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Parameter tracking systems based upon a generalization of the equa-
tion error approach are synthesized for the case wherein the unknown
plant is linear, time-invariant and uncorrupted by noise. Only the plant
input and output are assumed to be measurable. The order of the unknown
plant to which this method is applicable and the number of model param-

eters to be adjusted are arbitrary.

The report proves that these parameter tracking systems are completely
stable and shows that multiple differentiations of the input and output
are not reqguired in order to obtain a set of state variables for this
class of plant. It is further shown that, for a large class of system
inputs, the rate of parameter convergence can always be increased by
increasing the gain in the parameter adjustment loops provided that a
number of independent generalized equation errors equal in number to the

parameters being adjusted are defined in the parameter tracking system.

Weighting filters for a large class of time-varying, linear and non-
linear response error parameter tracking systems are derived, and the

connection between response error and equation error systems is shown.

Experimental results illustrating these analytical findings are also

included in the report. 2
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SECTION I

INTRODUCTION AND SUMMARY

The quest for a simple, economical means for determining a mathemati-
cal model of an unknown plant has led to an identification scheme commonly
called parameter tracking. A parameter tracking system is an adaptive
servomechanism which operates to null a measure of an error in the system
by continuously adjusting the parameters of a model of the unknown plant.
If the system performs as intended, nulling of the error will indicate

that the parameters of the model match those of the unknown plant.

Two basic types of parameter tracking systems have been previously
identified in the literature. These are the equation error based system
(YEQS References 1-6) and the response error based system.(Yigg References
T-14). Equation error is traditionally obtained by summing the input and
output of the plant and appropriate time derivatives of these variables
weighted by estimates of the plant parameters. If (in the agbsence of noise)
these estimates are correct, the plant differential equation will be
satisfied and the sum will be zero. If the estimates are incorrect, the

sum will be the nonzero quantity called equation error.

Response error is the difference between a particular output of the
unknown plant and the corresponding output ol a muiel dymnamically cimilar
in structure but with parameters which are estimates of those of the un-
known plant. When the estimated parameter values equal those of the plant

(in the absence of noise), the difference, the response error, is zero.

Considerable attention has been given these systems in the literature
as may be appreciated from our list of selected references. But beyond
formal statements of the basic concepts of parameter tracking, analytical
advances have been painfully slow. Perhaps the greatest deficiencies
among the tools for analyzing parameter tracking systems prior to this

program were lack of techniques for determining system stability, and



lack of means to improve parameter convergence rates beyond what appeared
to be a certain maximum. (Yigg References % and 9.) This compensation
problem appeared to be an increasingly severe one with the number of
parameters being adjusted For example, Reference 9 states, "On theoreti-
cal grounds the (parameter settling) time would tend to increase with
powers of 2% where n is the number of parameters, considering the geome-
try of angular sectors in hyper-space."” This must be considered as a
limitation only in the context of systems using a scalar error quantity,

but nonetheless it reflects the state-of-the-art at the time.

The remarks above are not to be construed to say that the stability
and compensation problems have been treated without some success, but
rather that the practicality of results was limited. For example, stabil-
ity in the small was investigated in References 7 and 8 for response error
systems. The unknown plants were first and second order forced by a step
or a sinusoidal input. In Reference 3, Miller analyzed equation error
system stability. His results proved that the system was stable but not
necessarily asymptotically stable. An attempt to prove asymptotic stabil-
ity came near success, but in the end was forced to resort to a plausibil-
ity argument. References 7 and 8 also addressed the compensation problem.
There it was found that under constant coefficient assumptions the param-
eter adjustment loop dynamics in a response error system consisted of
weighting filter dynamics plus an integration in a closed-loop. This
analysis pertained only to the step input, one adjustable parameter case
where the model could identically match the plant. With this knowledge
in hand, it was shown how parameter adjustment loop dynamics could be
improved by inserting lead to compensate for weighting filter lag. Hagen,
in Reference 12, came to the same conclusion concerning the parameter ad-
Justment loop dynamics while using a less restrictive analysis based upon
Zadeh's time-varying system function and the partial-system expansion
method. Hagen's approach to compensation was to configure the system in
such a way that the weighting filters had approximately unity transmit-
tances. This could be interpreted as including the use of lead compensa-
tion as in References 7 and 8, or, alternatively, as the use of different

plant variables or model parameters.




OBJECTIVES

In view of the apparent need for more practical analytical tools, the
research obJjectives of this program were to advance the state-of-the-art

in parameter tracking theory with respect to:

o Mafhematical formulations used for analysis
® Determining system stability

® Compensating system performance

In addition, s fairly extensive experimental program was outlined which

would further the emphasis on practicality. This served to:

® Confirm analytical results
® Suggest new analytical approaches
® Explore the practical aspects of the theoretical synthesis.

SUMMARY OF THEORETICAL RESULTS

Initial research was concerned with deriving the weighting filter
equations (References 9 and 11) for a broad class of time-varying linear
and non-linear models. These weighting filters are necessary elements in
the implementation of response error systems. While weighting filters for
time-varying models had been developed heuristically in Reference 9, and
simultaneously, for linear systems only, by a rather invelved method in
Reference 12, the new derivation is both more general and complete. It
is accomplished by performing a variational expansion of the model equa-
tions and decomposing the resulting linear system of equations to reflect

the influence of the individual parametric variations.

By employing a general vector form of the response error in the above
derivation, the conceptual connection between response error and equation
error systems was then demonstrated. Significant in this is the fact that
a way to obtain weighting filters with transmittances of unity as suggested
by Hagen becomes apparent. This involves choosing the unspecified coeffi-
cients in the general form of the response error appropriately. Not too
surprisingly, this choice of coefficients results in an equation error

system. This demonstrates the connection between response error and



equation error systems. The equation error system is a special case of
the general response error system. It is not merely understanding the
basis for distinctions between these systems which lends significance to
this discovery, but rather it is appreciation of the fact that analytical
techniques pertaining to equation error systems can be applied in an
approximate sense for the analysis of response error systems. Used in
this way, the analysis becomes increasingly exact as the weighting filter

transmittances approach unity.

Careful sifting of the body of literature pertaining to equation error
systems exposed an important concept of generating sets of state variables
for constant coefficient linear plants with noise-free signals. Reference
5 shows that it is in fact possible to obtain a complete set of plant state
variables from measured plant input and output signals. (Also see Refer-
ence 4.) A set of state variables can be obtained, for example, by pass-
ing the input and output signals through separate series of constant co-
efficient filters (such as lags). These filters are called state variable
filters. The output of each stage of the filter series is a state vari-
able. Any one set of state variables may then be summed, weighted by the
estimates of the plant parameters. This sum is the generalized equation
error. When the generalized equation error is zero over time, it can be
shown that the estimates of the plant parameters are linearly related to

the coefficients of the plant.

It is, however, a well known fact that the state variables describing
any one plant are not unique. This particular feature allows linearly
independent generalized equation errors to be generated. Considered
collectively, the independent generalized equation errors comprise a

vector.

The idea of generalized equation error is key to the research results
in two ways. First, the disadvantage heretofore associated with equation
error systems, i.e. the necessity for determining a complete of state var-
iables by either direct measurement or by successively differentiating the
directly measurable signals, is removed, at least for constant coefficient

plants with noise-free signals. A set of state variables is seldom di-




rectly measurable in practice, and differentiations cannot actually be
realized, so that the concept of a generalized equation error which can
be generated from the plant input and output using such "nice" operators
as lags, assumes considerable practical importance. Secondly, the fact
that a generalized equation error vector can be defined permits us to
configure a parameter tracking system wherein the convergence rate may

be increased without bound by increasing the parameter adjustment loop
gain. The fact that generalized equation error is an algebraic function
of the model parameters enables a non-negative performance criterion to
be found which is also an algebraic function of the model parameters.

It is then possible to have the parameters adjust along a steepest de-
scent path in parameter space on the criterion surface. Using Liapunov's
second method, it is proven that the generalized equation error system is
asymptotically stable in the large about the matching point in parameter
space for certain plant inputs. This is true when the input contains-a
number of sinusoids of different frequency at least equal to one half

the number of model parameters. Since a random signal over any finite
interval can be regarded as periodic with an infinite number of separate
frequencies, this result will also hold for almost all random inputs over

an interval which may be made arbitrarily large.

Miller, in Reference 3, showed experimentally the existence of an
optimum value of parameter adjustment loop galn in an equation error
system. For any higher or lower parameter adjustment loop gain the
settling time for the model parameters increased. This result was, how-
ever, a direct consequence of The [acti that the criterion surface was not
positive definite, having closed contours. (In these systems equation

error was a scalar quantity.)

Now, the convergence properties of parameter trackers are primarily
determined by the shape of the criterion surface in parameter space. This
is a concept which has not received sufficient consideration in the litera-
ture. Ideally, we would want the criterion surface, at each instant, to be
positive definite with closed contours surrounding the matching point, i.e.

the point in parameter space where the error is identically zero. To syn-



thesize a system which can be made to converge at an arbitrarily rapid
rate simply by turning up the parameter adjustment loop gain, we prove
that it is sufficient to be able to generate such a criterion surface
by defining a number of linearly independent generalized equation errors
equal to the number of parameters to be adjusted. Here, then, equation
error is a vector qguantity. Furthermore, we show that the parameters

must approach their asymptotic values monotonically.

The final analytical result achieved is a proof that a steep descent
in one set of parameter coordinates is equivalent to a steepest descent

in the same coordinate axes but with different parameter scaling.

ORGANIZATION OF THE REPORT

Analytical aspects of the research program including the connection
between equation error and response error systems, the generalization
of equation error, proof of asymptotic stability for generalized equation
error systems, the improvement of parameter convergence rates, and the
transformation of steep descent into steepest descent coordinates are

treated in detail in Section IT.

In Section III, the generalized equation error system performance is
compared with response error system performance, and the analytical re-
sults of Section II are confirmed and illustrated with experimental re-
sults. Some of the performance limitations of generalized equation error
systems are also explored with respect to practical parameter adjustment
rates, rates at which time-varying plant parameters may be tracked, and

the existence of parameter biases because of noise in the measured plant

signals.

The generalized equation error technique was applied to track three
parameters of a simulated human pilot in a compensatory tracking task.
(Simulated remnant effects were included.) This is an example wherein
the signal to noise ratios may tend to be rather small (on the order
three in comparison to infinity for which the theoretical results are
strictly applicable). Performance of this system was not impressive

when a random plant input was used, but a way to surmount the small




signal to noise ratio problem using a quasi-random plant input consisting
of sums of non-harmonically related sine waves was suggested by the out-

come of this experiment.

Potentially promising directions for research in the immediate future
are discussed in Section IV along with certain supporting qualitative

observations made in the course of this program.

Appendix A summarizes the derivation of weighting filters for a large
class of time-varying linear and nonlinear models in response error sys-
tems, and provides the mathematical framework for showing the conceptual
connection between response error and equation error systems. This has
been included as an appendix in order to preserve continuity in the cen-
tral presentation with respect to basic assumptions such as "constant-

coefficient linear plant".

The relationship of equation error to response error is shown in Appen-
dix B. There, it is also shown that the weighting filters for equation er-

ror systems have transmittances of unity.

Definitions for the different types of stability of concern in the body

of the report and theorem proofs are given in Appendix C.



SECTION IT

ANATYSIS

In the first portion of this Section, we develop the connection be-
tween response and equation error systems under the assumption that the
plant is linear with constant coefficients. This type of plant is the
subject for analysis in the following subsections which present a gen-
eralization of the equation error type of parameter tracking system,
sufficient conditions for its complete stability, and a method for re-

ducing the time required for identification of the plant.

RELATION OF EQUATION ERROR TO RESPONSE ERROR

A comprehensive formulation of response error parameter tracking sys-
tems is given in Appendix A. A key factor in rendering this formulation
comprehensive is the definition of response error as a vector quantity.
Appendix B shows that equation error is a special case of response error.

Furthermore, the weighting filter transmittances are unity for this case.

Understanding the connection between response error and equation error
is of importance to the analysis of parameter tracking systems because it
enables us to apply the analytical techniques that we shall presently
develop for equation error systems in the approximate analysis of response
error systems. And, it turns out that the accuracy of such an approxima-
tion is indicated by the degree to which the weighting filter transmit-

tances of a response error system approach unity.

The development of these points is carried out in consigderable detail
in Appendices A and B. Such detail, however, is not necessary for the
main course of our presentation. Therefore, the relationships between
equation error and response error have been specialized here to preserve

continuity.




Consider a linear model having a single input and output described

by the following differential equation
n-1 K m .
pt+ 2 o p) 2(t) = [ X B, 2Y) x(+) (2-1)
k=0 j=0 Y

where p = %% and m < n. The model output variable is z(t) and the model
and plant input is x(t). The plant output variable will be denoted by

y(t). Equation 2-1 can be rewritten in the form of Egs A-L and B-2 of
the Appendices as

I
I
(@]
N

+
I

(2-2)

e

L-(lo -a1...-an_1

y |

.where z = col{z, pz, ... D

col(x, px, ... D x)

and X
Response error is defined by Eq A-5 as
er =0z - y) + D2 - §) (2-3)

where y and y are plant state variables which correspond to z and Z.

Upon choosing the matrices, C and D, as in Eq B-3

- -

O eee O

~ D = [\1 \] (2-4)




and using Eq 2-2 to eliminate z and z from Eq 2-3, the response error

vector components become:

er; “V¥i+1 T~ yi 1=1,2, ... n- (2-5)
m n-1
er, = JZ}O By %y =X % ¥k " Y (2-6)

Now, by the definition of y,the er, in Eq 2-5 are identically zero and, by
i
the definition of x following Eq 2-2, Eq 2-6 may be rewritten:

k=0

m . n-1
ery = (E Bj PJ) x(t) - (Pn + 2 o Pk) y(t)  (2-7)
3=0

Upon comparison of Eq 2-7 with Eq 2-1,it is evident that Eq 2-7 is the

expression for the equation error.

. MATHEMATTCAL FORMULATION OF THE
EQUATION ERROR PARAMETER TRACKING PROBLEM

Consider now a plant described by a linear constant coefficient dif-
ferential equation. In operator form, the relationship between input and

output can be written in a form analogous to the equation for the model:

n-i m .
(pn + 2, ay pk) y(t) = (Z b pJ) x(t)  (m<n)  (2-8)
50

k=0

where p = %E'

Our problem may then be formulated as follows: given only the input

to the system, x(t), and the output, y(t), determine the parameter vec-

tors,

o
il

col(ag, «.-, an_1)

(2-9)

|
I

col(bo: KR bm)
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as rapidly as possible. (g and b are n and mt1 vectors respectively.

Hence we have p = n+m+1 parameters to identify) .

GENERALIZED EQUATION ERROR

As a measure of error, the following '

'gseneralized equation error" is
defined. (It is a generalization of an idea introduced by Rucker in

Reference 5.)

1]

n n
e0 = X5 Ok ¥k t 25 By X (2-10)
k=0 3=0

where y, = Mgy and x; = Mjx. (A1l the coefficients in Eq 2-10 will not

be needed for a particular case.)
My in this equation symbolizes a linear, constant coefficient filter.
These filters can have a fairly general form. For example, we may use

w(s) = & o) (2-11)
k\S/ = stj

where r is some fixed positive or negative integer. H(s) is an arbitrary
filter chosen by the system designer. Actually, the filters may have a
still more general form; e.g., the "free" poles and zeros (those excluding
H(s)) may differ for each value of k, or we may use a combination of "free"
poles and zeros. It is necessary only that the equation, eg = O, imply a

linear relationship between the. first n derivatives of y and the first m

et e L 2 AL o M~
acrivaocives O XK. The wvaluse of

1

o COl(ao, ey an)
and (2-12)

B = col(Bg, - -+ By

which make eq = O are denoted by o¥ and p*¥, and will be referred to as
the "matching point" in parameter space. The components of Q¥ and B¥

will then be linear combinations of the plant parameters, a and §.

11



As an example, consider the second order system

f);+a1}.f+aoy=b]}.(+box (2-13)
1 k
and the operator Mk(s) = (E:T) . The generalized equation error is then
defined as
eg = O yo(t) + oy yi(t) + agy(t) + By xp(t) + By x(t) (2-14)

where we have taken By = O. Setting ey = 0 and & = a*, B = B¥, and

manipulating Eq 2-14 yields:

(% + at(se1) 4 Q‘S(sﬂ)g) (51_1)2 Y(s) = - (5926 + ¥ (s+1)) (;1—1—)2 X(s) (2-15)

Comparing Eqs 2-13 and 2-15, we have

_ ¥ - -
aX =1 p¥ = - b,
— X% ¥ - o
of + 20% = a, BY + B3 = - Py
af +af +af = ag

Therefore, if we can find a way to drive ep to zero, and keep it there,
the unknown parameters of the plant (g, E) can be calculated from the known

values of the model parameters (9#, Q%).
Equation 2-15 shows why this method is restricted to constant coeffi-

. -1
cient systems since the (EIT) on each side can be cancelled only when ¥

and B* are constants.

The most convenient form of the M, from the viewpoint of data reduction
is:

Mk(s) = E%ET (2-16)

12




In this case, Q = & and B} = b, . If one chooses H(s) = 1 in Eq 2-16,

then the traditional equation error system results. If H(s) = lﬁ in Eq 2-16
s
the system suggested by Puri and Weygandt in Reference U4 results. In what

follows, filters of type described by Eq 2-16 will be used except where

noted otherwise; indices will be adjusted accordingly (i.e. we take

a, = 1).

PARAMETER ADJUSTMENT LAW

As a criterion surface, consider F = eg/Q. To follow the gradient of F,

the parameter adjustment laws are

. OF :
aj = - Kk 6&5 = - k eq yj J=0, ..., n -1
; (2-17)
: 13 .
B; = -k = - k en Xj i=0, ..., m
i Sgi 0 1
where X is a constant, the parameter adjustment loop gain.
The values @* and B* are defined by
n m
0= ¥ ofw t X BEH (2-18)
k=0 k=0

Subtracting Eq 2-18 from Eq 2-10 requiring that @, = af = 1, we have

n-~1 m
So =2 Vst P (2-19)
J=0 i=0
where
fog =0y - O
(2-20)

Mpy =By - 5?

define the parameter differences. In more compact notation, Eq 2-19 can

13



be written

1

€0 = ¥o ¥ (2-21)

wherelyo = col(yo, cevs Ypa1s X0y oee) xm)
and y = col(log, ... 00 1, DBos s ABm) are both p-vectors.

If we substitute Eq 2-19 into Eq 2-17, there results a linear, homo-

geneous set of p differential equations in terms of parameter differences:

n-1 m
AQ!J = =k (zg Yj ¥y Loy + EO Y X4 Aﬁl)
1= 1=

(2-22)
. n-1 m
My =-k 2% X5 ¥y oy + ), %y %5 084
i= i=0
or, in matrix notation
2= - kA(t) 2 (2-23)

where A(t) = wy¥p, is a (p x p) time-varying matrix. These equations show

the means for adjusting the parameters.

PROOF OF STABILITY

The most critical question to be answered concerning the system given
by Eq 2-23 is whether the estimated parameter values (g, Q) converge to
their proper values (g*, E%). This property can be established by proving
the asymptotic stability of Eq 2-23 gbout the origin of the parameter space
(y-space) .

Rigorous definitions of the various types of stability plus

theorems are summarized in Appendix C. Two points should be noted:

1) To prove Eq 2-23 is asymptotically stable, it must first
be shown that it is stable.

2) Since the system is linear, any stability proofs will
hold globally.

14




Stability can be shown by finding a Liapunov function V(7(t)) which
is positive definite and whose total time derivative is negative semi-

definite. A satisfactory Liapunov function is

n-1 5 m 5 1
<Z ooy + 2 ABJ) =5 (27 2) (2-2%)

{]’:Z'i:—ky'Ay (2_25)

using Eq 2-23. Since A = EOH&’ we have

V=-k(2w) (w2 =-keg (2-26)

where Eq 2-21 has been used.

Thus the derivative V is clearly negative semi-definite, proving the
stability of Eq 2-23. It is not, however, negative definite, since it
is possible to have eqg = O when y # 0. From Eq 2-19 it can be seen that,
at any instant of time, the set of points in parameter space (z-space)
for which eg = O is an (n+m) dimensional hyperplane. However, it is
possible to prove asymptotic stability for certain types of system input,
X, since this hyperplane is not fixed in parameter space but varies with
time. This is a result of the fact that, for these inputs, eo(t) is not

zero over an interval wiless y = 0.
Asymptotic stability can be proven using the following theorem:

Theorem 1 Given: A linear differential system whose coefficients are
continuous functions of t. If one can find a Liapunov func~

tion, V(l), differentiable with respect to y, such that:

a. V(y) >¢ | 2|
b. V(0) =0

c. V < O for all 7, t

15



d. the origin is the only solution along which 1im V = 0 then
the origin is completely stable. t
This theorem is based on an extension of a theorem proven by LaSalle for
autonomous systems (Reference 15). Further details are given in Appendix C.
It is important to note that V is not explicitly dependent upon t and, hence,
its contours are time invariant. The point of the theorem can be made clear
by noting that V is a non-increasing function of time which is bounded from
below and therefore must approach a limit. The origin is the only set on

which V approaches zero. Hence V must approach the origin as a limit.

The Liapunov function given by Eq 2-24 satisfies all conditions given
by Theorem 1 except possibly 4. If V — 0 as t —» o, then, by Bqg 2-26,
we also have ey — O. For periodic inputs, this can result only 1if there
exist solutions such that ey = O over some interval. Consider Egq 2-21.
This is a single algebraic equation with p unknowns (Aak, Aﬁk). If the
"coefficients" (yk, Xk) are linear combinations of more than p linearly
independent functions, then the only solution which makes eg = O is the
trivial solution, y = O. This will be the case if x contains, say more
than p/2 sinusoids of different frequencies (none of which have phase
shifts of kn radians through the plant). For the case where the input
- contains exactly p/2 sinusoids (none of which have phase shifts of k=x

radians through the plant), it also turns out that eg = O implies y = 0.
Hence the following result has been proved.

If the input is a real, periodic signal with p/2 Oor more
separate frequencies, none of whith have phase shifts of
ki radians through the plant, then the parameter tracking
system described by Eqs 2-17 and 2-15 is completely stable.

That is, the system will identify the correct parameters regardless

of the accuracy of the initial guess.

Consider now the case of a random input, x. Since a random signal over
any finite interval can be regarded as a periodic function with an infinite
number of separate frequencies, we may argue that the result will also hold
for almost all random inputs over that interval (which can be made arbitrar-

ily large).
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A more rigorous result is possible, however, using the concept of stabil-

\ ity in the mean. Again, precise definitions are presented in Appendix C.

When x is a random function, the elements of A(t) in Eq 2-23 are con-
tinuous random functions of t. Simply put, stability in the mean implies
that the expected value of a positive definite Liapunov function approaches
zero. This ensures that we will have convergence for all random inputs, x,

except for a set of measure zero.

It is then possible to prove the stability in this case also, using
an analog of the Theorem 1 for the case of systems with random coefficients.

The proof itself is outlined in Appendix C.

Theorem 2 Given a Liapunov function, differentiable with respect to 7,

such that
a. V(y) >0 for all y £ 0
b. V(0) =0

c. E(V) <0

d. the origin is the only set such that lim E(V) —> 0 as

t —» o, then the origin is completely stable in the mean.

In Theorem 2, E( ) indicates the expectation operator, where the average

is taken over the ensemble of inputs at any time t.

Again, using the Liapunov function V = y' y, we can show that

V<= eg. Clearly then, E(V) < 0. Also, for almost all inputs, V —>0

as t —» o only if ” 7]' — 0. Therefore the final condition of the
Theorem holds. We may conclude that, for random inputs, the parameter

tracking system defined by Eqs 2-17 and 2-19 is completely stable in the

mean.

SYNTHESTS OF SYSTEMS WITH RAPID CONVERGENCE RATE

One property of the system described above is that one cannot in-
crease the rate of convergence simply by turning up the gain, k. 1In
Reference 3, Miller showed experimentally the existence of an optimum

value of k for equation error systems. For any higher or lower gain,

17




the time required for the parameter values to converge increased. This
is a result of the fact that the surface generated by F = eg/E is not
positive definite with closed constant F contours. It is, in fact, posi-
tive semi-definite and the contours are (n+m) dimensional hyperplanes.

It is only because the gain, k, cannot be made infinite and, hence, the
parameter vector cannot actually keep up with the ey = O hyperplane that

the system ultimately converges.

It would be desirable, then, to be able to synthesize a system which
can be made to converge at an arbitrarily rapid rate, simply by turning
up the gain, k. To synthesize such a system where p parameters are to be
adjusted, it is sufficient to be able to generate p generalized equation
errors which are linearly independent at each instant of time; that is, for

the error vector defined by e = col(eo, the following condi-

ceves €qm),
tion must hold:

Condition 1: At each instant,t, e = O if and only if y = O.
In other words, all components of the error vector vanish only when the

parameter vector is at the matching point.

Previously, the generalized equation error was defined by Eq 2-10:

n-1 m
€0 = ¥Yn +* , OkVk + BrXk (2-27)
k=0 k=0
This was also written as:
€0 = ¥0 7 (2-28)

where vy and y were defined following Egq 2-21. Additional equation errors

are defined in the following manner:

-1

n m
€ = Yn+i t 2, O Vk+i * > Bk Xxk4i (2-29)
k=0 k=0

In similar manner as before, this :an be written as

ei = Wi 7 (2-30)
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a
where wy = col(yi, «+.) Ypo1+is Xy vovs Xppi) e (2-31)

The relation between the error vector and the parameter difference

vector can be written
e =W(t) » (2-32)
. . .th .
where W is a (p x p) matrix whose i row is Wi _q-
Condition 1 will hold if and only if det W(t) # O for all t. This
will be true only for certain inputs, x. For instance, if the input con-
tains exactly p/2 frequencies, none of which have phase shifts of kx radians
through the plant, it can be shown that Condition T holds for all t. For
periodic inputs with more than p/2 frequencies, Condition 1 will hold except

at isolated instants. As will be seen, this does not effect the subsequent

conclusions significantly.

Let us assume now that Condition 1 holds except at isolated instants.
Then the surface, F = e'e/2 , is positive definite with closed contours,

except at those instants.

The parameter adjustment law for steepest descent on F is

y=-kgrad F
(2-33)
Bg'
=Ry s
ag_'
From Eq 2-32, G/ = W', and therefore Eq 2-33 can be written
7=-kAy (2-34)
where
A = W'W. (2-35)

We now show that Eq 2-34 is asymptotically stable. Use the Liapunov

function

A (2-26)

ol
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Taking the derivative, we have
Ve-ky Ay=-ky W Wy (2-37)
\}' =-ke'e (2-38)

According to our assumption of Condition 1, V will then be negative
except for isolated instants when it vanishes. Hence, by Theorem 1, we

conclude the complete stability of Eq 2-34.

More than this can be said, however. Note that since A has the form
W'W, a sufficient condition for A to be positive definite is that det W £ 0.

This, of course, is true if and only if Condition 1 holds.

Assume now that the input is such that Condition 1 is satisfied for all
t. In this case, if A(t) is the smallest eigenvalue of A(t), then A(t) 1is
real and greater than zero for all t. For inputs such that Condition 1
fails to hold at certain instants, then A(t) vanishes at these points and
is greater than zero everywhere else. 2(t) is, in effect, a measure of

the linear independence of the generalized equation errors.

To determine the convergence properties, the following theorem of

Wintner will be useful. (Vide Reference 16).

Theorem 3 Let L(t) be a square matrix depending continuously on t for

all t. Let H(t) be the Hermitian matrix whose elements are
‘] —
hyj(t) = 5(1335(¢) + 151(¢))

Then for every solution Z<t) of the differential equation, i =Ly

T
I 2(0) || exp fot n(7) dat < || 2O < || 200) | expfo u(r) ar

where m(t) is the minimum eigenvalue of H{t) and M(t) is the maximum eigen-
value of H(t).
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In the case under consideration here, in Eq 2-34, L(t) = - k A(t).
Since - k A(t) is real and symmetric, it is equal to H(t). If (%) is
the minimum eigenvalue of A(t), then - k A(t) is the maximum eigenvalue
of - k A(t). Therefore, the norm of any solution of Eq 2-34 is bounded
by:

4
-k A(T) art
[ 206) || < ff 200) || e J: (2-39)

Since A(t) is never negative, the function

t
a(t) = f w(x) ar (2-40)

0
is non-decreasing. ©Since q is non-decreasing, isolated points at which
A = O are of no significance. What is necessary is that A(t) be # 0
except for isolated instants, and that it not decay "too rapidly," so
that ¢ =—» © as t —» o. Then, the rate of convergence of the system

given by Eq 2-3L can be increased by increasing the gain k.

This result cannot be shown to be the case for the system with only
one equation error (Eq 2-23). With only one equation error the maximum
eigenvalue is zero for all 1. The maximum eigenvalue for any system with
p adjustable parameters and less than p independent equation errors is also
zero. In such cases, the determinant of the matrix, is identically zero

and, therefore, A(t) will be identically zero.

Note that A(t) is a function of the input x and the plant parameters
(a, b). If x is a periodic function with sufficiently many frequencies
(P/2 or more) then we are assured that g(t) increases without bound as

t —» . This will also be true if x is a stationary random function.

STEEP DESCENT, STEEPEST DESCENT AND CRITERION FUNCTIONS

Because the power present in various elements of the matrix, A, in
Eq 2-34 may be greatly different, it often turns out to be advantageous
to make the parameter adjustment loop gain different for each component

of y. This is in order to obtain parameter responses which are more
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satisfactory for particular sets of initial parameter values. Use of
different parameter adjustment loop gains for the components of i raises
the question, "With respect to what criterion function is a steepest de-
scent parameter adjustment being made?". Heretofore, we have adjusted Y
so that it would move along a steepest descent path on the criterion sur-

face F; i.e. the parameter adjustment law was given by

y = - k v, F (2-L1)
)
where Voy = (S%T, ceey 5;— . Using a different gain for each component of
1Y

Y gives a parameter adjustment law

7= -KVF (2-L2)

where K diag (ko, ey kp) is a (p X p) matrix with positive elements.

The control law, Eq 2-42, clearly implies that in y-space, the adjust-

"

ment is one of "steep descent,” in distinction to "steepest descent."

Consider now, however, a transformation from y coordinates to { coor-

dinates; i.e.
L=Ry (2-L3)

where R is a (p X p) non-singular, diagonal matrix.

The gradient operator (a covariant vector) transforms according to the

law {Reference 17):
VeF = (B')7'v,F = RTvF (2-4k)

Substituting Egs 2-43 and 2-Lh into Eq 2-42 yields

¢ = - (RR)V, (2-15)
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-1/2 ,. 1 R
Then, if we choose R = K / (i.e. ry; = .o 1= O, «.., p - 1),

we have

é_: - GF (2-46)

Therefore, a steep descent adjustment in 7 coordinates according to Eq
2-42 corresponds to a steepest descent adjustment in § coordinates where {

is related to y by the transformation

-1/2

t=K /1 (2-47)
Since Eq 2-46 has the same form as Eq 2-41, it is clear that the pre-

viously proved conclusions as to stability and rate of convergence still

apply using control law given by Eq 2-L6.

The discussion, up to this point, has been based upon the criterion

function, F = e'e/2. It is possible to prove all previous results using

a slightly more general criterion

F=x(eQe) (2-48)

N —

where Q = diag (qg, cee, qg). Since Q is symmetric and positive definite,
the arguments used previously are not affected. The error criterion de-

fined by Eq 2-48 weighs each generalized equation error differently.
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SECTION ITI

EMPTRICAL STUDY OF PARAMETER TRACKING SYSTEM PERFORMANCE

An experimental program was undertaken to provide a better understand-
ing of, and a greater appreciation for parameter itracking system performance.

The objectives and results of that program are presented in thig Section.
Objectives of the experimental program were

® To compare alternative designs for parameter tracking systems.

® To unify the analytical results obtained for certaln systems
in Section IT.

® To investigate the effect of measurement noise on parameter
tracking performance.

To study the case where plant parameters are time-varying.
® To apply the knowledge gained to the design of a simulated
pilot parameter tracking system.
For present purposes, it is convenient to consider each objective in turn
in separate subsections. The particular procedures used to achieve each

objective are described in the appropriate subsection.

COMPARISON OF RESPONSE ERROR AND EQUATION ERROR SYSTEMS

The most promising approaches to parameter tracking have been called
the response error method and the equation error method. These descrip-
tions actually refer to the method for defining error between desired
signals and actual signals. Parameter tracking systems are also further
characterized by the criterion function and parameter adjustment laws used.
The criterion function and parameter adjustment laws are elements common

to equation error and response error parameter tracking systems.

The two definitions of error are compared in Figure 3-1. There, it
is important to note that Yp represents the model in operational notation

with coefficients which are the elements of the matrices, Ny and Dy. Ynm

L




Plant

State
P Variable .
Filter Yi

Input )

Model

State
| Ym{P:Nm: Oro Variable
Filter

€ri 7Yi~Zj
(a) Response Error

Plant

State [ ]
el \Qriable D
P . m
y Filter Yi

Input

State
- Variable [Nem]
Filter

|2

e '=D Y'-N X
(b) Equation Error ei = UmYi ™ Nm Xi

Figure 3-1. Formulation of Error Signals
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is not a transfer function. The similarity between the response error and

equation error schemes has been deliberately emphasized in Figure 3-1.

Through the use of state variable filters a single signal is trans-
formed into a group of signals (vector). This provides a set of independ-
ent errors (error vector) in both formulations for a broad class of inputs.
Rucker (Reference 5) first conceived of using state variable filters to

overcome the problems associated with successive differentiation.

Two quadratic criterion functions are considered. They are

1

2
P - 5[( o e )1] (3-1)

i

and

%l%( )g + de( )?] (3-2)

where the e( )O and e( ) are the components of the error vector.
1

F, includes the criterion functions used in References 7-9. Figure 3-2
shows the parameter adjustment laws which result in a steep descent on
the criterion surfaces, F, and F,, when these functions are plotted as
functions of the model parameters. Notice that the required number of
multipliers and summing amplifiers is different in each case. The table

below summarizes equipment requirements.

TABLE T

EQUIPMENT REQUIREMENTS FOR ADJUSTMENT OF p
PARAMETERS WITH g COMPONENTS OF ERROR

CRITERION MULTTPLIERS SUMMERS INTEGRATORS

F, p ptl P

F

2 bxq Y 1Y
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Equation defining path of steep descent:

- __p OF
7k - Ayka)’k

7, (o)

i E (! Required)
eq —™ 1
|
Yk
of A
)
de)

I (p Required) (p Required)

I (pr Required/

aeq
Oy

q
Fze =é— Zi:(ei)z

Figure 3-2. Parameter Adjustment law for the Parameter 7y,
Using the Criteria Fy and Fp
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Here q is the order of the error vector and p is the number of model
parameters being adjusted. The above table shows that g times as many
multipliers are required to mechanize the Fy, criterion function than
to mechanize the F; criterion function. These equipment require-
ments hold independently of whether response error or equation error is

used. In the comparison experiments, p = 2 and q = 1,2.

The general experimental set-up used to perform the comparison ex-
periments is shown in Figure %-3. The plant considered is second order

with a single zero,

S) b‘] S+bo

]

st (3-3)

Y = = =
P Z )
X(s s2+a1s+ao s2+2(0.5)2s+(2)2

two parameters, b; and ap, are treated as unknown but the order of the
system is assumed known. Thus the differential equation in operational
form representing the model is:

2

(p= + ayp + ag) z= (B1p + Bo) x (3-k)

where

Provision is made to use either the response error vector, e,, or the equa-
tion error vector, ee, in either the Fq or F, criterion function. The
possible combinations available enable us to investigate four different,

but comparable, mechanizations of a parameter tracking system. All com-
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binations are of interest to us here. The analysis of Section II pertains
to the e, - F, combination and is an approximation for the e, - Fo com-

bination. The e,
is of continuing interest for the sake of comparison. Further the relation-

- ¥y combination was investigated in References 7-9 and

ship between e, and e, gives rise to our Interest in the e, - F, combination.
The state variable filters have transfer functions

Sn

n
S — -
Fn(S) = H(s) = 1+2(1'O)s+ e B n=0,1,2,3 (3 5)

The state variable filter, Fp(s), is used to obtain the n™® approximate
time derivative of its input signal. Components of the response error
vector are obtained by filtering the (y - z) signal through the Fp(s) and

F,(s) state variable filters.

ero -1 F (S)
o ey | E o (of (£ -2 (5-6)

Components of the equation error vector are obtained by filtering the y
and x signals through Fq(s), Fi(s), Fp(s) and F5(s). If Eq 3-4 specifies

the model then one generalized equation error is:
-1
ee, =L ([ Fp + 2F; + chFO] Y(s) - [B1F1 + FO] X(s)) (3-7)

Vide Eq 2-10 et seqg. Continuing in the manner of Section IT, the second

generalized equation error is defined by Eq 2-29 with i = 1.
-1
ce, =L (|F5 + 2Fp + agFy| ¥(s) - |piFp + Fy] X(s)) (3-8)
The equaticn error vector is:

en =] O (3-9)
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In Egs 3-7 and 8, Qq and 51 are treated as constants in the inverse Laplace

transformation.

In general, both response error and equation error provide sufficient
information to identify the plant. Performance of the two systems can,
however, be markedly different. Figure 3.l shows time responses and X - ¥y
plots for response and equation error systems. The input in each case is
a sinusoid and the criterion is Fp. The oscillatory nature of the perform-
ance of the response error system, although not always present, can be
expected to occur for sufficiently high adjustment loop gains. In fact,
response error systems can be made to appear unstable. Figure 3-5 shows
an apparent instability occurring in the response error system. The con-
ditions are identical to those for Figure 3-L4 except that the B adjust-
nent loop gain, A61’ was increased by a factor of 10. A similar effect
can be induced by increasing the amplitude of the input signal. This
effectively increases the gain in every parameter adjustment loop by the
square of the factor by which the input amplitude was increased. Thus
response error systems will be vulnerable to instability caused by in-
creases in input amplitude. Another apparently unstable case is shown

in Figure 3-6. One frequency predominates in this latter case.

It is not difficult to develop a plausibility argument to account for
the unstable behavior of the response error system. Refer to Figure A-2.
There it may be appreciated that the open-loop dynamics of each parameter
adjustment loop consist of an integrator and a weighting filter. For
siwplicity, conmsider all perameters except one to be constant. Assume
that the model is a constant coefficient linear system. Then the weight-
ing filter may be represented by a transfer function. The open loop also
contains one constant and two time-varying gain factors. Assuming that
all these gain factors are constant, and that there is an excess of two
poles over zeros in the weighting filter transfer function, instability
of the closed-loop parameter adjustment system is unavoidable as the
open-loop gain is increased. These conditions prevail for the Qn param-
eter adjustment loop in the response error configurations of this

experiment.
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An interesting phenomenon was observed when the input frequency was
varied. Performance of the response error system is sharply degraded as
input frequency is increased. Figure 3-7 shows a comparison between sys-
tems for gains optimized at @; = 1.0 rad/sec when ®; is increased to
1.6‘rad/sec. This is because of the fact that the system amplitude ratio
increases (@, = 2.0 rad/sec) as the input frequency goes from 1.0 to 1.6.
This increase effectively increases the parameter adjustment loop gain and

leads to the oscillatory behavior described earlier (Figures 3-5 and 6).

The sensitivity of response error parameter tracking system performance
to input amplitude and frequency is a notable limitation. There are tech-
niques available by which we might conceivably circumvent this limitation,
e.g. by the use of limiters in the parameter adjustment loops, but the
introduction of these techniques would raise other subtle questions re-
garding system performance. The important point is that equation error
systems, being stable, do not exhibit this performance sensitivity to
input amplitude and frequency. Once the parameter adjustment loop gains
are made high, the system tolerates large changes in operating point con-
ditions. (Compare the qquation error and response error system responses
in Figure 5-7.) The equation error system behaves to a much greater

degree as a well designed feedback system should behave.

The conclusion reached is that equation error systems have two dis-
tinct and noteworthy advantages over response error systems. These are:
e Equation error systems are always stable feedback control
systems.

® Such systems can be operated with high loop gains and thus
they may be made relatively insensitive to changes in the
operating conditions.

In the above discussion it was assumed that the systems being compared

~

were properly designed. The criterion used was Fo = %(e( ) + le( )2), A =1
0 1

which defines a positive definite surface with closed contours of constant
F, for the inputs used. The effect of alternative criterion functions on

the performance of equation error systems will be presented next.
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First consider the case where X 1s zero, that is consider F, = %eez.
This criterion function is positive semi-definite; the contours of con-
stant Fy, are not closed. Figure 3-8 shows that there is an optimum ad-
Justment of loop gain in this situation. This has previously been demon-
strated experimentally by Miller. (YEQEAReference 3.) Of course, stability
is still assured, but increasing gain does not necessarily decrease the
convergence time. Also, we cannot now expect to be able to acgieve g

desired tolerance by increasing gain as we could when F = % eeo + ee1 .

Finally consider the criterion F = F1 = %(%eo + ee1)2. Figure 3-9
shows the effect of increasing the adaptive loop gains by a factor of
five. The convergence time increases as it did when F2 = %ego was used.
Clearly the desired effect of adding a second error component is not
being achieved. The inevitable conclusion is that the criterion function,

Fy, is superior to F; even though it requires more equipment to mechanize.

PERFORMANCE VERTFICATION FOR A
THREE PARAMETER EQUATTION ERROR SYSTEM

In Section II, sufficiency conditions were formulated under which
equation error parameter tracking systems could always be made completely
stable. Furthermore, additional sufficiency conditions were obtained for
determining when the adjusting model parameters would converge to those
values present in the plant, and when decaying exponential bounds could be
placed upon the responses of the converging model parameters. For the
caces in which the plant and model are identical in form and order, and
the input signal consists of a sum of randomly phased sinusoids with differ-
ent frequencies, none of which have phase shifts if kn radians through the
plant; the convergence properties of the system can be defined in terms
of regions on a very simple diagram. Figure 3-10 is this diagram. (When
the forms or orders of the model and plant are not alike or when some model
parameters are fixed the situation is not so simply described.) The three
regions defined on the diagram account for all possibilities of present in-
terest. All solutions are stable, of course, by virtue of Eq 2-2L through
26. The three regions on the diagram correspond to the following perform-

ances:
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30 — O Case |
Region | - Convergence
NP not assured
NE
20 — ® Case 2
Region 2 - Convergence assured
O —
Region 3 - C‘onvergefce assured,
© Case 3 //{(f)/f//{{O}/e‘-/o. Alr)dr
0 L | |
0 1.0 NI 20 3.0
NE
NP = Number of adjustable parameters
NI = Number of sinusoidal input components
NE = Number of independent error components
Figure 3-10.

Convergence Properties of Parameter Tracking Systems
for Inputs Which Are Sums of Sine Waves
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1. Convergence to the plant parameter values is not assured.
Only in certalin coincidental situations will the correct
answer be obtained.

2. Convergence to the plant parameter values is assured.
The correct answer can always be obtained.

5. Convergence to the plant parameter values 1s assured,
and the norm of the transformed parameter vector, {,
is bounded from above by:

[ A1) dt
I o)l < e e 5

A lower bound on || £(t)|| is obviously zero. The above
inequality also requires that || t(t)| decrease monotoni-
cally in time.

Also shown in Figure 3-10, as the circled points, are the conditions

for three experimental cases which are representative of the data taken

to verify the theoretical predictioms.

Figure 3-11 shows the possible convergence situations for the three
cases. In Case 1 there are three parameters, B, Qg and &y, to adjust,
NP = 3; and using a scalar equation error, NE = 1. The system is excited
by a single sine wave, NI = 1. The norm of the transformed parameter¥ vec-
tor for this case is plotted in part a. of Figure 3-11. It may be seen in
the Figure that the system does not converge to the correct solution, and
the norm does not approach zero. The actual final value of the parameter
vector depends on the initial values of the adjustable parameters, the

input amplitude and phase and all the plant parameters.

Increasing the number of error components will not produce a con-
vergent situation. This can be appreciated in connection with Figure 3-10

by noting that, according to the definitions of the axes, the number of

*¥Using Eq 2-47, the transformed parameter vector for these cases is

given by:
ORI

£() =L (a(t) - a0) Aftag
(o (t) - a])/JA_o;
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Upper Bound on the Parameter Vector Norm
Figure 3-11. Convergence Property Experiments
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error components can only move the location of particular case points
radically on this graph. Therefore, Case 1 cannot be moved into another
region on Figure 3-10 by increasing the number of error components. The
only way to induce convergence is to increase the number of inputs or de-
crease the number of parameters or both. This was actually done to pro-
duce Case 2 and the transient shown in part b. of Figure 3-11. Here,

NP =2, NI =2 and NE = 1.

In Figure 3-11 b. the parameters converge to the proper values. The

norm is reduced to 10 percent of its initial value in 10.0 sec.

In Case 3, shown in Figure %-11 c., the number of error components was
increased from one to three, NE = 3. The parameter adjustment loop gains
and the number of sinusoidal components in the input signal, however, are
here the same as for Case 2. Convergence ig now much more rapid; the norm

is reduced to 10 percent of its initisl value in only 2.5 sec.

Case 3 typifies the situation for which a monotonically decreasing
upper bound on the transformed parameter vector norm can be demonstrated.
Assuming ideal components the bound can be made to converge as rapidly as
desired by increasing parameter adjustment loop gains. In the experiments
described here the gains were set at moderate levels so that the limits

of data recording equipment would not be exceeded.

In actual practice, the factors which might 1imit the parameter ad-
Justment loop gain are:
® Non-ideal effects in the computing elements of the parameter
adjustment loops (e.g. saturation, high frequency dynamics)
® The presence of disturbance inputs to the plant which may be
regarded as measurement noise entering the system at the sen-
s0Trs .
The first factor might be of considerable practical importance if very
high gain systems were considered. Investigation of its effects, however,
is beyond the scope of the present research. The second factor is now to
be considered both in comnection with the prototype second order system
under discussion and, later, in connection with simulated pilot parameter

tracking experiments.
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MEASUREMENT NOISE EFFECT IN EQUATION ERROR SYSTEMS

The sensitivity of parameter tracking system performance to measurement
noise is an important practical consideration. Unfortunately, at present,
the theory falls short of providing an analytical basis for treating this

problem. Future research is clearly needed in this area.

In the present program, an empirical approach to minimizing the effects
of noise is taken. The structure of the equation error system and the
characteristics of the plant input spectrum indicate an obvious path to
follow. Results of the experiments further point to two possible ways of
attacking the problem analytically. These approaches for the future will

be described in the concluding remarks on the experiments.

The set-up for the measurement noise experiments is shown in Figure
3-12. The plant is second order with a single zero. Noise enters addi-
tively at the plant output. The model differential equation has the same
form as that for the plant. Adjustable model parameters are By and Q.

The equations describing the simulated system are summarized in Figure 3-12.

The state variable filters contain a second order cut-off filter,
1/H(s), with a fixed damping ratio of unity and a variable natural fre-
quency, ®p. With we at its nominal value, 1.0 rad/sec, the state variable
filter bandwidth exceeds that of the plant by nearly a decade, so that in
this case the state variables x; and y; are approximately dix/dti and diy/dti.

The exact equation error is therefore closely approximated by Ceq*

The input used throughout these experiments is a single sine wave.
This is sufficient to assure that the model parameters converge, and that
an upper bound which is a decaying exponential exists for the parameter
responses. The two parameters may then be made to converge as rapidly as
desired by increasing the parameter adjustment loop gains when no noise is
present. The input frequency, w;, is varied in some runs with the nominal
value being 0.2 rad/sec. Parameter adjustment loop gains are such that
moderately rapid convergence is achieved under nominal conditions for this

input when no noise is present.

Ly




Measurement

Noise
Yn
N(s)
Y, = nrd
Input- P Dis SO
x=2sinwjt | |0s+0l - L )s! -
7| s2+2s+04 [y L= H(s) si Yi
s A
Plant Equation Error
Vector
e
State Variable y =
Filters
IS
H(s) |2
Cut- Off Filter 2
Incorporated In [ wg , .
= arred,
The State Voriable { R(S) ™ SZ+2(Olwrssa? (“f ' VY

Filters

yi = col (yg ¥, ¥a.¥5) LAyi) = st (Y(9)- Y, (8)/H(s)

xj =col (xg %X, xp) L2(x;)= st X(s)/H(s)
ee = col (eeo,ee.)

o -[ewe2 10 v [0 B0
™10 q,.2 | ™ 100 B

e = Dn1xi"Nn1!i

Figure 3-12. Configuration for Measurement
Noise Experiments
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Measurement noise is obtained by shaping unit white noise with a

filter having the transfer function:

This concentrates the measurement noise power in a small, given frequency
range. Moving the input frequency into that range then provides a crucial
test of the parameter tracking system's ability to suppress noise effects.

Note that the nominal input frequency, w; = 0.2 rad/sec, occurs at a fre-

i
quency which is less than the break frequencies of the shaping filter.

A very practical reason for using this shaping filter in the experiment
also exists since, by cutting off the low frequencies, the low frequency

variability, or, alternately, the required run length, is reduced.

Figure 3-13 shows some results from the measurement noise experiments.
Scaling is omitted since for present purposes numerical detail would be an

encumbrance. The input frequency is varied in these three runs.

The first, and perhaps most important characteristic to be noted is the
presence of an offset, or bias, in the mean value of the adjusted parameters.
In Run a the offset is substantial, in Run b it is very small, while in Run c
it is moderately small. That the bias is a function of input frequency is
not surprising since the signal to noise ratio seen by the parameter tracking
mechanism depends on the gain of the plant and, to a greater extent, on the
gain of the state variable filters at the input frequency. Integral-square-
error, shown on channel four, reflects the bias in the adjusted parameters,i.e.

it is smallest in Run b, where the bias is smallest.

A second aspect of this problem is parameter " jiggle." This term is used
to characterize the variance of the parameter about its mean value. Parameter
Jiggle increases from Run a to Run c¢. The apparent reason for this is that
as the frequency separation between two spectral components of the input and

the measurement noise becomes less, the parameter tracking system interprets
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the noise as arising increasingly from low frequency variations of the
plant parameters. The parameter tracking system is able to track low
frequency variations of the plant parameters, as we shall show later, and
therefore it responds to these apparent variations. To obtain an apprecia-
tion for this viewpoint, assume a sinusoidal signal in the plant, sin Qt,
is modulated cosinusoidally by a time-varying plant parameter, cos Bt.

The modulation product is:

sin(a + B) t + % sin(a - B) t (3-10)

sin @t cos Bt = %
Suppose the sum and difference frequency components appear in the measured
plant output. The parameter tracking system operates using essentially DC
information, such as that contained in the square of the measured plant

output signal, to determine the rate of parameter adjustment.
(measured plant output)? =

sin® at cos® Bt = % 1+cos2Bt--cos2at'-% cos(a-B)t-% cos(a+B) t] (3-11)
Now consider a situation wherein the measured plant output has two com-
ponents: 1/2 cos yt arising from the plant input signal and 1/2 cos dt,

a spectral component of measurement noise. As in the case of parametric
modulation there. are two frequency components in the signal upon which the
parameter tracking system must operate. If we take y = (o - B) and

5 = (a + B), the two situations are identical from a frequency content
standpoint. Note also that the frequency separation of the two components
(5 - y) is 28. In the following table, the sources of jiggle are matched
with the frequency components of jiggle they cause for three cases of in-

terest.

In Table IL, the sources of the various Jjiggle components are of
general interest. We must keep in mind, however, that the "jiggle com-
ponents" listed undergo integration in the parameter adjustment loops.
This means that the low frequency components are more important than

high frequency components because the amplitude ratio of the integrator
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TABLE IT

INTERPRETATION OF TERMS IN EQ 3-11 FOR THREE CASES

CASES
Term of Constant Plant Time-Varying Plant Constant Plant
Eq 3-11 Parameters, No Parameter, No Meas- Parameters, With
Measurement Noise, urement Noise, Measurement Noise
(g = 0) (B #£0) (B #0o0rp=0)
1st DC Parameter Rate of Change Signal.
2nd Component of Jiggle For B # 0, Com-
is an Effect of Time-| ponent of Jiggle
Varying Plant Param- | at Difference Fre-
eter Frequency, B. quency of Plant
Output Frequency,
(¢ - B), and Meas-
urement Noise Spec-
tral Component Fre-
quency, (@ + B).
For B = 0, Bias on
DC Parameter Rate
of Change Signal.
2rd Component of Jiggle is an Effect of Plant Component of Jiggle
Input Frequency, . at Sum Frequency of
Plant Output Fre-
quency, (o - B),
and Measurement
Noise Spectral Com-
ponent Frequency,
(a+ 8).
4hth Component of Jiggle Component of Jiggle
is a Difference Fre- is an Effect of
guency Medulation Piant Output Fre-
Effect from quency, (o - B).
sin at cos Bt
5th Component of Jiggle Component of Jiggle

is a Sum Frequency
Modulation Effect
from

sin ot cos Bt

is an Effect of
Measurement Noise
Spectral Component
Frequency, (@ + B).
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weights the signals according to the inverse of the frequency. That this
is an important consideration when measurement noise is present is es-
pecially true for the interpretation of the second term of Eq 3-11. This
term has a frequency which decreases with decreasing separation in fre-
quency between the plant output signal and the measurement noise spectral
component. When this frequency is very low, this term effectively is a
short term DC bias on the parameter rate of change signals which the in-
tegration in the closed parameter adjustment loop can offset. In terms
of the effect on the parameter adjustments of the closed-loop system,
this produces an oscillation at that low frequency. The superposition of
these oscillations for all the measurement noise spectral components gilves

rise to a low frequency jiggle effect such as that observable in Figure 3-15.

A similar argument can be constructed to justify the existence of a DC
parameter bias (of finite power), but there is nothing to be gained over

the explanation advanced by Elkind in Reference 18.

The possibility of filtering the parameter signals to reduce jiggle
exists. It appears from the frequency content of the signals shown in
Figure 3-13 that a substantial decrease in the amount of jiggle would be
achieved. However, filters represent additional complexity and their in-
clusion should be weighted against alternative schemes which, possibly,
are more attractive. (Because, for example, such a filter would not be
effective in reducing parameter biases.) Fortunately, a degree of freedom
exists in the equation error system design that has not yet been exploited.
This involves specification of the cut-off filter segment, 1/H(s), of the

state variable filters.

Figure 3-14 shows time records for an experiment in which the cut-off
filter undamped natural frequency, wp, is varied. It is obvious that the
effects of we on integral-squared-error (channel 5) and parameter adjust-
ment (channels 6 and 7) can be used to advantage. While it is not clear
what the effect on parameter bias is, it is clear that as we 1s decreased,
the parameter jiggle is markedly reduced, but the parameter convergence
time is increased. This is the tradeoff we must make in selecting an

optimum bandwidth for the cut-off filters. Mean square error and response
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time are plotted with arbitrary weighting in Figure 3-15 which shows that
an optimum wr exists, and that this might be approximately equal to 0.6

rad/sec.

Tt seems then, that a good index of parameter tracking performance,
especially when measurement noise is present, might be the mean square of
the parameter vector norm. Inasmuch as the analytical results presented
in Section II are expressed in terms of the parameter vector norm, it
might be feasible to extend the results to cases including measurement
noise, and then to optimize the performance bound with respect to the

cut-off filter parameters.

A much more pedestrian approach was attempted during this program.
This approach assumed that the transient response of the parameter track-
ing system to initial parameter offsets had died out; that is, that the
mean square equation error had been minimized by the parameter tracking
action. The steady model parameter values obtained under this condition
are different from the known plant parameters because of the noise bias
effect. Our interest was to minimize the mean square of the parameter
vector norm with respect to the cut-off filter parameters; however, the
problem was fraught with algebraic complexity even for the simplest mean-

ingful case. Because of this, the approach was abandoned.

Another engineering approach to the problem would be to maximize the
signal to noise ratio of the generalized equation errors by computing the
optimum fixed form or free form cut-off filter. This would require that
input and measurement noise spectra be substantially different, however,
since the potential rewards from the optimum filter approach depend strongly
upon this factor. When parameter tracking is performed using, as the plant
input, quantities occurring in a natural environment, this requirement may
not be met, and therefore, optimum filtering cannot constitute an effective
approach. The human pilot performing a compensatory control task when the
input to the closed-loop pilot controlled element system is shaped unit
white noise is an example of such a situation. This particular problem
is considered in detail in the last subsection along with a practical
way for circumventing the problems introduced by the measurement noise or,

more correctly for the case of the human pilot, the remnant.
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TRACKING TIME-VARYING PLANT PARAMETERS

A preliminary effort, was undertaken to determine the efficacy of the
generalized equation error system in tracking time-varying parameters. In
addition to analytical work, a system was set up on the analog computer
which would track a single varying parameter. The general conclusion from
this portion of the work is that, under certain conditions, time-varying

parameters can indeed be tracked.

The analysis of such systems is, of necessity, approximate. Consider
the plant shown in Figure 3-12 to be time-varying. The numerator and
denominator are now denoted by N(s, t) and D(s, t) respectively.* In
this case, it is no longer true that e = O when the parameter values are
on their correct (time-varying) values. This is because the dynamics of
the filter, 1/H(s), can no longer be commuted with the dynamics of numerator
and denominator, as was done in Eq 2-15. The exact equation error

(1/H(s) =1) is, of course, an exception to this last remark.

To show this more explicitly, consider the time-varying nth order plant

pIEMEOV I SRWINE) (3-12)
k=0

5=0

or, in operator notation

D(s, t) ¥(s) - N(s, t) X(s) = 0. (3-13)
where
D(s, t) = zn: ax(t)sk (3-14)
k=0

*From this point, we will use a purely formal notation in which s may
denote the operator d/dt or the Laplace transform variable whichever is
appropriate.

Sk




m
N(s, t) = 2: bj(t)sj (3-15)
3=0

and X(s) and Y(s) are the Laplace transforms of x(t) and y(t) respectively.

.The generalized equation error shown in Figure 3-12 can be written in

operator form

E(s, t) = D(s, t) Y;(s) - N(s, t) X1(s) (3-16)
where
Bs, 4) = 3 ogelt)sk
k=0
(3-17)
,ﬁ/(s, t) = Z Bj(t)sk
J=0
and
Y1(s) = Y(s)/H(s) X1(s) = X(s)/H(s) (3-18)

Let us now multiply Eq 3-13 by 1/H(s), which yields:

(1/H(s)) D(s, t) ¥(s) - (1/H(s)) N(s, t) X(s) =0 (3-19)

et

If the plant were time-invariant (Wis, V) = N(s) and D(s, +) - D(S)); then
the operator (1/H(s))could be commuted with D(s) and N(s). If this result
is subtracted from Eq 3-16 there results an expression for the generalized

equation error which is linear and homogeneous in the parameter differences:

m
E(s) = ( fi Aaksk) Y (s) - ( 2: ﬁBkSk) X1 (s) (3-20)
k=0 k=0

It is then possible to show conditions on the input such that e = 0 if
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and only if .
N(s, t) = N(s) and D(s, t) = D(s)

In other words, e = 0 if and only if the parameter values have converged.
Asymptotic stability of the system is then assured if the parameters are

adjusted along the gradient of F = e2/2.

In the time-varying case, (1/H(s)) does not commute with N(s, +) and
D(s, t). These results cannot, then, be rigorously proved. However, if
the bandwidth of (1/H(s)) is sufficiently large, we have

Y,(s) = ¥(s) and %,(s) = X(s)
over the frequency range of interest. In that case, Eq 3-16 can be written:
E(s) 2 s, t) ¥(s) - (s, t) X(s) (3-21)
Subtracting Eq 3-13 from this leads to an expression equivalent to Eq 3-20,

i.e.

k=1

E(s) = (}% Aaksk) Y(s) - (fo ABKSK) X(s) (3-22)
k=

(For the exact equation error, 1/H(s) = 1, this equation is exact).

If the bandwidth of 1/H(s) is sufficient, then we may expect the re-

sults for the time-invariant case to hold approximately.

Using Eq 3-22, we can develop differential equations for the parameter
differences in exactly the same manner as before. These equations have

the form

7= -xA(t) 7 + & (3-23)
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where again
7 = col(L0y, vou, DO 15 8By, oo, OBp)
and
a = col(al, ..., ap; by, «v., bp)

Thus, in the time-varying case, the equations are inhomogeneous and the
forcing functions are the plant parameter rates of change. We might ex-
pect from Eq 3-23 that high plant parameter rates of change would lead to
large values of y and, therefore, to inaccurate tracking. Secondly, we
might expect a lag in the tracking since the future behavior of é is not
known. A modest computer effort was undertaken to verify these predic-

tions.

A functional block diagram of the set-up for the experiments is shown
in Figure 3-16. The plant is a first order system with a single time-
varying parameter, a(t). For this experiment a(t) is usually varied
sinusoidally, although there are some runs where a(t) is a ramp. For
the most part the input, as well, is a sinusoid although a few runs are

with a ramp input.

The state variable filters are (arbitrarily) chosen to be:

(6) = <Soe = 5 (3-21)
Fyls =m—s+1 3-2

These filters are used throughout the experiment. No attempt is made to
"optimize" the tracking by changing the bandwidth or form of the cut-off
filter, 1/H(s). In light of the foregoing analysis, it seems clear that
the performance could be improved by using this degree of freedom to

advantage.

The parameter adjustment law in this case is

@=-key. - (3-25)
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which leads to the following differential equation for the parameter
difference, &Y = & - a:

M= -k ¥y L= 4 (3-26)

(This equation is, of course, approximate as are Eq 3-22 and 5—23).

The objective of the parameter tracking system is to make XX zero so
that a(t) traces the same path as the unknown parameter, a(t). This is
impossible to do exactly since Eg %3-26 is inhomogeneous, and the forcing
function, a4, is unknown in advance. However, it is possible to approach

this ideal quite closely, as will be shown.

The major portion of the study uses a sinusoidally varying parameter
and a sinusoidal input. The tracking performance is studied as a function
of three things: input frequency, wj; parameter variation frequency, wg;
and parameter adjustment loop gain, k. The frequencies range over the

follewing values:

1t

wi = 0.7, 1, 1.4, 2.24, 3.17 rad/sec

0.1, 0.224, 0.317, 0.4U48 rad/sec

g,

Note that the input frequencies extend past the break frequency of the

state variable filter.

Each of these combinations of frequencies is run at three different
levels oI parameter adjusimeunl lovp gaii, woich wWill ke referred to as

high, intermediate, and low.

Three different effects, or types of distortion, are observed in the
parameter responses. These are bumpiness, amplitude reduction, and lag.
The effect of changing the experimental variables on these types of dis-
tortion is summarized in Table III. A check mark indicates a strong depend-
ency. The most serious of these distortions is probably amplitude reduc-
tion because it would be impossible to detect in an actual situation, and

it would significantly affect any subsequent analyses based upon the dis-
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torted parameter estimates. Note that the second row is stated in terms
of amplitude reduction. Therefore, it is desirable that each of the quali-

ties in the table be decreased.

TABLE TIIT

EFFECTS OF EXPERIMENTAL VARIABLES UPON
DISTORTION OF THE PARAMETER RESPONSES

b EFFECT OF INCREASING
L . L S
Bumpiness | decreases v increases v increases
Amplitude o VW R
reduction increases increases decreases
Lag increases _ Viggééases decrea;;s '

One of the interesting points to note from Table III is that the most
important parameter is wi, the input frequency, since it effects all three
qualities strongly. To a large extent, however, the adverse effects of a
high input frequency (on amplitude reduction and lag) can be compensated
for by increasing the parameter adjustment loop gain. In addition, the

one adverse effect of increasing gain (on bumpiness) is relatively small.

The effects of wj, wg and k can be explained, in a qualitative sense,
by considering Eq 3-26. Increased lag and amplitude reduction both mean,
in general, a larger value of AX. The homogeneous part of this equation
is asymptotically stable and hence tends to reduce AXx. The inhomogeneous
part tends to increase Ax. Increasing k increases the first term relative
to the second, and hence we would expect the lag and amplitude reduction
to decrease. Increasing wy; and w; would have the opposite effect; i.e.
the second term would increase relative to the first. We would expect

lag and amplitude reduction to increase.
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Bumpiness is an effect which results from high values of a. Equation

3-26 can be rewritten:
G+ ky o= -k - x) (3-27)

From this equation, it is easy to appreciate why an increase in k increases
bumpiness. Also, since increasing ®; reduces the amplitudes of Y15 &1,

and x7 because of the frequency response characte;istic of 1/H(s), we might
expect this tc reduce bumpiness as indeed it does. Finally, the effect of
increasing w, can be seen by examining Eq 3-26. An increase in Wy 1lncreases

4, which leads to an increase in Q.

Examples of the effects of increasing k, wj, and Wy are shown in Figures
3-17 through 3-19, respectively. These runs are all for a sine wave input
and sinusoidally varying parameter, a. Note that @ was not initially at

A

the correct value, but needed some time to "catch up."

Results involving ramp inputs and/or ramp variation of the parameter
are shown in Figure 3-20. In Figure 3-20 a, the parameter variation is
sinusoidal, but the input used is a ramp. Again the initial estimate o(O)
is unequal to the correct value. The trace of a(t) shows that the system
corrected this error rapidly and then tracked a(t) almost perfectly with
only a slight lag.

Figure %-20 shows the case of a ramp variation in the parameter,
a(t) = ¢ t, and a sinusoidal input. The tracking system correctly re-
produced the slope of the variation, c, with a very swaii 1&g ond with
little bumpiness. Again, the bumpiness decreases as input frequency in-

creases.

Finally, the most intriguing run of all is the one with a ramp varia-
tion of the parameter and a ramp input. As can be seen in Figure 3-20
c, the run can be separated into two segments. After first lagging behind,
a(t) catches up using a larger slope than the correct one. Once it has
caught up, it changes slope abruptly (at point A) and is "on" for the

remainder of the run.
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One conclusion which can be drawn from these last few runs, 1s that
the data at the beginning of any run should be ignored to give the track-

' The overall conclusion to be drawn

ing parameters a chance to "catch up.'
from this study is highly encouraging: time-varying parameters can indeed
be successfully tracked with only small errors provided the variation is
not "too fast." Further research is indicated to add some quantitative
meaning to the phrase "too fast" and to determine other things, such as
the effect of two parameters varying, the effects of changing the filter
1/H(s), etc. Based on these preliminary data, this approach to the iden-

tification of time-varying systems seems profitable.

APPLICATTON OF THE GENERALIZED EQUATION
ERROR METHOD TO PILOT PARAMETER TRACKING

A simulated pilot parameter tracking experiment, chosen to exemplify
practical application of the generalized equation error method, is dis-
cussed in this subsection. The object in this experiment is to identify
the describing function parameters of a known, quasi-linear representation
of a human pilot performing a compensatory control task. By comparing
parameter values identified with the values known to exist in the simula-

tion, the validity of the approach may be established.

The unknown plant in this example has been viewed by previous investi-
gators as either the simulated pilot describing function or the entire
closed-loop simulated pilot- vehicle system. Elements of the closed-loop
other than the simulated human pilot are assumed known in either case.
References 18, 19 and 20 point out that a proper quasi-linear model of
a human pilot must include a remnant* signal as well as a linear trans-
mission path. In the presence of the remnant, the only strictly correct
viewpoint is to treat the entire closed-loop system as the unknown plant
(Kigg References 18 and 19.) although this might be unnecessary in certain
cases. Exploration of this latter question is a secondary objective of

this application since the validity of results obtained using pilot param-

¥By definition the remnant is the signal, uncorrelated with the input to
the closed-loop system, which must be included in the quasi-linear represen-
tation of an element in order that the output of the quasi-linear element
model exactly equal that of the actual element for a given input.
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eter tracking techniques, e.g. References 9, 13 and 21, has not yet been

demonstrated when a remnant signal is included.

The functional block diagram of the simulated pilot-vehicle tracking
system plus a generalized equation error parameter tracking system is
shown in Figure %-21. OSwitches indicate the capability for tracking
parameters from the outside or inside of the loop closed around the simu-

lated pilot, and for including a simulated remnant signal or not.

The linear constant coefficient describing function for the simulated

M(s) _ K(Ts+1) |
Tp = §ls) = (st (5-28)

~TS

pilot is:

where 1/(ts+1) is a Padé approximation to the reaction time delay, e
The three parameters to be "tracked" are K, KT and t. Although not shown
in Figure 3-21, provision is made to introduce step and sinusoidal varia-
tions, 8Kp(p = plant or simulated pilot), in K from a constant value, Ko,
in the simulated pilot describing function. Provision is also made to
introduce step variations, SK.‘I‘p and 5Tp in KT and T from constant values,
KTy and tg, respectively in the simulated pilot describing function. Step
changes; &Ky, 8KTp and dty(m = model); can also be introduced into the
model parameters. The object of the parameter tracking function is to
null the quantities, &K, AKT and At, which are the differences between

the respective model and describing function parameters.

A remnant signal model for the simulated pilot is constructed from
the data in Reference 22. There,evidence is given supporting the proposi-
tion that the proper remnant power spectrum for injection at the error
point in the pilot-vehicle loop is proportional to the input power spec-
trum to the closed-loop. The proportionality factor (remnant power/input

power) is here taken to be 0.112.

The input spectrum to the closed-loop is white noise shaped by two
first order lags with break frequencies at 1.0 rad/sec as in Reference 1L.

The filters for shaping the input and remnant spectra from unit white

-1
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Figure 3.21. Functional Block Diagram of the Simulated Pilot Parameter Tracking Experiment
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noise are respectively:

a 0.33hg
(1+s)2 (1+s)2

The constant, a, is adjusted to obtain the proper input signal level to

the simulated closed-loop pilot-vehicle system.

i2(¢) = (6.12)° (volts)®

1
Yo = u(s) =5 (3-29)

The transfer functions for the simulated closed-loop pilot-vehicle system

are:

c(s) c(s) _ K(Ts+1)
I(s) ~ Ng(s)  s{ts+1) + K(Ts+1)

(3-30)

Handling qualities theory, e.g. Reference 22 can be used to show a proper
pilot describing function for this choice for Y. should be approximately:
1.0(0.0s+1)

Yo = (oY (3-31)

These values are used in the simulated human pilot describing function.
Despite the fact that the lead time constant is zero, we have made pro-
vision for its adjustment in the model. This presents an opportunity

to adjust three parameters. This seems to have been the point at which
previous investigators have bogged down using the equation error parameter

tracking system approach.

Independent generalized equation errors in this parameter tracking sys-

tem are generated by passing each measured signal from the simulated pilot-
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vehicle system through a bandsplitting filter. Each output of the band-
splitting filter is passed through a state variable filter, each section
of which produces a low pass filtered derivative of its input signal.
The remaining details of the parameter tracking system are executed in
the customary way. (Vide Section IT and Figure 3-21). This approach
has several advantages:

1. It should tend to maximize the independence of the

generalized equation errors, i.e. it should tend to
maximize A(t) (Vide p. 20.)

2. It is the simplest configuration to mechanize in
terms of the number of generalized computing ele-
ments required.

3. It provides low passed equation error as an output.
This is valuable for estimating the system perform-
ance quality.

4. Only a modest number of approximate, successive
differentiations is required using this approach.
The number required is equal to the order of the
model being used; two, in this case.

The bandsplitting filter consists of low pass, bandpass and high pass
sections designed such that the sum of the section outputs equals the band-
splitting filter input. The bandpass section covers the frequency decade
in the cross-over frequency region for Yp Y.. The low pass, bandpass and

high pass sections, respectively, have transfer functions:

B(s) = S—f(%% (3-22)
By(s) = (sfgf;?é?'?;f%.?éj (3-33)
BB(S) = E:%TT@ (3-34)
The state variable filter sections have transfer functions
Fn(s) = E?ZT - — ((1).25: — n = 0,1,2 (3-%5)
: (1.0)°
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where n denotes the section used to obtain a particular state variable

(or approximate time derivative in this case).

The measured signals from the simulated pilot-vehicle system are
i(t) (or e(t) when tracking inside the loop) and c(t). Each drives a
separate bandsplitting filter. The bandsplitting filter section outputs
for the i(t) input are: i7(t), io(t) and iB(t). For the c(t) input they
are: cq(t), co(t) and 05(t)' To see how these signals are processed
further, let us consider one typical variable, c5(t). The processing for

any other variable would be the same.

c5(t) is a typical input to a state variable filter. The outputs of
the Fy, F1 and F2 sections of this filter are, respectively, CBO(t), CBl(t)
and c52(t). These are, respectively, the zeroth, first and second time
derivatives of CB(t) after being low pass filtered by 1/H(s). Again, let
us select a typical output variable, c31(t).

c51(t) is the first time derivative of the plant output when regarded
as a component of the third generalized equation error, ez. Hence c31(t)
is then multiplied by the appropriate model parameter and is summed with
similar terms in the other variables; i30(t)’ 151(t), CBO(t) and c52(t);

to form the generalized equation error, €3-

The criterion function used is:

Fle) = (e? + eg + e%)/2 (3-36)

The generalized equation errors, eq and e, are similar to e5, only these

are generated using the outputs from the Bi(s) and By(s) sections, respec-
tively, of the bandsplitting filter. The partial derivative of the crite-
rion function with respect to each model parameter is formed, and the rate
of adjustment of each model parameter is made proportional to the negative

of the partial derivative with respect to that parameter. For example,

o= - oae & (3-37)
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where Ag is the proportionality constant referred to as the K parameter

ad justment loop gain.

The parameter adjustment loop gain matrix, K, used in this system is

A O 0 0.01 0 0
K=10 Aep O - 0 0.01 0 (3-38)
0 0  Ag 0 0 0.001

when three parameters are being adjusted. When two parameters are being
adjusted, Aty = O; and when only one parameter, K, is being adjusted,

ATZAKT-_—O.

First, we will show a typical result to demonstrate that the three-
parameter tracking system operates as predicted in the absence of remnant.
In Figure 3-22 responses of the three (A) parameters to step changes in
the model parameters; oKy, KTy and dty; are shown. The asymptotic values
which the responses should approach are shown dashed. Here, tracking is
performed from the outside of the loop. It makes little difference whether
outside or inside the loop tracking is used as is to be expected when there
is no remnant. In fact, even the shapes of the parameter responses are

similar under these conditions.

To casual observation, the performance of the At adjustment in Figure
3-22 might seem to be contrary to our theoretical expectation. However,
it is well to remember that the theory requires only that the length of
the parameter vector in { coordinates be monotonically decreasing, and
that these time responses show differently scaled components of the param-

eter vector in y coordinates.

For the parameter adjustment loop gains used in Figure 3-22 (given by
Eq 3-38) the parameter coordinates in which a steepest descent on the sur-

face, F = e'e/2, is being performed are:

2




Conditions: 3 adjustable parameters, outside the loop tracking,
no remnant

Figure 3-22 Pilot Parameter Tracking System Responses
to Model Parameter Perturbations.
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10 XX
-1/2
£t =K / 7 =410 AXXT (5_59)

10 \[?E;An

To assure ourselves that ” Q" is decreasing let us compute “ g{[
several times during the response. Taking the time in seconds at which
the parameter perturbations are introduced as zero, it may be determined
from Figure 3-22 that

241/2
| £(0)]] = [102 +10° +(ﬁ)] : 1.5
| t2.5)}] 2 12.0

e
e

(10) || = 6.03

(100) || = 5.19

The norm of { 1s decreasing monotonically as it should.

The next observation is that the AT response is quite slow after the
first five seconds of the response, and furthermore, that At is larger
than it was at t = 0 although it is moving in the right direction. The
fact that AT has increased might ordinarily lessen our confidence in the

system's performance. Let us consider some implications of these points.

Notice that the (low pass filtered) equation error, e, is quite small
compared to the plant input and output after the first five seconds of
parameter adjustment. This indicates that, from the equation error view-
point, the model resembles the plant quite closely after t = 5 sec despite
the large deviation of AT from its asymptotic value. This is reasonable
because the effects of T are most apparent in the vicinity of 5 rad/sec,
and beyond, while the bandwidth of the input exterds only to 1.0 rad/secy
and the cut-off filter of the approximate differentiations has a break fre-
quency of 1.0 rad/sec. A way to correct this problem is to weight the high
frequency components of the error vector more heavily. When a bandsplitting

filter is used to obtain the independent generalized equation errors which

Th




are the components of the error vector, it is a simple matter to weight

the error vector components according to frequency because each generalized
equation error emphasizes a different frequency region. Weighting is then
a matter of choosing the positive elements for the diagonal matrix, Q, and
using F = g'Qg/E as the criterion function instead of F = e'e/2. Another
way to correct this problem is to increase each parameter adjustment loop

gain by the same factor.

Next, let us look at the spheroids described by the norm of the param-
eter vector in { coordinates at two particular times in Figure 3-23 a.
First, let us note that when the length of any component of the parameter
vector approaches the length of the parameter vector norm, the length of
the other components of the vector approach zero. This is apparent for
the Q(10) vector in Figure 3-23 a wherein 10 10 At is approaching the
norm while 10 &K and 10 AKT are approaching zero. Thus we may conclude
that when one or more components of f increase from their initial values,
the remaining components of { approach origin of the { coordinates more
closely at a given value of I]QII than if all components decreased simul-
taneously. Secondly, by transforming the spheroid of radius || £(10) ||
into y coordinates as shown in Figure 3-23 b, we can determine the maximum
uncertainty in each parameter vector component in y coordinates, presumably
the coordinates of interest. More than this may be said, however. Note

that the transformation from { to y coordinates is
1/2
Z:K/ £ (3-k0)

which implies that the relative maximum uncertainty in each parameter vector
in y coordinates is controlled by the designer's choice of the positive ele-
ments in the diagonal matrix, K. Thus, by deciding the relative deviation
from the origin that can be tolerated for each component of the parameter
vector in y coordinates, the relative values of the elements of the matrix,
K may be chosen. In order to be assured of reducing the norm of the param-
eter vector in { coordinates to a certain fraction of the initial norm of

the parameter vector in ¢ coordinates, it is sufficient to set

™



(b) Ellipsoid

Figure 3-23. Spheroid of Parameter Values in { Coordinates
and a Corresponding Ellipsoid in 7y Coordinates
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T *
e_k"; 2(7) at

equal to that fraction. Solution gives different combinations of k and

T for a given K which will accomplish this. T is here the run length
time required. In order that IIQ(T)‘l be smaller than a given constant,
¢, i.e. the deviation from the origin for each component of the parameter
vector in 7y coordinates at time, T, must be smaller than certain constants
for the respective components; it is sufficient that the initial norm of

the parameter vector in { coordinates be smaller than:

k.fg A1) dr

This implies an ellipsoid in 7y coordinates within which the initial param-
eter values must lie which, in turn, implies a region in which the initial

rarameters of the model must lie.

Because T parameter deviations do not give rise to any significant
portion of the equation errors for the configuration of parameter tracking
system used, the remainder of the experiments is conducted with AT set
equal to zero. While the AT parameter could have been retained, very long
times would be required for the parameters to approach their asymptotic
values because of the limited gain available in the simulation. On the
other hand, changing the configuration of the system so that F = e'Q 9/2
could be used would also require more gain than was available. Figure
3-2L shows the response to step perturbations in the model parameters,

OKm and KTy, of the two parameicr systcm tracking from outside the loop
in the absence of remnant. All possible combinations of algebraic sign
are used for the perturbations. Responses from all combinations of = 100%
model parameter perturbations are well behaved and rapid. Figure 3-25

shows responses to the same perturbations for inside the loop tracking.

*Here the parameter adjustment law is assumed to be:

y=-kKAy (3-41)

Mt) is the mimimum eigenvalue of K1/2A K1/2.
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There is here no essential difference in the performance for inside and
outside the loop tracking, when there is no remmant. This is, of course,

the performance which is expected.

The same experiments are rerun including the remnant input. Figure
3-26 shows responses comparable to the traces of Figures 3-24 a and 3-25 a.
Notice that the remnant gives rise to substantial variation of the adjust-
ing parameters in comparison to their behavior when there is no remnant.
In fact, it would be difficult to identify correct parameter values from

these data.

The rapid variations in the parameters also mask the so-called param-
eter biases predicted for inside the loop tracking by Elkind (Reference 18)
and Rucker (Reference 5). We hoped these would be clearly observable in

Figure 3-26 b, but not in Figure 3-26 a.

Figure 3-27 shows parameter responses comparable to the responses in
Figure 3-24 a (outside the loop tracking, no remnant) and Figure 3-26 a
(outside the loop tracking, with remnant) for parameter perturbations made
in the plant. The first response (no remnant) shows that the parameter
responses are similar to, although slower than, responses for perturbations
in the model parameters. Responses are slower for two reasons:

1. Information containing the effect of the plant parameter

perturbation is delayed by the state variable filter.
That is, it is delayed by 1/H(s) which in this case is:

(3-h2)

1 1
H(s) 140 (0.5) o+ s2

ﬁaﬁ 10

2. Perturbations in the plant parameters produce a transient
effect because of the temporary time-varying quality of
the coefficients. In order to identify the constant
model of the plant, this transient must die out so that
the plant may again be considered constant coefficient
in nature.
The second response, Figure 3-27 b is a repeat of the first with
remnant included. This record is comparable to that of Figure 3-26 a.

Here it is evident that parameter tracking system fails to cope with
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the remnant.

Tracking a sinusoidally varying K in the plant is shown in Figure 3-28.
Here KT is fixed at its correct value in the model. The results indicate
that the ability to track time-varying parameters increases with decreasing
amplitude and/or frequency of the parameter time-variation. When the AKT
parameter is free to track also, it is observed that its interaction with
the AXK parameter is slight whenever conditions are such that the low-passed
equation error is held to small values by the parameter tracking action.
Here again, it is found that the parameter tracking system could not oper-

ate successfully in the presence of remmant.
Conclusions drawn from this series of experiments are:

1. The pilot parameter tracking system works as predicted by
the theory in the absence of remnant. However, because
there is considerable evidence to support the existence
of the remnant as part of a human pilot model, and the
pilot parameter tracking system as simulated was not
truly capable of coping with the remmnant, we can only
conclude that such an application needs more research
before pilot parameter tracking constitutes a well es-
tablished technique. Since we have previously demon-
strated the qualitative equivalence of equation error
and response error systems, this conclusion places
data previously obtained using any pilot parameter
tracking technique in a questionable position. Much
of this "questionable" data, however, agrees well with
results obtained by rigorously established techniques.
We therefore have reason to believe that additional re-
search specifically oriented toward the remnant problem
would be successful in bringing pilot paramster tracking

H roe - - ——mme aede mdna
L0 a sauvlslacoory status.

2. The so-called parameter biases because of remmant in
equation error systems have not been observed in the
simulated pilot parameter tracking experiments.

3. One way arcund the problems caused by remnant induced
filctuations (and biases) in the tracking parameters
is to use a quasi-random input to the closed-loop sys-
tem which is a sum of non-harmonically related sine
waves with random phases. The research reported in
Reference 22 contains measurements that tend to show
that pilot remnant has a continuous power spectrum
even when the input spectrum has power only at dis-
crete frequencies. This fact may be used to advan-
tage to discriminate againstremnant effects. Signals
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containing a remmant component may be bandpass filtered
at the sinusoidal input frequencies. Note that bandpass
filters would perform a function similar to the band-
splitting filters used in the simulated pilot parameter
tracking experiments described above. That is, they
would enable linearly independent generalized equation
errors to be formed. However, the signal to noise

ratio of the generalized equation errors generated using
bandpass filters will be improved by a factor which is
approximately the inverse of the filter pass-band. Param-
eter bias would also be appropriately reduced. Of course,
it is obvious here that a special input signal to the
closed-lcop system is required.

The experiments (without remnant) indicate that it might
be feasible to track pilot parameters which vary fairly
slowly. An example of such a situation might be typi-
fied by the adaption of a pilot to a change in vehicle
transfer function.



SECTION IV
RECOMMENDATTIONS FOR FURTHER STUDY

Areas for research on parameter tracking which seem most likely to
yield significant results for only modest expenditures of effort are
summarized in this Section. These areas are:

® Analysis of simplified parameter tracking system mechani-
zations.

® Development of techniques for suppressing the effects of
measurement noise.

® FEngineering analyses and experiments to determine param-
eter tracking system capability to track time-varying
plant parameters.

® Validation of alternative pilot parameter tracking tech-
niques.

We shall consider each area in turn below.

Table I shows that a considerable number of analog multipliers (p x q)
is required to mechanize the most desirable criterion function, Fo, when
p parameters are to be adjusted. If a sufficient number of error vector
components are included so that a non-increasing upper bound on the norm
of the parameter vector can be found, then g = p. Then p2 mltipliers are
required to obtain OF,/dy from e. From a practical viewpoint, it is clear
that if these multipliers could be replaced by simpler logic elements
(relays), one major equipment requirement would be considerably lessened.
This would make the parameter tracking technique available to a broader
class of users having access to analog computers of modest capacity. On
the other hand, such a development would also enable special purpose param-
eter tracking computers to be realized at lower cost. At the present time,
however, additional theoretical development is necessary to establish that
such simplified systems would perform satisfactorily with regard to stabil-

ity and convergence rate. One configuration which might be investigated

easily would use
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2=-k§§—'sgns (4-1)

where
sgn e = col(sgn ey, sgn e, --- 58N eq) (k-2)

for the parameter adjustment law. Another adjustment law for which
the rate of parameter adjustment is independent of the plant input magni-
tude is also of interest. This is:
de'
= -k sgn <— sgn e (4-3)
dy =

e

In Section ITII, the so-called measurement noise is shown to impose a

significant performance limitation on parameter tracking systems using the
equation error approach. If we are to avoid using special plant inputs,
the only remaining degree of freedom through which the system may be opti-
mized is by choice of the cut-off filter, 1/H(s). That this approach can
be successful is shown empirically in Section III. What is needed here

is a sound engineering approach for determining analytically what the
cut-off filter transfer function should be. One straightforward analytical
approach, described on page 52 of Section ITI, was found to be intractable.
It may be that a more sophisticated approach would prove fruitful. An al-
ternative might be to merely minimize the noise to signal ratio of the
equation error with respect to the parameters of the cut-off filter, or to

determine the optimal cut-off Tiiler for minimizing that guantity.

While the problem of identifying the parameters of a linear time in-
variant noise-free plant via parameter tracking has effectively been sol-
ved in Section II, we have considered only briefly, in Section IIT, a
simple case where one plant parameter is time-varying. Extensions of
the approach taken in Section III would be valuable, in establishing
more firmly, suitable techniques for analysis. These analyses, however,
must, of necessity, be approximate. They would serve to determine bounds

upon parameter tracking performance, such as upon the tracking error as a
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function of the cut-off filter bandwidth, parameter adjustment loop gain
and input spectral characteristics. The bounds should also be determined
experimentally to check the regions over which the approximate analyses

might be expected to be accurate.

The fact that some question can be raised as to the complete validity
of the pilot parameter tracking technique in the presence of remnant,
makes research on this point a pressing matter. For the reason explained
on page 83, we have good cause to believe that complete validation is
largely a matter of picking up a number of loose ends. Two approaches

for accomplishing this are suggested below.

Research results reported here and the work reported by Weirwille in
Reference 23 might be combined to develop an analytical synthesis of a
response error pilot parameter tracking system. Briefly, an appropriate
expansion of the model equations such as in Appendix A plus Weirwille's
viewpoint on appropriate criteria for real-time determination of the best
constant coefficient model may be used to show the proper form of the
model equations for synthesis. It is suspected that the proper form will
be similar to that reported by Meissinger in Reference 24. It is also
expected that in the properly synthesized parameter tracking system, the
response error will be an algebraic function of the adjustable parameters
enabling a steepest descent solution to actually be realized. Thus, on-
line solutions for the parameters would be achievable to any desired degree
of accuracy in the absence of remnant provided certain sufficiency condi-
tions on the input to the plant, similar to those developed in Section 1T,
are satisfied. It appears that even more may be said about the performance
of the system in the presence of remnant if the remnant meets certain suffi-
ciency conditions. If this is the case, it would appear that the model
parameters will be asymptotically stable about the values present in the
plant. An approach similar to that used by Elkind (Reference 8) might be
used to evaluate the effect of remnant on parameter values at any given

time.

According to Elkind, parameter values determined by the equation
error pilot parameter tracking method will be biased because of remnant

effects. A pressing need, then, is to find a practical way around this
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point. The necessity for this is all the more apparent in the light of
results from the simulated pilot parameter tracking experiment reported
here. The large fluctuations observable in the tracking parameters are
because of remnant at signal to noise ratios of three (a typical value
for pilot-compensatory tracking systems). In the absence of remnant the
parameter tracking system operated correctly and as predicted by the

theory.

One way around both of these problems is to use a quasi-random input
to the closed-loop system which is a sum of non-harmonically related sine
waves with random phases. The research reported in Reference 22 contains
measurements that tend to show that pilot remnant has a continuous power
spectrum when the input spectrum has power only at discrete frequencies.
This fact may be used to advantage to discriminate against remnant effects.
Signals containing a remnant component may be bandpass filtered at the
sinusoidal input frequencies. The signal to noise ratio of the output
signal with respect to the original signal will then be improved by a
factor which is approximately the inverse of the filter pass-band. Param-
eter bias would also be appropriately reduced. Of course, it is obvious
that a special input is required. However, this input is of a sufficiently
general form, being quasi-random, to be tallored for most laboratory appli-

cations.

(8]
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APPENDIX A

DERIVATTON OF TIME-VARYING WEIGHTING FILTERS
FOR RESPONSE ERROR SYSTEMS

This effort is directed toward eliminating mathematical approximations
in analysis of self-adjusting systems. Central in this commentary is em-
phasis on the time-varying quality of the dynamic systems considered. This
implies that analysis must be performed in terms of functional relationships
rather than value relationships. Functional relationships are the proper

domain of variational calculus (in distinction to differential calculus) .

VARTATIONAL CONCEPTS

A few words are sufficient to introduce the basic variational concepts

we will need.

A variation, ®zj,defines a change in the functional relationship of zj
and t and must not be confused with a change, Az;, in the value of a given
function, zj(t), due to a change At, in the independent vairable. (Vide

Reference 25)

The variation of a function f3 = fi(ES X5 7 t) where zj and yx are the

dependent variables, and t and x; are the independent variables, is given
by:
8f; = £1(214921, .. 20 tB25X1, ... ,Xy ; 774077, -+, I*OV ;5 t)
(A-1)

- fi(z1,..,zn;x1,....xn 3 Vs Yy S t )

If f; is suitably differentiable, the above equation may be expanded in a
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Taylor series as:

n Ofj m Of; m n agfi
1 = S et X 5ot X X sy 9z
s=1 8 k=1 k=1 s=1 'K “s
(A-2)
;2 m Bgfi ] Em znf agfi
+—E 2 B—S——SZSSZt+— 5_‘6_67k67r+ e
2 S:‘l t=1 ZS Zt 2 k:] r=1 7k 71‘
The terms of order one, two, ... etc., in Ozg and/or 80y respectively con-

stitute the first order variation, 81fi, of f;; the second order variation,

62fi, of f;; etc.

The usefulness of the variational technique for the parameter tracking

problem is embodied in the following property: (Reference 26)

If t is an independent variable (and, accordingly
5t = 0) the operators ® and d/dt are commutative;
that is:

g—t (82;) = & (;&) (A-3)

’

This extremely important commutative property enables us to formulate a
system of differential equations which relate dynamic changes in mecdel co=-
efficients to the attendant changes in the model output variables without

requiring a constant coefficient restriction.

DEFINTTTION OF PARAMEIKR ‘I'RACKING SYSTIR{ BLEMENTS

Response error parameter tracking systems can be considered as
composed of two functional blocks; the model, and the parameter adjust-
ment laws, as shown in Figure A-1. The interaction of these functional
blocks and their coupling with the plant to be modeled are also indicated

in this figure.
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th

* The form of the n** order model is defined by

z = £(z; %5 75 t)

z(0) = zO
z = 001(21,-22, cer Zp (A‘M‘)
x = col(xy, xp, ... x3)

= COl('}'o, 7]; e 7111)

(B
[

where the z; are the state variables of the model, t is the independent
variable, time; the i are the coefficients or parameters of the model and
are treated as dependent variables. Xj are the inputs to the system.
These signals are the identifiable inputs to the plant which are available

as signals. The Xj are considered to be independent variables.

The response error vector, e, is defined by m linear combinations of

the differences of each of the n output variables of the plant, Vis and

the corresponding output variables of the model, z and the time deriva-

iy
tives of these differences.

e, =0z - y) + Dz -j) =Gy (A-5)

1 Z -
where G = [C ! D], z::lti-— . Cand D are m x n matrices, G is a m x 2n

! zZ-y
matrix. The columns of C and D which correspond to the components of y and

i which are nnt measurable are zero. The remaining elements of C and D are

specified by the designer.

Complicated as the above description might seem, it does have the vir-
tue of encompassing a great many cases-of practical interest. For a lin-

ear model with simple coefficients,* the Taylor series expansion of f;

*Simple coefficients of a linear differential equation are those
occurring linearly, such as:

n (i) 1 (1) n n+l
Z%O‘i 20 = 3, Bi X o= 2 71325 % 2 7ij Xy
i= i=0 j=1 J=n+1
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terminates after terms of second order, and for both simple and non-simple
coefficients the expansion is linear in the ©z;. When nonlinear model equa-
tions are considered, the'expansion can always be linearized in the d5z; by

truncating the series after terms of first order in 8zi.

Linearity can be used to advantage in that the superposition principle
can be employed to separate the solutions, ®z;, into components ascribable

to the individual Byk. This yields the expression

n (afi n o r; 3f; (56)
82y = 9, + 3 Oy | Bz + By A-
ik 578 k sk 7 J k
s=1 Zs  x=1 9%s%7k Tk
m
Bzik(o) =0, k=1, 2, ... m where dz; = E:] dziy- This is exact for linear

models with simple coefficients. (For non-simple coefficients, the problem
can be reduced to this form plus auxiliary algebraic constraints among the
parameters.) For nonlinear models with simple coefficients, Eq A-6 is a
first order approximation in the Szik variables. The interpretation of

8zjx is as follows: &zj) is the component of dz; which is ascribable to the
parameter variation 67k in the presence of the structural change in the
system of equations because of the other parameter variations in the sys-
ten967r, r % k. Equations A-6, using & to indicate infinitesimal variations,

define a weighting filter for each parameter. For infinitesimal varia-

tions, Eq A-6 may be written in vector form as:

of of

A — A-
bz = 57 Oz + 5;; epn (A-7)

If Eq A-7 is considered to define a linear system in the 5Zik, then the

(BE/Byk) 8y, term must be the forcing applied to this system.

Then, using A to indicate variations of finite size, let us define

m
Zi = Zol + 2 Azik
k=1
(2-8)

Tk = Y0r t Dk

ok




th model coefficient which is

where 70k is the base component of the k
given a priori--not necessarily a cons’cant--Ayk is the manipulated com-
ponent of the kth model parameter. Z05 is the model response resulting
when all Ay, are constrained to zero. Azi gives the change in the model

response due to the Aqk. A base portion of the model may be defined as:

&y = folzo;s %5 205 )
(A-9)

By applying the Taylor series expansion and the superposition principle

to Eq A-9, and considering finite variations, manipulated portions of

the model are defined by

. B + A-10
s= =

£z, (0) =0 k=1,2, ... m

for linear models with simple coefficients. Equation A-10 glso defines the
first order approximation in the Az;, variables for nonlinear models with

simple coefficients.

Similarity of the definitions for the manipulated portions of the model

and the weighting filters is apparent.

The fact that

1

of;  df,. 1 Fry,
il Ml
Tx 7x s=1 92597k

can be used to obtain an alternate expression for Eq A-10 in vector form

which will be useful at a later point.

of, of

(A-11)

]
O
=
"

e
o

.
8

£z, (0)



By adding the base model equations and the finite variational equa-
tions according to Eq A-8, we may convince ourselves that these defini-

tions are consistent with the original definition of the model, Eq A-k.

Next, we will examine the way these two sets of variational equations
are used in parameter tracking systems. Consider a criterion function,
F(Er)’ which is a positive definite function of a response error vector.
At a stationary point which is a minimum of this function with respect
to the model variables (the z{ and éj), the rate of change of the cri-
terion function in the direction of any model variable must be zero.

This property of a stationary point means that the first variation of

the criterion function, Eq A-12, must vanish everywhere in the infinitesi-
mal region about the stationary point. Therefore, the coefficients of
the component variations of the criterion function first variation must
vanish independently. The first variation of the criterion function,

Eq A-16, can be expressed as a function of the infinitesimal component
variations, 8y, 92y and ®zii (given by Eq A-7). The coefficients of

the component variations are functions of the zj, 24, yj and yj. A
successful parameter tracking system may be defined as one which servoes

these coefficients in the criterion function first variation to zero.

Now, it is clear that the model parameters provide a convenient means
for manipulating the z; variables. This constitutes the use of the equa-
tions in finite variations, Eq A-10 or A-11. The equations show the
means for servoing the coefficients of %z5% and Siik to zero though the
control of each manipulated parameter on the model variables is not of

an uncoupled nature.

Consider the first variation of the criterion function:

)
5'F(e,) = [égi]

=r

Be,. (A-12)
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Se, = Cdz + Ddz + 8C(z-y) + &D(z-y)
m m n acij
= C {k§ Szik} + D{KE Aﬁzik} + [Jz=1 S (Zj'YJ):|{67k}
+ [Zn% J (s, -yJ)]{Sm} (A-13)
i=
= Hw

Where the m x(2n + m) watrix, H, is
=[cip:E| (A-1L)
and where

n aC; BD
Bix = JZ_: ['g"‘ (z5-y5) + F— (2- VJ)]

and the (2n + m) vector, w is:

W= fé ( (a-15)
\8y /
Then:
OF(ey)
81F(ey) = [-é‘r—] Hyw (A-16)

The first variation of the criterion function is also used to approximate
the first order sensitivity of the criterion function to changes in the

model parameters. This is accomplished by defining the (en+ m) xm matrix,
W:

-1

\O



W=| 824/8% (A-17)

Note that Woy = w. The control law employed to adjust (or manipulate) the
parameters of the model is:

) oF(e,.)
Ay = - KW'H' { =5 (A-18)
- Cr
aF(Sr)
W'H' ——% is the approximate sensitivity of the criterion function
de,.

to changes in the model parameters.

In using the variational expansion of the model equations to indicate
the approximate sensitivity of the criterion function to changes in the
model parameters, we have formed the ratios 6zik/87k and Szik/Syk in the
matrix, W, subject to the following restrictions:

1. The variations in the parameters have been specified

to be constants. This is permissible since in testing
the criterion function for stationarity the varia-

tions may be chosen as arbitrary nonzero functions.

2. The variations in the parameters have been allowed
to become arbitrarily small.

The necessity for adopting restriction 1 arose because the variation of
the parameter of interest (in the case of & particular weighting filter)
always appears in the forcing signal path of the weighting filter, and
its inverse always appears in the output path of the weighting filter by
virtue of Eq A-17. Hence by choosing the coefficient variation function
as constant with time, the variation in the input path divides out with

its inverse in the output path because the weighting filter is always a
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linear system. As a practical matter, we should like to avoid considering
higher order effects of the variations, and from a theoretical viewpoint,
we would like to deal with a limiting form of the approximate sensitivity,
wherein the model parameters are also parameters of the weighting filter,

hence restriction 2.

As a direct result of these two restrictions we must also restrict,
or at least carefully define what is meant by “approximate sensitivity."

The interpretation is as follows.

The weighting filter equations under restrictions 1
and 2 generate the first order sensitivity of the
time-~varying linear or nonlinear model responses to
changes in the parameters made at t < O (a time be-
fore the application of an input to the plant and
model) and held constant during the response of

the model.

In other words, at some time greater than t = O the output of the variational

equations represents the present sensitivity of the model response to an
infinitesimal constant parameter change made at or before t = 0. It is
not the sensitivity of the model response to parameter changes made sub-
sequent to t = O although the effects of any such change will be correctly

included in the weighting filter structure.

STRUCTURE OF THE PARAMETER ADJUSTMENT TLOOPS

Having developed the equations for a general response error parameter
tracking system, let us now turn our attention to the structure of the
system. A vector block diagram, Figure A-2, provides the most concise
means for showing the interrelationships of the equations describing the

system, Bq A-4, 5, 7, 8, 9, 11, 14, 17 and 18.

Figure A-2 clearly shows that the parameter adjustment loop dynamics
consist of the integration for generating Ay and the weighting filter
dynamics. This observation has been stated previcusly in References T, 8

and 12. However, in each case the analysis was approximate. Here, the
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. analysis is exact for linear models and is a first order approximation for
&8 broad class of nonlinear models with simple coefficients. This loop also
contains a nonlinear element and two time-varying gains. The G matrix pro-
vides the means for selecting different response error vectors through
specification of the matrix elements. The constant, k, merely controls
the open parameter adjustment loop gain. The characteristics of the
nonlinear element are determined by the choice of criterion function.

For example, if

Fle,) = ep'e./2 : (A-19)
then:
oF(e,)
—ag— = ep (A—QO)

That is, for the special case where the criterion function is the sum of
the squares of the response error vector components, the nonlinear char-

acteristics reduce to linear, unity gain characteristics.

ey
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APPENDIX B

RELATION OF EQUATION ERROR TO RESPONSE ERROR
Response error is defined by Eq A-5 of Appendix A as:
er = Clz-y) + D(z-y) (B-1)

Tet us now make the following specifications and assumptions.

1. Assume a linear model with simple coefficients of
the form

of of;
z = [523 7 + = X (B-2)

which is a special case of Eq A-L.

2. Let C and D be n x n matrices; that is, let the order
of the response error vector equal the order of the
model, and assume all state variables are measurable.

3. Let the matrices C and D be:

of N
= l- 5;%] D = [ 1\] (B-3)

J

Evaluating the expression for the response error vector using Egs B-1 and

B-3 we obtain:

of§ N
er = [- gJ] (z-y) + [ 1\] (z-3) (B-4)
Using Eq B-2
ofy of; )
9r=§kx+[gz—j y-Y (B-5)
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Equation B-5 defines a response error vector, the components of which are
the equation errors associated with each first order differential equation
of the (implied) n®® order model. This may be appreciated by comparing
the right hand side of Eq B-5 with Eq B-2.

This analysis demonstrates that the equation error vector is a special
case of the response error vector for linear models with simple coefficients.
For nonlinear models with simple coefficients, the same statement holds true
although the matrices, [Bfi/azj] and [Bfi/éxk], have elements which are

algebraic functions of the components of z and Xx.

Next, we shall examine the component of this special response error
vector ascribable to the manipulated component of the parameter vector.

Making use of Egs B-1 and A-10:

m Bfi N . Ofo1
wop [ e e

k=1

Because of the simple coefficient assumptionJafOi/Bykl will have elements
which are algebraic functions of the components of Zq and x but not of 7,

nor will time derivatives of z; be involved. Or equivalently, making use
of Eq B-5:

1 Py n  3Fr;
ter = | 20 ST k2 SaSs Vx| A (B-7)
For linear models with simple cocfficienta. Befi_/axq_,_ayi and Bgfi/azkayj

will always be zero or one. Hence lLe.. can alternatively be an algebraic

function of ¥y and X.

This demonstrates that the weighting filters with the basic model
parameter values in Figure A-2 have transmittances of unity (no dynamics)

for this special case of the response error vector.

Finally, we shall examine the dynamics of the weighting filters with
total model parameter values, ¥, in Figure A-2. To accomplish this we
must evaluate the matrix, W'H', in Eq A-18. We shall restrict our atten-

tion to linear models with simple coefficients. From Eq A-1k4

-
(o]
N



where

H = [CE D' |

aDij
(z5-y3) + S (25-33) (B-9)

For the specified C and D matrices:

From Eq A-17

Then

d°F,
1

Byk T Bijayk
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2
o)
HW = - irafl g—szik Nl Zn: Wafl z
k=1 Pk “k 57 =1 9239k I
55 Bgfi
+ S5 Vs (B-12)
5=1 23597 J
P, df
Since 5;55;; zy = 5;; , We can see

that each column of the first three terms satisfies Eq A-T (assuming that

57k is constant and dividing through by it in Eq A-7). Therefore:
f

*r
- = i 13)

For linear models with simple coefficients, Befi/azjayk will always be zero
or one. Here then, we may consider the weighting filters to have trans-
mittances of unity. These equations for W'H' are first order approximations

for nonlinear models with simple coefficients.

Equations B-5, B-1% and A-18 define an equation error parameter track-
ing system. The linear model with simple coefficients implied by these
equations is given by Eq B-2. For linear simple coefficient models all

the equations given above are exact.

—
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APPENDIX C

DEFINITIONS AND THEOREM PROOFS

This appendix contains definitions and proofs of the theorems con-

tained in Section IT.

Tt is assumed that we have a linear system of differential equations

of the form:
7= -k A(t) ¥

(See Eq 2-23)

The solution of Eq C-1 which satisfies the initial condition y = Y

at t = tg will be denoted by

0
2(t5 275 to)

Since Eq C-1 is linear, the only equilibrium point is the origin.

Definition 1 The system described by Eq C-1 is said to be stable

if for some r > O, there exists an R(r, tg) > O,
such that H Zp H < r implies

2085 2%, ) |l <R
for all t > tO‘

Definition 2 The system described by Eq C-1 is said to be asymp-
totically stable if

(1) it is stable

(2) there exists a region, r(ty) > O such
that || 2° || < r(ty) implies:

Lim | 2(t; 2%, ) || = 0
t—re0
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Therefore, to prove a system is asymptotically stable, it must first be
shown that it is stable.
Definition 3 A system is said to be completely (asymptotically)

stable if it is (asymptotically) stable for all
initial states, »~.

Since Eq C-1 is linear, any stability proofs will hold for all Zpi i.e. if

Eq C-1 is asymptotically stable it will be completely asymptotically stable.

Using these definitions, it is possible to prove the complete stability
of the system describing the parameter differences, Eq C-1, using the first
theorem of Liapunov. This is done by finding a Liapunov function,V(l),

which 1is positive definite, i.e.

(1) vy >¢e o

where £ 1s some positive constant.

(2) v(0) = 0

3

and then showing that the derivative V is never positive.

To prove asymptotic stability, using lLiapunov's theorem requires that
v be always negative. The system given by Eq C-1 does not satisfy this
requirement. However, it is intuitively clear since V is zero only at
isolated instants and is negative otherwise, that the system must be
asymptctically «table. To put this on a rigorous basis requires the
analog of & theorem of LaSalle (Reference 15) for non-auiovuumcius cyctems.
The following definition is required.
Definition 4 TI(t) is defined as the set of all points, 7, such that
¥ =0 at time t. By I'(») we denote the limiting value
of this set, lim D(t) = I'(w). It is important to note

tow

that the Liapunov functions, V, considered here are

not explicitly dependent on t. Hence, contours of
V are time-invariant.

We can now establish the following theorem:

Theorem C-1 Given: A linear differential system whose coefficients

:)
3



are continuous functions of t. If a ILdiapunov function,
V(l): differentiable with respect to ), can be found
such that

(D) vy e | 2]
(2) v(0) =0
(3) V<0 for all 7, t

then the solution will approach the set I'(») as t-w.

Proof. Since V< 0, V is a non-increasing, continuous function which is

bounded from below. Therefore V(y(t)) has a limit, c, as t-=. Since

£
v(2(t)) = v(2°) +f V(y(%), 1) dt (c-2)
o

this implies that
V«a 0O as t - o,

Since () is the set of all points such that V-0, the solution must
approach ().

Theorem 1 of Section II follows direcctly since it restricts the elements
of T(w) which can be approached by any solution of the differential equa-

tion, to the origin.

Theorem 2 of Section IT applies to cases where the elements of A1)
in Eq C-1 are random functions of t. For this problem, a new concept of
stability 1s required.

Definition 5 The system given by Eq C-1 said to be stable in the

mean if for some r > O, there exists an R(r, tg) > O
such that l|zp|‘ < r implies

B 2° ) <=®

for all t > to.
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Definition 6 The system given by Eq C-1 is said to be asymptot-
ically stable in the mean if

(1) it is stable in the mean

(2) there exists a region, r(fo) > 0 such that
Il 791 < r(tg) implies

1im E(|| 2(£) ||) = 0.

t00

Definition 7 A system is said to be completely (asymptotically)
stable in the mean if it is asymptotically stable
in the mean for all initial states, ~.

These definitions are exact analogs of Definitions 1, 2 and 3.

Stability in the mean of the system described by Eq C-1 can be proved
using the following theorem of Bertram and Sarachik (Reference 27); spe-
cialized here to the linear case:

Theorem C-2 Given: A linear differential system whose coefficients
are random functions of time. If a Liapunov function,
V(y), differentiable in 7, can be found such that
() vy e 2|l
(2) v(0) =0
(3) E(V) <o

v

1

then the system is stable in the mean.

(The theorem proved iii Reference 27 is applicable also to nonlinear
systems and with time dependent Liapunov functions, V = V(Z’ t). We have

specialized here in the interests of brevity).

Clearly the system of Eq C-1 satisfies these conditions. To show
asymptotic stability in the mean, Bertram and Sarachik have proved another

theorem which imposes the additional condition that

E(V) <n |l 2|l

where 1 is some constant. This condition is not satisfied by Eq C-1,

because of the hyperplane where e = O.
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Asymptotic stability in the mean can, however, be proved using an
analog of Theorem C-1 for the stochastic case:
Theorem C-3% Given: A linear differential system whose coefficients

are random functions of time. If a Liapunov function
V(Z ), differentiable in ¥, can be found such that

(1) vy >¢e (2|l
(2) v(o) =0
(3) E(V) <O

(L) the only set such that E(V) - 0 as t-ow® is
the origin

v

It

then the system is asymptotically stable in the mean.

Proof. The argument is identical to that used in Theorem C-1. E(V) is now
a non-increasing function of t, continuous and bounded from below. There-

fore it approaches a limit, c¢. Taking the expected value of Eq C-2 yields

t -
B(V(2(t))) = Vo + fy BO(x(x), ) ar
Since E(V) — ¢ as t-w, it is necessary that E(V)-ﬁ 0. However E(V) -0

only if ||y || = 0. .\ E(V) must —» O since E(V) is always < O.

Theorem C-3% is identical to Theorem 2 of Section II.
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