https://ntrs.nasa.gov/search.jsp?R=19660013627 2020-03-16T22:51:44+00:00Z

NASA CONTRACTOR Report

15

C R - 443

4

4

LOAN COPY: RETURN TO AFW! (100-000) ARTLAND ACCOUNTRY

TABLES OF NATURAL FREQUENCIES AND NODES FOR TRANSVERSE VIBRATION OF TAPERED BEAMS

by Han-chung Wang and Will J. Worley

Prepared under Grant No. NsG-434 by UNIVERSITY OF ILLINOIS Urbana, Ill. for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • APRIL 1966

TABLES OF NATURAL FREQUENCIES AND NODES FOR

TRANSVERSE VIBRATION OF TAPERED BEAMS

By Han-chung Wang and Will J. Worley

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

> Prepared under Grant No. NsG-434 by UNIVERSITY OF ILLINOIS Urbana, Ill.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price \$1.25

TABLES OF NATURAL FREQUENCIES AND NODES FOR TRANSVERSE VIBRATION OF TAPERED BEAMS

by

Han-chung Wang and Will J. Worley Department of Theoretical and Applied Mechanics University of Illinois Urbana, Illinois

SUMMARY

The natural frequencies, nodal points and mode functions for transverse vibration of tapered beams are presented in this report.

The beams considered have the cross-sectional area bounded by the curve

$$\left|\frac{y}{h}\right|^{\beta} + \left|\frac{z}{b}\right|^{\gamma} = 1$$

with the thickness h and width b varying along the beam according to the relations ψ

 $h = h_0 \left(\frac{X}{U}\right)^{\phi}$ and $b = b_0 \left(\frac{X}{U}\right)^{\psi}$

where β , γ , ϕ and ψ are positive constants not necessarily integers.

· ·· -----

TABLE OF CONTENTS P								
INTRODUCTION	1							
1. Statement of the Problem	1							
2. Profiles of the Beams	1							
3. Symbols	4							
4. Acknowledgment	6							
SOLUTION OF MODE FUNCTIONS	7							
FREQUENCY EQUATIONS AND NODAL POINTS	10							
1. Complete Tapered Beams	10							
A. Cantilever Beams	10							
B. Antisymmetrical Mode Vibration of Free-Free Beams	11							
C. Symmetrical Mode Vibration of Free-Free Beams	12							
2. Truncated Tapered Beams	14							
A. Exact Solutions	14							
B. Approximate Solutions	15							
NUMERICAL RESULTS AND DISCUSSION OF TABLES	17							
1. Natural Frequencies and Nodal Points for Complete Tapered Beams	17							
2. Natural Frequencies of Truncated Beams	20							
3. Radii of Gyration of Cross-Section	21							
REFERENCES	22							

-- -

LIST OF TABLES

Table		Page
1	Natural Frequencies and Nodes for Tapered Cantilever Beams	25
2	Natural Frequencies and Nodes for Tapered Free-Free Beams of Antisymmetrical Mode	35
3	Natural Frequencies and Nodes for Tapered Free-Free Beams of Symmetrical Mode	45
4	Natural Frequencies for Truncated Beams	55
5	Approximate Fundamental Frequencies	56
6	Radii of Gyration for Different Cross-Sections	63

LIST OF FIGURES

100

.

Figures		Page
1	Cantilever Beam	65
2	Free-Free Beam	65
3	Ratio of Frequencies of Cantilever Beams with Cross-Section Varying in Width to Those of Uniform Cross-Section	66
4	Ratio of Frequencies of Cantilever Beams with Cross-Section Varying in Thickness to Those of Uniform Cross- Section	66
5	Ratio of Frequencies of Cantilever Beams with Cross-Section Varying Both in Width and Thickness to Those of Uniform Cross-Section	67
6	Ratio of Frequencies of Tapered Cantilever Beams to Frequencies of a Uniform Beam	68
7	Mode Shapes for Cantilever Beams with Varying Width and Constan Thickness	t 69
8	Mode Shapes for Cantilever Beams with Varying Thickness and Constant Width	70
9	Mode Shapes for Cantilever Beams with Varying Width and Thickness	71
10	Ratio of Frequencies of Antisymmetrical Mode of Tapered Free- Free Beams to Frequencies of a Uniform Beam	72
11	Ratio of Frequencies of Symmetrical Mode of Tapered Free-Free Beams to Frequencies of a Uniform Beam	73
12	Fundamental Frequencies of Truncated Cantilever Beams with Varying Width	74
13	Fundamental Frequencies of Truncated Cantilever Beams with Varying Thickness	75
14	Fundamental Frequencies of Truncated Cantilever Beams with Varying Width and Thickness	76

vii

.

- ----

···--

INTRODUCTION

1. Statement of the Problem

The geometrical properties of solid bodies generated by revolving the line defined as

$$\left|\frac{\mathbf{X}}{\mathbf{\mathcal{I}}}\right|^{\alpha} + \left|\frac{\mathbf{y}}{\mathbf{h}}\right|^{\beta} = 1$$
(4.1)*

and of bodies bounded by the surface defined as

$$\left|\frac{X}{\mathcal{U}}\right|^{\alpha} + \left|\frac{y}{h}\right|^{\beta} + \left|\frac{z}{b}\right|^{\gamma} = 1$$
(4.2)

have been published in the first and second reports $\begin{bmatrix} 1, 2 \end{bmatrix}^{**}$ under this grant. The current report treats the dynamic response of a general class of tapered beams. The shape of beams includes the bodies generated by Eqs. (4.1) and (4.2) with the parameter $\alpha = 1$. Special cases of bodies of the above shapes have been tested widely in NACA and NASA reports as well as in the technical journals, $\begin{bmatrix} 3, 4, 5, 6, 7 \end{bmatrix}$. Beams of special shapes also have been applied as designs for high speed machine guns as reported in a recent paper by Elder $\begin{bmatrix} 8 \end{bmatrix}$.

To achieve more nearly complete information on the applications of this class of bodies, the results for the mode functions and for the natural frequencies of vibration of tapered beams are presented in this report. This report includes much of the existing data as special cases. The results appear in tables and in graphical form. The complete and detailed derivations are reported by Wang [9].

2. Profiles of the Beams

The beams whose flexural rigidity and mass per unit length vary according to two arbitrary powers of the longitudinal coordinate are considered in this report. The relationship of the variations may be written as

$$E I = E_{o} I_{o} \left(\frac{X}{\mathcal{I}}\right)^{m}$$

$$\rho A = \rho_{o} A_{o} \left(\frac{X}{\mathcal{I}}\right)^{n}$$
(4.3)

* The notation (4.1) is adopted to aid in cross-referencing equations from the first three reports under this grant.

1

** Number in brackets refer to the References.

where E_{OO}^{I} is the bending rigidity and ρ_{OO}^{A} is the mass per unit length at the larger end of the beam where $X = \ell$.

The relations of Eq. (4.3) can be considered as a homogeneous beam with the moment of inertia and cross-sectional area varying with powers m and n respectively. The relations can be applied for a general class of crosssections with varying thickness and varying width. An important group of beam shapes can be considered as shown in Fig. 1. The cross-section of the beam is symmetrical and its first quadrant is bounded by the curve of the equation

$$\left(\frac{y}{h}\right)^{\beta} + \left(\frac{z}{b}\right)^{\gamma} = 1$$
(4.4)

where b represents half of the width and h represents half of the thickness of the beam. These parameters vary according to the relations

$$b = b_0 \left(\frac{X}{\ell}\right)^{\psi}$$
, $h = h_0 \left(\frac{X}{\ell}\right)^{\phi}$ (4.5)

The constants ψ and ϕ are positive but not necessarily integers.

The selection of different values for the parameters γ and β in Eq. (4.4) permits the cross-section of the beam to be varied from the diamond shape, $\gamma = \beta = 1$, through the elliptical shape, $\gamma = \beta = 2$, to the rectangular shape, γ and $\beta >> 1$. The moment of inertia and the area for this group of cross-section may be expressed in terms of γ and β [10], which gives

$$I = \frac{4}{3} b_{o} h_{o}^{3} \left[\frac{\Gamma(\frac{1}{\gamma} + 1) \Gamma(\frac{3}{\beta} + 1)}{\Gamma(\frac{1}{\gamma} + \frac{3}{\beta} + 1)} \right] \left(\frac{X}{\ell}\right)^{\gamma} + 3\phi$$

$$(4.6)$$

$$A = 4b_{o} h_{o} \left[\frac{\Gamma(\frac{1}{\gamma} + 1) \Gamma(\frac{1}{\beta} + 1)}{\Gamma(\frac{1}{\gamma} + \frac{1}{\beta} + 1)} \right] \left(\frac{X}{\ell}\right)^{\psi} + \phi$$

Comparison of Eqs. (4. 6) with Eqs. (4. 3) yields the relationships

$$m = \psi + 3\phi$$
, $n = \psi + \phi$

The beam described by Eqs. (4.3) can also be considered as a nonhomogeneous beam with uniform cross-section, provided the modulus of elasticity and the density vary as powers m and n. The longitudinal vibration of beams of this type has been treated by Lindholm and Doshi [11].

3. Symbols

Х	horizontal coordinate along the length of the beam
у	vertical coordinate perpendicular to X
z	horizontal coordinate perpendicular to X
l	reference length of the beam
L	actual beam length
b	half the width of the beam
h	half the thickness of the beam
b	the width of the beam at the larger end
h	the thickness of the beam at the larger end
x	dimensionless abscissa, X/ℓ
α	exponent of (X/l)
β	exponent of (y/h)
γ	exponent of (z/b)
ψ	exponent of x for width variation
ф	exponent of x for thickness variation
m	exponent of x for area moment of inertia variation
n	exponent of x for cross-sectional area variation
EI	bending rigidity of the beam (elastic modulus times moment of inertia of the cross-section)
ρΑ	mass per unit length of the beam
θ	= 4 - m + n
u	x ^θ
δ x	$x \frac{d}{dx}$
δ _u	$u \frac{d}{du}$
ω	circular frequency
р	eigenvalue, $\rho A_0 \ell^4 \omega^2 / (EI_0)$
S	indicial root
0^{F_3}	generalized hypergeometric function
y(x)	mode function

1

•

- $U(x, \xi)$ influence function for beam deflections
- $K(x, \xi)$ kernel of homogeneous integral equations

c truncation of the beam, dimensionless; see Fig. 1

r coefficients of the series

ar $\mathbf{P}_{\mathbf{u}}\mathbf{Q}_{\mathbf{v}}$ rg

radius of gyration

 $\delta^{u} P \ \delta^{v} Q - \delta^{v} P \ \delta^{u} Q$

- ----

4. Acknowledgement

This project was sponsored by the National Aeronautics and Space Administration, Office of Advanced Research and Technology, Applied Mathematics Branch, of which Dr. Raymond H. Wilson is Chief.

The investigation was part of the work of the Engineering Experiment Station of which Professor Ross J. Martin is Director and was conducted in the Department of Theoretical and Applied Mechanics of which Professor Thomas J. Dolan is Head. The authors wish to acknowledge the assistance of Mr. Tom E. Breuer, an undergraduate student, for contributions to various phases of the project.

Both the ILLIAC II and the IBM 7094 computer facilities were used. The ILLIAC II was constructed in the Digital Computer Laboratory, now known as the Department of Computer Science, University of Illinois with support from the Atomic Energy Commission, grant USAEC AT(11-1)-415, and from the Office of Naval Research, grant NONOR-1832 (15). The IBM 7094 computer facility is partially supported by the National Science Foundation under NSF GP700.

SOLUTIONS OF MODE FUNCTIONS

Neglecting rotatory inertia, the differential equation for the mode functions of vibrating beams is given as

$$\frac{d^2}{dX^2} EI(X) \frac{d^2y}{dX^2} - \rho \omega^2 A(X) y = 0$$
 (4.7)

For a homogeneous beam, having the profile described by the relations

$$I = I_{o} \left(\frac{X}{U}\right)^{m} \text{ and } A = A_{o} \left(\frac{X}{U}\right)^{n}$$
(4.8)

Eq. (4.7) can be expanded as

Ì

$$x^{4} \frac{d^{4}y}{dx^{4}} + 2mx^{3} \frac{d^{3}y}{dx^{3}} + m(m-1)x^{2} \frac{d^{2}y}{dx^{2}} - px^{\theta}y = 0 \quad (4.9)$$

where $x = (X/\ell)$, $p = \rho A_0 \ell^4 \omega^2 / (EI_0)$ and $\theta = 4 - m + n$.

Upon introducing the differential operator δ_x to represent $x \frac{d}{dx}$, Eq. (4.9) may be written as

$$\delta_{x} (\delta_{x} - 1) (\delta_{x} + m - 2) (\delta_{x} + m - 3) y - px^{\theta} y = 0$$
(4.10)
Let $u = x^{\theta}$ and let $\delta_{u} = u \frac{d}{du}$, thus $\delta_{x}^{r} y = \theta^{r} \delta_{u}^{r} y$

and Eq. (4.10) yields

$$\delta_{u} \left(\delta_{u} - \frac{1}{\theta} \right) \left(\delta_{u} + \frac{m-2}{\theta} \right) \left(\delta_{u} + \frac{m-3}{\theta} \right) y - \frac{p}{\theta^{4}} uy = 0$$
 (4.11)

Equation (4.11) is a type of generalized hypergeometric equation [12], which possesses a general solution with linear combinations of four generalized hyper-geometric functions. It can be written as

$$y = A_1 y_0 + A_2 y_1 + A_3 y_{2-m} + A_4 y_{3-m}$$
 (4.12)

where each series, in hypergeometric series notation, is defined as

$$y_{0} = {}_{0}F_{3}(-; 1 - \frac{1}{\theta}, 1 + \frac{m-2}{\theta}, 1 + \frac{m-3}{\theta}; \frac{p}{\theta 4}u)$$

$$y_{1} = u^{\frac{1}{\theta}} {}_{0}F_{3}(-; 1 + \frac{1}{\theta}, 1 + \frac{m-1}{\theta}, 1 + \frac{m-2}{\theta}; \frac{p}{\theta 4}u)$$

$$y_{2-m} = u^{\frac{2-m}{\theta}} {}_{0}F_{3}(-; 1 - \frac{1}{\theta}, 1 - \frac{m-1}{\theta}, 1 - \frac{m-2}{\theta}; \frac{p}{\theta 4}u)$$

$$y_{3-m} = u^{\frac{3-m}{\theta}} {}_{0}F_{3}(-; 1 + \frac{1}{\theta}, 1 - \frac{m-2}{\theta}, 1 - \frac{m-3}{\theta}; \frac{p}{\theta 4}u)$$
(4.13)

provided that m is not an integer. When m is an integer, then logarithmic terms appear in the general solution.

The solutions of the differential equation (4.10) also can be obtained by the standard series method, the method of Frobenius. The series in Eq. (4.12) will have the form

$$y_{s} = x^{s} \sum_{r=0}^{\infty} a_{r} x^{r\theta}$$
(4.14)

with the recurrence formular of the coefficients being

$$a_r = \frac{p}{(s+r\theta)(s+r\theta-1)(s+r\theta+m-2)(s+r\theta+m-3)}a_{r-1}$$
 (4.15)

where s = 0, 1, 2-m and 3-m are the roots of the indicial equation.

When the parameter m is an integer, then two equal roots of s may exist for the indicial equation or the denominator of the recurrence formula of Eq. (4.15) becomes zero. When equal roots occur, the series solutions of Eq. (4.13) are dependent on each other. When the denominator of the recurrence formula is zero, the series solutions are meaningless. In these cases, by applying the theorems due to Frobenius [13], the independent series solution for the repeated root, $s = s_0$, is $y_s = \log x \cdot (y)_{s=s_0}$ $-x \sum_{r=1}^{s} \left[\sum_{\eta=1}^{r} \left(\frac{1}{s_0 + \eta_{\theta}} + \frac{1}{s_0 + \eta_{\theta} - 1} + \frac{1}{s_0 + \eta_{\theta} + m-2} + \frac{1}{s_0 + \eta_{\theta} + m-3} \right) \right] a_r x^{r\theta}$ (4.16) The series solution for the root, $s = s_1$, which makes the recurrence formula of the coefficients undefined, is given by

$$y_{s_{1}} = \log x \cdot (y)_{s=s_{1}} + x^{s_{1}} \left\{ 1 + \sum_{r=1}^{\infty} \left[\frac{1}{s-s_{1}} - \sum_{\eta=1}^{r} \left(\frac{1}{s+\eta\theta} + \frac{1}{s+\eta\theta-1} + \frac{1}{s+\eta\theta+m-2} + \frac{1}{s+\eta\theta+m-3} \right) \right]_{s=s_{1}} a_{r} x^{r\theta} \right\} (4.17)$$

Again, when $\theta = 0$, the series of Eq. (4.14), does not apply. For this case, the recurrence formula of the coefficients is again undefined; however, Eq. (4.10) is then of the Euler-Cauchy type for which a general solution always exists of the form

$$y = A_1 x^{s_1} + A_2 x^{s_2} + A_3 x^{s_3} + A_4 x^{s_4}$$
(4.18)

where s_1 , s_2 , s_3 , and s_4 are the roots of the auxiliary equation

$$s(s - 1)(s + m - 2)(s + m - 3) - p = 0$$
 (4.19)

Vibration can occur only when Eq. (4.19) has two or four non-real roots. This condition introduces the trigonometric function of logx into the solution for y. Suppose s_1 , s_2 are two real roots and s_3 , s_4 are two complex roots represented by $\alpha_1 \pm i\alpha_2$, then the solution for the normal function has the form

$$y = A_1 x^{s_1} + A_2 x^{s_2} + x^{\alpha_1} \left[A_3 \cos(\alpha_2 \log x) + A_4 \sin(\alpha_2 \log x) \right]$$
(4.20)

FREQUENCY EQUATIONS AND NODAL POINTS

To establish the frequency equations for tapered beams with different end conditions, two separate geometrical catagories of beams are treated. First, the complete tapered beam, which is gradually narrowed toward a point, is considered. The end coordinates of the beam are o and ℓ . Next, the truncated beam, with end coordinates $c \cdot \ell$ and ℓ , as indicated in Fig. 1, is considered. The origin, for the truncated beam lies beyond the end of the beam and serves as a reference point for the variation of the area moment of inertia and for the crosssectional area of the beam.

1. Complete Tapered Beams

Since one end of the beam is at the origin, the arbitrary constants A_3 and A_4 in the general solution, Eq. (4.12), must vanish if finite values exist for the deflection, moment and shear at the end x = 0. Hence, the general solution of the mode function for beams with any combination of parameters m and n can be written as

$$\mathbf{y} = \mathbf{A}_1 \mathbf{P} + \mathbf{A}_2 \mathbf{Q} \tag{4.21}$$

where P and Q are the series of y_0 and y_1 as defined in Eq. (4.13). The frequency equation is then obtained using the boundary conditions at X = l, that is, at x = 1. Three different cases are considered below.

A. Cantilever Beams

The base of the beam is fixed and the tip is free. Both the deflection and slope vanish at x = 1. Application of the boundary conditions to Eq. (4.21) and elimination of the constants A_1 and A_2 yields the frequency equation

$$P\frac{dQ}{dx} - Q\frac{dP}{dx} = 0 , \qquad \text{at } x = 1 \qquad (4.22)$$

Representation of $\delta^{u}P \cdot \delta^{v}Q - \delta^{v}P \cdot \delta^{u}Q$ in symbolic form as $P_{u}Q_{v}$ yields the relations $P_{u}Q_{v} = -P_{v}Q_{u}$ and $\delta(P_{u}Q_{u+1}) = P_{u}Q_{u+2}$. Using this notation, the frequency equation yields

$$\frac{1}{x}PQ_1 = 0$$
 , at $x = 1$ (4.23)

Since P and Q are in series form, as in Eq. (4.14), their derivatives and products are in series form as well.

Let the series be defined as $U = PQ_1$. Then U is a solution of a fifth order differential equation

$$(\delta-1)(\delta+m-2)(\delta+m-3)(\delta+m-4)(\delta+2m-5)U+2(2\delta+\alpha+2m-6)px^{\Theta}U=0$$
 (4.24)

Solving Eq. (4.24) and comparing the corresponding terms of U with Eq. (4.23) the series which satisfies both Eq. (4.24) and (4.23) is established as

$$U = \sum_{r=0}^{\infty} a_r p^r x^{1+r\theta}$$
(4.25)

Substitution of U into Eq. (4.23) yields the frequency equation as a polynomial of p

$$\sum_{r=0}^{\infty} a_r p^r = 0$$
(4.26)

with the recurrence formula of coefficients

$$a_{r} = \frac{-2(2r\theta - \theta + 2m - 4)}{r\theta (r\theta + m - 1) (r\theta + m - 2) (r\theta + m - 3) (r\theta + 2m - 4)} a_{r-1}$$
(4.27)

B. Antisymmetrical Mode Vibration of Free-Free Beams

Tapered beams with both ends free are considered to consist of two equal halves fitted together at their large ends as shown in Fig. 2. Each half is a section of a solid which has the profile shown in Fig. 1. When the beam vibrates in the antisymmetrical mode, the deflection and the bending moment are zero at the middle section where the two halves are joined together, that is

$$y = 0$$
 and $EI(x)\frac{d^2y}{dx^2} = 0$ at $x = 1$

Substitution of these conditions into Eq. (4.21) and applying the differential operator $P_{11}Q_v$, the frequency equation becomes

$$\frac{1}{x^2}U = 0$$
 at x = 1 (4.28)

where $U = PQ_2 - PQ_1$. The function U is a solution of a fifth order differential

equation

$$(\delta - \theta - 1) (\delta + m - 4) (\delta + m - 3) (\delta + 2m - 5) (\delta + m - 2) U^{2} + 2(2\delta + \theta + 2m - 6) px^{\theta} U = 0$$
 (4.29)

Hence, the frequency equation may again be represented by a polynomial of p, of the form of Eq. (4.26), with the coefficients $-2(2r\theta + \theta + 2m - 4)$

$$a_{r} = \frac{2(210+0+211-4)}{r\theta (r\theta + \theta + m - 1) (r\theta + \theta + m - 2) (r\theta + \theta + m - 3) (r\theta + \theta + 2m - 4)} a_{r-1} \qquad (4.30)$$

The locations of the nodes for the normal mode vibration, can be obtained by substituting the corresponding natural frequency, p_i , into Eq. (4.21) and solving for x with y equal to zero. Since P and Q are generalized hypergeometric functions, the equation, which gives the nodal points for cantilever beams and free-free beams of antisymmetrical mode, can be represented by

$${}_{0}F_{3}(-; 1+\frac{1}{\theta}, 1+\frac{m-1}{\theta}, 1+\frac{m-2}{\theta}; \frac{p_{i}}{\theta^{4}}) {}_{0}F_{3}(-; 1-\frac{1}{\theta}, 1+\frac{m-2}{\theta}, 1+\frac{m-3}{\theta}; p_{i}\frac{x^{\theta}}{\theta^{4}})$$

$${}^{-x}{}_{0}F_{3}(-; 1-\frac{1}{\theta}, 1+\frac{m-2}{\theta}, 1+\frac{m-3}{\theta}; \frac{p_{i}}{\theta^{4}}) {}_{0}F_{3}(-; 1+\frac{1}{\theta}, 1+\frac{m-1}{\theta}, 1+\frac{m-2}{\theta}; p_{i}\frac{x^{\theta}}{\theta^{4}}) = 0$$

$$(4.31)$$

C. Symmetrical Mode Vibration of Free-Free Beams

For the symmetrical mode vibration of the free-free beam, Fig. 2, the slope and shear are zero at the middle section of the beam, hence

$$\frac{dy}{dx} = 0$$
 and $\frac{d}{dx} EI(x) \frac{d^2y}{dx^2} = 0$ at $x = 1$

Upon substituting the end conditions into Eq. (4.21) and using the notation $P_u Q_v$, the frequency equation may be written as

$$\frac{\mathrm{d}}{\mathrm{dx}} \left(\mathbf{x}^{\mathrm{m}-3} \mathbf{U} \right) = 0 \tag{4.32}$$

at x = 1, where

 $U = PQ_3 + (m-3)PQ_2 - (m-2)PQ_1$

As discussed in the previous sections, U may be represented by a series which is a solution of a sixth order differential equation

$$(\delta - \theta - 1) (\delta - \theta + m - 2) (\delta - \theta + m - 3) (\delta + m - 4) (\delta + m - 3) (\delta + 2m - 5) U + 2 (2\delta + \theta + 2m - 6) (\delta + m - 3) px^{\theta} U = 0$$
 (4.33)

Substituting the solution U into Eq. (4.32) and evaluating at x = 1, gives the equation for the eigenvalues p as

$$\sum_{r=0}^{\infty} (r_{\theta} + \theta + m - 2) a_{r} p^{r} = 0$$
(4.34)

with the recurrence formulas for the coefficients

$$a_{r} = \frac{-2(2r\theta + \theta + 2m - 4)}{r\theta(r\theta + m - 1)(r\theta + \theta + m - 2)(r\theta + \theta + m - 3)(r\theta + \theta + 2m - 4)} a_{r-1}$$
(4.35)

The locations of the nodes for the normal mode vibration in this case can be solved from the equation

$$\begin{bmatrix} \frac{p_{i}}{(\theta+1)(\theta+m-1)(\theta+m-2)} & _{0}F_{3}(-; 2+\frac{1}{\theta}, 2+\frac{m-1}{\theta}, 2+\frac{m-2}{\theta}; \frac{p_{i}}{\theta^{4}}) \\ +_{0}F_{3}(-; 1+\frac{1}{\theta}, 1+\frac{m-1}{\theta}, 1+\frac{m-2}{\theta}; \frac{p_{i}}{\theta^{4}}) \end{bmatrix} _{0}F_{3}(-; 1-\frac{1}{\theta}, 1+\frac{m-2}{\theta}, 1+\frac{m-3}{\theta}; p_{i}\frac{x^{\theta}}{\theta^{4}}) \\ -\left[\frac{p_{i}x}{(\theta=1)(\theta+m-2)(\theta+m-3)} & _{0}F_{3}(-; 1-\frac{1}{\theta}, 1+\frac{m-2}{\theta}, 1+\frac{m-3}{\theta}; \frac{p_{i}}{\theta^{4}}) \\ & _{0}F_{3}(-; 1+\frac{1}{\theta}, 1+\frac{m-1}{\theta}, 1+\frac{m-2}{\theta}; p_{i}\frac{x^{\theta}}{\theta^{4}}) \right] = 0$$

$$(4.36)$$

2. Truncated Tapered Beams

н I

A. Exact Solutions

1.1

. . .

A beam which is gradually reduced to a small cross-section instead of to a point, may be considered as a beam truncated at the location x = c as shown in Fig. 1. The total length of the beam is $(1 - c) \cdot l$, where l is a reference length for the tapering. Since the beam does not start from the origin, the general solution of the mode function must be written in the form of Eq. (4.12) with four series. By substituting the end conditions into the mode function, a fourth order determinant equation of the eigenvalues p may be obtained.

......

Consider the case for a cantilever beam; the end conditions are

y = y' = 0 at x = 1and EIy'' = (EIy'')' = 0 at x = c

which gives the frequency equation

$$\begin{bmatrix} y_{0} \end{bmatrix}_{x=1} & \begin{bmatrix} y_{1} \end{bmatrix}_{x=1} & \begin{bmatrix} y_{2} - m \end{bmatrix}_{x=1} & \begin{bmatrix} y_{3} - m \end{bmatrix}_{x=1} \\ \begin{bmatrix} y'_{0} \end{bmatrix}_{x=1} & \begin{bmatrix} y'_{1} \end{bmatrix}_{x=1} & \begin{bmatrix} y'_{2} - m \end{bmatrix}_{x=1} & \begin{bmatrix} y'_{3} - m \end{bmatrix}_{x=1} \\ \begin{bmatrix} y''_{0} \end{bmatrix}_{x=c} & \begin{bmatrix} y''_{1} \end{bmatrix}_{x=c} & \begin{bmatrix} y''_{2} - m \end{bmatrix}_{x=c} & \begin{bmatrix} y''_{3} - m \end{bmatrix}_{x=c} \\ \begin{bmatrix} (x^{m} y''_{0})' \end{bmatrix}_{x=c} & \begin{bmatrix} (x^{m} y''_{1})' \end{bmatrix}_{x=c} & \begin{bmatrix} (x^{m} y''_{2} - m)' \end{bmatrix}_{x=c} \begin{bmatrix} (x^{m} y''_{3} - m)' \end{bmatrix}_{x=c} \\ \end{bmatrix}$$

where $y_0^{, y_1^{, y_{2-m}^{, y_{2-m}^{,$

B. Approximate Solutions

The calculation of the natural frequencies from the characteristic equation, Eq. (4.37), involves tedious numerical computations since each element in the determinant is a combination of generalized hypergeometric series. For practical purposes and in order to supply results to check the exact solutions, two approximate methods are introduced for calculating the upper bound and the lower bound of the approximate fundamental frequencies.

The Ritz method is one of the approximate methods which has been widely used to determine the upper bound of the natural frequencies for elastic systems. The frequency of the fundamental mode is calculated by minimizing the expression for the energies, which, for beams having the prescribed profile is

$$p = \int_{C}^{1} x^{m} \left(\frac{d^{2}y}{dx^{2}}\right)^{2} dx / \int_{C}^{1} x^{n}y^{2} dx$$
(4.38)

As an example, consider a cantilever beam. In order to satisfy the boundary conditions at free end, a one term approximation is assumed for the second derivative of the beam deflection, as

$$y'' = 12a (x - c)^2$$
 (4.39)

Integration of Eq. (4.39) gives the deflection curve

 $y = a \left[(x - c)^4 + C_1 x + C_2 \right]$ where $C_1 = -4 (1 - c)^3$ and $C_2 = 4(1-c)^3 - (1-c)^4$ in order to satisfy the boundary conditions y = y' = 0 at x = 1.

The lower bound approximate frequency of the fundamental mode is obtained from the expression

$$p = 1 \int_{c}^{1} K (\xi, \xi) d\xi$$
 (4.41)

where

K (x,
$$\xi$$
) = $\frac{EI_0}{\ell^3} \xi^n U(x, \xi)$ (4.42)

is the kernel of a homogeneous integral equation for the beam profile of current interest. The influence function for beam deflections, U (x, ξ), is the static deflection of the beam at x with a unit load applied at a distance ξ measured from the origin. For a cantilever beam, U (x, ξ) can be expressed as

$$U(x,\xi) = \frac{\ell^3}{EI_0} \left[\frac{1}{(2-m)(3-m)} x^{3-m} - \frac{\xi}{(1-m)(2-m)} x^{2-m} + \frac{(2-m)\xi - (1-m)}{(1-m)(2-m)} x - \frac{(3-m)\xi - (2-m)}{(2-m)(3-m)} \right]$$
(4.43)

for $m \neq 1$, 2 and 3, and

$$U(x, \xi) = \frac{\ell^3}{EI_0} \left[\frac{x^2}{2} - \xi x(\log x - 1) - x - \xi + \frac{1}{2} \right] , \qquad \text{for } m = 1$$

$$U(x, \xi) = \frac{\ell^3}{EI_0} \left[x(\log x - 1) + \xi(\log x - x) + \xi + 1 \right] , \qquad \text{for } m = 2 \quad (4, 44)$$

$$U(x, \xi) = \frac{\ell^3}{EI_0} \left[x(1 - \frac{\xi}{2}) - \log x - \frac{\xi}{2x} + \xi - 1 \right] , \qquad \text{for } m = 3$$

NUMERICAL RESULTS AND DISCUSSION OF TABLES

1. Natural Frequencies and Nodal Points for Complete Tapered Beams

The natural frequencies for different vibrational modes of complete tapered beams can be calculated by solving for the roots of polynominals of Eqs. (4.26) and (4.34). The coefficients of the polynominals, for cantilever beams, for free-free beams executing antisymmetrical vibrational modes and for free-free beams executing symmetrical vibrational modes, can be generated from Eqs. (4.27), (4.30) and (4.35) respectively. The recurrence formulas indicate that the coefficients reduce rapidly as the number of terms increases. Therefore, in the numerical calculations, the first five frequencies are computed with the first sixteen terms of the series. Computer programs are written to generate the coefficients as well as to solve for the roots.

The exponents, for a uniform beam, are $\psi = \phi = 0$ or m = 0, $\theta = 4$, and the frequency equation for cantilever beams, Eq. (4.26), becomes

$$\sum_{r=0}^{\infty} \frac{(-1)^{r}}{(4 r)!} (4 p)^{r} = 0$$
 (4.45)

where $p = \omega^2 \left(\frac{\rho A_0}{E I_0}\right) \ell^4$ as defined earlier. Let the beam length be L, which is equal to ℓ^0 for the complete tapered beam, and let the frequency constant K be \sqrt{p} . Then the natural frequency can be represented as

$$\omega = K \sqrt{\frac{E I_o}{\rho A_o}} / L^2$$
(4.46)

The first five frequency constants, K, for uniform cantilever beams are obtained from Eq. (4.45) using the first 16 terms of the series. These frequency constants are

3.51601, 22.0345, 61.6972, 120.911, 199.860

The substitution of each frequency into Eq. (4.31) establishes the locations the nodes for the corresponding natural frequency, which are given in the following table.

Uniform Cantilever Beam

ψ	ф	mode	frequency constant; K		10	cations of	nodes, (X/	′L)
.00	. 00	lst 2nd 3rd 4th 5th	3.51601 22.03449 61.69721 120.90191 199.85953	1.00000 .21656 .13232 .09444 .07345	1.00000 .49645 .35591 .27678	1.00000 .64166 .50009	1.00000 .72125	1.00000

In the table, the first two columns display the combinations of the exponents ψ and ϕ , the third and fourth columns indicate corresponding modes and their natural frequencies. The remaining columns show the locations of the nodes for different modes.

For cantilever beams with other combinations of ψ and ϕ , the results for frequencies and nodes for the first five modes are listed in Table 1. Page one of Table 1 lists data for the combinations of ψ and ϕ corresponding to beams of constant thickness with width varying as x^{ψ} . Page two of the table lists corresponding data for beams of constant width with thickness varying as x^{ϕ} . The frequency data of these two cases are also plotted in Figs. 3 and 4 as the ratio of frequencies of tapered beams to those of uniform beams. Fig. 5 indicates the variation of the ratio of frequencies for the beams with taper both in width and thickness according to x^{ϕ} . The ratio of frequencies for the first three modes, for 81 combinations of ψ and ϕ , are plotted in Fig. 6 in three dimensional form. The figures reveal the variation of the natural frequencies of different modes as the taper of the beam varies. It is of interest to note that the frequencies of the fundamental mode increase when the beams taper either in width or in thickness. The frequencies of the higher modes increase as the taper of the width increases, that is, as ψ decreases. The higher mode frequencies decrease as the taper on the thickness increases, that is, as ϕ increases.

The shapes of the first four normal modes for the vibration of tapered cantilever beams are plotted in Figs. 7, 8 and 9. Fig. 7 shows the change of mode shapes and the shifting of the nodal points for constant thickness beams as the exponent ψ increases. Fig. 8 shows those for beams with constant width and varying thickness. Fig. 9 displays those for beams with both width and thickness varying as a same power of x, that is $\psi = \phi$. The amplitudes of the deflections are normalized to the deflection at the free end.

For free-free beams of antisymmetrical and symmetrical mode vibration, the frequency constant K and the nodal points are also computed. For a uniform free-free beam, vibrating in antisymmetrical modes, the frequencies can be obtained from Eq. (4.26) with coefficients given by Eq. (4.30) and with m = 0, 0 = 4, that is

$$\sum_{r=0}^{5} \frac{(-1)^r}{(4r+3)!} \quad (4p)^r = 0 \tag{4.47}$$

The substitution of the first five roots of Eq. (4.47) into Eq. (4.31) gives the locations of the nodes for the corresponding mode. The results are listed as follows:

Uniform Free-Free Beam of Antisymmetrical Mode

ψ	ф	mode	frequency constant,	к	loca	tions of no	des (X/L)	
. 00	. 00	1st	5.59332	. 44832				
		2nd	30.22585	, 18889	.71161			
		3rd	74.63888	.12020	. 45291	. 81825		
		4th	138.79131	.08814	. 33213	. 60005	. 86666	
		5th	222. 68295	. 06959	. 26221	. 47372	. 68421	, 89474

The results for other combinations of ψ and φ are listed in Table 2 in the same order as in Table 1. The variation of the ratio of the frequencies of tapered beams to the frequencies of uniform beams are plotted in Fig. 10. The nodal points listed here are for one half of the beam length. The nodes of the other half of the beam are symmetrically located. The notation L represents half the total length of the free-free beam.

For free-free beams of symmetrical mode vibration, the frequencies and nodal points are evaluated from Eqs. (4.34) and (4.36) respectively. The results are listed in Table 3. For a uniform beam, the frequency equation is given as

$$\sum_{r=0}^{\infty} \frac{(-1)^{r}}{(4r+1)!} \quad (4p)^{r} = 0$$
(4.48)

which gives the first five roots and the corresponding nodes as follows:

Uniform Free-Free Beam of Symmetrical Mode

.00 .00 lst 15.41821 .2642 1.0000 2nd 49.96486 .1469 .5536 1.0000 3rd 104.24769 .1017 .3832 .6924 1.0000 4th 178.26972 .0778 .2931 .5295 .7647 1.0000 5th 272.03098 .0630 .2372 .4286 .6190 .8095 1.0000	ψ	ф	mode	constant, K			location	s of node	s (X/L)	
$0 \Box 4 4 U U U U U U U U U U U U U U U U U$.00	. 00	lst 2nd 3rd 4th 5th	15.41821 49.96486 104.24769 178.26972 272.03098	.2642 .1469 .1017 .0778	$1.0000 \\ .5536 \\ .3832 \\ .2931 \\ 2372$	1.0000 .6924 .5295 4286	1.0000 .7647 6190	1.0000	1 0000
			ວເກ	272.03098	.0030	. 2372	,4280	.0190	. 8095	1.0000

The above calculated results for frequencies and nodes for general tapered beams are checked with existing results of some special cases which appear in References [14, 15, 16, 17, 18, 19, 20].

2. Natural Frequencies of Truncated Beams

For truncated cantilever beams the frequency constants, K in Eq. (4.46), are the roots of Eq. (4.37). The numerical results are obtained by using the method of regula falsi. The series involved in each of the elements of Eq. (4.37) are calculated using 16 terms. The frequency constants K for the first two vibrational modes are presented in Table 4 for beams truncated at 0.2 ℓ and at 0.4 ℓ . The combinations of the exponents ψ and ϕ again include the beams with constant thickness, with constant width and with both thickness and width varying as the same power.

The upper bound and the lower bound approximations for the fundamental natural frequencies are calculated for six different degrees of truncation as well as for complete tapered beams. The values for the lower bound approximation are evaluated from Eq. (4.41) with the kernel defined in Eq. (4.42). The values of the upper bound approximation are evaluated from Eq. (4.38) with the deflection curve defined as Eq. (4.40). The approximate values of K are listed in Table 5 with 84 different combinations of ψ and ϕ .

Comparisons of the correct frequencies of truncated beams with the approximate frequencies appear in Figs. 12, 13 and 14. The results for constant thickness beams with varying width appear in Fig. 12, while Fig. 13 displays results for constant width beams with varying thickness and Fig. 14 gives the results for beams for which both width and thickness vary. The frequencies of the upper bound approximation for constant thickness beams are closer to the correct results than those for constant width beams. This implies that the assumed deflection curve is more nearly correct for the constant thickness beams. The lower bound approximations also yield more nearly

correct results for beams with constant thickness than for beams with constant width. This is true because the frequencies of the higher modes for constant thickness beams are larger than those for constant width beams.

3. Radii of Gyration of Cross-Section

The evaluation of circular frequencies from the frequency constants K, as defined in Eq. (4.46), involves the calculation of the radius of gyration, $(I_0/A_0)^{1/2}$. For the beams with cross-sections bounded by Eq. (4.4), the area moments of inertia and the cross-sectional areas with different values of γ and β were listed in the first report [1]. The radius of gyration of the cross-section at the large end of the beam, calculated from Eq. (4.6), is

$$\mu^{\mu} = \frac{1}{2} \frac{\left(\frac{3}{\beta} + 1\right)}{\left(\frac{1}{\beta} + 1\right)} \frac{\left(\frac{1}{\gamma} + \frac{1}{\beta} + 1\right)}{\left(\frac{1}{\beta} + 1\right)}$$
(4.49)

The results of Eq. (4.49) are listed in Table 6 with the same combinations of α and β as those used in the first report.

REFERENCES

- 1. "Geometrical and Inertial Properties of a Class of Thin Shells of Revolution" by
 - Will J. Worley and Han-chung Wang National Aeronautics and Space Administration, Grant No. NsG-434, NASA Contractor Report CR-89, September, 1964, 208 pages.
- "Geometrical and Inertial Properties of a Class of Thin Shells of a General Type" by
 - Will J. Worley and Han-chung Wang

National Aeronautics and Space Administration, Grant No. NsG-434, Supplement No. 1, NASA Contractor Report CR-271, Aug. 1965, 67 pages.

 "Landing Characteristics of a Lenticular-Shaped Reentry Vehicle" by Ulysse J. Blanchard

NASA Tech. Note D-940, September, 1961, 35 pages.

4. "Estimation of the Forces and Moments Acting on Inclined Bodies of Revolution of High Fineness Ratio" by

H. Julian Allen

NASA, Research Memorandum, RM A9 126, Nov. 14, 1949, 27 pages.

5. "Bodies of Revolution Having Minimum Drag at High Supersonic Airspeeds" by

A. J. Eggers, Jr., Meyer M. Resnikoff and David H. Dennis NACA Report 1306, 1957, 12 pages.

 "Resistance of Slender Bodies Moving with Supersonic Velocities," with Special Reference to Projectiles" by

Theodore von Karmán and Norton B. Moore

Trans. A.S.M.E., V. 54, Pt. I, N. 23, December 15, 1932, pp. 303-310

7.	"Experimental Investigation at a Mach Number of 3.11 of the Lift, Drag and Pitching-Moment Characteristics of Five Blunt Lifting Bodies" by William Letko NASA Tech. Note D-226, April 1960, 13 pages.
8.	"Transient Response of a Tapered Cantilever Beam" by Alexander S. Elder Developments in Theoretical and Applied Mechanics, Vol. 2, Proceedings of the Second Southeastern Conference on Theo- retical and Applied Mechanics, edited by W. A. Shaw, Pergamon Press, N.Y., N. Y., 1965, pp. 441-466.
9.	A General Treatment of the Transverse Vibration of Tapered Beams, by Han-chung Wang Ph.D. Thesis, Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Illinois, Feb., 1966
10.	"Areas, Centroids and Inertias for a Family of Elliptic -Type Closed Curves" by Will J. Worley and Fred D. Breuer <u>Product Engineering</u> , V. 28, N. 8, August, 1957, pp. 141-144.
11.	"Wave Propagation in an Elastic Nonhomogeneous Bar of Finite Length" by U. S. Lindholm and K. D. Doshi <u>Journal of Applied Mechanics</u> , Vol. 32, No. 1, March, 1965 pp. 135-142.
12.	<u>Special Functions</u> by Earl D. Rainville The MacMillan Company, N. Y., N. Y., 1960, 365 pages, pp. 73-80.
13.	Mathematics in Physics and Engineering by J. Irving and N. Mullineux Academic Press, N. Y., N. Y., 1959, 883 pages, Chapter II.
14.	"Transverse Vibration of a Rod of Varying Cross Section" by P. F. Ward <u>Philosopical Magazine,</u> Vol. 25, Series 6, Jan. 1913, pp. 85-106.

15. "The Lateral Vibration of Bars of Variable Section" by

J. W. Nicholson

Proceedings of the Royal Society of London, Series A, Vol. 93, No. A654, Sept. 1917, pp. 506-519.

16. "The Lateral Vibrations of Sharply-Pointed Bars" by

J. W. Nicholson

Proceedings of the Royal Society of London, Series A, Vol. 97, No. A683, April 1920, pp. 172-181.

- 17. "Lateral Vibrations of Bars of Conical Type" by
 - D. M. Wrinch

Proceedings of the Royal Society of London, Series A, Vol. 101, 1922, pp. 493-508.

- 18. "On the Lateral Vibrations of Rods of Variable Cross-Section" by
 - D. M. Wrinch <u>Philosophical Magazine</u>, Series 6, Vol. 46, Aug., 1923, pp. 273-291.
- 19. "Lateral Vibrations of Tapered Bars" by

Akimasa Ono

Journal of the Society of Mechanical Engineering in Japan, Tokyo, Japan, Vol. 28, No. 99, July 1925, pp. 429-441.

20. "Bending Vibrations of Variable Section Beams" by

 E. T. Cranch and Alfred A. Adler
 Journal of Applied Mechanics, Trans. A.S.M.E., Vol. 23, No. 1, March 1956, pp. 103-108.

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOCAT	TIONS OF NO	DES (X/L)	
•10	.00	1 S T 2 N D 3 R D 4 T H 5 T H	3.84759 22.91518 63.04715 122.74233 202.19116	1.00000 .23054 .14189 .10160 .07916	1.00000 .50266 .36153 .28164	1.00000 .64453 .50319	1.00000 .72293	1.00000
•20	•00	1ST 2ND 3RD 4TH 5TH	4.18617 23.79954 64.40342 124.58941 204.52963	1.00000 .24375 .15105 .10851 .08469	1.00000 .50861 .36696 .28636	1.00000 .64732 .50624	1.00000 .72459	1.00000
• 30	.00	1 ST 2 ND 3 RD 4 T H 5 T H	4.53188 24.68792 65.76605 126.44310 206.87497	1.00000 .25626 .15985 .11519 .09006	1.00000 .51432 .37221 .29095	1.00000 .65005 .50922	1.00000 .72621	1.00090
•40	.00	1ST 2ND 3RD 4TH 5TH	4.88482 25.58063 67.13513 128.30356 209.22717	1.00000 .26812 .16831 .12166 .09527	1.00000 .51982 .37731 .29542	1.00000 .65272 .51215	1.00000 .72781	1.00000
• 50	.00	1 ST 2ND 3RD 4TH 5TH	5.24506 26.47796 68.51067 130.17072 211.58626	1.00000 .27941 .17647 .12793 .10035	1.00000 .52511 .38225 .29977	1.00000 .65533 .51502	1.00000 .72938	1.00000
•60	•00	1 S T 2 N D 3 R D 4 T H 5 T H	5.61263 27.38015 69.89271 132.04458 213.95227	1.00000 .29017 .18434 .13402 .10529	1.00000 .53022 .38705 .30402	1.00000 .65788 .51783	1.00000 .73092	1.00000
.80	.00	1ST 2ND 3RN 4TH 5TH	6.36984 29.19990 72.67645 135.81270 218.70500	1.00000 .31028 .19930 .14570 .11482	1.00000 .53992 .39625 .31221	1.00000 .66281 .52331	1.00000 .73394	1.00000
1.00	•00	1 ST 2ND 3RD 4TH 5TH	7.15646 31.04131 75.48660 139.60798 223.48545	1.00000 .32874 .21333 .15678 .12392	1.00000 .54900 .40498 .32004	1.00000 .66755 .52860	1.00000 .73685	1.00000

. ...

<u>8</u>

I.

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOCA	TIONS OF NO	DDES (X/L)	
•00	.10	1ST 2ND 3RD 4TH 5TH	3.75540 21.53823 58.22532 112.59111 184.78438	1.00000 .22510 .13605 .09607 .07402	1.00000 .49123 .34845 .26843	1.00000 .63288 .48364	1.00000 .71254	1.00000
•00	• 20	1 ST 2ND 3RD 4TH 5TH	3.98423 20.99322 54.81987 104.54557 170.27172	1.00000 .23211 .13863 .09677 .07380	1.00000 .48536 .34037 .25953	1.00000 .62355 .47657	1.00000 .70323	1.00000
•00	•30	1ST 2ND 3RD 4TH 5TH	4.20172 20.40273 51.48127 96.76554 156.32171	1.00000 .23769 .14012 .09660 .07285	1.00000 .47883 .33162 .25005	1.00000 .61360 .46380	1.00000 .69324	1.00000
.00	•40	1 ST 2ND 3RD 4TH 5TH	4.40698 19.76973 48.20998 89.25128 142.93450	1.00000 .24191 .14058 .09560 .07123	1.00000 .47157 .32216 .23998	1.00000 .60296 .45027	1.00000 .68250	1.00000
•00	•50	1ST 2ND 3RD 4TH 5TH	4.59896 19.09684 45.00642 82.00310 130.11026	1.00000 .24483 .14003 .09381 .06896	1.00000 .46353 .31196 .22928	1.00000 .59156 .43590	1.00000 .67089	1.00000
.00	•60	1 S T 2 ND 3 R D 4 T H 5 T H	4.77655 18.38646 41.87105 75.02126 117.84916	1.00000 .24647 .13849 .09126 .06610	1.00000 .45463 .30096 .21793	1.00000 .57928 .42060	1.00000 .65832	1.00000
•00	•80	1ST 2ND 3RD 4TH 5TH	5.08332 16.86125 35.80663 61.85787 95.01719	1.00000 .24588 .13245 .08395 .05871	1.00000 .43390 .27624 .19314	1.00000 .55160 .38675	1.00000 .62966	1.00000
.00	1.00	1ST 2ND 3RD 4TH 5TH	5.31510 15.20717 30.01981 49.76335 74.44003	1.00000 .23980 .12230 .07376 .04931	1.00000 .40833 .24730 .16529	1.00000 .51858 .34763	1.00000	1.00000

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOCAT	TIONS OF NO	DES (X/L)	
.10	•10	1ST 2ND 3RD 4TH 5TH	4.08637 22.38253 59.52071 114.35302 187.01330	1.00000 .23812 .14497 .10272 .07930	1.00000 .49731 .35396 .27318	1.00000 .63583 .49183	1.00000 .71431	1.00000
.10	•20	1 ST 2ND 3RD 4TH 5TH	4.31441 21.80267 56.06091 106.22908 172.39803	1.00000 .24428 .14698 .10297 .07869	1.00000 .49135 .34578 .26418	1.00000 .62659 .47984	1.00000 .70509	1.00000
.10	• 30	1 S T 2 N D 3 R D 4 T H 5 T H	4.53085 21.17865 52.66817 98.37077 158.34546	1.00000 .24911 .14797 .10239 .07739	1.00000 .48473 .33694 .25461	1.00000 .61674 .46715	1.00000 .69520	1.00000
.10	•40	1 ST 2 ND 3 RD 4 TH 5 TH	4.73475 20.51322 49.34290 90.77835 144.85576	1.00000 .25268 .14797 .10102 .07544	1.00000 .47741 .32741 .24444	1.00000 .60621 .45371	1.00000 .68456	1.00000
.10	• 50	1 S T 2 N D 3 R D 4 T H 5 T H	4.92505 19.80887 46.08556 83.45211 131.92909	1.00000 .25501 .14700 .09889 .07287	1.00000 .46932 .31714 .23366	1.00000 .59491 .43943	1.00000 .67307	1.00000
.10	•60	1ST 2ND 3RD 4TH 5TH	5.10058 19.06779 42.89657 76.39234 119.56565	1.00000 .25613 .14508 .09602 .06973	1.00000 .46039 .30607 .22222	1.00000 .58276 .42421	1.00000	1.00000
.10	•80	1 ST 2 ND 3 R D 4 T H 5 T H	5.40200 17.48294 36.72535 63.07337 96.52915	1.00000 .25464 .13835 .38812 .06181	1.00000 .43962 .28123 .19723	1.00000 .55534 .39055	1.00000 .63226	1.00000
.10	1.00	1ST 2ND 3RD 4TH 5TH	5.62660 15.77062 30.83211 50.82352 75.74766	1.00000 .24780 .12757 .07737 .05191	1.00000 .41406 .25215 .16916	1.00000 .52262 .35161	1.00000 .59792	1.00000

- .

27

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOCA	TIONS OF NO	DES (X/L)	
.20	.10	1 ST 2ND 3RD 4TH 5TH	4.42440 23.23123 60.82253 116.12162 189.24912	1.00000 .25045 .15355 .10917 .08443	1.00000 .50316 .35930 .27781	1.00000 .63871 .49495	1.00000 .71605	1.00000
• 20	.20	1ST 2ND 3RD 4TH 5TH	4.65164 22.61712 57.30847 107.91934 174.53124	1.00000 .25585 .15504 .10900 .08346	1.00000 .49712 .35103 .26871	1.00000 .62956 .48304	1.00000 .70691	1.00000
•20	•30	1 ST 2ND 3RD 4TH 5TH	4.86701 21.96005 53.86166 99.98279 160.37614	1.00000 .26001 .15556 .10804 .08183	1.00000 .49043 .34212 .25905	1.00000 .61980 .47043	1.00000 .69712	1.00000
.20	• 40	1ST 2ND 3RD 4TH 5TH	5.06950 21.26259 50.48250 92.31226 146.78397	1.00000 .26298 .15514 .10633 .07957	1.00000 .48305 .33252 .24880	1.00000 .60938 .45707	1.00000 .68658	1.00000
-20	•50	1 S T 2 ND 3 R D 4 T H 5 T H	5.25804 20.52706 47.17144 84.90802 133.75492	1.00000 .26479 .15379 .10388 .07673	1.00000 .47492 .32219 .23794	1.00000 .59819 .44288	1.00000 .67521	1.00900
.20	. 60	1ST 2ND 3RD 4TH 5TH	5.43143 19.75552 43.92890 77.77034 121.28914	1.00000 .26542 .15151 .10071 .07332	1.00000 .46596 .31106 .22641	1.00000 .58615 .42775	1.00000 .66289	1.00000
.20	•80	1ST 2ND 3RD 4TH 5TH	5.72734 18.11131 37.65095 64.29584 98.04816	1.00000 .26311 .14413 .09224 .06490	1.00000 .44517 .28610 .20125	1.00000 .55898 .39427	1.00000 .63480	1.00000
• 20	1.00	1ST 2ND 3RD 4TH 5TH	5.94455 16.34084 31.65133 51.89071 77.06235	1.00000 .25557 .13275 .08095 .05451	1.00000 .41962 .25691 .17297	1.00000 .52655 .35551	1.00000 .60081	1.00000

ſ

. .

- _ -

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOCAT	TIONS OF NO	DES (X/L)	
• 30	.10	1 ST 2ND 3RD 4TH 5TH	4.76957 24.08461 62.13082 117.89695 191.49183	1.00000 .26218 .16182 .11542 .08942	1.00000 .50879 .36447 .28231	1.00000 .64153 .49801	1.00000 .71775	1.00000
.30	•20	1 ST 2ND 3RD 4 TH 5 TH	4.99599 23.43679 58.56259 109.61637 176.67138	1.00000 .26689 .16283 .11487 .08812	1.00000 .50267 .35613 .27313	1.00000 .63246 .48617	1.00000 .70871	1.00000
.30	.30	1ST 2ND 3RD 4TH 5TH	5.21022 22.74709 55.06178 101.60165 162.41377	1.00000 .27044 .16292 .11356 .08618	1.00000 .49593 .34715 .26339	1.00000 .62280 .47365	1.00000 .69901	1.00000
.30	• 40	1 S T 2 ND 3 R D 4 T H 5 T H	5.41124 22.01795 51.62881 93.85304 148.71918	1.00000 .27287 .16211 .11152 .08364	1.00000 .48850 .33749 .25307	1.00000 .61247 .46038	1.00000 .68857	1.00000
• 30	•50	1ST 2ND 3RD 4TH 5TH	5.59794 21.25152 48.26409 86.37083 135.58774	1.00000 .27418 .16040 .10877 .08053	1.00000 .48034 .32711 .24213	1.00000 .60139 .44627	1.00000	1.00000
.30	•60	1 ST 2ND 3RD 4TH 5TH	5.76911 20.44970 44.96803 79.15528 123.01965	1.00000 .27438 .15779 .10531 .07686	1.00000 .47136 .31592 .23053	1.00000 .58946 .43123	1.00000 .66510	1.00000
.30	•80	1ST 2ND 3RD 4TH 5TH	6.05931 18.74637 38.58345 65.52530 99.57422	1.00000 .27131 .14980 .09632 .06796	1.00000 .45056 .29088 .20521	1.00000 .56254 .39792	1.00000 .63730	1.00000
.30	1.00	1ST 2ND 3RD 4TH 5TH	6.26895 16.91781 32.47746 52.96490 78.38411	1.00000 .26312 .13786 .08451 .05711	1.00000 .42504 .26158 .17672	1.00000 .53040 .35934	1.00000 .60365	1.00000

29

~

								•
Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOCA	TIONS OF N	ODES (X/L)	
•40	.10	1ST 2ND 3RD	5.12194 24.94292 63.44562	1.00000 .27335 .16980	1.00000	1.00000	I	
		4TH 5TH	119.67903 193.74142	•12150 •09429	•36949 • 28670	•64427 •50101	1.00000 .71943	1.00000
• 40	•20	15T 2ND	5.34749 24.26185	1.00000 .27743	1.00000			
		3RD	59.82330	.17037	.50803	1.00000		
		4TH	111.32020	.12059	.36108	.63529	1.00000	
		5TH	178.81845	.09267	.27745	.48925	.71047	1.00000
•40	.30	1 S T 2 N D	5.56052 23.53993	1.00000	1.00000			
		3RD	56.26857	.17007	.50124	1.00000		
		4TH	103.22733	.11895	.35205	.62572	1.00000	
		5TH	164.45835	.09045	.26764	.47681	.70086	1.00000
• 40	•40	1ST	5.75999	1.00000				
		2ND	22.77940	.28236	1.00000			
		3RD	52.78184	.16889	.49378	1.00000		
		4TH	95.40070	.11661	.34234	.61549	1.00000	
		51H	150.66135	•08764	•25725	•46361	•69052	1.00000
•40	•50	1 S T	5.94477	1.00000				
		2ND	21.98229	.28323	1.00000			
		3RD	49.36352	•16685	•48559	1.00000		
		4TH	87.84056	.11357	.33190	•60451	1.00000	
		51H	137.42756	•0842 <i>1</i>	•24624	•44959	•67937	1.00000
•40	. 60	1ST	6.11362	1.00000				
			21.15039	.28303	1.00000	1 00000		
		3KU 4 TH	40.01401 90.56719	10393	• 4 / 6 5 9	1-00000	1 00000	
		514	124 75719	•1090J	• 22000	• 29209	44729	1 00000
		2111	124.13119	•00057	•23431	• 43404	•00120	1.00000
•40	•80'	1 S T	6.39792	1.00000				
		2ND	19.38815	•27925	1.00000			
		380	39.52286	• 15537	• 455 79	1.00000		
		41H	66.76175	.10034	.29555	• 56602	1.00000	
		ын	101.10733	.07100	•20910 •	• 40151	•63975	1.00000
•40	1.00		6.59979	1.00000	1 00000			
		200	11.00100	•21040	42022	1 00000		
		3KU 4TH	55.51050	+ 14209 09905	+43U32 24415	52614	1 00000	
		5TH	79.71292	.05970	.18043	.36310	+60642	1.00000

•••

. . . .

30

.

....

1

-

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOCAT	IONS OF NO	DES (X/L)	
• 50	.10	1 ST 2ND 3RD 4TH 5TH	5.48156 25.80637 64.76696 121.46787 195.99795	1.00000 .28400 .17751 .12741 .09905	1.00000 .51944 .37437 .29098	1.00000 .64696 .50395	1.00000 .72107	1.00000
• 50	•20	1 ST 2ND 3RD 4TH 5TH	5.70617 25.09250 61.09063 113.03085 180.97245	1.00000 .28752 .17768 .12616 .09713	1.00000 .51321 .36590 .28166	1.00000 .63806 .49227	1.00000 .71220	1.00000
• 50	.30	1 ST 2ND 3RD 4TH 5TH	5.91792 24.33867 57.48205 104.85989 166.50990	1.00000 .29001 .17701 .12422 .09464	1.00000 .50638 .35682 .27179	1.00000 .62858 .47990	1.00000 .70268	1.00000
•50	• 40	1 ST 2ND 3RD 4 TH 5 TH	6.11574 23.54703 53.94163 96.95525 152.61052	1.00000 .29149 .17549 .12159 .09157	1.00000 .49889 .34707 .26134	1.00000 .61844 .46679	1.00000 .69244	1.00000
. 50	•50	1ST 2ND 3RD 4TH 5TH	6.29851 22.71946 50.46977 89.31721 139.27439	1.00000 .29195 .17314 .11829 .08797	1.00000 .49068 .33659 .25027	1.00000 .60756 .45285	1.00000 .68139	1.00000
• 50	•60	1 ST 2 ND 3 R D 4 T H 5 T H	6.46495 21.85763 47.06685 81.94603 126.50177	1.00000 .29137 .16993 .11431 .08383	1.00000 .48168 .32533 .23854	1.00000 .59585 .43798	1.00000 .66942	1.00000
.50	.80	1 S T 2 ND 3 RD 4 TH 5 TH	6.74316 20.03664 40.46916 68.00520 102.64750	1.00000 .28694 .16082 .10432 .07402	1.00000 .46089 .30012 .21293	1.00000 .56942 .40503	1.00000 .64215	1.00000
.50	1.00	1 ST 2ND 3RD 4TH 5TH	6.93705 18.09205 34.15046 55.13427 81.04880	1.00000 .27760 .14784 .09155 .06228	1.00000 .43545 .27065 .18408	1.00000 .53784 .36679	1.00000 .60915	1.00000

31

- --

Ψ	Φ	MODE	FREQUENCY CONSTANT, K	LOCATIONS OF NODES (X/L)						
.60	•10	1ST 2ND 3RD 4TH 5TH	5.84844 26.67514 66.09489 123.26350 198.26140	1.00000 .29418 .18496 .13316 .10369	1.00000 .52450 .37911 .29516	1.00000 .64959 .50684	1.00000 .72269	1.00000		
•60	•20	1 ST 2 ND 3 RD 4 T H 5 T H	6.07203 25.92884 62.36461 114.74832 183.13340	1.00000 .29719 .18477 .13160 .10150	1.09000 .51822 .37060 .28579	1.00000 .64077 .49523	1.00000 .71390	1.00000		
.60	• 30	1ST 2ND 3RD 4TH 5TH	6.28241 25.14344 58.70225 106.49930 168.56846	1.00000 .29922 .18375 .12937 .09875	1.00000 .51135 .36147 .27586	1.00000 .63138 .48294	1.00000 .70447	1.00000		
.60	•40	1 ST 2ND 3RD 4TH 5TH	6.47850 24.32092 55.10819 98.51672 154.56667	1.00000 .30028 .18192 .12647 .09545	1.00000 .50384 .35168 .26535	1.00000 .62133 .46991	1.00000 .69432	1.00000		
.60	• 50	1 S T 2 ND 3 RD 4 TH 5 TH	6.65916 23.46308 51.58284 90.80081 141.12825	1.00000 .30036 .17928 .12292 .09161	1.00000 .49562 .34117 .25422	1.00000 .61055 .45605	1.00000 .68338	1.00000		
•60	.60	1 ST 2ND 3RD 4TH 5TH	6.82309 22.57145 48.12654 83.35184 128.25335	1.00000 .29944 .17579 .11870 .08725	1.00000 .48661 .32987 .24244	1.00000 .59894 .44126	1.00000 .67152	1.00000		
.60	.80	1ST 2ND 3RD 4TH 5TH	7.09501 20.69188 41.42238 69.25565 104.19474	1.00000 .29441 .16618 .10825 .07702	1.00000 .46584 .30461 .21669	1.00000 .57274 .40848	1.00000 .64451	1.00000		
.60	1.00	1ST 2ND 3RD 4TH 5TH	7.28073 18.68930 34.99732 56.22945 82.39172	1.00000 .28455 .15271 .09503 .06486	1.00000 .44046 .27506 .18769	1.00000 .54143 .37042	1.00000	1.00000		

.

- -----

Ψ	Φ	MODE	FREQUENCY CONSTANT, K	LOCATIONS OF NODES (X/L)						
.80	.10	1ST 2ND 3RD 4TH 5TH	6.60401 28.42930 68.77063 126.87519 202.80911	1.00000 .31329 .19919 .14423 .11268	1.00000 .53411 .38822 .30325	1.00000 .65467 .51246	1.00000 .72585	1.00000		
.80	•20	1ST 2ND 3RD 4TH 5TH	6.82529 27.61914 64.93265 118.20383 187.47620	1.00000 .31539 .19833 .14211 .10999	1.00000 .52777 .37963 .29377	1.00000 .64601 .50099	1.00000	1.00000		
.80	.30	1 ST 2 ND 3 RD 4 T H 5 T H	7.03265 26.77137 61.16289 109.79881 172.70647	1.00000 .31660 .19670 .13936 .10676	1.00000 .52086 .37043 .28375	1.00000 .63679 .48885	1.00000 .70795	1.00000		
.80	• 40	1ST 2ND 3RD 4TH 5TH	7.22499 25.88775 57.46172 101.66040 158.50002	1.00000 .31693 .19430 .13597 .10302	1.00000 .51331 .36058 .27314	1 - 00000 - 62692 - 47598	1.00000 .69799	1.00000		
.80	•50	1 ST 2ND 3RD 4TH 5TH	7.40113 24.96983 53.82950 93.78885 144.85704	1.00000 .31634 .19113 .13195 .99875	1.00000 .50508 .35002 .26192	1.00000 .61633 .46227	1.00000 .68724	1.00000		
.80	•60	1ST 2ND 3RD 4TH 5TH	7.55975 24.01897 50.26657 86.18438 131.77768	1.00000 .31481 .18714 .12729 .09399	1.00000 .49608 .33867 .25003	1.00000 .60492 .44766	1.00000 .67560	1.00000		
• 80	•80	1 ST 2ND 3RD 4TH 5TH	7.81849 22.02259 43.34957 71.77754 107.31037	1.00000 .30869 .17660 .11598 .08296	1.00000 .47537 .31331 .22406	1.00000 .57918 .41522	1.00000 .64909	1.00000		
.80	1.00	1ST 2ND 3RD 4TH 5TH	7.98725 19.90401 36.71176 58.44082 85.09876	1.00000 .29790 .16225 .10190 .06998	1.00000 .45011 .28364 .19476	1.00000 .54839 .37750	1.00000 .61700	1.00000		

_...

33

Ψ	Ф	MODE	FREQUENCY CONSTANT, K	LOCATIONS OF NODES (X/L)						
1.00	•10	1ST 2ND 3RD 4TH 5TH	7.38863 30.20649 71.47303 130.51427 207.38463	1.00000 .33090 .21260 .15477 .12130	1.00000 .54313 .39688 .31099	1.00000 .65954 .51788	1.00000 .72891	1.00000		
1.00	•20	1ST 2ND 3RD 4TH 5TH	7.60720 29.33359 67.52760 121.68684 191.84694	1.00900 .33224 .21115 .15216 .11816	1.00000 .53675 .38823 .30143	1.00000 .65104 .50655	1.00000 .72042	1.00000		
1.00	•30	1ST 2ND 3RD 4TH 5TH	7.81115 28.42435 63.65066 113.12596 176.87248	1.00000 .33276 .20899 .14895 .11451	1.00000 .52981 .37898 .29133	1.00000 .64197 .49456	1.00000 .71132	1.00000		
1.00	• 40	1ST 2ND 3RD 4TH 5TH	7.99934 27.48032 59.84256 104.83184 162.46145	1.00000 .33246 .20610 .14512 .11036	1.00000 .52226 .36909 .28064	1.00000 .63227 .48183	1.00000 .70154	1.00000		
1.00	.50	1ST 2ND 3RD 4TH 5TH	8.17056 26.50287 56.10363 96.80474 148.61396	1.00000 .33129 .20245 .14068 .10572	1.0000U .51403 .35849 .26934	1.00000 .62186 .46828	1.00000 .69098	1.00000		
1.00	.60	1ST 2ND 3RD 4TH 5TH	8.32347 25.49314 52.43416 89.04486 135.33020	1.00000 .32923 .19803 .13562 .10057	1.00000 .50505 .34711 .25737	1.00000 .61065 .45383	1.00000 .67955	1.00000		
1.00	.80	1ST 2ND 3RD 4TH 5TH	8.56825 23.38030 45.30443 74.32746 110.45425	1.00000 .32219 .18666 .12353 .08880	1.00000 .48442 .32168 .23121	1.00000 .58534 .42172	1.00000 .65351	1.00000		
1.00	1.00	1 ST 2 ND 3 R D 4 T H 5 T H	8.71926 21.14566 38.45377 60.68014 87.83399	1.00000 .31058 .17150 .10866 .07507	1.00000 .45930 .29193 .20166	1.00000 .55506 .38434	1.00000	1.00000		

Ψ	Φ	MODE	FREQUENCY CONSTANT, K	LOCATIONS OF NODES (X/L)						
.10	.00	1 S T	16.04270	.2810	1.0000					
		2ND	51.07784	.1575	.5604	1.0000				
		3 RD	105.85465	.1094	.3892	•6954	1.0000			
		4TH	180.37029	.0838	.2982	•5327	.7665	1.0000		
		5TH	274.62509	.0679	.2417	•4317	.6211	.8107	1.0000	
- 20	. 00	157	16.67084	. 2969	1.0000					
• 2 0	• • •	2ND	52.19662	.1676	. 5669	1.0000				
		380	107 46787	1168	3950	4994	1 0000			
		414	182 47738	1807	3032	+0704 5350	7692	1 0000		
		5TU	277 22501	- 30 77	- 30 32	• • • • • • • • • • • • • • • • • • • •	- 1002	1.0000	1 0000	
		210	211+22371	•0121	• 2 4 60	• 4 3 4 0	•0292	• 01 1 0	1.0001	
• 30	.00	1ST	17.30292	.3118	1.0000					
		2ND	53.32124	.1774	•5732	1.0000				
		3RD	109.08740	. 1240	-4007	.7013	1.0000			
		4TH	184.59102	•0953	.3080	•5390	.7699	1.0000		
		5TH	279.83343	• 0774	•250 <mark>2</mark>	•4378	.6252	.8129	1.0000	
•40	.00	1 S T	17.93916	.3260	1.0000					
		2ND	54.45176	.1867	.5793	1.0000				
		3RD	110.71325	.1310	.4061	.7041	1.0000			
		4TH	186.71124	.1009	.3127	.5421	.7715	1.0000		
		5TH	282.44766	• 3820	.2543	•4408	•6272	.8140	1.0000	
- 50	- 00	IST	18,57977	. 3395	1.0000					
• > •		2ND	55-58823	. 1958	.5851	1.0000				
		380	112.34544	.1377	-4114	- 7068	1.0000			
		4TH	188.83803	.1062	- 31 73	.5451	. 7731	1.0000		
		5TH	285 06863	0865	25.93	6437	6792	8150	1 0000	
			20,.00003	•0007	•2705	ICTT•	.0272	•0150	1.0000	
.60	.00	1 S T	19.22493	• 3523	1.0000					
		2 ND	56.73065	•2045	.5907	1.0000				
		3RD	113.98401	•1443	•4165	• 7 095	1.0000			
		4TH	190.97142	.1114	.3218	• 5481	.7747	1.0000		
		5TH	287.69633	• 0908	.2622	• 4465	•6311	.8161	1.0000	
.80	.00	1 S T	20.52951	.3762	1.0000					
		2ND	59.03360	.2210	.6013	1.0000				
		3RD	117.28031	-1568	.4263	.7147	1.0000			
		4TH	195.25801	.1215	. 3304	.5538	.7778	1.0000		
		5TH	292.97194	.0992	.2698	•4521	.6349	.8182	1.0000	
1 00	00	157	21.85306	2020	1 0000					
1.00		2ND	61.36083	- 2365	- 6112	1.0000				
		280	120 60220	1607	•0112 4267	7107	1 0000			
		5NU 4TH	100 57111	1311	100F	+ 1 1 7 1 5 5 0 2	7800	1 0000		
		-TIU 6TU	197001111 200 07/57	+1072		• 5 5 7 5	4 1 0 0 9	1.0000	1 0000	
		חוכ	270 21421	• TO 1 2	• 2 1 7 0	• 4 2 7 2	.0205	• 0 2 0 2	T * 0000	

35

-

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LO	CATIONS	F NODES	(X/L)	
.00	•10	1 S T 2 N D 3 R D 4 T H 5 T H	15.08138 47.18989 97.11908 164.86205 250.41947	.2770 .1518 .1038 .0786 .0631	1.0000 .5507 .3766 .2850 .2287	1.0000 .6855 .5188 .4164	1.0000 .7577 .6081	1.0000 .8030	1.0000
.00	.20	1 ST 2ND 3RD 4TH 5TH	14.71346 44.46738 90.21738 151.95371 229.67805	.2884 .1556 .1050 .0786 .0625	1.0000 .5474 .3693 .2765 .2198	1.0000 .6783 .5076 .4035	1.0000 .7503 .5964	1.0000 .7960	1.0000
•00	. 30	1 S T 2 N D 3 R D 4 T H 5 T H	14.31692 41.79778 83.54284 139.54486 209.80682	.2984 .1583 .1053 .0779 .0613	1.0000 .5436 .3615 .2673 .2103	1.0000 .6706 .4958 .3900	1.0000 .7423 .5839	1.0000 .7885	1.0000
.00	•40	1ST 2ND 3RD 4TH 5TH	13.89400 39.18153 77.09574 127.63570 190.80585	.3074 .1599 .1048 .0764 .0595	1.0000 .5393 .3530 .2576 .2003	1.0000 .6624 .4832 .3759	1.0000 .7338 .5707	1.0000 .7804	1.0000
.00	• 50	1 ST 2 ND 3 R D 4 T H 5 T H	13.44673 36.61912 70.87632 116.22631 172.67526	•3152 •1606 •1034 •0744 •0571	1.0000 .5345 .3437 .2472 .1899	1.0000 .6538 .4699 .3609	1.0000 .7247 .5564	1.0000 .7716	1.0000
.00	.60	1ST 2ND 3RD 4TH 5TH	12.97695 34.11102 64.88489 105.31692 155.41518	.3221 .1602 .1012 .0716 .0542	1.0000 .5292 .3338 .2362 .1789	1.0000 .6445 .4557 .3451	1.0000 .7148 .5412	1.0000 .7621	1.0000
.00	•80	1 ST 2ND 3RD 4TH 5TH	11.97619 29.25974 53.58713 84.99889 123.50709	•3332 •1566 •0946 •0644 •0472	1.0000 .5167 .3113 .2119 .1552	1.0000 .6239 .4243 .3108	1.0000 .6926 .5070	1.0000 .7403	1.0000
.00	1.00	1ST 2ND 3RD 4TH 5TH	10.90236 24.63138 43.20475 66.68312 95.08264	.3410 .1490 .0850 .0550 .0386	1.0000 .5014 .2848 .1845 .1294	1.0000 .6000 .3880 .2721	1.0000 .6662 .4667	1.0000 .7138	1.0000

._÷

Ψ	Φ	MODE	FREQUENCY CONSTANT, K	LOCATIONS OF NODES (X/L)						
.10	• 10	1 ST 2ND 3RD 4TH 5TH	15.68218 48.25902 98.65841 166.87082 252.89746	.2928 .1618 .1110 .0842 .0677	1.0000 .5574 .3825 .2901 .2331	1.0000 .6886 .5222 .4196	1.0000 .7596 .6102	1.0000 .8042	1.0000	
.10	.20	1ST 2ND 3RD 4TH 5TH	15.29172 45.49287 91.68921 153.87080 232.03995	.3032 .1649 .1118 .0838 .0667	1.0000 .5540 .3752 .2814 .2240	1.0000 .6815 .5111 .4068	1.0000 .7522 .5987	1.0000 .7973	1.0000	
.10	•30	1 S T 2ND 3RD 4 T H 5 T H	14.87364 42.77983 84.94729 141.37030 212.05267	.3125 .1671 .1116 .3827 .0652	1.0000 .5502 .3672 .2722 .2144	1.0000 .6740 .4993 .3934	1.0000 .7444 .5863	1.0000 .7899	1.0000	
•10	•40	1ST 2ND 3RD 4TH 5TH	14.43004 40.12034 78.43290 129.36955 192.93569	.3207 .1683 .1107 .0810 .0631	1.0000 .5459 .3587 .2623 .2044	1.0000 .6659 .4869 .3793	1.0000 .7360 .5732	1.0000 .7819	1.0000	
.10	• 50	1 ST 2ND 3RD 4TH 5TH	13.96281 37.51488 72.14631 117.86867 174.68916	-3280 -1685 -1090 -0786 -0604	1.0000 .5410 .3494 .2519 .1938	1.0000 .6574 .4737 .3644	1.0000 .7270 .5591	1.0000 .7732	1.0000	
.10	•60	1 S T 2 N D 3 R D 4 T H 5 T H	13.47367 34.95393 66.08781 106.86784 157.31317	.3343 .1678 .1065 .0756 .0573	1.0000 .5357 .3394 .2408 .1827	1.0000 .6483 .4596 .3487	1.0000 .7173 .5440	1.0000 .7638	1.0000	
.10	.80	1 ST 2 ND 3 RD 4 TH 5 TH	12.43560 30.02742 54.65624 86.36714 125.17338	.3446 .1635 .0993 .0678 .0498	1.0000 .5233 .3168 .2164 .1588	1.0000 .6280 .4284 .3145	1.0000 .6954 .5101	1.0000 .7422	1.0000	
.10	1.00	1 ST 2ND 3RD 4 TH 5 TH	11.32564 25.31434 44.14037 67.86891 96.51744	.3517 .1553 .0891 .0579 .0407	1.0000 .5081 .2903 .1888 .1328	1.0000 .6044 .3924 .2759	1.0000 .6694 .4702	1.0000	1.0000	

37

. ____

İ

Ψ	Φ	MODE	FREQUENCY CONSTANT, K	LOCATIONS OF NODES (X/L)
• 20	.10	1 ST 2ND 3RD 4 TH 5 TH	16.28719 49.33404 100.20407 168.88618 255.38217	.3077 1.0000 .1713 .5639 1.0000 .1180 .3882 .6917 1.0000 .0896 .2950 .5255 .7614 1.0000 .3721 .2373 .4227 .6124 .8054 1.0000
•20	.20	1 S T 2 N D 3 R D 4 T H 5 T H	15.87465 46.52435 93.16742 155.79447 234.40858	.3173 1.0000 .1739 .5604 1.0000 .1183 .3808 .6847 1.0000 .0889 .2862 .5144 .7541 1.0000 .0708 .2281 .4100 .6009 .7986 1.0000
•20	.30	1ST 2ND 3RD 4TH 5TH	15.43540 43.76795 86.35815 143.20236 214.30526	.3259 1.0000 .1756 .5565 1.0000 .1178 .3728 .6772 1.0000 .0875 .2769 .5028 .7464 1.0000 .0690 .2184 .3966 .5887 .7912 1.0000
.20	- 40	1 S T 2 ND 3 RD 4 T H 5 T H	14.97140 41.06531 79.77653 131.11007 195.07231	.3335 1.0000 .1764 .5522 1.0000 .1165 .3642 .6693 1.0000 .0854 .2670 .4904 .7381 1.0000 .0666 .2083 .3826 .5757 .7833 1.0000
• 20	.50	1ST 2ND 3RD 4TH 5TH	14.48444 38.41688 73.42282 119.51771 176.70983	.3402 1.0000 .1762 .5473 1.0000 .1144 .3549 .6609 1.0000 .0827 .2565 .4773 .7292 1.0000 .0637 .1976 .3678 .5617 .7748 1.0000
.20	.60	1 ST 2ND 3RD 4TH 5TH	13.97613 35.82312 67.29729 108.42548 159.21796	.3461 1.0000 .1752 .5420 1.0000 .1117 .3448 .6519 1.0000 .0794 .2453 .4634 .7197 1.0000 .0604 .1864 .3522 .5467 .7655 1.0000
• 20	•80	1 S T 2 N D 3 R D 4 T H 5 T H	12.90096 30.80149 55.73196 87.74213 126.84654	.3555 1.0000 .1703 .5296 1.0000 .1039 .3222 .6320 1.0000 .0712 .2208 .4324 .6981 1.0000 .0524 .1624 .3181 .5131 .7442 1.0000
•20	1.00	1 ST 2ND 3RD 4TH 5TH	11.75495 26.00374 45.08263 69.06147 97.95907	.3620 1.0000 .1615 .5146 1.0000 .0932 .2956 .6088 1.0000 .0608 .1930 .3966 .6725 1.0000 .0429 .1361 .2796 .4736 .7184 1.0000

TABLE 2.	NATURAL	FREQUENCIES	AND NODES	FOR TA	PERED	FREE -	FREE	BEAMS	ЭF
		ANTI	SYMMETRICA	L MODE					

I

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOC	ATIONS OF	NODES (X/L)	
•30	.10	1ST 2ND 3RD 4TH 5TH	16.89661 50.41502 101.75608 170.90811 257.87359	.3218 1 .1805 .1247 .0949 .0765	L•0000 •5701 •3938 •2997 •2414	1.0000 .6947 .5287 .4258	1.0000 .7631 .6145	1.0000 .8065	1.0000
• 30	-20	1 ST 2ND 3RD 4TH 5TH	16.46240 47.56186 94.65202 157.72475 236.78396	.3307 1 .1827 .1246 .0938 .0749	1.0000 .5666 .3863 .2909 .2321	1.0000 .6878 .5177 .4131	1.0000 .7560 .6031	1.0000 .7998	1.0000
•30	.30	1ST 2ND 3RD 4TH 5TH	16.00231 44.75219 87.77546 145.04106 216.56462	.3386] .1839 .1238 .0921 .0728	L.0000 .5626 .3783 .2815 .2224	1.0000 .6804 .5062 .3999	1.0000 .7484 .5910	1.0000 .7926	1.0000
•30	•40	1ST 2ND 3RD 4TH 5TH	15.51818 42.01646 81.12665 132.85724 197.21571	.3457 1 .1843 .1222 .0897 .0701	.0000 .5583 .3696 .2716 .2121	1.0000 .6726 .4939 .3859	1.0000 .7402 .5781	1.0000 .7847	1.0000
.30	.50	1ST 2ND 3RD 4TH 5TH	15.01169 39.32513 74.70584 121.17343 178.73730	.3519 1 .1838 .1198 .0868 .0670	1.0000 .5534 .3603 .2610 .2014	1.0000 .6643 .4809 .3712	1.0000 .7314 .5643	1.0000 .7763	1.0000
• 30	.60	1 S T 2 N D 3 R D 4 T H 5 T H	14.48436 36.68863 68.51333 109.98981 161.12957	.3573 1 .1824 .1168 .0833 .0634	• 0000 • 5481 • 3502 • 2497 • 1901	1.0000 .6555 .4671 .3556	1.0000 .7220 .5494	1.0000 .7671	1.0000
•30	.80	1 S T 2 N D 3 R D 4 T H 5 T H	13.37229 31.58196 56.81429 89.12387 128.52653	.3660 1 .1769 .1085 .0745 .0549	.0000 5358 .3275 .2251 .1659	1.0000 .6359 .4364 .3216	1.0000 .7008 .5161	1.0000 .7461	1.0000
• 30	1.00	1 S T 2 N D 3 R D 4 T H 5 T H	12.19031 26.69958 46.03153 70.26080 99.40757	.3719 1 .1676 .0972 .0637 .0450	.0000 .5209 .3009 .1972 .1393	1.0000 .6130 .4008 .2833	1.0000 .6755 .4769	1.0000	1.0000

Ψ	Φ	MODE	FREQUENCY CONSTANT, K	LOCATIONS OF NODES (X/L)	
•40	• 10	1 S T 2 N D 3 R D 4 T H 5 T H	17.51065 51.50197 103.31447 172.93664 260.37175	.3352 1.0000 .1894 .5761 1.0000 .1313 .3992 .6976 1.0000 .1001 .3044 .5318 .7649 1.0000 .0807 .2454 .4288 .6166 .8077 1.0	0000
• 40	.20	1ST 2ND 3RD 4TH 5TH	17.05512 48.60544 96.14306 159.66165 239.16609	.3434 1.0000 .1911 .5725 1.0000 .1308 .3916 .6908 1.0000 .0987 .2955 .5210 .7578 1.0000 .0788 .2361 .4162 .6053 .8011 1.0	0000
•40	.30	1 ST 2ND 3RD 4TH 5TH	16.57447 45.76257 89.19922 146.88642 218.83077	.3508 1.0000 .1919 .5685 1.0000 .1296 .3836 .6835 1.0000 .0967 .2860 .5095 .7503 1.0000 .0765 .2262 .4030 .5933 .7939 1.0	0000
• 40	• 40	1ST 2ND 3RD 4TH 5TH	16.07045 42.97383 82.48326 134.61109 199.36589	.3573 1.0000 .1919 .5641 1.0000 .1277 .3749 .6759 1.0000 .0940 .2760 .4974 .7422 1.0000 .0736 .2159 .3891 .5805 .7861 1.0	0000
•40	•50	1 ST 2 ND 3 RD 4 TH 5 TH	15.54461 40.23965 75.99541 122.83585 180.77160	.3631 1.0000 .1911 .5593 1.0000 .1251 .3655 .6677 1.0000 .0908 .2654 .4845 .7336 1.0000 .0702 .2051 .3745 .5668 .7778 1.0	0000
•40	. 60	1ST 2ND 3RD 4TH 5TH	14.99840 37.56047 69.73595 111.56086 163.04798	.3681 1.0000 .1894 .5540 1.0000 .1218 .3554 .6590 1.0000 .0870 .2541 .4707 .7243 1.0000 .0664 .1938 .3590 .5521 .7687 1.0	0000
•40	•80	1 ST 2ND 3RD 4TH 5TH	13.84960 32.36883 57.90325 90.51236 130.21336	.3762 1.0000 .1834 .5418 1.0000 .1130 .3327 .6397 1.0000 .0779 .2293 .4402 .7033 1.0000 .0575 .1694 .3252 .5191 .7480 1.0	0000
•40	1.00	1 S T 2 ND 3 RD 4 T H 5 T H	12.63170 27.40185 46.98707 71.46690 100.86293	.3816 1.0000 .1736 .5271 1.0000 .1013 .3061 .6172 1.0000 .0666 .2012 .4049 .6785 1.0000 .0472 .1426 .2869 .4802 .7229 1.0	0000

Ψ	Φ	MODE	FREQUENCY CONSTANT, K	LOCATIONS OF NODES (X/L)					
• 50	.10	1 ST 2ND 3RD 4 TH 5 TH	18.12946 52.59495 104.87926 174.97178 262.87666	•3480 •1979 •1376 •1051 •0849	1.0000 .5818 .4044 .3089 .2493	1.0000 .7004 .5349 .4318	1.0000 .7666 .6187	1.0000	1.0000
.50	.20	1ST 2ND 3RD 4TH 5TH	17.65293 49.65511 97.64051 161.60520 241.55497	.3556 .1992 .1369 .1034 .0827	1.0000 .5782 .3968 .2999 .2399	1.0000 .6937 .5242 .4193	1.0000 .7596 .6075	1.0000 .8023	1.0000
• 50	•30	1 ST 2ND 3RD 4TH 5TH	17.15199 46.76913 90.62948 148.73843 221.10368	.3625 .1997 .1353 .1011 .0801	1.0000 .5742 .3887 .2905 .2300	1.0000 .6866 .5128 .4061	1.0000 .7522 .5956	1.0000 .7952	1.0000
.50	•40	1 S T 2 N D 3 R D 4 T H 5 T H	16.62827 43.93743 83.84638 136.37164 201.52288	.3685 .1994 .1331 .0982 .0770	1.0000 .5698 .3800 .2804 .2197	1.0000 .6790 .5007 .3923	1.0000 .7442 .5829	1.0000 .7875	1.0000
• 50	.50	1 S T 2 N D 3 R D 4 T H 5 T H	16.08326 41.16046 77.29152 124.50496 182.81269	•3739 •1982 •1303 •0948 •0734	1.0000 .5650 .3706 .2697 .2088	1.0000 .6710 .4879 .3777	1.0000 .7357 .5693	1.0000 .7793	1.0000
•50	.60	1 S T 2 ND 3 RD 4 T H 5 T H	15.51829 38.43865 70.96514 113.13864 164.97322	.3786 .1963 .1267 .0908 .0693	1.0000 .5597 .3605 .2583 .1973	1.0000 .6624 .4743 .3623	1.0000 .7265 .5547	1.0000	1.0000
• 50	•80	1ST 2ND 3RD 4TH 5TH	14.33292 33.16211 58.99883 91.90761 131.90701	.3860 .1898 .1174 .0812 .0601	1.0000 .5476 .3378 .2335 .1728	1.0000 .6434 .4440 .3286	1.0000 .7059 .5219	1.0000 .7499	1.0000
.50	1.00	1 S T 2 N D 3 R D 4 T H 5 T H	13.07914 28.11056 47.94925 72.67976 102.32514	.3909 .1795 .1053 .0695 .0493	1.0000 .5330 .3111 .2053 .1458	1.0000 .6212 .4090 .2905	1.0000 .6814 .4834	1.0000 .7251	1.0000

41

Ψ	Φ	MODE	FREQUENCY CONSTANT, K	Y LOCATIONS OF NODES (X/L)					
•60	•10	1ST 2ND 3RD 4TH 5TH	18.75316 53.69398 106.45044 177.01355 265.38832	.3602 .2062 .1438 .1101 .0889	1.0000 .5874 .4095 .3133 .2532	1.0000 .7032 .5379 .4347	1.0000 .7683 .6207	1.0000 .8100	1.0000
.60	.20	1 ST 2ND 3RD 4TH 5TH	18.25593 50.71092 99.14442 163.55538 243.95063	- 3673 -2071 -1427 -1081 -3866	1.0000 .5838 .4019 .3043 .2437	1.0000 .6966 .5273 .4223	1.0000 .7614 .6096	1.0000 .8035	1.0000
.60	.30	1ST 2ND 3RD 4TH 5TH	17.73493 47.78188 92.06621 150.59710 223.38338	.3736 .2073 .1409 .1055 .0837	1.0000 .5797 .3937 .2948 .2338	1.0000 .6896 .5160 .4092	1.0009 .7540 .5978	1.0000 .7964	1.0000
.60	. 40	1 ST 2ND 3RD 4TH 5TH	17.19172 44.90730 85.21605 138.13886 203.68665	.3793 .2066 .1385 .1024 .3803	1.0000 .5753 .3850 .2847 .2233	1.0000 .6821 .5040 .3954	1.0000 .7462 .5852	1.0000 .7889	1.0000
•60	•50	1ST 2ND 3RD 4TH 5TH	16.62768 42.08759 78.59420 126.18083 184.86059	.3843 .2052 .1353 .0987 .0765	1.0000 .5705 .3756 .2739 .2124	1.0000 .6742 .4913 .3809	1.0000 .7378 .5717	1.0000 .7807	1.0000
.60	•60	1 ST 2 ND 3 RD 4 TH 5 TH	16.04405 39.32319 72.20091 114.72316 166.90530	.3886 .2030 .1315 .0945 .0723	1.0000 .5652 .3654 .2625 .2009	1.0000 .6657 .4778 .3655	1.0000 .7287 .5572	1.0000 .7719	1.0000
.60	-80	1 S T 2 N D 3 R D 4 T H 5 T H	14.82223 33.95182 60.10104 93.30962 133.60754	.3955 .1960 .1218 .0844 .0626	1.0000 .5532 .3427 .2376 .1761	1.0000 .6470 .4478 .3320	1.0000 .7084 .5248	1.0000 .7517	1.0000
.60	1.00	1ST 2ND 3RD 4TH 5TH	13.53261 28.82571 48.91807 73.89939 103.79419	.4000 .1853 .1092 .0723 .0515	1.0000 .5388 .3161 .2093 .1490	1.0000 .6252 .4129 .2940	1.0000 .6843 .4865	1.0000	1.0000

Ψ	Φ	MODE	FREQUENCY CONSTANT, K	LOCATIONS OF NODES (X/L)					
.80	.10	1 ST 2ND 3RD 4TH 5TH	20.01576 55.91034 109.61211 181.11694 270.43190	.3830 .2220 .1558 .1196 .0968	1.0000 .5979 .4192 .3219 .2606	1.0000 .7086 .5438 .4404	1.0000 .7715 .6247	1.0000 .8122	1.0000
.80	.20	1ST 2ND 3RD 4TH 5TH	19.47788 52.84103 102.17166 167.47572 248.76226	.3892 .2222 .1541 .1171 .0940	1.0000 .5943 .4116 .3128 .2511	1.0000 .7021 .5333 .4281	1.0000 .7648 .6138	1.0000 .8058	1.0000
.80	• 30	1 ST 2 ND 3 RD 4 T H 5 T H	18.91740 49.82607 94.95921 154.33448 227.96313	.3947 .2218 .1518 .1141 .0907	1.0000 .5902 .4034 .3032 .2410	1.0000 .6953 .5222 .4152	1.0000 .7577 .6021	1.0000 .7989	1.0000
.80	•40	1ST 2ND 3RD 4TH 5TH	18.33567 46.86588 87.97500 141.69343 208.03464	.3996 .2206 .1488 .1105 .0869	1.0000 .5859 .3946 .2930 .2304	1.0000 .6881 .5105 .4015	1.0000 .7500 .5898	1.0000 .7915	1.0000
.80	• 50	1 ST 2ND 3RD 4TH 5TH	17.73395 43.96086 81.21926 129.55267 188.97685	.4039 .2186 .1452 .1064 .0827	1.0000 .5811 .3852 .2822 .2194	1.0000 .6803 .4979 .3872	1.0000 .7418 .5765	1.0000 .7836	1.0000
•80	•60	1 ST 2 ND 3 RD 4 TH 5 TH	17.11332 41.11139 74.69226 117.91239 170.78995	.4076 .2159 .1410 .1018 .0781	1.0000 .5759 .3750 .2707 .2078	1.0000 .6721 .4846 .3719	1.0000 .7330 .5623	1.0000 .7749	1.0000
.80	•80	1 ST 2ND 3RD 4TH 5TH	15.81892 35.58051 62.32536 96.13392 137.02913	•4135 •2081 •1305 •0909 •0677	1.0000 .5640 .3524 .2456 .1828	1.0000 .6539 .4550 .3387	1.0000 .7132 .5303	1.0000 .7552	1.0000
.80	1.00	1 ST 2ND 3RD 4 TH 5 TH	14.45767 30.27530 50.87562 76.35894 106.75287	.4172 .1967 .1171 .0780 .0558	1.0000 .5499 .3257 .2171 .1553	1.0000 .6328 .4206 .3009	1.0000 .6898 .4927	1.0000 .7315	1.0000

43

- ---- - -

· ·

· ___.

1

Ψ	Φ	MODE	FREQUENCY CONSTANT, K	K LOCATIONS OF NODES (X/L)				
1.00	•10	1ST 2ND 3RD 4TH 5TH	21.29928 58.15127 112.79963 185.24694 275.50256	.4040 1.00 .2368 .63 .1671 .44 .1287 .31 .1045 .20	000 078 1.0000 285 .7137 300 .5495 578 .4459	1.0000 .7747 .6285	1.0000 .8143	1.0000
1.00	.20	1 S T 2 N D 3 R D 4 T H 5 T H	20.72162 54.99597 105.22490 171.42275 253.60104	.4093 1.00 .2365 .60 .1650 .44 .1258 .33 .1012 .25	000 041 1.0000 208 .7075 209 .5392 581 .4338	1.0000 .7681 .6178	1.0000 .8081	1.0000
1.00	.30	1ST 2ND 3RD 4TH 5TH	20.12233 51.89532 97.87833 158.09865 232.57011	.4141 1.00 .2355 .60 .1622 .41 .1223 .33 .0975 .24	000 001 1.0000 26 .7008 12 .5282 88 .4210	1.0000 .7612 .6064	1.0000 .8013	1.0000
1.00	• 40	1ST 2ND 3RD 4TH 5TH	19.50265 48.84971 90.76018 145.27482 212.40985	.4184 1.00 .2338 .59 .1588 .40 .1184 .30 .0933 .23)00 958 1.0000)38 .6937)10 .5166 874 .4075	1.0000 .7537 .5942	1.0000 .7941	1.0000
1.00	.50	1ST 2ND 3RD 4TH 5TH	18.86367 45.85953 83.87066 132.95142 193.12044	.4221 1.00 .2315 .59 .1548 .39 .1139 .29 .0888 .22	000 910 1.0000 944 .6853 901 .5043 262 .3932	1.0000 .7457 .5811	1.0000 .7863	1.0000
1.00	•60	1ST 2ND 3RD 4TH 5TH	18.20635 42.92513 77.21004 121.12860 174.70194	.4254 1.00 .2283 .58 .1502 .38 .1089 .27 .0838 .21	000 359 1.0000 343 .6783 386 .4912 3781	1.0000 .7371 .5671	1.0000 .7779	1.0000
1.00	.80	1ST 2ND 3RD 4TH 5TH	16.83970 37.22491 64.57622 98.98528 140.47814	.4304 1.00 .2198 .57 .1389 .36 .0973 .25 .0727 .18	000 42 1.0000 16 .6606 33 .4620 92 .3451	1.0000 .7179 .5357	1.0000 .7587	1.0000
1.00	1.00	1ST 2ND 3RD 4TH 5TH	15.40683 31.75062 52.85972 78.84556 109.73896	.4334 1.00 .2076 .56 .1247 .33 .0836 .22 .0601 .16	00 04 1.0000 50 .6400 46 .4281 14 .3076	1.0000 .6951 .4987	1.0000	1.0000

.

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOCATIO	NS OF NODE	S (X/L)	
.10	•00	1ST 2ND 3RD 4TH 5TH	5.96531 31.09310 75.99965 140.64556 225.03065	•46975 •20187 •12912 •09492 •07504	.71811 .45938 .33769 .26696	•82068 •60327 •47693	•86795 •68618	• 89554
.20	.00	1 S T 2 N D 3 R D 4 T H 5 T H	6.34515 31.96779 77.35779 142.50713 227.38572	.48935 .21423 .13770 .10146 .08032	•72426 •46560 •34306 •27159	•82303 •60642 •48008	•86922 •68812	.89532
.30	.00	1ST 2ND 3RD 4TH 5TH	6.73274 32.84992 78.74329 144.37609 229.74813	•50735 •22601 •14597 •10780 •08546	•73009 •47159 •34828 •27609	.82531 .60950 .48317	.87045 .69003	.89709
. 40	.00	1 ST 2ND 3RD 4TH 5TH	7.12804 33.73947 80.12618 146.25239 232.11789	•52396 •23726 •15395 •11395 •09045	•73562 •47738 •35335 •28048	•82753 •61251 •48620	• 87166 • 69190	•89785
•50	•00	1ST 2ND 3RD 4TH 5TH	7.53098 34.63642 81.51643 148.13605 234.49499	•53933 •24802 •16167 •11993 •09532	•74089 •48297 •35827 •28476	•82968 •61546 •48917	• 87284 • 69374	.89859
•60	.00	1 ST 2ND 3RD 4TH 5TH	7.94150 35.54077 82.91404 150.02705 236.87944	•55362 •25834 •16914 •12574 •10007	.74591 .48837 .36306 .28893	.83177 .61834 .49209	• 87400 • 69555	- 89933
•80	•00	1 ST 2 ND 3 RD 4 TH 5 TH	8.78507 37.37162 85.73135 153.83114 241.67039	•57938 •27776 •18339 •13691 •10923	•75529 •49867 •37227 •29701	• 83578 • 62392 • 49779	•87624 •69909	•90076
1.00	.00	1 ST 2ND 3RD 4TH 5TH	9.65836 39.23190 88.57805 157.66458 246.49069	.60201 .29576 .19683 .14753 .11799	.76387 .50835 .38103 .30474	.83957 .62928 .50328	•87840 •70252	•90214

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOCATIONS OF NODES (X/L)				
.00	.10	1ST 2ND 3RD 4TH 5TH	5.78131 28.95721 69.97776 128.81296 205.46280	.46626 .19634 .12340 .08950 .07000	•71191 •44749 •32457 •25386	•81453 •59079 •46207	•86277 •67480	•89113	
.00	.20	1ST 2ND 3RD 4TH 5TH	5.95253 27.69303 65.44420 119.18417 188.91291	•48209 •20243 •12554 •08998 •06966	•71182 •44146 •31642 •24498	.81058 .58097 .44980	•85862 •66476	.88726	
.00	.30	1 ST 2ND 3RD 4TH 5TH	6.10602 26.43320 61.03814 109.90489 173.03329	.49608 .20725 .12668 .08963 .06863	.71133 .43479 .30764 .23555	.80639 .57055 .43686	• 85417 • 65403	.88309	
.00	•40	1 S T 2 ND 3 RD 4 TH 5 T H	6.24080 25.17752 56.75954 100.97510 157.82389	•50845 •21085 •12685 •08851 •06695	.71042 .42743 .29820 .22557	.80191 .55945 .42319	•84940 •64252	.87858	
.00	• 50	1ST 2ND 3RD 4TH 5TH	6.35582 23.92577 52.60829 92.39474 143.28472	•51939 •21325 •12612 •38664 •06467	.70908 .41932 .28806 .21501	.79712 .54759 .40871	•84427 •63015	.87369	
•00	•60	1 S T 2 N D 3 R D 4 T H 5 T H	6.45002 22.67767 48.58426 84.16375 129.41568	.52904 .21450 .12447 .38407 .06182	.70728 .41040 .27718 .20384	•79198 •53488 •39335	.83871 .61679	.86836	
•00	.80	1 S T 2 ND 3 R D 4 T H 5 T H	6.57120 20.19084 40.91702 68.74930 103.68770	•54491 •21341 •11847 •37688 •05459	.70218 .38975 .25292 .17959	.78038 .50640 .35957	•82610 •58656	.85609	
.00	1.00	1 S T 2 N D 3 R D 4 T H 5 T H	6.59365 17.71250 33.75518 54.73005 80.63878	•55667 •20723 •10874 •06707 •04552	•69469 •36453 •22482 •15259	.76654 .47277 .32087	•81089 •55036	.84104	

.

Ψ	Φ	MODE	FREQUENCY CONSTANT, K	LOCATIONS OF NODES (X/L)						
.10	.10	1 S T 2 ND 3 R D 4 T H 5 T H	6.15072 29.79616 71.28543 130.58940 207.70799	.48586 .20850 .13174 .09579 .07503	•71824 •45385 •33002 •25850	.81703 .59410 .46536	•86413 •67686	.89198		
•10	•20	1 S T 2 N D 3 R D 4 T H 5 T H	6.31897 28.50364 66.69875 120.88277 191.05561	.50013 .21387 .13336 .09584 .07432	•71800 •44773 •32177 •24952	•81316 •58439 •45317	•86005 •66693	.88817		
.10	• 30	1 ST 2 ND 3 R D 4 T H 5 T H	6.46911 27.21538 62.23955 111.52566 175.07348	.51279 .21805 .13404 .09511 .07295	.71738 .44099 .31291 .24000	.80905 .57407 .44031	• 85568 • 65631	.88496		
.10	.40	1 ST 2 ND 3 RD 4 TH 5 TH	6.60016 25.93119 57.90776 102.51802 159.76156	.52403 .22107 .13380 .09363 .07096	•71637 •43356 •30340 •22993	.80467 .56308 .42673	.85100 .64492	.87962		
.10	.50	1 ST 2ND 3RD 4TH 5TH	6.71110 24.65083 53.70324 93.85979 145.11982	•53398 •22297 •13268 •39144 •36839	.71495 .42541 .29319 .21927	.79998 .55133 .41234	•84596 •63267	•8 7 480		
•10	.60	1 S T 2 N D 3 R D 4 T H 5 T H	6.80083 23.37400 49.62598 85.55088 131.14822	.54279 .22375 .13068 .08857 .06527	.71310 .41645 .28224 .20802	•79493 •53874 •39706	.84051 .61946	.86956		
.10	.80	1 ST 2ND 3RD 4TH 5TH	6.91196 20.82924 41.85190 69.98044 105.21501	.55728 .22185 .12403 .08081 .05753	.70794 .39576 .25786 .18357	.78359 .51054 .36345	.82814 .58954	•85750		
.10	1.00	1 S T 2 N D 3 R D 4 T H 5 T H	6.92273 18.29207 34.58267 55.80481 81.96057	.56801 .21497 .11370 .07046 .04798	.70049 .37051 .22961 .15634	.77005 .47721 .32492	•81324 •55371	.84272		

_

| -

I

-

Ψ	Φ	MODE .0 1 ST 2ND 3RD 4TH 5TH	Φ MODE	FREQUENCY CONSTANT, K	LOCATIONS OF NODES (X/L)						
.20	.10		6.52781 30.64254 72.60046 132.37318 209.96057	•50388 •22011 •13979 •10190 •07994	•72424 •45998 •33531 •26303	•81945 •59734 •46858	-86545 -67889	.89282			
•20	•20	1ST 2ND 3RD 4TH 5TH	6.69293 29.32163 67.96065 122.58873 193.20567	•51680 •22482 •14094 •10155 •07887	•72387 •45379 •32698 •25396	•81566 •58773 •45647	•86144 •66906	.88906			
• 20	.30	1ST 2ND 3RD 4TH 5TH	6.83959 28.00492 63.44830 113.15379 177.12101	•52831 •22841 •14119 •10046 •07718	.72314 .44697 .31805 .24435	.81163 .57751 .44370	•85715 •65854	•88501			
.20	.40	1 S T 2 ND 3 R D 4 T H 5 T H	6.96679 26.69218 59.06333 104.06828 161.70657	-53854 -23091 -14056 -09866 -07490	.72205 .43950 .30847 .23420	.80734 .56662 .43019	•85255 •64727	.88064			
.20	.50	1ST 2ND 3RD 4TH 5TH	7.07350 25.38318 54.80561 95.33216 146.96230	.54763 .23234 .13908 .09616 .07206	.72056 .43130 .29820 .22346	•80274 •55499 •41589	•84760 •63515	• 87589			
•20	.60	1 ST 2ND 3RD 4 TH 5 TH	7.15866 24.07757 50.67498 86.94532 132.88810	.55568 .23269 .13675 .09300 .06869	.71865 .42232 .28719 .21212	•79780 •54252 •40070	•84225 •62207	.87073			
.20	•80	1 S T 2 N D 3 R D 4 T H 5 T H	7.25951 21.47475 42.79401 71.21884 106.74961	.56895 .23005 .12950 .08471 .06046	.71345 .40159 .26269 .18749	•78669 •51458 •36726	•83012 •59246	.85887			
.20	1.00	1 ST 2ND 3RD 4 TH 5 TH	7.25837 18.87860 35.41729 56.88678 83.28960	.57875 .22252 .11861 .07385 .05044	.70605 .37635 .23431 .16004	•77344 •48154 •32889	•81552 •55700	•84435			

· ----

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOCATIO	NS OF NODE	S (X/L)	
.30	•10	1 ST 2ND 3RD 4 TH 5 TH	6.91251 31.49632 73.92286 134.16430 212.22046	.52052 .23122 .14757 .10784	•72993 •46590 •34045	•82181 •60051	• 86675	80344
•30	•20	1ST 2ND 3RD 4TH	7.07437 30.14701 69.22991 124.30202	• 53226 • 23533 • 14828 • 10712	•72945 •45964 •33205	•81809 •59099	.86281	•07504
•30	. 30	5TH 1ST 2ND 3RD 4TH 5TH	195.36306 7.21740 28.80179 64.66439 114.78924 179.17588	.08333 .54275 .23839 .14814 .10570 .08134	•25829 •72863 •45277 •32305 •24861	•45971 •81413 •58087	•67115 •85859	• 88993
• 30	•40	1 ST 2ND 3RD 4 TH 5 TH	7.34061 27.46048 60.22621 105.62587 163.65890	.55210 .24041 .14716 .10358 .07878	•72746 •44525 •31341 •23838	• 80992 • 57009 • 43360	•85407 •64958	•88163
• 30	.50	1 S T 2 N D 3 R D 4 T H 5 T H	7.44300 26.12277 55.91522 96.81186 148.81207	.56042 .24140 .14535 .10080 .07568	.72591 .43703 .30309 .22756	•80542 •55857 •41938	•84921 •63758	•87696
.30	.60	1 ST 2ND 3RD 4TH 5TH	7.52346 24.78834 51.73126 88.34706 134.63529	•56780 •24136 •14271 •09737 •07207	.72397 .42802 .29203 .21614	• 80058 • 54622 • 40427	•84396 •62464	.87188
.30	.80	1 S T 2 N D 3 R D 4 T H 5 T H	7.61380 22.12734 43.74332 72.46450 108.29149	.57997 .23801 .13488 .08857 .06337	•71874 •40727 •26743 •19135	.78969 .51853 .37100	•83205 •59533	.86022
.30	1.00	1ST 2ND 3RD 4TH 5TH	7.60053 19.47208 36.25901 57.97592 84.62586	.58894 .22988 .12345 .07721 .05290	•71139 •38204 •23893 •16369	•77672 •48577 •33280	•81773 •56022	.84595

49

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOCATIO	ONS OF NOD	ES (X/L)	
• 40	.10	1 S T 2 N D 3 R D 4 T H 5 T H	7.30476 32.35749 75.25262 135.96279 214.48772	•53593 •24186 •15511 •11361 •08938	.73535 .47161 .34544 .27175	•82409 •60361 •47485	•86802 •68285	•89444
• 40	.20	1ST 2ND 3RD 4TH 5TH	7.46322 30.97974 70.50652 126.02268 197.52780	•54664 •24542 •15542 •11256 •08769	•73477 •46530 •33698 •26253	.82044 .59418 .46290	.86414 .67321	.89079
•40	.30	1 S T 2 N D 3 R D 4 T H 5 T H	7.60249 29.60600 65.88782 116.43204 181.23810	.55623 .24799 .15491 .11082 .08542	•73387 •45839 •32793 •25278	.81656 .58416 .45028	•86000 •66290	•88685
• 40	• 40	1ST 2ND 3RD 4TH 5TH	7.72161 28.23606 61.39641 107.19079 165.61856	•56480 •24957 •15359 •10842 •38260	.73263 .45083 .31824 .24247	•81243 •57348 •43694	•85555 •65185	•88261
•40	•50	1 ST 2ND 3RD 4TH 5TH	7.81954 26.86962 57.03213 98.29884 150.66916	•57244 •25016 •15147 •10537 •07926	.73103 .44258 .30788 .23159	.80801 .56207 .42280	.85078 .63997	.87801
•40	•60	1ST 2ND 3RD 4TH 5TH	7.89520 25.50630 52.79481 89.75611 136.38979	.57922 .24975 .14854 .10168 .07541	.72905 .43356 .29677 .22010	• 80327 • 54983 • 40778	• 84562 • 62715	.87301
•40	•80	1 ST 2ND 3RD 4TH 5TH	7.97481 22.78702 44.69932 73.71740 109.84064	.59040 .24577 .14018 .09239 .06627	.72381 .41281 .27208 .19515	•79260 •52239 •37468	•83394 •59814	• 86153
•40	1.00	1ST 2ND 3RD 4TH 5TH	7.94921 20.07249 37.10783 59.07225 85.96933	.59862 .23707 .12824 .08056 .05535	•71653 •38759 •24347 •16730	•77990 •48992 •33664	•81990 •56338	.84752

Ψ	Φ	MODE	FREQUENCY CONSTANT, K	LOCATIONS OF NODES (X/L)							
• 50	.10	1ST 2ND 3RD 4TH 5TH	7.70451 33.22605 76.58974 137.76862 216.76231	•55026 •25206 •16241 •11924 •09393	.74052 .47714 .35031 .27596	•82630 •60664 •47790	•86926 •68478	• 89523			
•50	.20	1ST 2ND 3RD 4TH 5TH	7.85944 31.81981 71.79048 127.75066 199.69988	•56006 •25513 •16235 •11787 •09196	•73985 •47078 •34179 •26667	•82272 •59730 •46602	•86545 •57523	.89163			
• 50	.30	1 S T 2 ND 3 R D 4 T H 5 T H	7.99483 30.41752 67.11858 118.08217 183.30764	•56885 •25725 •16150 •11584 •08943	•73888 •46383 •33269 •25686	.81892 .58737 .45348	•86137 •66502	.88775			
•50	• 40	1 S T 2 N D 3 R D 4 T H 5 T H	8.10973 29.01891 62.57391 108.76303 167.58556	•57673 •25842 •15987 •11316 •08637	.73758 .45625 .32296 .24649	•81486 •57679 •44022	.85700 .65408	• 38 357			
• 50	.50	1 ST 2 ND 3 RD 4 TH 5 TH	8.20310 27.62368 58.15633 99.79315 152.53357	.58375 .25864 .15746 .10986 .08279	•73594 •44798 •31255 •23555	.81053 .56549 .42617	.85231 .64232	.87904			
•50	.60	1ST 2ND 3RD 4TH 5TH	8.27384 26.23144 53.86561 91.17242 138.15160	•59000 •25790 •15426 •10592 •07872	.73394 .43894 .30141 .22399	•80588 •55336 •41123	•84724 •62962	.87411			
• 50	.80	1 S T 2 N D 3 R D 4 T H 5 T H	8.34252 23.45375 45.66350 74.97754 111.39706	.60029 .25331 .14539 .09617 .06915	.72869 .41819 .27664 .19890	•79542 •52616 •37830	.83577 .60090	.86282			
.50	1.00	1 S T 2 N D 3 R D 4 T H 5 T H	8.30437 20.67981 37.95372 60.17573 87.32002	.60783 .24409 .13296 .08388 .05781	•72147 •39300 •24794 •17086	•78298 •49397 •34041	•82200 •56647	.84904			

.. _ __

l

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOCATIC	NS OF NODES	5 (X/L)	
•60	•10	15T 2ND 3RD 4TH 5TH	8.11171 34.10197 77.93421 139.58179 219.04425	.56362 .26187 .16950 .12473 .09839	•74545 •48250 •35504 •28008	•82845 •60961 •48089	•87048 •68668	.89601
.60	.20	1ST 2ND 3RD 4TH 5TH	8.26298 32.66723 73.08178 129.48601 201.87928	.57262 .26448 .16909 .12306 .09615	•74471 •47609 •34648 •27073	.82494 .60035 .46909	•86672 •67722	.89246
.60	.30	1 ST 2ND 3RD 4 TH 5 TH	8.39438 31.23633 68.35665 119.73962 185.38451	.58070 .26619 .16793 .12076 .09338	.74367 .46911 .33734 .26086	•82121 •59052 •45663	.86271 .66711	• 88863
.60	•40	1 ST 2 ND 3 RD 4 T H 5 T H	8.50494 29.80902 63.75872 110.34258 169.55988	•58795 •26698 •16600 •11783 •09008	.74232 .46151 .32757 .25044	•81723 •58004 •44345	•85842 •65627	.88451
.60	.50	1ST 2ND 3RD 4TH 5TH	8.59363 28.38496 59.28779 101.29476 154.40532	.59443 .26686 .16332 .11428 .08628	.74065 .45323 .31713 .23943	•81298 •56883 •42947	•85381 •64462	•88005
.60	•60	1 ST 2ND 3RD 4TH 5TH	8.65935 26.96374 54.94365 92.59603 139.92068	.60019 .26580 .15986 .11011 .08199	•73862 •44419 •30595 •22782	•80841 •55681 •41462	•84883 •63205	• 87520
•60	•80	1ST 2ND 3RD 4TH 5TH	8.71689 24.12752 46.63435 76.24491 112.96074	.60968 .26065 .15051 .09992 .07201	•73338 •42345 •28111 •20259	•79816 •52986 •38185	•83756 •60360	•86409
.60	1.00	1 ST 2 ND 3 RD 4 T H 5 T H	8.66598 21.29402 38.82667 61.28636 88.67790	•61661 •25094 •13762 •08719 •06026	•72623 •39829 •25233 •17439	•78597 •49794 •34413	•82405 •56951	• 85054

TABLE	3.	NATURAL	FREQUENCIES A	ND NODES	FOR	TAPERED	FREE-	FREE	BEAMS	OF
			SYMME	TRICAL MC	DDE					

Ψ	Φ	MODE	FREQUENCY CONSTANT, K		LOCATIONS OF NODES (X/L)					
.80	.10	1ST 2ND 3RD	8.94826 35.87586 80.64518	•58784 •28040 •18308	•75467 •49272	. 83258				
		4 TH 5 TH	143.23018 223.63016	•13531 •10703	•36417 •28805	•61535 •48672	•87283 •69038	.89753		
• 80	•20	1 ST 2ND 3RD	9.09185 34.38400 75.68635	•59547 •28220 •18205	•75380 •48625	•82919				
		4TH 5TH	132.97867 206.26014	•13311 •10431	•35553 •27860	•60627 •47507	.86919 .68109	.89407		
•80	• 30	1ST 2ND 3RD 4TH	9.21490 32.89580 70.85474 123.07650	.60236 .28317 .18032 .13031	•75266 •47923 •34632	-82559 -59661	•86531			
80	40	5TH	189.56025	•10107	•26863	•46276	.67117	.89035		
	• +0	2ND 3RD 4TH 5TH	31.41095 66.15020 113.52360 173.53047	.28330 .17786 .12691 .09734	.75124 .47160 .33650 .25811	•82176 •58632 •44973	•86116 •66054	- 88634		
•80	• 50	1 ST 2ND 3RD 4TH	9.39549 29.92909 61.57252 104.31985	.61408 .28256 .17469 .12291	.74951 .46331 .32600	• 81766 • 57532	.85670			
.80	.60	5ТН 15Т	158.17068 9.45086	•09313 •61901	.24701	•43591	.64911	.88201		
		2ND 3RD 4TH 5TH	28.44975 57.12144 95.46505 143.48078	•28093 •17076 •11832 •08844	.74746 .45427 .31477 .23529	•81326 •56351 •42122	.85189 .63678	.87730		
.80	•80	1 S T 2 ND 3 R D 4 T H 5 T H	9.48552 25.49611 48.59751 78.80130	•62712 •27478 •16052 •10730	•74223 •43357 •28982 •20982	•80340 •53702	•84102 •60887	. 86654		
.80	1.00	1ST 2ND 3RD	9.40851 22.54303 40.57372	.63297 .26417 .14678	•73523 •40850	.79168				
		4TH 5TH	63.52904 91.41526	•09374 •06515	.26089 .18131	•50562 •35138	.82800 .57542	.85343		

·--

Ψ	Φ	MODE	FREQUENCY CONSTANT, K	LOCATIONS OF NODES (X/L)							
1.00	.10	1 ST 2 ND 3 RD 4 T H 5 T H	9.81405 37.67907 83.38550 146.90791 228.24542	.60923 .29763 .19593 .14543 .11533	.76314 .50235 .37287 .29569	•83648 •62386 •49236	•87509 •69396	.89900			
1.00	•20	1 ST 2ND 3RD 4 TH 5 TH	9.94950 36.12995 78.32020 136.50064 210.67030	.61577 .29874 .19437 .14276 .11217	.76217 .49584 .36418 .28616	.83321 .61194 .48084	•87156 •68484	•89563			
1.00	• 30	1ST 2ND 3RD 4TH 5TH	10.06378 34.58428 73.38202 126.44264 193.76527	.62168 .29908 .19214 .13951 .10853	•76095 •48880 •35492 •27611	•82974 •60246 •46868	•86781 •67510	•89201			
1.00	• 40	1 ST 2ND 3RD 4TH 5TH	10.15593 33.04173 68.57077 116.73384 177.53030	.62700 .29863 .18922 .13569 .10441	•75947 •48116 •34505 •26551	•82604 •59235 •45580	•86379 •66467	•88811			
1.00	.50	1 S T 2 N D 3 R D 4 T H 5 T H	10.22488 31.50187 63.88623 107.37406 161.96526	.63177 .29736 .18560 .13129 .09982	.75771 .47287 .33451 .25433	•82209 •58154 •44214	•85947 •65345	-88390			
1.00	.60	1 S T 2 N D 3 R D 4 T H 5 T H	10.26950 29.95420 59.32808 98.35312 147.07000	.63601 .29524 .18125 .12631 .09477	•75564 •46384 •32325 •24252	•81785 •56993 •42761	•85482 •64134	•87933			
1.00	.80	1 S T 2 ND 3 RD 4 TH 5 TH	10.28050 26.89264 50.58920 81.38650 119.28795	.64296 .28820 .17022 .11453 .08328	.75047 .44321 .29822 .21685	•80834 •54389 •39549	•84432 •61395	-86889			
1.00	1.00	1 ST 2 ND 3 RD 4 TH 5 TH	10.17662 23.81939 42.34886 65.80021 94.18135	.64792 .27682 .15570 .10021 .07001	•74362 •41825 •26919 •18807	.79707 .51299 .35841	.83176 .58111	• 85621			

TABLE 4. NATURAL FREQUENCIES FOR TRUNCATED BEAMS

Ψ	Φ	1ST MODE	2ND MODE	1ST MODE	2ND MODE
. 1	.0	3.67847	22.36876	3.61365	22.22533
•2	•0	3.84786	22.70905	3.71272	22.41816
• 3	• 0	4.02157	23.05519	3.81430	22.61243
• 4	• 0	4.20091	23.40771	3.91801	22.80770
• 5	• 0	4.38517	23.76588	4.02307	23.00573
•6	• 0	4.57712	24.13146	4.13134	23.20523
• 7	• 0	4.77262	24.50256	4.24163	23.40584
• 8	• 0	4.97587	24.88047	4•35377	23.60921
• 9	• 0	5.18301	25.26468	4.46853	23.81437
1.0	• 0	5.39691	25.65562	4.58573	24.02130
• 0	.1	3.61104	21.40556	3.56582	21.56926
• 0	• 2	3.70551	20.77436	3.61455	21.10498
• 0	• 3	3.79561	20.14155	3.66175	20.64266
• 0	• 4	3.88164	19.50751	3.70660	20.18308
• 0	.5	3.96387	18.87350	3.75005	19.72495
• 0	•6	4.04053	18.24194	3.79130	19.27075
• 0	•7	4.11409	17.61204	3.83125	18.82074
.0	• 8	4.18075	16.98365	3.86828	18.36944
• 0	.9	4.23912	16.36086	3.90247	17.97842
• 0	1.0	4.29265	15.74243	3.93432	17.59643
1	• 1	3.77736	21.73113	3.66352	21.75592
.2	.2	4.04253	21.41178	3.81260	21.47170
.3	.3	4.31454	21.07969	3.96323	21.18252
.4	.4	4.58885	20.73267	4.11464	20.88849
• 5	.5	4.86505	20.37156	4.26638	20.59206
• 6	.6	5.14136	19.99895	4.41749	20.29139
• 7	•7	5.41396	19.61430	4.56803	19.98790
.8	.8	5.68160	19.21557	4.71720	19.68703
.9	.9	5.94408	18.80675	4.86446	19.40364
1.0	1.0	6.19721	18.38376	5.00722	19.13450

C = 0.2

_

C = 0.4

1

• •• '

Ψ	Φ	с	UPPER BOUND	LOWER BOUND	Ψ	Φ	с	UPPER BOUND	LOWER BOUND
•00	•00	•00 •10 •20 •30 •40 •50 •75	3.46410 3.46410 3.46410 3.46410 3.46410 3.46410 3.46410 3.46410	3.53009 3.53009 3.53009 3.53009 3.53009 3.53009 3.53009 3.53009	.00	.60	.00 .10 .20 .30 .40 .50 .75	4.57891 4.13003 3.92379 3.79515 3.70554 3.63910 3.52972	5.13806 4.58113 4.27828 4.07590 3.92952 3.81882 3.63569
•00	•10	.00 .10 .20 .30 .40 .50 .75	3.68862 3.59159 3.55178 3.52681 3.50935 3.49645 3.47570	3.79204 3.68841 3.64280 3.61297 3.59139 3.57492 3.54703	• 00	.80	.00 .10 .20 .30 .40 .50 .75	4.79400 4.27443 4.02933 3.87526 3.76697 3.68584 3.54938	5.69898 4.98299 4.56564 4.28366 4.07954 3.92557 3.67299
• 00	•20	.00 .10 .20 .30 .40 .50 .75	3.89954 3.71413 3.63587 3.58693 3.55281 3.52763 3.48703	4.05588 3.85364 3.76033 3.69910 3.65480 3.62107 3.56424	.00	1.00	.00 .10 .20 .30 .40 .50 .75	4.89898 4.36092 4.10184 3.93573 3.81669 3.72577 3.56785	6.27495 5.40881 4.87170 4.50434 4.23801 4.03760 3.71133
• 00	• 30	•00 •10 •20 •30 •40 •50 •75	4.09560 3.83053 3.71576 3.64415 3.59431 3.55755 3.49811	4.32206 4.02565 3.88267 3.78846 3.72032 3.66854 3.58171	• 10	•00	• 00 • 10 • 20 • 30 • 40 • 50 • 75	3.78444 3.67314 3.62115 3.58526 3.55780 3.53561 3.49402	3.86568 3.75169 3.69739 3.65957 3.63046 3.60684 3.56231
.00	• 40	.00 .10 .20 .30 .40 .50 .75	4.27532 3.93954 3.79081 3.69814 3.63371 3.58616 3.50892	4.59096 4.20432 4.00978 3.88105 3.78795 3.71732 3.59944	• 10	.10	.00 .10 .20 .30 .40 .50 .75	4.00639 3.80288 3.71002 3.64854 3.60329 3.56805 3.50561	4.13031 3.91666 3.81446 3.74524 3.69349 3.65270 3.57944
.00	•50	•00 •10 •20 •30 •40 •50 •75	4.43706 4.03983 3.86039 3.74859 3.67084 3.61336 3.51946	4.86287 4.38953 4.14166 3.97686 3.85768 3.76741 3.61744	.10	.20	.00 .10 .20 .30 .40 .50 .75	4.21433 3.92704 3.79498 3.70906 3.64691 3.59927 3.51693	4.39723 4.08853 3.93642 3.83419 3.75866 3.69991 3.59684

-- · · · ·

I

Ψ	Φ	с	UPPER BOUND	LOWER BOUND	Ψ	Φ	с	UPPER BOUND	LOWER BOUND
.10	. 30	•00 •10 •20 •30 •40 •50 •75	4.40690 4.04439 3.87539 3.76650 3.68849 3.62920 3.52800	4.66685 4.26717 4.06324 3.92643 3.82597 3.74844 3.61450	•20	•00	.00 .10 .20 .30 .40 .50 .75	4.11047 3.88993 3.78311 3.70949 3.65338 3.60824 3.52414	4.20899 3.98278 3.87085 3.79299 3.73330 3.68508 3.59481
.10	• 40	•00 •10 •20 •30 •40 •50 •75	4.58258 4.15365 3.95063 3.82055 3.72787 3.65777 3.53879	4.93946 4.45242 4.19490 4.02195 3.89542 3.79830 3.63242	.20	.10	.00 .10 .20 .30 .40 .50 .75	4.32982 4.02164 3.87305 3.77328 3.69909 3.64075 3.53571	4.47647 4.15437 3.99235 3.88149 3.79810 3.73200 3.61213
.10	• 50	.00 .10 .20 .30 .40 .50 .75	4.73962 4.25347 4.02000 3.87085 3.76488 3.68489 3.54930	5.21532 4.64414 4.33135 4.12073 3.96700 3.84949 3.65061	.20	•20	•00 •10 •20 •30 •40 •50 •75	4.53467 4.14712 3.95874 3.83414 3.74284 3.67201 3.54703	4.74663 4.33284 4.11879 3.97333 3.86506 3.78026 3.62971
.10	•60	•00 •10 •20 •30 •40 •50 •75	4.87608 4.34245 4.08282 3.91706 3.79936 3.71049 3.55954	5.49465 4.84219 4.47258 4.22278 4.04072 3.90201 3.66906	.20	.30	.00 .10 .20 .30 .40 .50 .75	4.72361 4.26510 4.03955 3.89174 3.78446 3.70193 3.55808	5.01978 4.51802 4.25014 4.06849 3.93419 3.82988 3.64757
.10	.80	.00 .10 .20 .30 .40 .50 .75	5.07807 4.48208 4.18599 3.99587 3.86007 3.75683 3.57913	6.06430 5.25671 4.76927 4.43667 4.19457 4.01104 3.70675	.20	•40	.00 .10 .20 .30 .40 .50 .75	4.89506 4.37428 4.11480 3.94575 3.82378 3.73043 3.56885	5.29619 4.70976 4.38636 4.16697 4.00548 3.88084 3.66568
.10	1.00	•00 •10 •20 •30 •40 •50 •75	5.16633 4.56063 4.25446 4.05419 3.90864 3.79617 3.59752	6.64945 5.69483 5.08473 4.66363 4.35697 4.12539 3.74550	• 20	•50	.00 .10 .20 .30 .40 .50 .75	5.04723 4.47328 4.18382 3.99583 3.86064 3.75745 3.57934	5.57605 4.90791 4.52742 4.26876 4.07894 3.93314 3.68407

_

Ψ	Φ	с	UPPER BOUND	LOWER BOUND	Ψ	Φ	с	UPPER BOUND	LOWER BOUND
.20	•60	•00 •10 •20 •30 •40 •50 •75	5.17811 4.56070 4.24589 4.04162 3.89487 3.78290 3.58955	5.85955 5.11232 4.67330 4.37386 4.15456 3.98679 3.70272	• 30	.30	.00 .10 .20 .30 .40 .50 .75	5.04571 4.49254 4.20822 4.01987 3.88223 3.77573 3.58835	5.38093 4.77819 4.44343 4.21469 4.04501 3.91288 3.68092
.20	•80	.00 .10 .20 .30 .40 .50 .75	5.36656 4.69487 4.34633 4.11895 3.95475 3.82880 3.60907	5.43796 5.53927 4.97934 4.59396 4.31229 4.09811 3.74081	. 30	.40	•00 •10 •20 •30 •40 •50 •75	5.21275 4.60130 4.28334 4.07378 3.92146 3.80416 3.59910	5.66119 4.97633 4.58425 4.31618 4.11817 3.96495 3.69923
.20	1.00	•00 •10 •20 •30 •40 •50 •75	5.43765 4.76478 4.41039 4.17494 4.00209 3.86750 3.62738	7.03230 5.98943 5.30421 4.82725 4.47868 4.21482 3.77995	.30	•50	.00 .10 .20 .30 .40 .50 .75	5.35985 4.69915 4.35183 4.12355 3.95812 3.83106 3.60957	5.94509 5.18080 4.72995 4.42101 4.19353 4.01838 3.71781
.30	•00	.00 .10 .20 .30 .40 .50 .75	4.44230 4.11441 3.95000 3.83681 3.75086 3.68199 3.55446	4.56015 4.22339 4.05059 3.93044 3.83867 3.76484 3.62758	.30	•60	.00 .10 .20 .30 .40 .50 .75	5.48494 4.78465 4.41298 4.16883 3.99206 3.85634 3.61975	6.23279 5.39144 4.88048 4.52919 4.27108 4.07317 3.73666
• 30	•10	.00 .10 .20 .30 .40 .50 .75	4.65893 4.24779 4.04088 3.90105 3.79676 3.71456 3.56602	4.83064 4.40155 4.17655 4.02181 3.90525 3.81282 3.64509	• 30	•80	.00 .10 .20 .30 .40 .50 .75	5.65943 4.91267 4.51033 4.24449 4.05104 3.90175 3.63921	6.81998 5.83058 5.19589 4.75556 4.43274 4.18682 3.77515
.30	.20	.00 .10 .20 .30 .40 .50 .75	4.86056 4.37426 4.12718 3.96218 3.84061 3.74583 3.57732	5.10415 4.58654 4.30751 4.11657 3.97403 3.86217 3.66287	• 30	1.00	.00 .10 .20 .30 .40 .50 .75	5.71288 4.97328 4.56961 4.29796 4.09704 3.93977 3.65743	7.42349 6.29253 5.53018 4.99526 4.60316 4.30591 3.81470

- --

_

ľ

Ψ	Φ	С	UPPER BOUND	LOWER BOUND	Ψ	Φ	с	UPPER BOUND	LOWER BOUND
•40	•00	.00 .10 .20 .30 .40 .50 .75	4.77996 4.34650 4.12184 3.96724 3.85026 3.75687 3.58497	4.91929 4.47354 4.23667 4.07198 3.94659 3.84613 3.66064	• 40	•60	• 00 • 10 • 20 • 30 • 40 • 50 • 75	5.79655 5.01420 4.58408 4.29869 4.09093 3.93080 3.65014	6.61438 5.67949 5.09417 4.68884 4.39031 4.16117 3.77089
•40	.10	.00 .10 .20 .30 .40 .50 .75	4.99375 4.48122 4.21353 4.03187 3.89632 3.78949 3.59653	5.19293 4.65818 4.36715 4.16627 4.01499 3.89519 3.67834	• 40	.80	• 00 • 10 • 20 • 30 • 40 • 50 • 75	5.95664 5.13539 4.67798 4.37251 4.14892 3.97569 3.66953	7.21036 6.13056 5.41897 4.92155 4.55595 4.27718 3.80978
•40	.20	• 00 • 10 • 20 • 30 • 40 • 50 • 75	5.19199 4.60836 4.30027 4.09320 3.94022 3.82076 3.60782	5.46988 4.84961 4.50267 4.26398 4.08561 3.94564 3.69631	• 40	1.00	• 00 • 10 • 20 • 30 • 40 • 50 • 75	5.99199 5.18602 4.73208 4.42325 4.19350 4.01298 3.68766	7.82303 6.60404 5.76267 5.16770 4.73045 4.39868 3.84975
•40	.30	.00 .10 .20 .30 .40 .50 .75	5.37318 4.72660 4.38141 4.15091 3.98181 3.85061 3.61883	5.75035 5.04762 4.64317 4.36511 4.15846 3.99746 3.71456	• 50	•00	•00 •10 •20 •30 •40 •50 •75	5.12348 4.58609 4.29863 4.10081 3.95158 3.83290 3.61569	5.28650 4.73319 4.42920 4.21766 4.05711 3.92898 3.69398
•40	• 40	.00 .10 .20 .30 .40 .50 .75	5.53563 4.83460 4.45623 4.20463 4.02090 3.87895 3.62955	6.03450 5.25206 4.78862 4.46963 4.23353 4.05066 3.73307	• 50	.10	.00 .10 .20 .30 .40 .50 .75	5.33427 4.72183 4.39098 4.16575 3.99776 3.86554 3.62724	5.56339 4.92424 4.56422 4.31491 4.12735 3.97914 3.71187
•40	• 50	.00 .10 .20 .30 .40 .50 .75	5.67746 4.93095 4.52403 4.25400 4.05734 3.90571 3.63999	6.32247 5.46274 4.93897 4.57755 4.31081 4.10523 3.75184	• 50	.20	.00 .10 .20 .30 .40 .50 .75	5.52896 4.84930 4.47803 4.22722 4.04169 3.89680 3.63851	5.84385 5.12200 4.70432 4.41562 4.19985 4.03069 3.73004

I

Ψ	Φ	с	UPPER BOUND	LOWER BOUND	Ψ	Φ	с	UPPER BOUND	LOWER BOUND
•50	• 30	•00 •10 •20 •30 •40 •50 •75	5.70600 4.96716 4.55910 4.28485 4.08321 3.92658 3.64950	6.12806 5.32627 4.84944 4.51979 4.27460 4.08364 3.74848	. 60	•00	•00 •10 •20 •30 •40 •50 •75	5.47284 4.83306 4.48037 4.23752 4.05484 3.91006 3.64662	5.66186 5.00233 4.62823 4.36756 4.17027 4.01341 3.72760
•50	• 40	.00 .10 .20 .30 .40 .50 .75	5.86365 5.07406 4.63346 4.33830 4.12213 3.95481 3.66020	6.41614 5.53688 4.99953 4.62739 4.35159 4.13798 3.76719	.60	.10	• 00 • 10 • 20 • 30 • 40 • 50 • 75	5.68047 4.96949 4.57324 4.30271 4.10111 3.94272 3.65815	5.94208 5.19968 4.76782 4.46781 4.24238 4.06468 3.74569
•50	.50	• 00 • 10 • 20 • 30 • 40 • 50 • 75	6.00000 5.16857 4.70039 4.38721 4.15829 3.98141 3.67061	6.70820 5.75364 5.15454 4.73842 4.43082 4.19370 3.78617	• 60	.20	•00 •10 •20 •30 •40 •50 •75	5.87142 5.09695 4.66044 4.36423 4.14503 3.97394 3.66940	6.22612 5.40365 4.91253 4.57156 4.31677 4.11736 3.76406
.50	.60	• 00 • 10 • 20 • 30 • 40 • 50 • 75	6.11289 5.24922 4.75916 4.43120 4.19150 4.00629 3.68073	7.00434 5.97637 5.31443 4.85286 4.51230 4.25082 3.80541	•60	•30	.00 .10 .20 .30 .40 .50 .75	6.04411 5.21410 4.74127 4.42172 4.18644 4.00364 3.68036	6.51410 5.61406 5.06228 4.67879 4.39344 4.17144 3.78269
.50	.80	.00 .10 .20 .30 .40 .50 .75	6.25815 5.36292 4.84923 4.50299 4.24840 4.05061 3.70004	7.60910 5.43911 5.64861 5.09196 4.68197 4.36921 3.84471	• 60	.40	.00 .10 .20 .30 .40 .50 .75	6.19677 5.31955 4.81500 4.47482 4.22515 4.03174 3.69104	6.80614 5.83071 5.21703 4.78951 4.47239 4.22694 3.80160
.50	1.00	.00 .10 .20 .30 .40 .50 .75	6.27495 5.40292 4.89778 4.55081 4.29146 4.08714 3.71808	8.23093 6.92384 6.00168 5.34461 4.86060 4.49316 3.88509	.60	•20	•00 •10 •20 •30 •40 •50 •75	6.32744 5.41188 4.88089 4.52316 4.26098 4.05816 3.70143	7.10230 6.05342 5.37671 4.90368 4.55360 4.28383 3.82078

60

- ----

|

I

Ψ	Φ	с	UPPER BOUND	LOWER BOUND	Ψ	Φ	с	UPPER BOUND	LOWER BOUND
.60	.60	.00 .10 .20 .30 .40	6.43391 5.48960 4.93820 4.56637 4.29377	7.40267 6.28200 5.54127 5.02130 4.63708	- 80	•30	•00 •10 •20 •30 •40	6.73607 5.72654 5.11899 4.70423 4.39840	7.31124 6.21672 5.50787 5.01000 4.63944
		•50 •75	4.08282 3.71151	4.34213 3.84023			•50 •75	4.16107 3.74270	4.35199 3.85200
•60	.80	•00 •10	6.56390 5.59514	8.01622 6.75613 5.88482	.80	•40	•00 •10	6.87814 5.82809	7.61123 6.44505 5.67193
		• 30 • 40	4.63594 4.34950	5.26684 4.81082			•20 •30 •40	4.75636 4.43656	5.12703
		•50 •75	4.12653 3.73074	4.46294 3.87994			•50 •75	4.18885 3. 7 5332	4.40984 3.87131
.60	1.00	•00 •10 •20	6.56171 5.62389 5.06668	8.64718 7.25185 6.24724	.80	•50	•00 •10 •20	6.99682 5.91505 5.25420	7.91563 6.67923 5.84094
		• 30 • 40	4.68053 4.39093	5.52604 4.99362			•30 •40	4.80330 4.47163	5.24757 4.80759
		•75	4•10224 3•74869	3.92073			• 75	4•21485 3•76364	3.89089
.80	•00	•00 •10 •20	6.18902 5.34864 4.85869	6.43723 5.56883 5.04607 4.68026	-80	•60	•00 •10 •20	7.08982 5.98592 5.30803	8.22447 6.91909 6.01484 5.37163
		• 40 • 50	4.26723 4.06786	4.40465 4.18708			•40 •50	4.50342 4.23899	4.89514 4.52983
.80	.10	•00 •10	6•38977 5•48542	6.72429 5.77840	• 80	•80	•00 •10	7.18799 6.07323	8.85557 7.41518
		•20 •30 •40	4.95214 4.58590 4.31356	5.19487 4.78660 4.48058			•20 •30 •40	5.38434 4.90919 4.55650	6.37703 5.63019 5.07717
		•50 •75	4.10049 3.72057	4.24061 3.81420			•50 •75	4.28135 3.79271	4.65554 3.95129
•80	.20	•00 •10 •20	6.57267 5.61184 5.03915	7.01561 5.99444 5.34883	.80	1.00	•00 •10 •20	7.14647 6.07763 5.41391	9.50473 7.93210
		• 30 • 40	4.64728	4.89652 4.55884			•30 •40	4.94702 4.59437	5.90259
		• 50 • 75	4.13159 3.73178	4.29558 3.83296			•50 •75	4.31528 3.81046	4.78698 3.99292

Ψ	Φ	с	UPPER BOUND	LOWER	Ψ	Φ	С	UPPER BOUND	LOWER BOUND
1.00	.00	.00 .10 .20 .30 .40 .50	6.92820 5.89209 5.25670 4.81608 4.48749 4.23031	7.24569 6.17242 5.49065 5.01052 4.65004 4.36731	1.00	.60	.00 .10 .20 .30 .40	7.76392 6.50219 5.69329 5.13355 4.71991 4.39933	9.07980 7.58991 6.51501 5.74018 5.16478 4.72442
		• 75	3.77234	3.86499			• 75	3.83656	3.98247
1.00	•10	•00 •10 •20	7.12130 6.02787 5.35007	7.53977 6.39369 5.64868	1.00	•80	•00 •10 •20	7.82856 6.56883 5.75852	9.72840 8.10688 6.89566
		•30 •40 •50	4.88149 4.53373 4.26284	5.12308 4.72988 4.42316			•30 •40 •50	5.19222 4.76994 4.44016	6.01191 5.35527 4.85515
		• 75	3-78380	3.88388			• 75	3.85545	4.02384
1.00	•20	•00 •10	7.29537 6.15190	7.83849 6.62122	1.00	1.00	.00 .10	7.74597	10.39568 8.64398
		•20 •30	5.43021 4.94241	5.23930			• 30	5.22233	6.29764
		• 40	4.57721	4.81212			•40	4.80384	5.55516
		•50 •75	4.29374 3.79496	4.48049 3.90304			•50 •75	4•47214 3•87298	4.99172 4.06632
1.00	•30	•00	7.44868	8.14184	.25	.25	•00	4.79257	5.06144
		• 20	5.51437	5.98022			.20	4.08352	4.27855
		. 30	4.99846	5.35914			•30	3.92706	4.09233
		•40	4.61776	4.89673			•40	3.81259	3.95397
		• 75	4.32292 3.80583	4.53928 3.92248			• 75	3.56771	3.65520
1.00	•40	.00	7.57934	8.44984	• 75	•75	.00	7.01561 5.93616	8.48425
		.20	5.58379	6.15356			.20	5.27732	6.16033
		• 30	5.04926	5.48258			.30	4.82584	5.47252
		• 40	4.65518	4.98371			•40	4.49205	4.96365
		•50 •75	4.35030 3.81638	4.59953 3.94220			•50 •75	4.23235 3.77249	4.57509 3.92315
1.00	• 50	• 00	7.68521	8.76249	.90	•90	.00	7.49528	9.61462
		• 10 • 20	5.64359	6.33185			• 10	5.58736	6.82582
		.30	5.09442	5.60960			.30	5.07015	5.95653
		• 40	4.68929	5.07306			•40	4.68243	5.31135
		.50	4.37580	4.66125			• 50	4.37786	4.82073
		• 75	3.82663	3.96220			.75	3.83297	4.00830

TABLE 6. RADII OF GYRATION FOR DIFFERENT CROSS-SECTIONS

_

- ---

þ. =- - -

--

γ.	β	RADIUS/h	γ	β	RADIUS/h	γ	β	RADIUS/h
1.00	1.00	.40825	2.00	1.00	.47809	4.00	1.00	.52298
	1.25	.42008		1.25	•48467		1.25	•52641
	1.50	• 43033		1.50	•49042		1.50	• 52 9 4 3
	1.75	.43930		1.75	•49549		1.75	•53212
	2.00	•44721		2.00	.50000		2.00	•53452
	2.50	•46057		2.50	.50767		2.50	. 53864
	3.00	•47140		3.00	.51394		3.00	• 54203
	3.50	.48038		3.50	. 51918		3.50	• 54 4 88
	4.00	•48795		4.00	•52361		4.00	•54730
	5.00	•50000		5.00	.53071		5.00	•55120
	7.00	.51640		7.00	.54045		7.00	.55658
	10.00	•53108		10.00	•54924		10.00	•56148
1.25	1.00	•43355	2.50	1.00	•49507	5 . 00	1.00	.53300
	1.25	• 44345		1.25	.50043		1.25	• 53576
	1.50	.45204		1.50	.50513		1.50	•53821
	1.75	•45958		1.75	•50929		1.75	•54038
	2.00	• 46625		2.00	•51299		2.00	.54233
	2.50	.47753		2.50	•51930		2.50	•54566
	3.00	.48671		3.00	.52448		3.00	.54842
	3.50	•49433		3.50	.52881		3.50	.55074
	4.00	.50076		4.00	• 53248		4.00	.55271
	5.00	.51102		5.00	.53837		5.00	• 55589
	7.00	• 52 502		7.00	• 54647		7.00	•56030
	10.00	•53759		10.00	• 55380		10.00	•56431
1.50	1.00	.45227	3.00	1.00	.50709	7.00	1.00	.54495
	1.25	.46075		1.25	.51161		1.25	•54694
	1.50	•46813		1.50	•51558		1.50	•54870
	1.75	•47463		1.75	•51909		1.75	.55027
	2.00	•48038		2.00	• 52223		2.00	.55168
	2.50	•49014		2.50	.52759		2.50	.55410
	3.00	•49809		3.00	• 53200		3.00	.55611
	3.50	. 50471		3.50	.53569		3.50	.55779
	4.00	•51030		4.00	.53882		4.00	• 55923
	5.00	•51924		5.00	• 54 38 5		5.00	•56156
	7.00	•53145		7.00	• 55079		7.00	.56478
	10.00	• 54244		10.00	.55708		10.00	.56773
1.75	1.00	.46667	3.50	1.00	.51605	10.00	1.00	•55427
	1.25	•47408		1.25	. 51995		1.25	•55567
	1.50	•48055		1.50	• 52338		1.50	.55691
	1.75	.48625		1.75	• 52643		1.75	•55802
	2.00	.49130		2.00	.52915		2.00	•55902
	2.50	•49989		2.50	.53381		2.50	.56073
	3.00	.50691		3.00	• 53764		3.00	•56216
	3.50	.51275		3.50	•54085		3.50	.56335
	4.00	.51770		4.00	•54358		4.00	• 56438
	5.00	•52561		5.00	• 54798		5.00	•56604 F(00)
	7.00	·53645		10.00	• 55404 FF055		10.00	• 5 5 8 3 4 5 7 0 / 5
	10.90	. 346//		10.00			10.00	

.

63

.

Fig. 1 Cantilever Beam

Fig. 2 Free-Free Beam

I

Fig. 3 Ratio of Frequencies of Cantilever Beams with Cross-Section Varying in Width to Those of Uniform Cross-Section

Fig. 4 Ratio of Frequencies of Cantilever Beams with Cross-Section Varying in Thickness to Those of Uniform Cross-Section

Ţ

Fig. 5 Ratio of Frequencies of Cantilever Beams with Cross-Section Varying Both in Width and Thickness to Those of Uniform Cross-Section

Fig. 6 Ratio of Frequencies of Tapered Cantilever Beams to Frequencies of a Uniform Beam

ł

Fig. 7 Mode Shapes for Cantilever Beams with Varying Width and Constant Thickness

ļ

Fig. 8 Mode Shapes for Cantilever Beams with Varying Thickness and Constant Width

Fig.10 Ratio of Frequencies of Antisymmetrical Mode of Tapered Free-Free Beams to Frequencies of a Uniform Beam

1st Mode 1.0 0.8 6.6 1.8 φ 0.4 1.4 6.2 1.0 0.2 0 1.0 0.8 0.4 0.6 ψ

Fig. 11 Ratio of Frequencies of Symmetrical Mode of Tapered Free-Free Beams to Frequencies of a Uniform Beam

Fig.12 Fundamental Frequencies of Truncated Cantilever Beams with Varying Width

Fig. 13 Fundamental Frequencies of Truncated Cantilever Beams with Varying Thickness

Fig. 14 Fundamental Frequencies of Truncated Cantilever Beams with Varying Width and Thickness