an upper bound for Qij(x) on X,
Then

U = lub Q. .(x)=-h(x) ¢ > 0.
XeX, { 13 }

By iteration of the integration in eq. (15), we see that

n-=1 n-1
Q. (x) = I (1,3,%) +[f T = (xou )]
iJ m=o ™ [m=o O- m
L i
Qij(xoun) gz; (x, dv),
where
e if m=o
u, = .
xloxzo 00 o oxm if m>o
I,(1,3,x) = 1rJ.(X),
and

. m-1 moi
Im(l,J,x) = Jfool[[JZ; wo(xoukﬂwj(xoum) ;Z;(xtdv)°

Also, iteration in the upper function inequality (16) can

be used to show that
< < P
hn(x)._hn_l(x)__qneérﬁ}x)_,h(x),

where

n-1 n-1
hn(x) = %;olm(i,j,x) + jzoi[[gzgwo(xoumﬂh(xoun)

n .
T (xidv),
k=1

with the same Im's as above. Thus it follows that

Qij (x)-h(x) SQij(X)-hn(X)



n-1 ' n 5
=J[ooi/[7T ﬂO(XOumﬂ[Qij(xoun)-h(xoun)] T (xdv)
m=o k=1

< LJJ J /( Lw (xou )xiav)°

But by Theorem 14 the latter integral tends to zero with
increasing n, so that Qij(x)—h(x)féO, a contradiction,
Remark, A similar argument can be used to show that a

lower function for the sol}ution Qij(x) is a lower bound for

Qs . (x) for all

X

c
LR ~4

»

a

Theorem 17. The solution Qij(x) of eq. (15) is unique,
Proof, Assume that there are two solutions Qij<x)

and Qij(x)° Let
Qlj(x) = Qij(x)'Qij(x)° Then
AQ; (x) = = _(x) [ AQ1.,.(xox.,)x1idv°
1dJ v J LJ L 4

We wish to show that AQij(x) = 0 for all xe X. By

iteration of the above integral, we obtain
n-1 1 n 5
AQij(x) = J[QOi[[JZ;WO(xoum)JAQij(xoun)éZ;thdv)o

Let 1lub AQi.(x) = a<1, Then
xe X J

2y (x)<a[ f 7T (v (xou )x dv)

It was observed in the proof of Theorem 16 that the right
hand side of this inequality tends to zero with increasing

< . . O
n, so that AQij(x)__Oo Since the choice o1 Qij(x) Qij(x)
for AQiJ(x) was arbitrary, it also follows that

- AQij(x):éO, and the proof of the theorem is complete,
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Remark. Theorem 17 might also be_proved by observing
that if "j(x) = 0 for all xeX, then Qij(x) = 0, The
unigueness of the solutions to eqgs. (10) and (11) is
important in our case, since in order to prove certain
properties of the 0,C.'s we shall argue in terms of their
integral representations. Thus we c¢an ensure that in
dealing with a solution of an equation of these types, we
are dealing with the corresponding 0.C.'s,

It has been observed [11] that if the upper stopping
bound of a SPRT is increased and the lower one decreased,
and if the new test is not equivalent to the old one, then
at least one of the error probabilities is decreased. 1In
the remainder of the present chapter, the analogous
properties of the GSPRT will be investigated. Some im-
plications of these "monotonicity properties"™ of the 0.C.'s
are explored below,

In order to prove that increasing the size of the
stopping region strictly changes certain of tne 0,C.'s, we
make the following

Definition. Let Zx be the symmefric difference of the
stopping regions for the two GSPRT's {xo,(in} and
{xo, L}A; }0 These tests are said to be not equivalent if,

for some integers n and i,
|
Pi{sneA, s_eA!l NA_ for all m<n} >0,

Remark., Roughly speaking, the definition states that

two GSPRT's are equivalent if they have the sane 0.C.'s.



We are now in a position to prove

Theorem 18. If two nonequivalent GSPRT's {:xo,L}Ai}
1
and { X s k}Ai} (with expected sample sizes Ni(xo) and

Ni(xo), respectively) are such that k}Aicziji, then
= N! - <
ANi(xo) Ni(xo) Ni(xo)__O

for all i, with strict inequality for at least one i,
Proof. From Theorem 15 we see that ANi(xo) satisfies

the equation
= - 1 '
(17) ANi(xo) d(xo)(l +J[Ni(xoox)x dv) + wo(xo)
i
j’ANi(xoox)x dv,

where 6§ is the characteristic function of Zxo 3ince zero
is an upper function for ANi(Xo) we have (by Theorem 16)
that ANi(xO)in for all i, Iterating the integration in

(17) n times with zero as a first approximation, we obtain

the expression

n-1
I = ZI -fh I[?j'{;ovrc')(sj)}S(sn)(l+Ni(sn+l))

n+l

7T (x dv)

where Ij denotes the j-th iterate and
= i
I - -s(xo)(l+fNi(sl)xldv)o
Since ANi(xo)ﬁlnéawﬁIléO i1t suffices to show that for
some 1 and some n, In<10, that is, that

n+1l

n-1
. 1
fo : i]/[jl?'ono(sj)]d(sn)(1+Ni(sn+1))lzzl(xkdv_) >0
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for some 1 and n. But this is guaranteed by the condition

of nonequivalence of the tests, since nonequivalence of

{xo, UAi} and {xo, UAi} implies that

n-1 n i
j...[[j’]:Tovré(sJ)]é(sn) T (xgav) >0

for some i1 and n.

Monotoniclty theorems on the error probabllities are
our next consideration. For the first two theorems, we
consider increasing only certalin parts of the stopping
reglon (JAi. The first result is given as

Theorem 19. Given a test { X U Ai} , let a new

stopping region UA_,'L be defined so that A, TAj, A, = A},

and A, = A! Denote the error probabilitlies for the new

3 3°
> = <
rule by Qij‘ Then Qil“Qil for 1 1,2,3, and Qij"QiJ
for all 1 and Jj#1.

Proof: Let
(18) Gl(xo) = vi(xo)-wl(xo),

where wi is the characteristlic function of the new region

A!, Define

(19) AQiJ(xo) = Qij(xo)'Qij(xo)°

Then using equations (10), (18), and (19) it follows that
(20) 2Q,,(x,) = t(xo)-vr(')(xo)j 2e,; (s xlay,
where

t(x ) = Gl(xo)[l-fQil(sl)xidv]->-0.

It follows that zero is a lower function, and hence a lower



bound, for the solution to eq. (20). Thus the first part
of the theorem follows,

To complete the proof of Theorem 19, we consider Qij
gnd Qij for j#1. An argument analogous to that given for

eq. (20) yields
_ i | Vo1
- AQij(xo) = Gl(xo)d[Qij(sl)xldv + né(xo)Jf- AQiJ(sl,xld\)a

i
0 >
Since Gl(xo)J(Qij(sl)xldv__O, the second part of the theorem
follows,
Remark, The inequalities in Theorem 19 can be

strengthened if we make the additional assumptions that:

(1) the two tests {xo, uAi} and fxo, U A;} are

not equivalent,
and
(11) Qil(x)<;l on some subset of ZX with positive

neasure under Hio

In particular, if
Qil(x) = 1 for all i implies that Xehq,

then the assumption of nonequivalence of the tests is suf-
ficient to guarantee that NQil(x)I>O for some i. 1In view
of Theorem 6, condition (ii) above can be considered to be

a condition on the shape of the stopping region UAia It
this condition is not satisfied, the performance of the

test can be uniformly improved by changing the configuration
of UAio A proof of strict inequality under conditions (1)

and (ii) above can be obtained by iterating the integration
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in eq. (20) and arguing as in the proof of Theorem 18,

Theorem 20, If in the test {:xo, (}Ai} a new stop-

ping region k}Ai is defined so that AlCZAi and A2CZAé,

with A, = A!, then

3 3?
> i =
AQil + AQi2 20 for 1 1,2,3.
= ! - =
Proof. Let Gi(xo) wi(xo) wi(xo) for 1 1,2, We
have

- i
+ wt(x )| 8Q,.(s.)xTdv
oo i1*71°71
with a similar expression for AQi2° Thus

|
—'rrof( AQil+ AQiz)dPio
5 = i - >
Since JZQU 1, it follows that 1 J(Qi1+Qi2)dPi_O, and

zero is a lower function for the solution té eq. (22),
which completes the proof,

Remark. The inequality of Theorem 20 may be
strengthened under the condition of nonequivalence of the

tests, The argument is outlined in the remark following

Theorem 19, It should also be noted that Theorem 20 remains

true if the assumption that A3 = Aé is replaced by the

assumption that A3:>A§° A similar remark holds for
Theorem 19,
The derivation of the integral equation for Qij(xo)

involves the assumption of independent identically



distributed elements in X = (X;,X,; ...), and from the
equation certain monotonicity properties have been obtained
(Theorems 18, 19, and 20). These results can also be
obtained without assumptions on the distribution properties
of X. Instead of explicitly using the error probabilities
Qij(xo)’ one can argue in terms of the performance of the
test under various sample sequences,

As an example of this type of argument, consider the
following situation:

Given two GSPRT's T = {xo,(in:} and T* = {xo,()Ai},
1 [} ] ] s =
where AlCIAl, A2CZA2, A3<:A3, Then QilfiQil’ i 1,2,3,

and Qijg_Qij for i = 1,2,3, j#1, where

1 *
Q) = P, {T* accepts H, }, and

Qil Pi {T accepts Hl} o

Every sample sequence V13955 0o Vy leading to the

acceptance of H., under T will also lead to its acceptance

1
under T¥*¥, Thus the event {y:T accepts Hl} is contained in

the event {y:T* accepts Hl} » so that
= o <ot
Qil Pl {y.T accepts Hl} & Qilo

Also, it is possible that for some sequences such that T

accepts H2 or H, T*¥ will accept Hl’ so that the inequality

3

is strengthened.
The situation for j#1 (say j=2) can be argued as

follows: A sequence y resulting in acceptance of H, by T

2
may no longer result in its acceptance by T*¥, There are two
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reasons:
(1) entrance of the walk sm into A2 is no longer
sufficient (but is necessary) for acceptance of
H, under T¥, and

(11) T* may accept H, before the walk enters A,.

1 2
Thus we have:

{yz T accepts H2}

contains points y not 1in

{yz T¥ accepts H2} o

However, we do not have the strict inclusion between these
events, as was the case in the first part of this argument,
The difficulty is that { y: T¥* accepts H2} may contain
points not in {y: T accepts H2} » Thus we must consider
events of the type { y: T accepts H2 or H3} , and obtain

an inequality involving Qi2+Q.

i3

and Q£2+Qi3 as was the case
in Theorem 20,

It is interesting to note that Theorems 18, 19, and 20
hold for any GSPRT. These theorems are quite general in
that the measure space (DC,T}, v) may be considered to be
the image (through r) or a quite general measure space
(17,25, u), so that the sequential test defined in terms of
a random walk on X may be applied to a wide class of
problems. Unfortunately, there does not seem to be a
monotonicity ftheorem as general as Theorems 19 and 20 for

the case in which all components Ai of the stopping region

are simultaneously enlarged., Under certain restrictions on



the shape of the Ai's, however, such a monotonicity
theorem can be proved., We devote the next several
paragraphs to a discussion of two such shapes, and their
application to a more general monotonicity theorem,

Suppose in particular that AO is convex as well as
Al’Az’ and A3° Then the boundaries of the Ai's are
straight lines in X characterized by their points of
intersection with the boundary of 7X. Suppose, for example,
that

max {xl: XeA, and x2=0:}= a

1 31,

(23

max {xl: XeA, and x3=0} = a

1 21°
Then an equation of the line forming the boundary between

Al and Ao (that is, the line containing the two points

(asys l=a,,, 0) and (a,,, 0, l-a,.)) is given by
21 21 31 31
a a
(24) x1 = T_:é%—_ x2 + I——Q%—— x3
21 T 931

assuming that ail<~ln Similarly, equations of the lines
forming the boundaries between A2 and AO, and A3 and Ao’

are given by

a a
<2 = - 12 <L - 32 %3
- 12 - <32
a a
- <13 - 923

where the aij°s are defined in a manner similar to that

used in eqgs. (23). Thus in this case,



a

. N a . .
(25) A, = {xa7<: xlzzi:%l— x o+ — x¥5 1,5,k distinct}e
ii ki

Remark, A, and A, are disjoint if and only if

1 3

al3 + a312>ln A similar statement holds for the other

combinations of Ai's° Also, esAO if and only if

2a..=3a

jim38558y %2a > 1

for all distinet 1i,j, and k.

Theorem 21, Suppose the components Ai of the

stopping region of the test {xo,(}Ai} are defined as in
eq, (25), Then the probabilities Qij(xo) satisfy the

inequalities

1 851 2 831 .3
onll(xo)2 l-a21 X0Q21(XO) + 1-a XoQ3l(xo)’
31
P 210 1 83> 3
(26) XoQ22(xo)2'l—a12 X5Q (X)) + g5 x5Q3,(x),
32
3 213 1 423 2
X0Q33(XO)Z'T:§I§ xo013(%g) ¥ T:EE; X Qp3(%,).

Proof: If xoeAj, then Qij(xo) = 1 for 1 = 1,2,3, and
Qik(xo) = 0 for k#j., Thus the probabilities in two of the
above inequalities are all zero, and in the remaining
inequality the probabilifies are all one, so that

. a. . . a, .
e kJ xg (i,3,k distinct)

l'aij 0 1—akj

which (in view of eq.(25)) is equivalent to the assumption
that XoeAjo
Suppose, then, that xoero We shall use an argument

similar to that used by Wald [8, p.41] to establish similar



inequalities for the SPRT. For any sample X1sXps ooy X

such that the walk s = X,0X10 ... OX enters Ay (say),

it is true (by eq. (25)) that

a
15 21 2 31 .3
5 = s_ + S,
n l—a21 n l-a31 n
or equivalently,
1 n 1. %1 2 n 2 831 3 n _3
(27) x5 ¢ 1y thzl-agl X5 g2 ¥¢ t T=ag; X5 31 Xgo

For qkij(xo) as defined in eq. (12), we have

(28) qyy;(x,) = f[

Equations (27) and (28) imply that for each k,

k-1 k 5
v’];{;) ﬂo(sv) ) vj(sk) tzl(xtdv)o

a a
1 S @1 o 31 .3
(29) x5y 1 (X)) Z 3057 X 01 (X)) + 7 X537 (%)

21 ~831
Summing both sides of inequality (29) over all values of k
we obtain the first of the inequalities (26) by eq., (13).
The remaining inequalities in (26) are established in a
similar manner,

Theorem 22, Suppose the components Ai of the
stopping region of the test gxo,k}Ai} are defined by

eq. (25), where the a__‘'s are greater than 1/2. Then for

tm
any test §x_,UA!} such that UA; € UAJ,
1
i%SxOAQiJ(XO)Z(h
i#3
Proof. By equations (10) and (19) we have
3 1
- |} o

(30) 8Q;,(x.) = 6,(x )= ck<xo>fQiJ.<s1>x1dv+wo<xo>

k=1
39
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'J(AQij(sl)xidv’

where dj is the characteristic function of AJ.—AS.n By

eq. (10) it also follows that for X eA s

1s, =
jQij(Sl)xldv - Qij(xo),

so that eq. (30) may be written

3 .
- l
(31) AQij(xo) = 6j(xo)_¥116k(xo)Qij(xo)+no(xo)J(AQij(sl)xldvo

Iterating the integration in (31) once, we obtain

™M

bRy (x) = [8,(x )= 5 6,0 x )0y (x,)]

k

1

3 .
+ «r(')(xo) J[Gj (sl)— z:ldk(sl)Qij (sl)]xid\)

b)

+ né(xo)J’né(sl)[J AQij(s2)x;dv]xidv°

Similarly, by iterating the integration n-1 times, we

obtain
n:} - -~ n=1
(32) 80;5(xg) = § Tp(8,05x0)% foae] LT wg(sp)]

n .
i
AQij(Sn)le(Xtdv)

for all i and j, and for n=1,2,3, ..., Where

3
( Sj(xo) - ;;16k(xo)Qij(xo) for m=0,
/
{

I(1,5,%,)

Mw

m-1
[ SIRHCRETACRIEI I REN

k

1

m .
1 =
Qij(sm)]vlle(xvd\)) fOI‘ m—l,2, o o0 )



In view of eg. (31), an integral equation for
Z:x AQiJ(x ) is
1#3
i =
(33) iZjXOAQiJ.(xO) = Zx [84(x )—Z 81 (%6)Qg5(x,)]
?
i#3 i#J
+ "é(xo) ZbAQiJ(s )x xldv°
b
i#j
Iteration of the integration in eq. (33) leads to an

equation of the form

. n-1 .
(34) CxTaQ . (x ) = Y T xII(4,5,x )
iij o "1j o M=o ij o m o)
1#J 1#]

n-1 n .
+ j [T wi(s )] ), (8Q;5(s ) T7 xp)dv oo dv,
m=o0 1,3 t=0

i#j

where Im(i,j,xo) is as defined in eq. (32).
In view of the remark following Theorem 16, it will
suffice to show that for all m,
(35) EIX I (1 X ) >0,
i,J
i#J
For each m, this sum may be written as

m
(36) j f [7 1 (s, ) 10(Qy (s, )va- Qy,(s,) TTx1)
V=0

+ (Qg3(s) TT x3

v
V=0

no1
13(sm) U xv)]dv eoo dv T
v=0
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hvs
v

m
. 2
)

lr=n
E4N s

m-1 : mooq
#o[ee[ DT w305, 0000) (5,) T %=y (5,)
5_eAS-A,

r - m-~1 ' m 1 m 3
+ _J oo J [LZ:TO“O(SK)][(Qll(sm)ﬂoxv-%l(Sm)\zoxv)
s

+ (Q22(sm)\ZZOXV-Q32(Sm)V7Z./OXV)]dv o o o d\)o

a
Using the assumption that a, >1/2 (so that l:gm— >1),

t tm

inequalities (26) imply that in particular

J >3 . s
stjj(sm)-stij(sm) for all i,j, and m,

or equivalently,

mo m .
(37) ij(sm)Jng%QZQij(Sm)JZ§$ for all i,j and m,

Thus each integrand in (36) is nonnegative for all m,
so that
- 1 A
2 % I (1,3,x)20
i,J

i#j
for all m and Xy which in turn implies that
Z:xiAQ (x ) =20
L0 dj o
1y
i#j
for all X o This completes tlre proof of Theorem 22,

Theorem 23. The inequality of Theorem 22 is strict




if the tests {xo,k)Ai} and {xo,\}Ai} are nonequivalent,
Proof. The nonequivalence of the tests implies that,

for some 1, j and m,

m-1 moy
(38) ufoaif-(g7ﬁné(sk)) 7T(xvdv) >0,

v=1
|

and since this integral is no larger than

RS

S eA'—A

'-
smeAj AJ

'(sk) (@v)™ (m-fold integral),

one of the integrals (36) is strictly positive provided
the integrand is positive on AE—AJQ
Suppose, for example, that the inequality (38) holds

for j=2., We wish to show that the corresponding integrand

m 2 3
Q21( ) vio X ] [Q (S )v ToXy Q23( )

+
O v m

(39) [y, (s) Boxs

T x ]

V=0 V

in expression (36) is strictly positive on Aé-A2o In view

atm

1'atm

of inequalities (26) and the fact that >1, it follows

that expression (39) is positive for smsAé-A2 if one of the
error probabilities Q21(Sm)’ Q31(Sm), Q23(Sm),Ql3(Sm) is
positive or if one of the probabilities Qll(sm), Q33(sm) is
positive, But this is always true, since a contradiction
results from the assumption that these probabilities are
all zero., This 1s seen as follows:

If Qzl(sm) and Q23(sm) are both zero, thén Q22(sm) = 1,
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Similarly,

(s )

Qll(sm) Q S 0 implies Q12(Sm) =1,

13
and

(

s.) = Q3l(sm) 0 implies Q32(sm) = 1.

933

Now from the second inequality (26) we must have

522i
m

which implies that smsA2, contradicting the assumption that
'-
smeA2 A2c
It follows that at least one of the integrals (36) is
strictly positive for some m, so that
S xIT (1,5,x.) >0
L Kotmt e %,
i,
i#]
for some m, which completes the proof,

Remark. The assumption that the constants atm are

greater than 1/2 is equivalent to the condition that
A, < {x:xJZ.xk for all kj
J

in the present case, The latter condition would be

satisfied for Bayes xo,w rules in 48, for example, if the

loss matrix W had equal. off-diagonal elements.,

Theorem 24, Given two tests gxo,k}Ai} and
7 7 ¥ 3 3 3
{xo,(JAi} such that Q}AiCZ\in and Af is defined as in

equation (25), where the a m“s are greater than 1/2. Then

t
.

)X AQ, . (x )20,

iy 0 1y e

. ’ .
i#]



Proof. The proof is similar to that given for
Theorem 22, except that the integral equation (30) for

AQij(xo) is replaced by
(40) 8@y (x,) = [8,(x )-Z 6c(x5) [ af5(sp)xjav]
+ 7 (x )J AQ. . (s )xidv
o' o iy A A
Iteration of the integration in eq. (40) yields

n-1 n-1
(B1) 8@y (x0) = ) TA(1,5,% >+_J SRNIRNCRE

m=o
- i
89y 5 (o) T | xtav] ,

where

dj(xo) - 2}5 (x )J(QlJ(S )x dv for m=0,

Tt ixg) =) jJ [kﬁow (5,106, (s.)

3
2} (S ) fQ m+1 dv]/T'(X dv),

As was the case in the proof of Theorem 22, we have
Tin"(i jsx )20

LeoTm T ol T

1,4
i#J

for all m, since

Teyre - =l m+1.2
(42) . .XoIﬁ(l’J’xo> = _f°°i/ [Z?“o(sk)][(gé2(sm+l’vgoxv
1,-.] k=0
i#J s EAi—Al
m+l 1 l 3
- QiZ( m+l)v o v) + (Q33(Sm+l) % —Qi3(sm+l)
+1_ 1]
Caox)1(a )™
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plus integrals over Aé—A2 and Aé—A3 corresponding to those
in eq. (36), where the integrands in eq. (42) are all
nonnegative by inequality (37).
Thus it follows that

'EGX;AQij(XO) >0,

i#j
which completes the proof,

Remark, The preceding three theorems imply the

following statement: If the stopping regions of the two

tests {xo,(in} and {xo,()AE} are such that for each i,

(1) A AL,

i
and
(ii) there is a line of the type described by
$ 7 _ ¢
eq. (24) in the set Ai Ai’ where the a,;'s
are greater than 1/2,
then
1 >
oZ;XoAQij(Xo) =0,
i,
i#j

with strict inequality if the region K}Ai and the region
formed by the lines define nonequivalent tests,

The arguments in the preceding three theorems
(Theorems 22, 23, and 24) in which a certain shape of
stopping region is considered rely upon this shape only
through use of the fundamental inequalities of Theorem 21,
Thus, the arguments can be used for any shape for which

such inequalities can be obtained. As an example, we



consider next another particular shape of stopping region
for which we can obtaln such irequalities,

Suppose that A, is defined by the intersection of

1
two lines in X, each containing an extreme point opposite

the one in A We shall assume that the i-th component

10
of each non-vertex point of intersection of these lines
with the boundary of X is greater than 1/2, Thus, for

example, A, is given by

1
xl xl
= o > -
(43) Ay g—x, —§._c12} N gx. 3 2013} s
X X
where ¢ and c are constants greater than 1.

12 13
The shape of the stopping region mentioned above

arises quite naturally from a consideration of the
probability ratio test as follows: We wish to test the

hypotheses

Hi S fi is the density of Y ; 1i=1,2,3
against each other, Suppose we use the test defined by the

probability ratios:

'y . < o -
Accept H, if ?;? {fjn/fing < Cyy 5 1=1,2,3,

continue otherwise,
It is easy to show that this test is equivalent to the
GSPRT Ze,(in} s where the Ai's have the shape we are
presently considering.,
The monotonicity theorems stated above (Theorems 22

through 24) for the case in which the components of the
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stopping region are defined by single straight lines can
be given also for stopping regions with components of the
type defined by eq. (45), In this case, we make use of

the inequalities

(44) x-Qu (%) 2y 13 x9 Jl(x ) 1,5=1,2,3,

where cij=1 if i=j, These inequalities are proved as
follows:

irf xoeAj, the inequalities follow immediately as 1n
the proof of Theorem 21, If xosAO, then for any sample

X15X5s o0es X, such that s eA,, we have (by eq. (43))

so that by eq. (12),

(x)=c xJ (x ).

qkll 1 quJl o)

But this implies eqg, (44),
In this case; the analogue of Theorems 22 and 23 can
be stated as follows: Given two tests {xog*)Ai} and
¥ U 7 7 3
%xogk}Ai} such that iji L}Ai, where the Ai s are defined
as in eq. (43)., Then ‘. xéAQij(xo)EiO with strict

i,J
i#3
inequality 1f the tests are not equivalent.

In order to prove this, we argue as in the proofs of
Theorems 22 and 23, Note that expression (36) does not
depend upon the shape of iji, and that the developement
of the proof of Theorem 22 through expression (36) holds

also in the present case, By inequalities (44) it follows



that the integrands in expression (36) are nonnegative for
all m; so that
(45) Y oxIt (1,5,x) =0

. om T3¢l TR

i,J

1#]
The inequality in (45) is strict under the assumption of
nonequivalence of the tests by the argument of Theorem 23,
For example, if expression (39) is zero on_A%-A2 we obtain
the inequalities

2 . 2 3
SmEECZlSm and smgzc23sm

which implies that smeA a contradiction,

29

The remainder of the present chapter is devoted to

stating a characterization of the condition under which

enlarging all components of the stopping region leads to an

increase in at least one of the AQij"s, and to giving some

implications of such an increase. We shall show that the

general monotonicity property mentioned above is equivalent

to

Condition I, Given the two tests E-XO,L/Ai} and

{xosk}Aig such that k}AiCZKJAi, there exist integers

i;j, and m such that
m-1 E:
. :
[ [TT mo" (5,006, () = L 6 (s)
k=0 t
|
Q45 (s 177 (x dv)#0,
g=1
Remark., Note that if Condition I i1s satisfied, then

the tests zxogiji% and Exo,(jA£} are not equivalent,
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if it is assumed that xoeAgo This can be seen by observing that

if the integral of Condition I is not zero, then

. m=1 . < i m 5
eoo| LTT mi(s, )] 2,8, (s )T{ (x_.dv)>0
jr k=o O KT Y Ot My v

for some i and m, which is the condition of nonequivalence,
Condition I is a condition on the way in which the regions
\)Ai and jA; differ, In particular, if Ay AL for one
or two i's, nonequivalence of the tests implies Condition I.
(In fact, this is a result of Theorems 19 and 20.) If,
however, Ai::AE for all i, Condition I has the following
interpretation in terms of sample sequences in the space
%%3 For some i and j, the event

%_skaAé for k<m, 6j(sm)=1, S\E U.At}

t#]

has probability under the hypothesis Hi different from the
event

gskeAé for k< m, §16t(sm)=1’ sNeAj}

t#

for some stage m<N, (N is the sample size function of the
test § x_, UA;{ .) Thus Condition I is the condition that
the increase from UAi to ij% is not "symmetric" in the
above sense,

Theorem 25, Given the tests Z xo,{}AiE and

7 i ?
Z XOEL)Ai} , where \JAiC:&)Ai and xOsAOo Then for some
i and j, AQij:>0 if and only if Condition I is satisfied.

Proof, Note that by eq. (10) we have



ntl . r - n-1
AQij(xo)—aébIm(i,Jaxo)+ Joooj [gz;wo(sm)]

n .
i
AQij(Sn)J;l(xth)’
for all i and j, and for n=1,2,3; ..., Where

( Gj(xo) - %:Gk(xo)Qij(xo) for m=0

Im(igjgxo) =/

© me=1
Jloo SAHCRICHCREPILNCMEIIERE

m .
T(”l(x‘l,d\»)s7 for m=1,2, o0 o
v=

Since by Theorem 14

- n-1 n 5
fooe| DT wgls)]nay5 (o) 17 (xpav)

o

tends to zero as n-ow,

8

A

"I (1,3,x )=aQ,  (x ).
noo m o ij "o
Thus it follows that if AQij(xo):>O, then Im(i,j,xo)#o

for some i,j and my; which is Condition I,

On the other hand, if Condition I holds, then at some

n=1
stage XIIm(i,j,xo) is bounded away from zero which implies
m=0

that AQij(xo) is bounded away from zero for some i,j. Since
%JAQij(xo)=os

this implies that AQij(xo):>O for some i and j,
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Suppose we consider a subclass T of ,5 such that
the stopping regions of any two tests in T are "similar"
in the following sense: For any two tests zxogﬁin} and

{x ,KJAY:} in U, at least one of the inclusions
o i
A.C A}, A,DA!
i i i i
holds for all i, A test Te U will be said to have the
"optimum property in T " if, for any other test T*e U such
that Condition I holds, and such that Qij(T*)ngij(T)

for i#j,

*y > (
Ni(T )._Ni(T)

for all i, with strict inequality for at least one 1.
A test Te U will be called "unique in T " if, among all
other tests in U such that Condition I holds, T is the
unique test with error probabilities Qij(T)o

Theorem 26, A GSPRT Exo,k]Ai} with error
probabilities Qij(xo) has the optimum property in the class
T of GSPRT's with similar stopping regions,

Proof, Consider any GSPRT {xOBL}Ag} such that
Condition I is satisfied, and such that the stopping
regions L}Ai and U Ag are similar, Then by Theorems 19,

20, and 25, the condition that

Yoy Y < Cx
Qij(xo’"“Qij\xo"
for i#j implies that (jAEC:‘JAiO But then by Theorem 18,
N%<XO)EZN1(XO) for all i, with strict inequality for at

least one i,



Remark. It similarly follows that a GSPRT [x_, uAi§
i1s unique in the class of GSPRT's with similar stopping

regions.,

53



Chapter IV

AN EXAMPLE

As was noted above, Theorems 18, 19, and 20 of the
preceeding chapter hold for any GSPRT. However, the
monotonicity property for the case in which all three
components of the stopping region are simultaneously
enlarged seems to require additional assumptions, In this
chapter we give an example of a three choice problem for
which suéh a theorem does hold, with strict inequalities,
under only the assumptlon of nonequivalence,

We shall consider the problem of deciding among the
three uniform densities
Jrl/i,O/:yéi

LO otherwise

£.(y) = s 1=1,2,3.

The testing procedure we use can be specified by two
integers t and m, We assume, for simplicity, that t >m,
The test operates as follows: The test accepts Hl when
the first t observations fall in the interval [0,1], It
accepts H2 if an observation falls in the interval [1,2]
before t observations have been taken, and the remaining
observations (at least m-1l, but not more than t-1 in

number) fall in the interval [0,2]. The procedure accepts

H3 otherwise, that is, when an observation falls in the



interval [2,3] before it accepts H, or H.,

1 2

In terms of a random walk in the space X, this test
is equivalent to one which starts at xo=e=(1/3,1/3,1/3)g
At the first stage, the induced distribution of X is given

by the table

e
X Pq Py P
(6/11,3/11,2/11) 1 1/2 1/3
(0,3/5,2/5) 0 1/2 1/3"
(0,0,) ] o 0 1/3

In general, states which the walk may occupy are of the
following three types:

(a)  (6M+3™M2™)"1(6",3",2"); n = 0, 1, 2, ..., t,

() (3™+2M~Yo, 37, 2™y n =1, 2, ..., m,

(e¢) (0, 0, 1),

Since the states that the walk may occupy with positive
probability under some hypothesls are of the form of
discrete points lying on curved paths intersecting the com-
ponents Ai of the stopping region \in, the number of
points (t-1 and m=1) lying outside these components
determine the test, that is, the shape of each component
does not affect the test, as long as they meet certain
mild conditions. The shape we shall use is that considered
in Chapter III in which Ai is given by the intersection of
two lines in X, each containing one of the opposite
extreme points of X(figure 1). (We drop the condition

imposed on these lines in Chepter III.,) Bayes rules for
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testing thue

form,

tinree uniform densities can be given in f{his




The components of the error probability matrix (Qij)
for this test may be computed directly. They are:

Q)171s Qy,5Q)3=R53=0,

= t _ t _ t
Q2l_(l/2) ,Q22_1-(l/2) ’Q3l—(1/3) ’
o mr m t-m _
Q3?- \1/3) [2 -1/2(1—(1/3) )],Q33—1-Q31_Q320

Suppose we increase k)Ai to (}Ai, stopping region for
a test defined by t' and m'. The new test may have a
stopping region of the same type as the old (fig. 1),
although it may not be true that t*>m'., There are also
other possibllities, some of which are shown in figures 2
and 3. The error probability matrix (Qij) of the new test
may also be computed directly for each of its possibilities,

It is easily verified that 1in each case
= ' -

provided that the tests are not equivalent, that is,
provided that t+m >t'+m‘',

Thus, in this example, any "reasonable" increase in
UAi leads to a strict increase in at least one of the

error probabilities in the set iQ21’Q31’Q32} 0
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APPENDIX

Index of Terms and Notation

_Symbol or term page Symbol or term page
§(y) 1177 10
n(y) 1 |m(x,y) 10
e(y) 2 v 10
X 2 | py(x) 10
k-decision problem 2 ‘xoy 11
(27,23) 2| e 11
Ei 3 Sh 12
Py 3| {x,, VA n} 13
Qij(é) 3 Aj 15
N, (8) 3 (Glj,dzj, coes skj) 16
0,C.'s 3 D 17
error probabilities 3 ZJTZE 21
risk 3 Qij(xo),Ni(xo) 25
loss matrix 3|y (x) 25
W=(wij) 3 qkij(xo) 26
R(y,W,s8) 3 | upper (lower) function 27
Bayes y,W rule in C hiTo(1,3,x%,) 28
p(y,W, T)y 050 o 28
4, 3%, 4 41 a 30
SPRT 5] 8N (%)) 31
uniqueness property 7 Gi(xo) 32
monotonicity property 7 “i(xo) 32
optimal property 7 AQij(xo) 32
GSPRT 9" Condition I 49
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