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(1) INTRODUCTION

In this section we list some of the basic theorems and definitions
which are used in the analysis of dynamic systems. The proofs of the
theorems will not be given but can be found in the references which are

listed at the end of this section. Wherever possible, examples will be
given to facilitate the understanding of the theorems and definitions.

The first part of this section will be a "naive" discussion of non-

linear phenomena. The second part will be concerned with the properties
of the dynamic systems whose stability is desired. Finally, the last
(and main) part of the section will contain a list of the important theorems

and definitions in the "stability' and "boundedness" fields.

(I1) THE NONLINEAR WORLD (1) to (8)*

Before giving various examples of linear and nonlinear phenomena in the

physical world, let us define in mathematical terms a linear and a nonlinear
operator. Suppose that 8 is an arbitrary mathematical operator which maps

a given space into another space. Suppose further, that f=f(x) and g=g(x)
are arbitrary functions of a variable x, and a and b are arbitrary constants.
(In our work we will usually think of © as mapping the reals into the reals,
or an n-dimensional real vector into another n-dimensional real vector.)

Thus, we say that ® is a linear operator if it satisfies

0 (a f(x) ) =a0 ( £(x) ),
0 ((f(x) +g(x)) =06 (f(x) ) +6 (g(x) ),

for all constants a and functions f,g under consideration. If © is a linear

*The numbers in the parentheses refer to the references at the end of the
report.




(2)

. operator and g is not identically zero, then 6(f(x) ) = g(x) is a linear,

nonhomogeneous equation; and 8(f(x) ) = 0 is a linear, homogeneous equation.

If 8 is invariant under a translation in x, themn it is an autonomous

operator; if it is not, © is called a nonautonomous operator.

Some examples of linear operators are:

(1). e(f(x) ) f(x), identity operator,

(2). oe(f(x) ) = 3 f(x-5),
(3). e(f(x) ) =d f(x-2),
dx

j f(x-s)e"Sds,

x f(x), nonautonomous operator.

&). oe(f(x) )
(5). O(f(x) )

In the physical world, the governing equations of motion for certain
phenomena are often linearized. The physical assumptions which are invoked
' in some of these cases are:
(1). Ideal, homogeneous, uniform fluids,
(2). perfect insulation,

(3). isotropic media,

(4). weightless members,
(5). infinitesimal waves,

(6). small deflections.
The deficiency of an operator © is defined as, (8),
D = 8(£G) + g0 ) - O(EX) ) - 8(gko) ).
If D is not identically zero for all the functions under consideration, then

6 is a nonlinear operator. An example is:



(3)

8 (f(x) ) = f(x) df(x),
dx

(f(x) + g(x) d(f(x) + g(x))_ £(x)df(x) _ gdg
dx dx dx

D (f(x) + g(x) )

i

fdg 4+ 8 df,
dx dx

which is not in general zero. Some other nonlinear operators are,

(1). e (f) = f2(x),
a0

(2). e (f) =f f(x-s) f(s)ds,
. ]

(3). © (f) = exp (f(x) ).

Some examples of physical phenomena which are nonlinear are,
(1). certain springs and oscillators,
(2). gases at high pressures,
(3). finite displacement theory of elasticity,
(4). rigid body dynamics,
. (5). movement of flood waves in rivers.
Reasons for studying nonlinear systems in physics and engineering are:

(1). physical measurements have grown more refined and thus non-
linear effects are exhibited in the collected data;

(2). certain systems are by their very nature nonlimear, such as
rigid body motion in three-space;

(3). nonlinear devices are sometimes far superior to linear ones;
i.e., nonlinear controls can often far outperform linear controls.

"The_basic mathematical tool used for expressing change and its causes in

certain mechanical, biological, economic, electronic, and control systems is

the ordinary differential equation. This equation may be linear or nonlinear

and autonomous Or nonautonomous. Some examples of nonlinear equations which
describe certain physical phenomena are given below:

(1). from Newton's 2nd Law of Motion, we have the equation of the
oscillating pendulum

. 9 +9/Lsin 6 = 0,

e
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where 6 is the angular displacement and L is the length of the pendulum;
(2). van der Pol's equation
X -/.()‘< (1-x2) +x =0,
A >0

describes the variation of the current in a radio circuit, certain periodic

biological processes, and business cycles;

(3). the theory of finite waves progressing over the surface of
a water mass of infinite depth reduces to

X = A exp(-3x) f(B);

(4). the theory of large elastic deflections produces the
following equation

W'+ Aw[l-(w')Z] ¥ = 0.
The question might be asked, how do linear and nonlinear systems differ
in behavior? If a system is linear and homogeneous, then any linear combin-
ation of solutions of the system is also a solution; this is called the

principle of superposition. Nonlinear systems, in general, do not obey

this principle.

The global behaviour of a linear, autonomous system can be predicted by
iocal behavior, which is not the case for nonlinear systems. In some non-
linear systems, local properties can be determined by linear approximation,

but usually the global properties require that the nonlinear terms be
investigated. There are nonlinear systems in which local phenomena can not
even be determined by the linear approximation.

In a linear, autonomous system the phenomenon of resonance can occur if
there is no damping in the systemand a certain bounded forcing function is

impressed upon the system. Thus, a bounded imput can cause an unbounded
output in a linear system. If damping is present, bounded imputs produce

bounded outputs. In nonlinearsystems, linear resonance does not occur because
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the periods of oscillations are amplitude dependent and thus, in some cases,
the nonlinearities produce stable conditions in a system even though

damping may be absent. But there are nonlinear resonance effects which go

under the names of subharmonic resonance, jump phenomenon, parametric
excitation, and hysteresis effects.
In nonlinear systems (such as Van der Pol's equation) there may exist
self-sustained oscillations. These oscillations may occur without the
influence of external forces, but simply arise from the intermal structure

of the system and the manner in which the system's energy is transformed from

n
(N3

sidering the nonlinearities.
Two great names in the theory of differential equations are Poincare
of France and Liopunov of Russia. Poincare studied the geometric properties
of solutions and invented certain techniques for the computation of solutioms.
His work stimulated the development of certain topics of modern abstract

mathematics. Some of the ideas of Poincare are considered in the next part

of the section.

Liopunov studied the stability properties of the solutions of ordinary
differential equations by generalizing the work of Lagrange. In his second
or direct method, Liopunov analyzed the stability of systems without

obtaining the actual solutions. His work stimulated the development of
quantitative and qualitative information about the stability of various types
of systems. 1In the last part of this section we will list many of these

results.
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(III) The Systems Under Investigation

(A) 2nd Order Systems (3), (8), (9), (12)

Consider the second order system defined by

X P (X:y)’

(

<.
]

Q (x,y).

The XY-plane is called the phase plane or state space. The equations in

(1) give the flow in the state space, and the corresponding velocity of
fiow is given by the two-dimensional vector
V= (xy) = ( P(x,y), Q(x,y) ). (2)

If P and Q are not both zero, then V is not 0, or the state of the system
is changing.at each point in the xy-plane (for which V # 0). The points
where V = 0 are called rest points, equilibrium points, singular points, or

points of no flow. An ordinary point is any point where V # 0. The flow
lines in the xy-plane are the solutions of (1) or the trajections of 1.
We assume that P and Q are such that through every ordinary point there passes
one and only one flow line, and that each singular point is isolated.
From reference (8), we hawe the following example of a second order
system. The system is a simplified model of Volterro's "struggle for
existence between two species', where one species preys exclusively on the
other. The defining equations are

-2x1 + x1X3,

1

X1
(3)

L]

X = -x2 * x1%2,

having singular points located at (0,0) and (1,2). In the phase plane plot
given below, the arrows point in the direction of increasing time. It can

be shown by Poincare's singular-point analysis that (0,0) is asymptolically

stable and (1,2) is unstable.




),

Phase - Plane Plot for Eq.(3)

By assuming that equation (1) could be expanded in series form,

B J

2
ajx + byy + cjx2 T d1y +eixy + ..., @)

r .
]

asx + boy + czx2+ d2y2+ exxy + ....,

Poincare was able to classify the singular points of (1) according to their
stability properties, and he also described the trajections in the neighbor-
hoods of these points by considering the linear terms in (4). This work is
repeated in many texts, such as references (8), (9), (10), (12), and (17).
For certain critical cases the linear approximation fails, and the nonlinear
terms must be considered, see reference (17).
Another topic of interest in second order systems is the search for

periodic solutions or limit cycles. Some results of this work for autonomous

and nonautonomous systems can be found in references (8) to (14) and (17).

In references (15) and (16), the geometric broperties of third, fourth, and
higher order systems are investigated, in analogy with the second order systems.
These references also list extended bibliographies in this area. 1In reference
(14), a survey of non-autonomous systems, as applied to mechanics, is

presented for second order systems.

(B) Higher Order Systems (12), (18), (19), (20).

The state of a system, described by the n-dimensional vector X, is the

minimum amount of information needed about a '"physical dynamic'" system at
some past time in order to predict its future behavior. The dynamic system
may be described by the following n-dimensional vector differential equation:

X = £ (c,x0). (5)
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The vector U is a specified m-dimensional control vector or forcing function;
X is the state vector; t is a scalar variable (usually taken to be time);
and f is an n-dimensional function which satisfies sufficient conditions
for existence and uniqueness of solutions as required by whatever problem
is under consideration.

If the control vector U is identically zero, then (5) becomes a free,
nonlinear, nonautonomous system

X = £ (t,x). (8)

A free, nonlinear, autonomous system is defined by

.
X=f®@. (O
In all of our problems, we will assume that t and the c¢omponents of X
are real numbers.
Suppose our nonlinear, nonautonomous system is given by
e
Y=g (t,y), (8
where y =7 is a particular solution of (8) whose stability properties are
desired. The first step in the analysis is to derive the equation of

perturbed motion about y =% . Thus, the pertufbation about 1is defined as

= s e d +Tan A Ao a4 , y i
X = -N, and the correspounding cquation of perturbed motion is
<
L}
* g
X=1f (t,X), (9)

where f (t,x) = g (t,x fﬂ) - g (t,g ).

The unperturbed solution of (9) is X = 0. Throughout the remaineder of

thi; report equation (9), with an isolated singular solution at X = 0,

will be the subject of our investigation. An example of a perturbed equation
is given below; it was obtained from reference (21).

Example : Atmospheric Reentry System.

Consider the simple reentry problem of a '"point-mass" space vehicle
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reentering the atmosphere. We assume that the motion is two-dimensional,
and the earth is spherical (radius Rl) and non-rotating. The required

notation is defined as follows:

6 = angle of latitude
f = flight path angle
& = angle of attack
S = refereunce area of vehicle
L = lift force on the vehicle
D = drag force on the vehicle
V = velocity vector, V =1V
R = radius vector from the center of the earth to the vehicle
h = altitude of the vehicle
go = gravitational acceleration at
R =R=R
AR = density of the air
CL( ), Cp( ) = lift and drag coefficients,

= Tass ¢

)

the vehicle.

From Newton's second law, the state of the system is given by

< o

= 2 (X:E):

where the state vector is defined as Y = {h,V,Kﬁ and the control, u, is the
-T
scalar quantity&. The corresponding components of g are g;= V sinf,

g2 = -g sin¥ - D , and g3 < _X cos¥ -%_ cos ¥ +'1I=‘V , where L = CL@‘) P(’n)V"S s
11 2

m
& 1%
R = Ry+h, and g = g, [ R= h .
If we now assume that % is a nominal solution of ¥ =g (Y,k), then the

first-order perturbation equation is given by
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ol - - 7 o 1 - 1
: 3% 3% a4 23
dh 3h IV PR $h oa
Q - 3‘3\. .3_2} é-g} V é_él
® dhn oY PR ® + da\
5 39 393 8%, 29
by L} 9 _3; o _J. $8 22
¢ dh SRy J ax
= - - en - - - -n

where gh, 8V, 8 Yand &« are the perturbations with reference to the

nominal trojectory. The matrix coeffients of these variations are
evaluated along the nominal trajectory and these are known functions of time.
These, the first-order perturbation equation is a linear, nonautonomous
system for gh, gV, § ¥ along with a specified control BHe .

Now, let us consider some of the necessary local properties of the right
hand side of (9), £ (t,X), and some definitions of terms needed in the
following discussion. Any solution X (t) of the system in (9) is called a
trajectory in the n-dimensional Euclidean space. Apoint solution or-gingular
solution of (9) can be expressed as X = C, constant, and satisfies £ (t,C) = 0

for all t in some interval. In the remainder of this section we will

consider various norms of the vector X, such as,

L oIx;l
HE

sup ( 1x,1,..., 1xul),

‘Jx?+..A”%:

Since in our work these norms are equivalent and the form used is usually

I % %
" v
] 1l 1]

dietated by proofs of the theorems in which they appear, we will denote any
of the above norms of x by j|§[] . The particular norm wich is used will
be dictated by the convenience of its use in a particular problem.

As in the above example, we canconsider the linear approximation of (9)
about X = 0 if f sarisfies X:=§(t,x)zB@x+alexy (9
wheve J[2/H¥H —>o0 & Uxl —poO.

Of course, this linear approximation X = A(t)X for (9) is only valid in the

neighborhood of X = 0.
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We say that £ is a Lipschitz function in X in a region R¥* of the (t,x)

space if
WE (% - £ &l Mix -yl (11)

for all x and y, and t in R*. The constant M is called the Lipschitz constant.

Some theorems dealing with Lispschitz function are the following:

Theorem 1

(#) (i) 1If F (t,x) 1is continueus in (t,Xx) - space,
(ii) £ (t,x) 1is linear in x,

(¢) then £ (t,x) is a Lipschitz function for all t in some interval.

Theoren 2

(H) (i) If region S is defined in two-dimensional space by o£ix=41¢T\
and o6 $|Y-Yel £ © or by o© S |[x-X|£7
and o = lyl< oo
(ii) £ (x,v) is real-valued on S,
(iii) éfé), exists and is continous on S,

(iv) lg;[ < K for all (x,y) in S,

(C) then f(x,y) is a Lipschitz function in S and K is a Lipschitz

constant.
Examples
(1) Comsider f(x,y) = xy2 in the region S:
thus,we have aif_’/ l = jixyl g2 = K S

I=l 1Yt -y2 i
IXULY, + %l 1Y, -Yal & 20Y,-Ya )

and |40 - FOu W) |

for all x in S.

(2) Comsider f(x,y) = y 2/3 in the region S: |¥|£ | Buwd 1Y|£1

then we have l4{%,y, Y- £(¥,o)| = \\/‘7-/3' - l\/A-,oll
Ly,

which has an unbounced "Lipschitz constant' as yj —»0. Thus, y 2/3 is not

a Lipschitz function in the neighborhood of (0,0).




(3) Consider £(x,y) = x%|y] in the region S: {xi£}| mwd 1y1 ¢
Even though ;i does not exist at y = 0, f is a Lipschitz
Y

function because
FEC, Yy =00,y 3] = 101 [ 1y0- 190 S 1y, v,
for all x in S.

(4) Consider the second order, time-varying system defined by

1 =1} % o

£ (t,x)

where S: jt{<€ o0 and Jf&l} <o . Thus, we have that f is a Lipschitz

function because

i\ (_‘ (¢, ’S)'i (t, Y)H SEIRIC AP T ALARES FE A

[/

e ETRE AR TR NS b P A

3)%,-Y, ] t3I%pmya) = 3NEY

A

(C) Existence and Unigueness Theorems /Reference (12)/

We now consider the initial value problem (autonomous and forwarc in
time) defined by
-
X = £,

X(o) = G,

(12)

where X beongs to a region RE*Z: HE-QH$’Z\E and o0<téb ,(b?0).
The function f£ is continuous in R. Corresponding to the initial value problem
(I.v.P.) in (12) is the . integral equation given below:
X(t) =¢ +/tf(§(s3)ds ,0%t<b (13)
In seeking a unique solﬁtion to (12), the following nonlinear integral
transformation is very important. For any X{t), continuous and defined on

o<t <h with values in R, the transformation is

t
y:Ta) = e+ f Fxeneats (14)




(13)

Since X and f arc continuous functions of their respective arguments, then

Y is a continuous function of t. Also, for sufficiently small t, ¥ is in

R since X is in R and T is a continuous transformation. Since R is compact
and F is continuous, [j f (Yl s K for any X in R. An invariant

set S of the transformation T is defined as the sct of all continuous
functions X in R for O% €t L b such that for any X in S,
T(x) is in S.

The existence and uniqueness of the solution of the I.V.P. is proved by

the Method of successive approximations, making use of the fixed point

theorems for contraction mappings. The sequence of transformations is

defined by

X = L,

X1 = T (Xo),
X, = T (X1)»
L 3 L ] rd

[ J [ ] - ®
Xeer = T Guop )
where the fixed point X is the unique solution of (12) and is defined by

L ¢ y = b3 ,provided T is a contraction mapping.
Y

Theoren: /reference (12)/

(H) (1) If Xo C is in §

<

T ¢+ £ GlsMs, k= 0,1,2,..)
-]

(iii) £ (x) is a Lipschitz function in R for og+t <€ b

(i) X 41

(C) then, (1). X,, X1, X2, ++«., Xk,... converges to a solution of the I.V.P.:

(2). this solution is unique;

(3). this solution is a continuous function of the initial vector
C; and

(). if £ = f(x,k), where K is a system parameter, then the

unique solution of the corresponding I.V.P. is a continuous function of K.
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I

Zxamples

(14)

Let us now consider examples illustrating the various aspects of the

above theorem.

(1) Consider the I.V.P. defined by } x I + 1 x } = 0, X(0) = 1.

Since the only solution of the equation is X(t)= 0, then no solution of

ghe I.V.P. exists.

(2) For the I.V.P. described by i = x 2/3, X(o) = 0, there exists two

solutions; they are X = 0 and X = 5% . We note that X 2/3 is not a Lipschitz

function in the neighborhood of t = 0.

(3) In the system defined by

X = f (t,x), X(0) = 0,

whepe ]
Ltrx

f (t,x) = m_z_ ’ (t:x) # (0,0)

O > (tax) = (0,0) N

we ebtain an infinite number of solutioms,

x=c> - Jih kY ., cto.

Again, f (t,x) does not satisfy Lipschitz's condition in the neighborhood of

(5)

. The above theorem verifies the following two statements:

a. if X% = log (1-x2), then the corresponding I.V.P. will have a
unique solution for all (t,x) in the strip —=y¢ R &+

3

t + x2 ,x €0
then the corresponding I.V.P. will have a unique solution for
all (t,x) in the whole plane.

Consider the linear, first order equation X = g(t) X + h(t),

where g and h are continuous in some interval I. The solution of
the corresponding I.V.P. is

a [t -QW Qw

Py e ) € hnds +gree

t
wheve t_ € I aad Q(t\"/ 9 (¢) At .
to
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The interesting result is that ¢H}is unique and exists for all t in I.

This is not generally true of nonlinear systems. For example, consider the

L]
system X = x2  and X(o) = + 1. The F (t,x) in this case is analytic for
all t, but the solution is x =~ 1/t-1. This solution blows up at t = 1.
The conclusion is that any general existence theorem for (12) can only

adsert the existence of a solution in some interval near the initial value

of t.

(6) As an example of the application of successive approximations,

consider:

X; = X3 , Xy{) =0
[ ]
Xp = -Xp , Xp(0) = 1.
The integral transformation is
t
T(Z): e By J x;(é’ ds )
: =X, (8)
‘?r t
Xea 2 e +/ xk(s)ds , Ko Lz,.....
' ()
T\»\us
] t
I
¥e= |91, K= |° */ As - |t
1 t
2| ° +/ las = T
t] o -3 1=t/
7 * %, b
X.= 1%+ =37 |ds = | t- 4
AR B t.,_/
. ° =S 1-*n

Aud so omw,
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X S‘M't

It can be shown that —
w cost

(7) Finally, we give an example of the fourth condlusion of the above

theorem. Consider the satellite equation X +X =K x2, where K is a

-
system parameter. To analysé this problem let Xj = X, X2 =X and

X3 = K. Thus, the state-variable form of the problem is given by
89 <
s - 1 - ! -
x= r Xmx) 2E (), X ()= qu
° K
Consider a second system defined by
Ya N
Y WYY Ty, Y(e)s= 3
o Ki

From the equation (14) we have

+
u>.<-1ueu<-n,|+mj 26y -yl oAs
where

Wt Y-z 1R%) + 122 %= % =y, +y, |

"

)"l“/&l+!x}"3-xnz YJ +Y,("-1‘Y,‘)+ Y,"x),
€ Ixovis ) 1
LT AR RN ATEIE AL SR L AN EWER LA

S miix-yil
and where M is the max &l)‘.l: I+ 1Y, ‘xl*‘/.ig im some bounded region

in the state space. From Gronwall's Lemma, reference (12), we have

€
Hx-y1l &€ I &k~Kk| e”

or t

-1}

™
|x-y1 + |-y Ik-x]{e



(17)

Thus, if t is restricted to some interval, Y — X as Kl-——a—K, thus
proving the continuity of the solution with respect to K.
The neoxt theorem relaxes the Lipschity's condition on F (x) in (12);

thus we get an existence theorem but not the property of uniqueness.

Cauchv - Peano Existence Theorem: reference (12).

(H) (1) if £ (x), is continuous in the neighborhood of x(o) = ¢,

(C) then there exists a solution of the I.V.P., defined by equation (12).
3>

Example

. o
Condider the equation X =1 x1}1 , O<ea<l, X(o) = 0. This I.V.P. has an
infinite number of solutions. The function defined by § x 1 is continuous

at X = 0 but does not satisfy a Lipschitz condition.

Theorem (Generalization of the above Example)

G) (&) If X = £(x), X() =0,
(ii) f(x) is continuous if X # 0,
(iii) f(x)»0 if X # 0,

(iv) (o) =0,

V) X has integrable singularities at X = 0

(C) then the I.V.P. has infinitely many solutions.

We now consider two theorems for nonautonomous systems. The second

theorem is more general than the first.

Theorem: reference (20)

#H) (1) If X =£f (t,x), X(to) = Xo, is Un n-dimensional system,

(ii) R is some region of the n + 1 -dimensional Euclicdean space of X

i

anag t,
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‘ (iii) { has continous rirst partial derivatives in R,
(C) then (1) there exists a unique solution
X(t) of S\_ = £(t,x) such that X(to) = Xo;
(2) X can be extended throughout R;

(3) X is a continous function of Xo and to in R.

Theorem: reference (12).

(H) (1) 1If £ is continous in X and t for

3
I 2-%,1l € awd o<t £b,
G it i ¢ Kiey for [ix-X =2 and o< tgh,
GiD) 11 (¢, 2y - £ (e, ¥y S wmues 1 g-YlI
for HE-LDUS‘Z\J o<tLb,
(iv) each K(t) and m(t) are integrable on o<t < b
(v) for any by, such that , <‘1° , there exists a and 6 such
. that j{bl K(t) che £ aud /' Py eht = 8 <),
o
(vi) x(®) (t) is continous and [ X %X, )] ¢ =& for @<t £,
t
.. {
(vii) x“0 x_ v joEO, xMsNds , KEo i,

(C) then the sequence X(O) (l) ...,X(K) . converges uniformly to

4 unique solution. of the I.V.P. on Lne interval o € ¢sg o,

Examples
[ J
(1) the system defined by X = (I/J_F ) x2, X(o) =
satisfies all the hypotheses of the theorem.

' J
(2) the system defined by X = (2/t3) X, X{(o) = 0, has an infinite number of
solutions; hypotheses (iv) and (v) are violated.

'] ——
(3) the system defined by X = VVti VIX| , X(0) = 0, has an infinite
number of solutions; hypotheses (iii) is violated.

llow from the

(4) this next example has a unique solution but it does not fo
ystem is

above theorem since hypothesis (iii) is violated. 7The s
X =rt X—2, X{o) = 0, whose unique solution is X = 3/3737 ¢ 2/3.
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(D) Types of Trajectories and Their Continuity Properties

Let us consider the system defined by
X =£ (t,x,e), (15)
where X is the n-dimensional state vector dnd ® is an m-dimensional state
vector whose components are the parameters of the system. First, we list
several theorems dealing with the continuity of the solutions of the I.V.P.

corresponding to (15).

Theorem: reference (12)

[ ]
(H) ({) IfX =f (x) and X (0) =,
(ii) F (x) satisfies a Lipschitz condition,
(1ii) the system passesses Kth order continous derivatives,

(C) then the solution X(t) of the I.V.P. possesses a (K +il)-st order
continuous derivative with respect to t.

Theorem: reference (12)

(H) (i) If £ in (15) is analytic in X, 9 and t,

(C) then X is analytic in C, & and t.

Theorem: reference (12)

(H) (i) If £ in (15) is analytic in X, ® and continuous in t,

(C) then X is analytic in C and o and is continuously differentiable in t.

Theorem: reference (12)

(H) (1) 1If £ possesses Kth order continuous derivatives in o, X, and t,
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(C) then, (1) the solution X of the I.V.P. possesses Kth order continuous
derivatives in &« , C, and t;

L
(2) X possesses K-th order continuous derivatives in & , C, and t;

Two im portant notes about the above theorems are: one, the theorems
are the basis of present day perturbation theory in mechanics; two, the
theorems are local and thus t is restricted to a finite interval. Therefore,
the theorems are not directly applicable to perturbation problems concerning
periodic solutions.

We are now turn to a short discussion concerning the possible trajectories
of the I.V.P. corresponding to the system i_='£ (t,x). The existence
theorems discussed in this report were local theorems. But by a stepwise
application of the theorems, the unique soiution of a problem can be uniquely
extended in the backward or forward direction to some finite vaiue of t, or
to teo. )

We will dismiss the case of the trajectory being discontinuous after
finite time by giving two examples. The remainder of the report will then
be concerned with infinite time extensions of the trajectdéries.

Examples
(1)Consider the system i = 1/1-x, X(0) = 0. The unique solution is
X=1 -J-]._:Z-t‘, which is well-defined for t € {o,%], but undefined for the
"reals" beyond t = 1/2. The solution is bounded throughout the interval
L 3 2 yl
(2) Consider, again, the system X = X2, X(o) = 1. The unique solution,

X = 1/1-t, is well-defined for t e[O,l) . But X is unbounded over the

interval o0¢ ¢t < |. We say that this system has a finite-escape time

(a€ t = 1/2).




(21)

Let us now consider only systems having unique solutions to the I.V.P.
and which possess unique extension in both the backward (t to) and forward
(t pto) directions. Let I' be this uniquely extended trajectory. As
t —» 400 oOT ~-eco , the trajectory,_[" » will exhibit one of the following
properties or combinations of these properties:

(1) [ will approach a singular point;

(2) [’ will approach a closed trajectory which contains no singular
points (periodic solution of the system);

(3) I' will not approach any particular set of points;

(4) [ will approach a separatrix; that is, a closed curve made up of
singular points and connecting paths.

We know give several examples to illustrate above limiting conditions

for ['.
(1 L [
(1) the system defined by X = - g, or X; = X, and X, = - g has

parabolic trajectories which do not approach any finite set of points as
t—¥ o Oort-—e-co.

ee e [ L]
(2) the system defined by X + 3X + 2X =0, or X] = X2 and X = - 3X1
- 2%, has trajectories which approach (0,0) as t = +o0

(3) In the following system the trajectories approach the closed curve

2
xlz + X = las te—ep -0 . AS t—p 4+ , the trajectories starting
2
2 =
inside X12 + X22 = 1 appraoch (0,0) and the trajectories outisde X1 + Xz =

approach infinity. The system is
° 2 2
Xy =X +X1 (X1 +X2 -1),

E J
X

2 2
-X+X, & +X, -1),

whose solution in polar coordinates is given by
at 4~V
r:[l-Ae] :

©@=-t +6,

—
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(4) The system defined by
[ L J
X + f(x) =0,
where
£(x) =3x - 4x3 +X° = x(x-1) (x+1) (x +3) (x - 3).
has singular points at (0,0), (+ 3, 0), (i 1,0).
It can be shown that (0,0), ( + 3, 0) are stable centers and ( + 1,0) are

unstable saddle points. In the Xx- phase plane, the equation of the separtrix

6 4 + 9 X2 + 3 iZ =4, All of the trajectories in

is given by X~ =~ 6 X
the phase plane are closed curves (except the singular points) as shown below
in the figure. .
3

Sepavarvix

7N x
N

[ 1) 3 5
Phase-Plane Plot ot X +3X = 4 X™ + X~ = 0.

(IV) Definitions aud Theorems of Stability Theory

The Second Method of Liopunov is currently the best known method of
analyzing the stability of dynamic systems whose laws of mation are described
by ordinary linear and nonlinear differential eqdé&ions. This part of the
report presents a brief review of the baisc theorems and definitions of the

Second Method, along with illustrative examples. We will keep the discussion

about these theorems and definitions to a minimum, letting the "examples'
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do most of the talking. For completion, we will make a few remarks

concerning Liopunov's First Method, and the concept of boundedness.

(A) Liopunov's First Method : reference (22)

Liopunov's First Method consists of the construction of the general
solution of
$
X = £ (t,x) (1)
in the form of a series and then to investigate the problem of stability of
the homogeneous solution of (1) directly from its outer form. Assume that

(1) can be written as

. S Wy, g W), -
Xs: L P.tox sL B (6 X e e
= Mmaam | )

where Xg is the s-component of X. The P's in (2) are real continuous
bounded functions for t 2 0, or they are piecewise continuous. The series,
I ,converges for allt » 0 and | Xg 1 £ 8<% constant.

M@t my ¥
The linear approximation of (2) is given by

|0

=P (t) X, (3)
and '\i are the characteristic numbers of the linear system.

The assumed form of the solutions for (1) are given by:

(g™, n m, “
XL Ly (0 expl- L mix; t]c., .. cn (4)
“.‘.“0“." [t}

where the L's are continuous functions for t » O and

(n.,..., m“ —-att
~» o0 as t—o

] m;

for any A0 . The C,; '

¢ S are constants. The results derived

from the solutions in (4) are as follows:
(1) If the characteristic numbers A; of the linear system in (3) are

all positive, then the series in Xg converges for all t % 0 and |¢ | <3,
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¥ a positive constant. Thus from the outer form of these series %),

we have that the homogeneous solution of (1) is locally asymptotically stable

(the definition is given in the following discussion.).

(2) 1f one of the characteristic nombers is negative, then the nonlinear

solution is unstable.

The disadvantage of the First Method is that the characteristic numbers
of (3) must be determined; this is a difficult job if P is time-varying.
Also, the First Method only gives information locally. Thus, Liopunov

developed the Second Method.

(B) Definitions of Stability and Boundedness

We consider the following nonlinear, nonautonomous systems:
L4
Xw f (t,x). (5)

The conditions placed on f are given in the following statements, reference (23).

(1) £ has values in R®, the n&dimensional Euclidean Space.
(2) £ is defined and continuous on some set I x S =§(i,§)£l%ll‘lf)T)o,llx_er}

(3) f is sufficiently smooth on I x S such that given any (to, Xo)
there exists for all t 2 tg 2 unique solution in S. This solution is denoted
by X = F (t;to,Xo) and depends continuously upon (to, Xo) and equals
Xo at to.
(4) £ (t,0) =0 on I. Thus, X = 0 is a null solution of (5). We assume
that X = 0 is an isolated equilibrium solution.
_Note: In the above discussion S is the set of all points in R” satisfying

¥l <r, and I is the set of all values of t satisfying ¢%» T > o ,

T being fixed.

The first nine definitions of the various types of stability are taken

from reference (23). These definitions are local properties of the system,



(25)

in (5), in neighborhood of X = 0.

/
Definition 1, (23)

The solution X = 0 is stable if for any @ 0 and any ¢, &é L
there exists a § =86 ( e,t, ) » O such that | X, || < §

implies || E(¢; t,, X,y <& for t 2> t,.

Definition 2, (23)

The solution X = 0 is_uniformly stable if for any €& » o ,there exists

a B(e) > o such that ¢, & T and Il 8ol € ® imply

I E(t,t,, Xyl < € for €3 to.

Definition 3, (23)

The solution X = 0 is quasi-asymptotically stable if for any 4, € L

there exists a $(¢o) » © such that || Ref] < § implies

E(t,t,, Ry ) —F o as t — co

Definition 4, (23)

The scolution X = 0 is asymptotically stable if it is both stable and

quasi=asymptotically stable.

Definition 5, (23)

The solution X = 0 is quasi=equiasymptotically stable if for any {, el

there exists a § (¢)» 0O such that Il 201 < & implies

E(t,t,, 8,)—>» € as ¢t —+ o unifornly on [f Ra{] < B.

Definition 6, (23)

The solution X = 0 is equiasymptotically stable if it is both stable

and quasi-equiasymptotically stable.
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Definition 7, (23)

The solution X = 0 is quasi-uniform-asymptotically stable if there

exists a §_ Yo such that ¢, el and HXo 1} < S. imply FE (€,¢,, %)~ o0

as ¢ —» e uniformly for ¢, € L ,and, ow ] %X ] < & -

Definition 8, (23)

The solution x = 0 is uniform-asymptotically stable if it is both

uniformly stable and quasi-uniform-asymptoticallly stable.

Definition 9, (23)

The solution X = 0 is exponential-asymptotically stable if there exists

a NY»o , and for any €& » © , there exists & $(e)? o0 such that ¢, €L «

I Boli<d imply || F (¢; to, Re ) < € expl-A(¢-t)]

for all ¢ >t,
From reference (23) we obtain the following relationships between the

above definitions ;

(1) Definition 9 implies all the other definitioms.

(2) Definition 7 implies definition 5, and it in turn implies definition 3.

(3) Definition 6 implies definition 4 and 4 implies definition 1.

(4) Definition 2 implies definition 1.

(5) 1f £ (t,x) is Lipschitzion on some set I x H, H being a subset of S,
with a time-varying "Lipschitzion Constant" K(t) » 0, and if K(t) is

defined and piecewise continuous on I, then definiton 5 implies definition 6.

(6) I1f £ (t,x) is Lipschitzion on the set I x H, with a constant (k¥0)
"Lipschitian Constant'/ then definition 7 implies definition 8.

(7) 1f £ (t,x) is independent of t or periodic in t on I x S, then
definition 1 implies definition 2 and definition 4 implies definition 8. .

(8) If f (t,x) is linear in X on I x S, then definition 4 implies definition
6 and definition 8 implies definition 9.
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(9) 1If f (t,x) is a scalar function, then definition 4 implies definition 6.

In the next few definitions (these are also from reference (23) ) we

assume that £ (t,x) in (5) is defined over I x RM, where R" is the entire

n-dimensional Euclidean space.

Refinition 10, (23)

[
Every solution of X = £ (t,x) is bounded if for any 4, € T and any
Y 70 | there exists an r(te, %) >0 such that [/ Xe [[< Yo

implies [f F(t} to, X0) 1 € ¥ for ¢t 2¢,.

Definition 11, (23)

Every solution of i = f (t,x) 1s uniformly bounded if for any v »o

there exists an r(ve) >o such that ¢, € L and Il Re )i<Ve

imply ) F(t; te,X) Il < ¥ for ¢ 3 ¢,.

Definition 12, (23)
L

The solutions of i = f (t,x) are ultimately bounded if for any V¥, and v

where v, >r yo ,there exists an () o and 2 (Ye,7)>0
such that ¢t_,€ I and 2 Jl <7 imply ]| E (¢, €o,B) )I¢v
for'

t 2>t +,

Definition 13, (23)

The solution X = 0 of (5) is asymptotically stable in the large if it is

stable and if (t,, 5.) e Ix " implies F @ t,, Aoy —> ©
as € —» oo,
Definition 14, (23)

The solution X = 0 of (5) is uniform-asymptotically stable in the large

if every solution is uniformly bounded and if for any positive ¥, and Y;
there exists a T (.-.I rny >o such that ¢ € I and || Bo1l <y,

mply )| E (¢ ¢, %) |) < T, for all ¢ > t.+ C,

9

W e AL Ay O D .
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_ . A relationship exists between definitioms (13) and (14) if £
satisfies certain conditions. "If f (t,x) is indepent of t or periodic in
t on I x R®; then definition 13 implies definition 14."

To aid in the understanding of the above definitions, we will consider
several examples illustrating these concepts. From reference (18) we
obtained several elementary examples from physics. They are:

(1) a solid homogeneous sphere resting on a horizontal flat table is
stable.

(2) A small solid ball resting in a large rough spherical cuf is

asymptotically stable.

(3) If the size of the cup in example two is constant for all time,

than the ball is uniform-asymptotically stable.

(4) 1If the ball is in a rough cup whose inside surface is defined by

. Z=xt ¢+ Y’- , then the ball is asymptotically stable in the large, or

globally-asymptotically stable.

Pk (5) If the ball is in a rough hemispherical cup of radius 1/&,

then the ball is asymptoticallystable b€ not uniformly in to.

We now consider examples of equations which illustrate the above

definitions.

Example 1

[ ]
From reference (25) , we have the system defined by X = ~(1/1+t) x, whose

solutionisx=x0(t:o+1).lf -t.?,o , then X =0 is
t +1
equiasymptotically stable.
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Example 2

From reference (26), we consider the system which exhibits on impulse
 J
response with growing peaks. The system is defined by X = (4 & sin t - 2t)x.

The solution is given by

X exnp S4si~\t -4t cosk ~ti-asmt, *41..40.5&.4»‘&1'}
< expia(rtt] Flte]) -t +tL}

thus, 1 x § —0 as t —e oo ,uniformly in to and | xo 1 € r. But the
peaks of the impluse resonse increase indefinitely as t —e~c , as seen from
the following x-= exp I‘n@-w) (4u+\)-j when €tgo=2Ww awd ta: (away)TW

Therefore, the motion is not uniformly stalbe or uniformly bounded, but relies

greatly on the value of to.

Example 3

From reference (26), we consider the second order system defined by

L J
o E_LEJ_Q_) r,
r= g (t,9)
e =0,

where - 0o<r<eco, OO S W, DA

ok |
9 (t,8)= $m © + !
sin'e +(1-tsi?O)t 1+t
The solution of this system is given by
r = r(t;ty»TQ, Go) = g (t.,0 Y,
g (tf)

©=6(t)t,,1,86,) =6,
The motion (r, ©) is continuous with respect to (ro,80) and the null solution

is quasi-asymptotically stable. But the system is not stable and not quasi-

equiasymptotically stable because at t; = (sin ©0) -2 we have that cs(()e.sy(s.'ﬁeasl
t‘ - o0,

and Qas 90.._.riTr,
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Example 4

[ ]
From reference (27), we consider the system X = 1 - X2. The singular solution

X = - 1 is unstalbe as t —a4 02 since the general solution, as defined by
X = tank (t - to + K),
K = tank~1 xo0, - 1 <Xo¢ 1,

approaches + 1 as t =+ +eo . For the same reason, the singular solution

X = + 1 is asymptotically stable for all Xo in (~1,+1). The idea of an

unstable solution in this example is that the singular solution is not
stable in the sense of Definition 1. The stability in Definition 1 is

Liopunov stability. A formal definition of an unstable solution in the sense

of Liopunov is given below:

Definition 15, {(19)

The solution x = 0 of (15) is unstable if there exists a number € >0
with the following property: there exists a sequence of numbers tj, tp, 223

R and a null sequence of initial points Xj, gz,...,)_(n,...—’_o_

sucht that " F (tottn; te, 2> € ;p W LT, e

A special case of instability occurs when every motion tends away from

the equilibrium. This case is defined by:

Definition 16, (19)

The solution X = 0 of (15) is completely unstable if there exists a

number ¢ 9o Wwith the following property: after finite time, ti,

each motion F (t, to, Xo) reaches the sphere ” Py ” ¥4 ,where o<iR )l <&

and t‘ > to . (Actually, in the previous example X = -1 was

completely unstable.)

The next example shows that boundedness an d stability are different

concepts.
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Example 5

From reference (27), we first consider the system defined by
Xz -L[x*+ (x*+ax*y¥2 Jx.
Every solution ofthis system can be expressed X = C sin (Ct + d ), where
C and D are constants. It is obvious that X = 0 is stable as t =+t o .
But any nonzero solution is stable neither as t ~# +@0 oOr as t-——a -0o .
Thig can be proved as foldows: consider the two solutions
X; = € sin (cyt + dy) and X; = Cy sin (cypt + dy), where Cj # Co, Cy/Cqy
is an irratiomnumber, but Cy 1s sufficiently close to Cp. Then it can be
shown that the upper limit of /Xj; - X 2/ satisfies

z Ix'-,(._[= €1 +] &t as ¢+t -+ t e . Therefore, only

the null solution is stable while all solutions are bounded as t == + oo -

The converse situationcan be shown by the folloing system, reference (27)Y

.
X=1,
where any solution is given by X = C + t, C a constant. All solutions are
unbounded as T~-pp+ @@ ; but every solution is stable as t——et on
since if X; = C + 6C + t and X, = C + t, then /X] - Xp / = 6c for all t.
Example 6
Weconsider several linear equations from reference (27) whose solutions
exhibit vatious properties of boundedness. All the solutions of X+x=0
are bounded. All the nontrivial solutions of 'i - 2/t ;( + X = 0 are unbounded
since the general solution has the form
X=C1[sint - cos t:] +C2[cos t + t sin t]
In the interval 1 € t¢ e , all the nontrivial solutions of .X. + 2/t§+ X=0
are bounded and asymptotically stable because any solution can be written as

X=¢C sint +Cypcos t.
3 t
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Example 7
Consider the system, reference (27), defined by
[ ]
T= h r,
h
o
p=0,

where h = (1 + t3sinZé) (1 +t + t*sin’é) :1

(32)

and where ro3 0 and ¢. are the initial conditions the unique solution is

given by
r{= "o“(tl ¢.) J t > ¢,=0,.

For any ¥, 2 o and ﬂ we have that r(t) —p 0 as t —aeepn . But for

o< ¢ < E , Fg >0 , and t, = ($tm ¢)-3/l we have

vtz Lol (s @y ]
[1+ (s @) ¥ (st )]

where r(t]) ——» oo as ¢ ~— 0. Thus, (r,g) = (0,0) is not stable in

the sense of Lifjpunov.

Example 8
Consider the following system from reference (12),
D) L%
X+Lx-€ X =0, X, 2= X(0)

the solution is given by

-t
X = xo e P

Xo(:-et) + |

thus, if X, € 1, then the system is exponentially stable; if X, > 1, then

there exists a finite escape time, or X ~—pa as t —-pl..a(

Xe

Xo ) from below.
-1
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The next several definitions are concerned with some practical unstable
motions (that is, unstable in the sense of Lilpunov) such as orbital
stability, stability in a neighborhood of an equilibrium point which is
itself unstable in the strict Liapunov sense, and stability with respect
to a certain subset of the components of X. We also mention the practical
type of stability where bounded imputs produce bounded outputs from a
physical system. The stability of the differential equation is considered,

that is to say we consider the Structural Stability of the system with

respect to the parameters and physical constants in the system. Amore
general definition of thés type of stability required that the system be

stable withrespect to persistent disturbances.

Orbital Stability

In reference (18), Krasovskii gives the following intuitive picture of
orbital stability. We say that the null solution X = o of a system is
orbitally stable if some function of the dependent variables changes only by
a small amount as t —# @ when Xo® Xo(t) is restricted to be in a
sufficiently small neighborhood of X = 0. Weshould note that this is not in
general Liapunov stability since some f(x) may change only a small amount
X itself might change a great deal as t —p 0® .

An example of this type of stability is a planet constrained to move
under the universe square law of a central force field. A slight change in
the position or velocity of the planet may perturb it to another orbit with
a different period. Thus, two planets with their initial positions and
velocities nearby the same may eventually be very far apart while their
angular momenta, ecentricities, and certain other parameters that describe
the orbits remain close together for all time. (In the previous paragraph X

represents the velocities and positions and f£(x) represents momenta,

eccentricities, etc.)
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In the taking of pictures of a fixed region of the earth's surface by
an artificial satellite, the concept of orbital stability is more important
than Liopunov stability. For rendezvous problems in space, LiAdpunov
stability is required. In a meteor shower the orbits of the particles are
close to one another due to common source, but the particles are not
stable in the sense of Lildpunov.

Definition 17, reference (18)

Let there be (n - 1) or fewer independent continuous functions
fk()_(_) of the arguments Xj, where K=1,..., n - 1 and £fx(0) = 0. Then )
X = 0 is called orbitally stable with respect to the orbit functions fy

provided that for every € »o there exists a $= $(€) YO such that

lf;’ < e for all K, ty to, and all Xo satisfying [ X, 118,

In reference (28), Hochstadt considers the nth order system,

L
X = £(t,x). Let C* be aclosed orbit of this system in the state space.

*®
Thus, C* is a trajectory of X = £(t,x).

Definition 18, reference (28)

The distance between a fixed pdint X and the closed orbit C* is defined

by d (x,C*) = Min "g(_-g”.
Y on C* -

Definition 19, reference (28)

The orbit C* is orbitally stable if for every € o , there exists a

9
$(e) > o such that for Xo satisfying d@o,c*)‘: then d(X,C*) < ¢
for all t » to.

Definition 20, reference (28)

The orbit C* is asymptotically orbitally stable if lim d (X,C*) = 0.
t ~voo

and if C* is orbitally stable.
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. Example 9
Consider the system defined by
X = r2y,
;= ~ rZX,
= x2 + y2.

Rewriting these equations gives us the following:

L ]

r=20,
where r = ¢ constant are the integral curves. On a given orbit, r = ¢,
the parametric equations for x and y are

2 2

X =sinct , y= cos c“t.

Thus, the periods for themotion are 2 /c2, which vary from orbit to orbit.

In conclusion, we say that the system (a particular orbit) is orbitally
stable but not asymptotically orbitally stable.
. Example 10
Consider the system defined by

o 2
X1 ® X2 +x1 (1-r1),

XZ = - X}. +x2 (1 -—rz):
2 2 2 -1
where r = X1 + X2 and 6 = tan XZ/xl. In terms of r and 8, our system is
r=r (1 - r2),
L]
e=-1.

The equilibrium solutions are defined by r = 0 and 1, r = 0 being a singular
point and r = 1 being a closed curve or orbit. The general solution is
r=Lir c.‘e,""tJ-v", Thus, for any ¢ # 0, r — 1 as t —aa; therefore,
r = 1 is asymptotically orbitally stable and r = 0 is unstable.

Example 11, reference (28)

We now consider a second order system containing a discontinuous function:

® ¢
X + Sgnx = 0,
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]
ot
b
o

where Sgnx
=0, x=0
= -1, x 0.

The corresponding first order system is
L ]
X]. =X2 N

X3

|

U
L
]
;
pd

For the initial conditions x; =0 and X3 = A > 0, we have the following

solution, which is periodic with period 4A:

X, =At - 3 t7, 0&t< 2a,

(t - 24) (t/2 - 2A), 2A £ t<& 4A,

A-t, 0gt<«< 24,

—

X

t - 3A, 2A< t < 4A.
the orbit in the phase plane is defined by IxjL = 1/2 (AZ - Xzz). Thus

the solution is a periodic solution whose period depends on the initial
conditions, A. A small change in the initial condition given by A produces
only a small change in the orbit, but it produces a large change in the
"particle's position'" after a certain length of time. The system is

orbitally stable but not stable in the sense of Liopunov.

Practical Stability, references (29), (30), (31).

There are many physical systems where the desired state of the system
is not stable but yet the system always tends to return suffic}ently
close to the desired stateso that the performance of the system is acceptable
and thus possesses a practical stability. \

Definition 21, reference (30)

-
If all solutions X (t; Xo) of X = f (x) appraoch a neighborhood N of
X = 0, N being a measure of the satisfactory performance of the system, as

[ J
t —sco , then the system X = f(x) has a practical stability.
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The notion of a practical stability is closely related to Yosbizowa's
ultimate boundedness, Definition (12).

Definition 22

[ ]
If all the disturbed motions @(t,to,go).f. 0). of X = f(t,x) are
bounded, the system is Lagrange Stable.

Definition 23

If all the solutions in definition 21 start in the complement N® of N and

tend to N as t —»co, then the system is called asymptotically stable in the

sense of Lagrange.

The important of Definitions 12, 21, 22, 23 are in systems which possess
a dead=zone andwhich may ultimately be bounded but never asymptotically
stable in the sense of LiQpunov.

Example 12, reference (29)

Consider the system X = EZX - X3, where Ev»0 is a small constant and
the equilibrium points are at X = 0, + E. The point X = 0 is unstable and
+ E are stable; that is, a moving point displaced from the origin will remain
in (-E, + E). A moving point to the right of + E approaches + E as t—»eo,
similarly for points to the left of - E. Since E is small, the origin is
stable for practical purposes.

Example 13, reference (29)

Consider the system ).( = - EZX + X3, E>»0. 1In this case X = 0 is stable
and + E are unstable. Thus a mvoing point in ( -E, E) moves to 0 as t-pco;
and ponits in (E,® ) or e , - E) move to infinity as t —wco . Thus,

X= 0 is unstable for practical purposes.

Example 14, reference (22) First Order Time-Varying System

Consider the system defined by ¥ = g(t) y, whose general solution is

»

ki

g,ct)wc] Y.
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: t
(1) This system is Stable if and only if ! q(t) dC is bounded from
18
above for all t » to. But stability may still be "bad" from a practical

point of view. Let

g(t) = lm 10 for 0 €t g 10,
= 0 for t » 10.
Thus, y(t) = 10tyo , t & (0,10),

]

1010 yo, t € (10,0 ).
The system is stable in the matematical sense; but if @ t = 0, y = yo = 10'5,

when t > 10 the value of y is 105:

t
(2) This system is asymptotically stable if f e.,cc)d*c—-r-ao
ts

as t —» +@ . But asymptotic stability may still give trouble in a

practical way. Suppose

g(t) = m10 for t € (0,10),
= -1 for t € (10, ).
Thus, y = 10%y, for t € (6,10),

1010 exp(10 - t) Yo for t & (16,00 ).
If Yo=10"> at t = 0, then at t = 10, Y = 10° and at t = 20, y% 3,
even though as t —¥»®@, y—9 (.
(3) This system is unstable if and only if jtq HdT is not bounded
L

from above as t—% +o00 . Bi#t instability as t —% +ao , need not be

"bad" practically speaking.

Suppose g(t) = - 1 for t € [0,100],

10 for t iu (100,00 ).

‘

e"tyo for t € {o0,100]

Thus y(t)

Yo exp [ -100 + 10 (t - 100)] for t € (100, ).
Therefore, if the time of action is limited in this system, the instability

as t——4+00 can be neglected in a finite time interval.
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In reference (31), the author compares Lildpunov stability with
bounded input= bounded output concepts, the latter concepts being very

closely related to Lagrange stability. Suppose that the input vector of a

it ealr

system is given by the m-dimensional vector {4 and the output vector by the

q -dimensional bector g

Definaition 23, reference (31) E’

A physical system is stable if every bounded input, "g” £ constant,
produces a bounded output, [J2]] £ constant.

The concept of stability in given 1in Definition 23 is a gross or
global phenomena of a system, whereas Liopunov stability is a specific or
local phenomena about a partica#ar system response or motion. A system may
be unstalbe in the Liopunov sense, but stable according to definition 23.
And a particular motion may be asymptotically stable in-the-large and the E_
system will not obey Definition 23. For linear systems the two concepts ;
are equivalent, but not for nonlinear systems.

Example 15, reference (31)

[ ]
Consider the system defined by X = tanh X + U; X is the output.
The equilibrium of the unforced system, U = 0, is totally stable in the large.
But if we consider the bounded input U= (1 + E ) tanh X, E % 0, the output

is defined by X = E tanh X. This leads to an unbounded output. Thus, the

system does not preserve bounded outputs for all bounded inputs.

Structural Stability

Structural stability, not the topological dynamics variety, is the

insensitivity to disturbances in the parameter space of the aystem. For

~

T
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example, consider the second order system

P (x,¥),

e e
1]

Q (x,y)-

Suppose that P and Q are approximated by polynomials. Therefore the
coefficients of the terms are somewhat in error. If the system is
structually stable, the qualitative picture of the exact system and the
olynomial approximation must be the same. Structual stability need not
only be with respect to parameter variationms, but may also be with respect
to changes in the matematical model, functional dependence, etc. Thus,

a more general definition requires that the system be stable with respect to

persistent disturbances or constantly acting perturbations.

Let the system defined by
i = f(t,x) + g (t,x), (6)

be a real, physical system upon which certain small perturbation forces act,
described by B.(t:§)~ 1t must be realized that often these forces are not
accurately known; thus, g (t,x) represents an estimate for the true
perturbations. For this reason we can not assume that g (t,g) = 0; but we
do assume that both £ and g in (6) satisfy the conditions of £ in equation (5).
Also, we assume that the equilibrium solution of the unperturbed system is
X =0, that is, f (t,0) = 0. for all t3 t0.

Definition 24, reference (19)

L 4
The equilibrium solution X = 0 of X = f(t,x) is called stable under

constantly acting perturbations if for every E ? 0, there exists two constants

sl(g) and SI(ED , such that for every solution F (t;to,Xo) of (6),
the inequality
Il F (t;t0,X0)]] & E (£ to)
holds, provided that
llz(gll<.sl

and 19 (6,04 5q,
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in the domain [JX})] € E and t » to.
If the magnitude of the disturbing terms g (t,X) are measured in a
ao
different way, that is if || g (t,X) “<$1 is replaced by} S;F ”&(t,l)”dth,_
L J

one obtains the definition of integral stability, reference (35). In the

case of integral stability the perturbations may be large in a small interval,
whereas in the stability under constantly acting perturbations they have to
be small, but they may be persistent. The properties of both these types

are possessed by stability under persistent perturbations in the mean

value, for short, call this stability in the mean, reference (35). This

type of stability is obtained if g (£,X) < $’_ . is replaced by
t47T

j si\p ”_Q_(t,t)”dt <$,(r) where both §, and $, depend on T.
t

Definition 25, reference (35)

The solution X = 0 is asymptotically stable under constantly acting

perturbations, if it is stable under constantly acting perturbations and if

to any sufficiently small numbers § >0,7170 (i.e.,d %K NL %y
there exists numbers T ($,%) 70, ws,m)>»o such that for every
solution E (£;t03X0) of (6) || E (&, to, %Yl <7 for t2£+T (5N

&as
=

whenever I ¥o Il < Y ;2,2 < (SN .

If one requires that the perturbations g (t,X) are smaller than ¥ in
the sense of the inequalities corresponding to integral §tability and
stability in the mean, ane obtains the asymptotic analogues of the respective
above mentioned concepts of stability. The following list is a comparison
between the different stabilities affecting equation (6):

(1) Asymptotic integral stability implies asymptotic stability in the mean,
and conversely.
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(2) Asymptotic integral stability implies asymptotic stability under
persistent perturbations.

(3) Asymptotic stability under persistent perturbations implies stability
under persistent perturbations.

(4) Asymptotic stability in the mean implies stability in the mean.

(5) Stability in the mean implies both integral stability and stability
under persistent perturbations.

(6) 1In the autonomous case, all three asymptotic types of stability aee
equivalent to each other. Furthermore, stability under persistent
perturbations 1is equivalent to stability in the mean. Finally, each

of the above types of stability implies integral stability.

Example 16, reference (44) Linear, Variable-Parameter System

- Consider the system defined by
Xl = X3,

= - 3 Xy, —

s
N
[

X3 = X] + 2Xp - X3-
The characteristic equation is

K3+ K2 -&K+6=0.
If & € - 6, the system is asymptotically stable as t— +e@ . If & = -6,
the system is stable as t — +e@. If (- 6, the system is unstable as
t ——w 4 00

Example 17, reference (27)

. 2
Consider the system X = O, with the perturbation X - Thus, in the
unperturbed system X = 0 is stable as t —»+ oo . In theperturbed system,
o
2
X=X, X=0 is unstable as t —»+ oo .

Example 18, refereace (27)

t 3

Consider the system X = X, with the perturbation - e~ X’. Thus, in the

unperturbed system X = 0 is unstable as t - @ . Since the general solution
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3

is X = C et. In the perturbed system, X = X =~ etX , X = 0 is asymptotically

stable as t~%+ o0 since the solution is given by
-
1 /
x *C e.t[u-%c.‘(e_ -n)] *
where X 0 and X ~—»0 as t—soo.

Example 19, reference (27)

Let the unperturbed system be defined by

X =A() X (2nd order),

where aj; = - a, ajp = ap; = 0, and
asy = Sin (log t) + cos (log t) —A 2a, t » 0.
The general solution is
Xl = C 1 €XP (-a t)
X2 =C 2
where X, o, Xy ~» 0 as t—wefor a »1/2. Thus, the unperturbed

exp ( t sin(log t) - 2at),

system is stable (not uniform). Now, let the perturbed system be defined by
2'i.= (A(t) + B(t) ) X,
where bj; = bjp = byp =0, by; = exp(-at).
We will restrict "a'" to the interval 1/2<a<1/2 + 1/4 exp(-TW ). This

perturbed system is not stable.

The general solution of the perturbed system is

X; = C; exp (-at), ¢
X2 = [exp(t sin(log t) - 2 at)) ‘_CZ + le exp(~atsin(logat)

The upper limit of lelis infinite as t—spa , if C; # 0. We can prove this
if we let t = tg = eXp [(2n+ 1/2)11'] ,n=1,2... .

Hence we can show that the integral in X2 is lapger than

tn [exp (-27) - exp(-m)] exp[ E= e;‘_""‘*"“] .
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Thus, we can finally derive the following énequality:

41> el exp Li-ia + exp LTV 6w+ 00

A wnh—>r o

Conditionally Stable Systems

A conditionally stable system is a system which is in general unstable
but one in which under certain initial conditions or relations, which limit
the choice of disturbance, is stalbe. Suppose we consider the n=th order
system in (5); and suppose we define Z° b‘/ (Z,)T= ‘y',..., y_‘), where y”..., )I._
are m ( m<«n) of the variables or components of Xo. We can now define a type
of conditional stability} that is, a stability depended on a subset of the
components of xe

Definition 26, reference (19)

The equilibrium solution X = 0 of ‘_)_(_ = f (t,x) is said to be stable with

respect to a subset of the variables X,,..... X 1if there exists for each

Ir

€ > 0 a number § » 0 such that the inequality
Y%l <%

implies “’ Fe; Zo't.) il <e (€7 te)

From reference (27), Cesari defines a conditional stability with respect

to a given manifold, M, of solutions of the system being investigated.

The equilibrium solution of the system is only stable with respect to the
manifold M.

Example 20, reference (27)

The system defined by .X. - X = 0 hasd an asymptotécally stable equilibrium

solution, X = 0, as t-y+ @ with respect to the manifold of solutions of

the form X = C e ~F. The solution X = 0 is asymptotically stable as t— -~co

with respect to the manifold of solutions of the form X = c el.
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e
. _ The system X =} X| = 0 has an equilibrium solution X = 0 which is
asymptotically stable with respect to the manifold of solutions which are

nonpositive.

A few Other T¥pes of Stability

We will now list a few other types of stability which arise in the
study of deterministic systems described by ordinary differential equations.
If one was to considered stochostic systems and functional differential
equations, the list of definitions would grow considerably. 1In passing, we
make not of Ingverson's fine article, reference (24}, in which he basically
clothes the definitons found in Antosiewicz's article in the language of
control theory.

Definition 27, reference (27)

-
. The linear system X = A(t) X is restrictively stable if the system

jtself is stable and if the corresponding adjoint system is stable. The
ad joint system is defined by i'= -~ A*(t) Y, where A* (t) @s the conjugate
transpose of A.

Restrictively stable systems are uniformly stable; the converse is not
necessarily true.

Definition 28, reference (20)

-
If the null solution of X = £(x) is asymptotically stable over the whole
state space (asymptotically stable in=the-large), then the system is called

completely stable.

The next two stability definitions arose out of the work of G.D.

L
Binkhoff, Consider the autonomous system defined by X = f(x), where X; is
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is the equilibrium solution. That is, £ (3(_1) = 0. The following definitions
deal with the stability of _}gl of mth order.

Definiton 29, reference (27)

[ 4
The equilibrium solution X, of X = f£(x) is parturbatively stable of

1

order m if for any € » 0, there exists two positive constants K and L such
that any solution F (t;to,Xo) satisfies [JE-X,/l < K& when JJ¥,~%ll<é¢
and for all t with |t - to] £ L €™

Defintion 30, reference (27)

The equilibrium solution X; of X = F(x) is trigonometrically stable

of order m if for any solution F (t;to,Xo) in definition (29), for all fixed
T and for all polynomials P(x) whose terms have degrees 3 S, the function
P[X(t); to, XO] cand be represented in [to - T:' to + T]by a trigonometric
series
Ao+ L (A{ cosAjt + BisimAit) |
where |\ Al 2 Ao , of not more than N + 1 terms with an
en +s.

error less than or equal to Q (Q, A ,N are constants and S = 1,2...)

Some notes about these last two defintions are given below:
(1) Stability of order m implies stability of orders 1,2,..., m - 1.
(2) Complete stability im;lies stability of all orders.
(3) Perturbative stability is similar to Liopunov stability.

(4) 1If £(x) is an analytic function of X in the neighborhood of the
equilibrium solution Xl, then ananalytic transformation X = () can

be applied to X = £(x), the result being ¥ = g(y).
Both perturbative and trigonometric stabilities are invariant with
respect to their analytic transformations.
(5) Neither Liopunov stability nor boundedness have 1lnwvariant characteristics,

in general, with respect to a change of coordinates, as the following
examples will verify.
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Example 21, reference (27)

A mechanical system may have a stable solution with respect to a given
system of Logrirgitbn coordinates and be unstable with respect to another
system. Consider the system.

Y xRy
x JxteyT

The sclution (x,y) & (0,0) is stable, and all other solutions are unstable

~Le Ne

in the LiApunov sense since the general solution has the form:

X

C cos (ct + d),

Y = C sin (ct + d),
C, d constants.

Now introduce the new coordinate r and d by the equations

X=1rcos 6,

Y r sin 8,

e rt + d.
The new system is defined by

L ]
r = 0,

Qe
1]

0.
The solutions r = ¢, d = cg are all stable in the LiQpunov sense.

Example 22, reference {27)

Consider the equantion of the pendulum
§ + sin X = 0,
whose general solution is
X=C¢C sin[tﬁ(c) t+d],
where C and d are constants and (c) is a function of c given in terms of

elliptic functions. In the LiYpunov sense, X = 0 is stable and all other
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solutions are unstable. Transfrom the above system by introducing the

equation

]

rsin[¢(r) t+d],
rcos[¢(r)t+d] >

*
The new system is T =0andd =0, and all of the solutions are stable in

X

Y

the sense of Liopunov.

Let us now consider the dynamic process (could be a control process)

defined by . " .
Y = ¢
"
6= L Cu Xy
K=y

In these equations, Ay , b¢ and &, are real constants. The
"characteristée!"' qb(zr) is an arbitrary, single=valued, piecewise,
continuous, real functign, defined for all real values of @’ and satisfying

the conditon 96 (0) = 0. The function ’b also satisfies the conditon

o 2@ ¢
a -
where K is a positive constant or infinity. Thus, X = 0 is a null solution

of the above system.

Definition 31, reference (35)

We say that for a given K, the above system is absolutely stable if for
any gb(aa satisfying all of the above conditions, the zero solution X = 0

is asymptotically stable in-the-large, or completely stable.

(C.) Definitions of Closedness, Definiténess, and Liapunov Functions

Consider the system defined by'

= £ (tsi)

Ibde

)]

{+h

(t,0) = 0, t3 to,
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where f satisfies properties sufficient for the existence of unique

solutions of (7). We denote the spherical neighborhood of X=20, IPSIFRS
by R(h), and we denote the half-cylindrical neighborhood [ X Ij¢\, t>¢te%©
by R(h,to). We will consid;er real scalar functions defined in R(h) and
R(h,to) and will denote these fucntions by V(t,x), W(x), etc. Usually,

we will assume these functions are continuous and possess continuous first
partial derivatives with respect to all of their arguments.

Definition 32, reference (19)

V(x) is positive (negative) semi-definite if V(0) = O and if

V(x)> 0(£0) in R(h).

Definition 33, reference (19)

V(x) is positive (negative) definite if V(0) = 0 and if V(x)>0 (£ 0) in

R(h) for X # 0.

Definition 34, reference (19)

V(t,x) is positive (negative) semi-definite if V(t,0) = 0 for t $ to and

if for some suitable hy & h, V(t,x) 3 0 (& 0) in R(h:,to0).

Definition 35, reference (19)

V(t,x) is positive (negative) definite if V(t,0) = O and V(t,x) 3 W(x)

(£ - W) ) in R(h,), where h'< h and W(x) is positive definite.

Definitdon 36, reference (19)

V(t,x) is radially unbounded if for any el y 0, there exists /3 > O

such that V(t,x) » ek whenever || Rl 95 and t P to. (that is, V

becomes infinitely large with "x i ).
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Definition 37, reference (19)

V(t,x) is decrescent or admits an infinitely small upper bound in

R(h) at X = 0 if the limit of V(t,x) is zero as "x || o uniformly in t.
An equivalent definiton is that there exists a positive definite function

W(x) such that lV(t,_}g)l & W(x) in R(h,to).

Definiton 38, reference (18)

The derivative of V(t,x) along the trajectories of the system in (7)
is the basic relationship in the Liapunov theory between the differential

equation and the Liapunov function. The derivative is defined by

V (¢, 1)z L‘g%é’+ (o), (v

where Y9V is the gradient of V(t,x) with respect to X/

Defintion 39, reference (19)

If the total derivative of V along the trajectories of (7) does nto

e
exist, then the following expression is defined to be V,

¥ Lom Sup ) Vtrat,xevat)) - V(g x)
ot o at

Definition 40, reference (23)

Antosiewics defines V in the following way when the total derivative

does not exist. The generalized (upper right-hand)total derivative of

L
V(t,x) with respect to X = f£(t,x) defined on R(h,to) is the function

K-»o*

We now consider several theorems dealing withthe above definitons.

defined by —_— y -V )
V(t, 2\ L. % V“*“:E*"i‘flu -~ V&% }

———
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If V(x) is positive definite, then V(x) = C (positive constant)
represents a family of closed curves or surfaces about X = 0. As C -~0,

V = C contracts to the origin. The following '"closedness" theorem is due

to Letov.

Theorem 1

(H) (i) 1If V(x) is positive definite in the entire space, and
(i1) V(z) —» @@ as [ Q{l=v @
(C) then V(x) = C is closed as c~po0.

The next three theorems deal with the '"decrescent' property of

V(x) and V(t,x).

Fheorem 2, reference (19)

(H) (i) 1If ¥(0) =0, and
T{ii) V(x) is continuous at X = 0

(C) then V(x) is decrescent at X = ).

Theorem 3, reference (19)

(H) (1) 1If v(t,0) =0, and

(ii) V has bounded first partial derivatives in R(h,to) with respect to Xi

(C) then V(t,x) is decrescent.

Theorem 4, reference (19)

(H) (i) 1I1f V(t,x) has a power series expansion in X; in R(h,to0),
(ii) the series has no constant terms, and,
(iii) the time dependent coefficients are uniformly bounded in t,
(C) then V(t,x) is decrescent. |

The next three theorems deal with the positive definiteness of

quadratic forms.
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Theorem 5, reference (32) (Bhatia)

The quadratic form Xr D(t) X is positive definite if
' 2“ (f)‘ 20  , Kz 1y eyl fovr € % te

ID I $>0 fer €2 ¢,

where | D, (&) ] are the principal minors of the determinant | D(t)[and

6 is an arbitrayy constant.

Theorem 6, reference (32) (Zurmuhl)

The necessary and sufficient conditions that X: D(t) X is positive
semi-definite for t P to is that
I.D.;l*)' 2o (kz1,..,n)  for £%t,
‘!?(tOI =0 feov t= to

Theorem 7, reference (32) (Malkin)

The sum of a positive (negative) definite quadratic form and a positive
(negative) semi-definite quadratic form is a positive (megative) definite
quadratic form.

From references (18), (19), (33), and (34), we get the following

examples of definite and semi-definite functinns.

Example 23 «-=-- X1¥4 - plane
2
(1) V= X« is positive semi-definite.
@)V = X12 - 2x1% is indefinite.
2 2 4 |
(3) V=X, - 2XXp + X, is positive semi-definite.
v 2 ‘ 2 4 4
L) vs= X - 2X1X° + Xy + X is positive definite.
(5) vV =x2 - 2xiX?2 + % + x;* + XX,° 1s indefinite.
2 2 2 3.
(6) Vv = X, +t X, +XXy, +X, is positive definite
() V= %2 - x,2 + %,%,2 + X, is indefinit
1 2 1 2 2 nde n e.
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2
8)v= X12 + X,"/1 + t 1is not positive definite for all t 0.
2 2
9yv=x, +tX + 1/2X1X2 sin t is positive definite in (xl,Xz)-space for all t.
2 2
(1) v=Xx3 + X is positive definite in the X1X2-space but is
1+ X, only closed for V=C 1.
X, 2
(11) v = J/ f(xl)dx1 + Xz , where f(x,) x, O for x, # 0, and
o
is only closed 1if V= C & b.
2 2
(12) v =‘X1 + X2 t is not decrescent because it violates uniformity.
(13) v = X12 + X22 sin t is decrescent, and indefinite.
#xample 24, (LaSalle)

Consider the function defined by
. 8
SVLR) = X 120K,y R YR 4 B (K %a)

1

T X, +1bX, +b! +(a-0) = (X,+b)! +(a-\)

2 .
where ( a - bz) is a function of Xl,....,X If ( a - b ) is quadratic

n-1°
in X__;, then repeat the above "cpmpleting the sqaare" process, and so on for
1

lower orders. As an example of this procedure , consider:

N

xy o+ extx,ng vz xl vaxta} raxlx, 4 xS

%3 4 2(3x2%,)%5 + (2xF raxtxFs 2xdx,+ x©)
- J
T (kg rata) b2 (x4 1 D% % 4 200 - 3 KE 4

T (%3 43%00) + 2K e L x) s . x
which is positive definite.

Example 25, reference (34)

Consider the quartic form in two variables given by

- 4 3 1N 8 3 4
V‘_ - ?‘O *' + z' X, *z ¥+ qqu| %l 4 %3“.*; +ﬁ44¥l

e e 2 T A

DAL 0 s B S Wb 3K,
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A necessary condition for positive definiteness is that ‘14 Y& and q“ Yo
0

Thus, we can divide V4 by 740)(: and get

Vy =xt+q x3+q. x* +q,x tq,

where X = X;/Xp 4n4 = “44/% > o .The positive definiteness
of VA* and Va are equivalent. The following Newton Sums must be evaluated:
Se = 4
S, =°9,
Sl. = 141—2'?1
- -y 3
S; - Q, +37171-311 .
S4 ° ?-?'4111‘11"'47!73 17, -4
- -gF5 -
Sg ° 'z‘,. t5 LS 5L Lt S, +8 1, 2,
S¢c U e, ra9t e, - €U -1ty -19) +

t6q,9,+39

Se Sy Sy S,

From these sums the matrix S, is formed: S" = |Si 52 5,35,
Sa 53 34 S5
SJ 54 S.r S‘

The principal minors of S, are denoted by D;, Dy, D3, D,, D; being So and
D4 being |_S_4| . The signature of the §4 matrix is denoted by @ and
defined as O =71 «-2Y¥ , where r is the rank of §4 and V 1is the number of

sign @ariations in the sequence 1, Dl, D,D, ... D. Therefore, V4 x)

2’ 3 r
is positive definite if q >0, q« 0 , and @O = 0. As on example, consider
40

Vg =ab exlx, 2 xtxl 4 nd xd
thus = = and
P o™ Uy 7 °
s,:.q, S,:-l’ S, 3-3, 53 -7, 54":
s"_z-; ) S = o therefore, r = 4, D] = 4,

D2 = - 13, D3 = 10, D4 =12, and Q¥ =4 - 22 = 0. V,(x) is positive definite.
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(D). Stability Theorems E Boundedness Theorems

In this part of the report we will consider the system defined by

I<e

=E (t,x) €
where f satisfies the same conditons as in equation (5), except we may want
to replace set S, || & i <P by the entire space R! on occasion. Let the
function V(t,x) be a real scalar function defined and locally Lipschitzian
on some set I, x S, ={(t,_§) ERx K| t2 Toz 0, I X }i< ro}
and such that, given any X in Sy, V is continuous in Io’ and V(t,0) = 0.
for all t in I,. It is assumed that the intersection of So and S contains
a neighborhood N of X = 0, say N = { X € SNAS|ugn L,d} ,where
© » © 1is some fixed constant. Also, we assume that 1°f\1= 1= Y_T, OO)-
Yo be consistent with the notation in Part C, let us denote T by to, and P
by h, and I x N by the "half-cylinder" R (h]to)-

There are many ways in which one might define a Liapunov function but

the definition we use here comes from referemce (23).

Definition 41, reference (23)

V(t,x) is a Liapunov function on R(h,to) for the equation X = f(t,x)

if it is defined, locally Lipschitzian and positive definite on R(h,to); if,
given any X in || x |J< h , V is continuous for all t3 to and V(t,0) = O.

for all t; and if \;(t,g)so on R(h,to).

Definition 42

The vector function f(t,x) is said to be, on R(h,to), of class ck

JK positive integer) with respect to X if, on R(h,to), f is continuous and

has continuous K-th order partial derivatives with respect to X.
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Theorem 8, reference (23) (Liapunov)

(M) (i) If there exists a Liapunov function V(t,x) on R(h,to),

(C) Then X = 0 of (7) is stable.

Theorem 9, reference (23) (Converse Theorem of Persidskii)

(H) (i) If £(t,x) is of class ck with respect to X on R(h,to) and of class
¢! witn respect to t for any t 3 to and any fimed X, || Xli<h,

(ii) for any initial point in R(h,to) the solution of (7) is continuable
for all t3» to,

(ii1) X = 0 of (7) is stable,
(C), then there exists in some half-cylindrical subset of R(h,to) a
L

Liapunov function V(t,x) of class ck in X and such that V is negative

definite for any finite time interval in this subset.

In Theorem 9, if f(t,x) is linear in X, then there exists a real
quadratic form in X with time-varying coefficients of class cl which is ar

Liapunov function.

Theorem 10, refeeence (23) (Persidskii)

(H) (i) If there exists on R(h,to) a Liapunov function,

(ii) v(t,x) is decrescent,

(C) X =0 of (7) is uniformly stable.

Theorem 11, reference (23) . (Converse of Kurzweil)

(H) (i) If £(t,x) is of class c® on R(h,to) with respect to X.
(ii) for any initial point in R(h,to), the solution of (7) is continuable

for all t>to,
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(iii) X = 0 of (7) is uniformly stable,
(C) there exists on some half-cylindrical subset of R(h,to) a Liapunov

function V(t,x) of class @® such that V is decrescent in this subset.

Theorem 12, reference (23) (Massera)

(H) (i) 1f £(t,x) is linear in X on R(h,to0),

(ii) £ (t,x) is independent of t on R(h,40),
(iii) X = 0 of (7) is stable and thus uniformly stable,
(C) then for any even positive integer m there exists a real algebraic

form V(x) of degree m which is a Liapunov function on R(h,td).

The above theorems dealt with the local phendmena of stability and
uniform stability. The next several theorems will be concerned with the

study of asymptotic stability as a local phenomemon.

Theorem 13, reference (23) (Marachkov)

(H) (i) If £(t,x) is bounded on R(h,to),
(ii) there exists a Liapunov function V(t,x) on R(h,to) such that V is
negative definite on R(h,to);

(C) then X = 0 is asymptotically stable.

Corollary, reference (23)

(H) (i) If £ (t,x) is independent of t or periodic in t on R(h,to),
(ii) there exists a Liapunov function V(t,x) on B(h,to) such that V is
negative definite on R(h,to).

(C) then X = 0 of (7) is uniform-asymptotically stable.
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Thereom 14, reference (23) {(Converse of Massera)

b

(HY (i) If £(t,x) is linear in X on R(h,to), and for every X in
f(t,x) is of class Ck-1 with respect to t (t3to), K31y ,
(i1) X = 0 of {7) is asymptotically stable (hence, equiasymptotically
stable),

(C) then there exists a Liapunov function V(t,x) defined and of class CK

On R(h,to) such that V {t,x) is negative definite on R(h,to).

FTheorem 15, reference (23) (Massera)

B A B M G e RIS Wi 1750 Wl )

(H) (i) 1If there exists on R(h,to) a real scalar function V(t,x), locally

Lipschitzian, and positive definite,

(i) there exists a real scalar function W(s), defined, continuous and
increasing for t 0, where W(0) = 0 and,
vV (t,x) < - W(v(t,x) ) on R(h,to).

(C) then X = 0 is asymptotically stable.

Theorem 16, reference (23) (Massera)

(H) (i) If there exists on R(h,to) a Liapunov function VIt,x) such that
{'(t’i) is negative definite on R(h,to), and
(ii) V(t,x) is such that for any ;70 , o0& f<‘1 sand any 02 €, s
there are constants }I(") , O<Y & f , and T (@, £)2 O such that
for any S € [to,0’] and any Y in Y ll¢n > the inequalities t 3 °C and
V(t,x) € V(s,Y) imply 211 < ;- s

(C) then X = 0 of (7) is equiasypmtotically stable.

Theorem 17, reference (23) (Malkin and Massera)

(H) (i) If there exists on R(h,to) real scalar positive definite functions

U (t,x) and V(t,x) such that Vis continuous on R(h,to) and decrescent,
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[
and V+ U ~» 0 as t—» o uniformly onp, ||l <p, for every
P, Aawd ra less than h,

(C) then X = 0 of (7) is equiasymptotically stable.

Corollary, reference (23)

(H) (i) If £(t,x) is Lipschitzian for some constant K ¥ 6 on R(h,to),
(i1) hypothesis of Theorem 17 is satisfied,

(C) then X = 0 of (7) is uniform-asymptotically stab{ @

Theorem 18, reference (23)

(H) (i) If X =_0 of (7) is uniformly stable,

(ii) there exists on R(h,to) a Liapunov function V(t,x) such that V is

negative definite on R(h,t0),

(C) then X = 0 is equiasymptotically stable.

Theorem 19, reference (23) (Liapunov and Persidskii)

(H) (i) If there exists on R(h,to) a Liapunov function V(t,x) such that
L ]

V(t,x) is decrescent and V is negative definite on R(h,to0),

(C) then X = 0 is uniform=asymptotically stable.

Yhe next theorem, theorem 20, deals with a "differential Inequality"

property of Liapunov functions. (We dealt with this topic in one of the sections

in the main part of our report.)

Theorem 20, reference (23)

(H) (i) If V(t,x) is a Liapunov function on R(h,to) such that V is decrescent

[ ]
and V is negative definite,
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(C) then given any constants ,o' and ’az s O <,Ol <P, ¢ h ,there exist
constants A (pF ,0,) > O » Y(P,) >0  such that W (¢, %)

W(t,x) = exp(At) V(t,x) satisfies W(t,x)< -/ for tPp to,

P, €l X I <A
Theorem 21, reference (23) (Malkin's Partial Converse of Theorem 19)

(H) (i) If £(t,x) is of class CK with respect to X on R(h,to) and for
every X in [[X{lch , £(t,x) is of class (}k-1 with respect to t # to,
(i1) X = 0 is uniform-asymptotically stable,

(C) thenthere exists on some half-cylinder subset of R(h,t0) a Liapunov
function V(t,x) of class CK with respect to Xsuch that V is decrescent

and V is negative definite.

Theorem 22, reference (23) (Converse Theorem of Malkin)

(H) (i) If £(t,x) is linear in X and bounded on R(h,to),
(ii) X = 0 of (7) is uniform-asymptotically stable (hence, exponential-
asymptotically stable),
(iii) W(t,x) is a real scalar function defined and continuous on
R(h,to) and is a positive definite form in X of degree m%0,

(C) then there exists on R(h,to) a real scalar function V(t,x) of class o1 8
which is a positive definite form in X of degree m such that V is

decrescent and V =-W on R(h,to0).

Theorem 23, reference (23) (Massera, Converse of the Corollary of

Theorem 13)

(H) (i) If £ (tx,) is locally Lipschitzian on R(h,t6),

(ii) X = 0 is uniform-asymptotically stable,
(C) ten (1) there exists a Liapunov function V(t,x) on some half-cylindrical
subset of R(h,to) possessing partial derivatives with respect to t and

X of any order, such that V is decrescent and V is negative definite.

(2) If £ is Lipschitizian on R(h,to), the partial derivatives of V are
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bounded on the subset of R(h,to).
(3) 1f £ is independent of t or periodic in t in R(h,to), then V is

independent of t or periodic in t on the subset.

The next three theorems, 24, 25, 26, are very useful in applications.
The topic being treated by them is still local asymptotic stability.
Theorems 27 and 28 are concerned with uniform asymptotic stability in the

large for X = 0 of (7).

Theorem 24, reference (23)

(H) (i) If X = 0 in (7) is uniformly stable,
(ii) there exists on R(h,to) a bounded Liapunov function such that %

is negative definite on R(h,tp),

(C) then X = 0 of (7) is uniform-asymptotically stable.

Theorem 25, reference (23) (Massera)

(4) (i) 1If £ (t,x) is Lipschitzian on R(h,to),
(ii) there exists a real scalar function V(t,x) defined, locally
Lipschitzian and positive definite on RTh, to),
(iii) there exists a real scalar function W(s) defined, continuous and
increasing for s3» 0, and W(0) = 0, such that v (t,x) £ W(v(t,xY ) on
R(h,to),

(C) then X = 0 of (7) is uniform-asymptotically stable.

Theorem 26, reference (23) (Massera)

(1) (i) If there exists a real scalar function Vv(t,x) defined, locally

Lipschtzian and positive definite on R(h,to), and there exists real
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scalar functions W(s), g(s) defined and continuous for s > 0, and

W(s) is an increasing function for s % 0, w(0) = 0, g(s) is positive

® as
/'Ms\

Xy £ (6,x) £ N X1l g(hXit) on R(h,to0),

4

for s % 0, andj = @0 guch that \.I(t,_)_c) < - W (V(t,x) ) and
o

(C) then X = 0 of (7) is uniform=asymptotically stable.

Theorem 27, reference (23) (Massera)

(H) (i) If there exists for t » to and ]} X ||<eo, a Liapunov fucntion
V(t,x) such that V is decrescent and radially unbounded,
(ii) V is negative definite for t> to and || x||<eo,

(C) then X = 0 of (7) is uniform-asymptotically stable in-the-large.

Theorem 28, reference (23) (Converse Theorem of Massera)

(H) (@) If,f(t,x) is locally Lipschitzianfor t > to and || X J]< oo »
Lle,x x|
(ii) X = 0 is uniform-asymptotically stable in-the-large,

(C) then there exists (1) for t > to, || x}/<e a Liapunov function
possessing partial derivatives with respect to t, x of any order such
that V is decrescent and radially unbounded and V is negative definite.
(2) If £ is Lipschitzian for t 2 to, /| ¥ j<@ , the partial derivatives

of V are bounded in every bounded subset of the state space for t 2 to.

(3) If £ is independent of t or periodic in t, then so is V(t,x).

In the next set of theorems, we state some of the more important

"instability" results.

Theorem 29, reference (19) (Liapunov's First Theorem on Instability

The equilibrium solution (x = 0) of (7) is unstable if there exists a

decrescent function V(t,x) which has a domain where V< 0, and whose
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cerivative V is negative definite.
The next two theorems give both necessary and sufficient conditions for
instability, and thus are equivalent. Theorem 31 is usually more convienent

for applications than Theorem 30.

Theorem 30, reference (19) {(Liapunov's Second Theorem on Instability

The equilibrium solution of (7) is unstable if the following holds: 1In
the domain & R(h,to), there exists a bounded function € V(t,x) with the
properties:

(a) Its total derivative for (7) is of the form 6 = gV + W(t,x) where

g is a positive constant, and where W is a semi-definite function;

(b) If W(t,x) does not vanish identically, there exists in each domain

R(hi’tl) with arbitrarily large tl and arbitrarily small hléh such

pounts X that V and W have the same sign for t » t.

Theorem 31, reference (19) (Chetaev's Instability Fheorem)

Given that the differential equation (7) and a function V(t,x) with
the following properties:
(a) In every domain R(€), € 20 is arbitrarily small, there exists points X
such that V(t,x) is negative for all t % to, to bring sufficiently large.
The totality of points (t,x) with |l x|]¢h and V(t,x) < 0 shall be denoted
as the "domain V < 0". This domain is bounded by the hypersurfaces |} x || =
and V = 0, and is possibly separated into several subdomains, Ul, Ugyenns

(b) V is bounded below in a certain subdomain U of the "domain V ¢ 6"}

(c) In the domain U of (t,x) space in (b) the V for (7) is negative; in

h
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sarticular, V€ - § ( LV1)< 0, where (r) is continuous, monotorically
increasing, and ® (0) = 0. The existence of such a function v(t,x)

implies that X = 0 of (7) iswmstable.

In Theorem 32, Chetaev uses two functions to establish that X =0

of (7) is ustable.

Theorem 32, reference (19) (Chetaev)

If there eixts a decrescent function V (t,x) and a function W(t,x)
such that (1) the "domain vV 0" is not empty for any t in t & t€eo (which
has to be considered a closed interval), and (2) for arbitrarily small J/ x|
theee exists a "subdomain W »0" of the '"domain VV > 0" where W has constant
sign on the boundary of the 'domain .\;J>—O", (the boundary is W = 0.), then
the equilibrium (x = 9) of (7) is;umssgable.

Theorem 33 considers the concept of complete instability.

Theorenm 33, reference (19) (Persidskii)

The equilibrium is completely unstable in (7) if a function V(t,x)

exists which has the following properties in R (h,to):
(1) V>0 for X # 0;
2y v 2 0;

(3) the function V tends uniformly toward zero as t increases.

The next two theorems are the time-invariant results corresponding

to Theorems 29 and 31.

Theorem 34, reference (20) (Liapunov's First Instability Theorem)

() (i) If V(x), with V(0) = 0, has continuous first partials in some
neighborhood N of X = 0

-_—

(ii) V is positive definite arbitrarily/ near X = 0,
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(iii) V assumes positive values arbitrarily near X = 0,

(C) chen X = 0 of X = £(x) is unstable.

Theoren 35, reference (20) (Chetaev's Instability Theorem)

Let N be a neighborhood of X = 0 and let there be given V(%) and a
region N1 in N with the following properties:
(1) V(x) has continuous first partials in Nj,
(2) V(x) and V(x) are positive in Nl’
(3) At the boundary points of Nj inside N, V(x) = 0.

(4) the origin is a boundary point of Nj. Then, under these conditons the

origin is unstable.

We nextconsider LaSalle's theorems on the extent of asymptotic stability

IOr autonomous systems. A more thorough discussion of this work can be

found in references (20), (30), (37), and (38). The autonomous system is
defined by g_= £x) , £(0) = 0, where the usual properties required for

existence and uiniqueness of solutions are assigned to f£. We must first

introduce two notions from the work of G.D. Birkhoff.

Definition 43, reference (38)

Let X(t) be a solution of the autonomous system. A point X;is said to

+
be in the positive limiting set I' of X(t), if for every € %0 and each T» 0

there is a t»T such that || x(t) - XlJ< €.

One of the important properties of limiting sets is the following; "If

X(t) is bounded for t » 0, then 1‘* is a nonempty, compact, invariant set."

Definition 44, reference (38)

L ]
A set M is said to be invariant, if each solution of X = f(x) starting




!
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in M remains in M for all t¥ £,

Another important property of limiting sets is: '"If X(t) is bounded for
t » 0 and if a set M contains _['+ , then X(t) — set M as t—weo."

Theorem 36 gives criteria for determining the extent of

asymptotic stability.

Theorem 36, reference (38)

(LaSalle )

(H) (i) If N is a bounded closed setwhich is also an invariant set of the

system )3 = £(x),

(ii) V(x) has continuous first partials in N and \‘75 0 in N,
(iii) set E is the set of all points in Nfor which V = 0,
(iv) set M is the largest invariant set in E,

(C) than every solution starting in N approaches M as t —» oo .
In Theorems 37, and 38, the set N is defined by the Liapunov function V(x).

Theorem 37, reference (38) (LaSalle)

(d) (1) 1If N denotes the closed region defined by V()<L ,
(i1) V{(x) has continuous first partials in NL and is postive definite
in N '

(iii) N, is bounded and \.7(5) < 0 in NL >

(iv) E is the set in N} where V = 0 and M is the largest invariant set in E,

.
(C) then every solution of X = f(x) starting in N tends to M as t—»@® .

Theorem 38, reference (20) (LaSalle)

If \7(_}3)( 0, X#0 in K, replace V(x) & 0 in Theorem 37, then X = &

is asymptotically stable and every solution in N L tends to 0 as t—»r+ 00,
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The next two theorems deal with the concept of stability in-the-large

for the null sollution of X = fIx).

Theorem 39, reference (38) LaSalle)

(4) (i) If V(x) has continuous first partials for all X,
(ii) V(x) > O for all X # 0,
(iii) \‘IQE) < 0 for all X,
(iv) E is the set of all X such that {7@5) =0,
{(v) M is the largest invariant sét contained in E,

(C) then every solution of X = £(x) bounded for t, 0 appraoches M as t-—¥»®.

Theorem 40, reference (38). (LaSalle)

(B) (1) If V(x) has continuous first partials for all X,
(ii) V(x) > 0 for all X # O,
(iii) X‘T(§) €0 for all X,
(iv. V() —w e0 as |[xX}j/veo.
) {7 is not identically zero aloﬁg any solution other than 0,

L
(C) then X = f£(x) is completely stable.

THe next set of theorems deal with pracfical stabiliy and Lagrange

stability.
Theorem 41, reference (38) (LaSalle)

(H) (1) N is a bounded neighborhood of X = 0

—’

(ii) N€ is the complement of N,

(iii) W(x) is a scalar function with continuous first partials in NC,

(iv) W 20 for all X in NC,
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(v) W< 0 for all X in NC,
(vi) W—r»a as I Xijl—~>eo,

X
(C) then each solution of X = f(x) is bounded for all t % O.

Theorem 42, reference (39) (Rekasius)

(H) If (i) N is a bounded region containing 0,
(ii) V{x) is a scalar function with continuous first partials in NC,
(iii) V() > 0 for all X in N¢, and is locally Lipshitzian in NE,
(iv) V—eco as Jl Xll—ve ,
(v) {7< 0 for all X in XS,
(C) then the system i = f(x) is asymptotically stable in the sense of

Lagrange; that is, every solution of X = f£(x) starting in N€¢ approaches

N asymptotically as t=—weco .

A Theorem similar to Theorem 42 is the following theorem from reference (30).

Theorem 43, reference (30) (LaSalle)

(H) If (i) N is the set defined by V(x) € o and N¢ is the complement
( V(x) et ), with V havang the usual continuity properties,
(ii) {7@) £ 0 for all X in N€,
(iii) {7 does not Yanish identically along any trajectory that starts
in N€,
(iv) _35 = F(x) is Lagrange stable,
(C) then every solution of g = f(x) approaches N as t —¥» @

From the reference (29) we have the following theorem dealing dealing

with the problem of practical stability of an autonomous system.
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Theorem 44, reference (29)

(H) If (i) there exisss a scalar function V(x) with continuous first partials
such that V > 0 and {7< 0 in the whole state space except in a small
neighborhood N of X = 0, and
(i) V—w» @ as || xll~wveo,

(C) then there exists another small neighborhood NO of the origin such that

N, contains N and such that any moving point X having departed from No will

return toward Ny as t—e . (that is, the origin is stable in the large if

small unpredictable oscillations within a small neighborhood N, are neglected).

Theorems 42 and 44 are basically the same.

The next two theorems aer concerned with the regions of eventual

agymptotic stability for the nonautonomous system X = f(t,x), where f has

continuous first partials. We will denote the solution to the system by
F (t; tg, Xo). In Theorem 45, regions of eventual asymptotic stability

are discussed. In Theorem 46, a method for determining a region of eventual

asymptotic stabiiity is given.

Theorem 45, reference (40) (LaSalle & Rath)

(H) If (i) N is a bounded closed set containg C,

(ii) Ny is a subset of N such that solutions starting in No at time to
T, remauamn for all t >,to in N,

(iii) V(t,x) is a scalar function such that V(t,x) —e U(x) as t =¥ &
uniformly for X in N,

(iv) ’G(t,g) —» - W) as t —wpreo uniformly for X in N,

(v) U(x) and W(x) are positive definite for X in N,
(C) Then there exists a To » O with the property that F(t;to,X,) —»0 as

t —p oo for all )_{o in No and all to7/ To.
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Theoren 46, reference (40) (LaSalle & Rath)

(H) If (i) N is a closed bounded set defined by U(x)< L (L>0),
{ii) conditons (iii), (iv), and (V) in Theorem 45 are satisfied,
(iii) for any 8 » 0, NS is the set defined by U(x) < L - &,
(C) then there is a TS » 0 such that F (t;to,Xo) —w» 0 as t —a 00 for all

Xo in NS and all t , > TS.

In Theorem 46, a sufficientcondition for set N, defined by U(x) £ L, to

be bounded for all L is that U(x) —peo as || X|]|-we. Moreover, if

Liamn in =
uy]—vm { {'u(&’)g Lo J

then N is bounded for all fixed L< L,. Thus, Theorems 45 and 46 are

useful in determing how large a region of stability exits around X = O.

The next two theorems are extensions of LaSalle"s work on the "extent
of asymptotic stability." Theorem 47 is due to Yoshizowa and is concerned

with wi.c LaSalle calls the '"pertubbed autonomous system,'" references (41)

and (42),. The basic system X is defined by

>

=E @ +2 (6,0 +9q(,%), (8)
where P and @ are different types of perturbations. We assume the following:

®
(1) If X(t) is continuous and bounded for all t3» O, then L i1 P(g, E(f))‘\d.&(&

(2) The function ¢ (t,x) =% 0 as t—woo uniformly for X in any compact set.

Theorem 47, references (41) and (42) (Yoshizawa)

(H) If (i) all solutions of (8) which start in a compact set N remain in N,

(ii) there exits a scalarfunction V(t,x) which is nonnegative for all

t 20, and all X in N,
L]
(iii) V(t,x) € W(x) S 0 for all t> 0 and all X in N,

(iv) set E in N is defined by W(x) = 0 and M is the largest invariant

L
set of the system X = F(x) in E,

(C) then every solution of (8) starting in N approaches M as t—teq-
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a Theorem 48, Matrosov, in references (41) and (43), considers a
. more general situation; he gives sufficient conditions for the asymptotic
stability of an equilibrium state of a nonautonomous system. Two
“Liapunov functions" are used; thus he is able to relax the condition of
positive definiteness of the Liapunov functions by relating the second
function to the set where the time derivative of the first function vanishes.
The system considered is given by
31 = E(t,x),

(9)
(z,0) = 0 for all t.

g

The two "Liapunov functions' are V(t,x) and W(t,x). Relative to a set E,

W is defined to be definitely not equal to O in the set.E if given numbers

o andd A there exist r and § such that | W] > § for all t=» 0 and all

Fh

set E and such that o Hxllg A

: 1
hin a distance r ©

. Theorem 48, references (41) and (43) (Matrosov)

(2) If (i) V(t,x) and W(t,x) are defined in some néighborhood of X

k<
It
o
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(iii) {’(t,g) < - w(x) 0, where w is continuous,

(iv) ﬁ(t,_}g) is uniformly bounded for t 2 O,

) ;J(t,;i) is definitely not equal to zero in E, where E is the set of
points X for which w(x) = 0,

(C) then x= 0 of (9) is asygptotically stable. -

Note by LaSalle reference (41)

The introduction of W(t,x) assumes that the solutions cannot remain too

long near E but must approach 0.
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The next four theorems are concerned with the perturbed system

given by equation (6), which is repeated below:

I e

= £(t,x) + g(t,x), (6)

where £(t,0) = 0 for all t 2 to and g is the perturbation term.

Theorem 49, reference (19) (Gorsin and Malkin)

() If (i) X = 0 of X = £Ir,x) is uniformly asymptotically stable,

(C) then X= 0 of (6) is also stable under constantly acting perturbations.

~heorem 50, reference (19) (Malkin)

(i) if (i) a positive definite Liapunov functiion V(t,x) exists whose partial
derivatives are bounded in a domain, and
L -
7 e o\ ~r - 1 - . v Lol \ ke i h) Fading .
(ii) V with respect tO §_= f(t,X) 1s negative definite,

(C) then X= 0 of (6) is stable under constantly acting perturbations.

Theoren 51, reference (35) (Vrkoc)

The solution X = 0 of (6) is stable under constantly acting
serturbations, if and omly if, there exists a function V(t,x) with
continuous partial derivatives and satisfying the following=
(1) V(t,x) is positive definite;

(2) v(t,x) is bounded uniformly with respect to t;
(3) there exists a continuous function U(x) which is positive except at the
point X = 0, and the function

Q(¢,x)= ¥ +U) V(ZY) (vv) £ O

Theorem 52, reference (35) (Vrko?)

The solution X = 0 of (&) is integrally stable, if and only if, there




(@3)

xists a function V(t,x) with continuous first partials fulfilling the

[

owing conditions:

i3

Fty
O

[
e

(1) V(t,x) is psoitive definite;
{Z) V(t,x) fulfills a Lipschitz condition with a constant independent of t;

(3) V< 0.

Note by Vrko‘cﬂg reference (35)

In the case of stability in the mean only sufficient conditions are

known at present.

The last set of theorems which we will list are three due to Yoshizowa

dealing with boundedness, namely, theorems dealing with Definitions 10, 11,

-
POy

12.

o)
L

Theorem 53, reference (23) (Yoshizawa)

() If (i) there exists for t 2 to and X in xjl 2h, a real scalar function
W(t,x) defined, locally Lipschitzian and positive definite, such that
W(t,=) —» @ with X uniforaly for t > to, and
(ii) ;J(t,g_) S 8 for t = to and xil = h, B

[
(C) then every solution of X = £(t,x) is bounded. (f having the usual

"néce' properties).

Theorem 54, reference (23) (Yoshizawa)

(H) If (i) there exists for t = to, It xJI 2 h, a real scalar function
W{t,x), defined, locally Lipschitzian and pesitive definite, such that
for any open sphere S containing || x |/< h, WIt,x) is bounded on the
intex;section of S and [[ xJ/2h , for all t 2 to,

(i) W(t,x) —» as [] X[] —p o uniformly for t 2 to,
(iii) l:’(t,l:_) % 8 for t 2 to and If 21/ = h,

(C) then every solution of X = £(t,x) is uniformly bounded. .
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Theorem 55, reference (23 (Yoshizawa)

(1) If (i) conditons (i) and (ii) are satisfied in Theorem 54, and

[ d
(i1) W(t,x) is negative cdefinite for tzto, and l x5y 2 h,

l H

{C) then every solution of X = (t,x) is ultimately bounded.

(E). Examples of Some of The Theorems in Part D.

Thao lTaag+s =~-~
4iic rdoL pa

some of the theorems in Part D.

Examplie 26, reference (21)

4]

In the systemdefined below we consider the Liapunov function as a

distance in phase space. The system is given by

. 2 2
. 2 2
X = =X -aX, &°+x ),

a = constant.

Thus, let V = xl"- + X%, where
. 2
V= 2x (X - aXyV) 2K (- X, - alpV) = - 2aV

Solving for V, where V=V_ 20 for t = to, given
o o (=)

vV = Vo

1 = 2av, (t =to)

Three possibilities exist; namely,

(1) for a>0 and any v, > 0, V-0 as t—ec, thus the system is completely

stable;

(2) for a = 0 and any Vo >0, V=V for all t >0, thus the system is stable;
o

(3) for a< 0O and any V » 0, V— +e& as t—pto -1/2aVo, thus the system
0]

has a finite escape time and is obviously unstable.

vy e R

A A 4 I e i i G o 1o
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~irst Merhod Vs. Second Method)

7
g
[0}
1
3
-
o}
)
~4
P

(A) From reference (44), we have the system defined by

= -y - x3,

]
|

Y =X - Y3
Let V = X2 +Y2;thus;7= -2 o+ YR ).
Therefore by Liapunov's Second Method, the system is compietely stable.
But the linear approximation only says that the origin is locally stable.

(B) From reference (44), consider the system defined by

7

Y v X - X,

i

- X _\VD

nd ?

»
Y

wheee X 1s a system parameter. From the linear approximation the origin
is locally asymptotically stable if X« 0 and unstable ofx>0. By the
2 2 7 6 6 2
Second Method, if V=X + Y , then' V= -2(X°® + Y% -x X4 ). Thus, if
«x <& 0 , the system is completely stalbe.
Whenef = 0 , we have the critical case. The First Method says

{0,0) is locally stable. The Second Method says that the system 1is

7
¢

6

w2 G2 ; o

completely stable because if V= X" ¥ Y7, then V= -2X ~ + Y ~ ).
Example 28 Unstable Cases

(A) From reference (12), consider the system defined by

e 3
= , 1y
Xp = -X *X ,
. ;
X2 = }\2 + Xl B

The linear approximation shows that ¥0,0) is unstable. We can also prove

instability by the Second Method if we let V = X, - xlz . Then, we have

o
veooy® v X2 v x2 X, - x%,2 ).

Thus, in any neig--crhood of (0,0), V can be both positive and negative,




Hh

ficiently small ({j x{| # 0), then V >§

bt 1f f} x J|  is su

0,0) is unstable.

~~

2y the instadility theorems
(B) From reference (44), we obtain the following example:

L

X1 o= X0 X0,

L J

%3 Ly 5

X2 =X X,

A . 4 7 = L(x:S 8 o

Let V = X13% = Xp* , then V = 4(X1~ - X2° ). If |x;[> }x%xp] , Vand V

=2 are both positive. Therefore, (0,0) is unstable.

tty

nce (435) Time-Dependent Domain of Asymptotic Stability

H

c

8]

xampie 29, e

11

L
Consider the first order system defined by X = =X - X (1 - £3%2). For
- (£t)
to » 0, the solution of the linear approximation is given by = Xt e

rt

N

Thus, as t—vao , X —» 0 and toc origin is locally asymptotically stable for

[

ty, » 0. 3By Zubov'e method we can verify that the domal
stability for the nonlinear system is given by | x| 4_1/to. Thus, as to

beccomes large, the domain becomes small; and for large tys the systenm is

v.stacle for »ractical purposes.

U T P onN
Lxampie 33, cererence (o7

Consider the forced Duffing equation defined by

<
£, = - X -2 - bX + g(t),

wheee b >0 and | g(t)| < m. Let V= 1/2(x1 + Xy ) 2 + v/4 Xl4 .
Thus, V = -(X, + X, )2- bXy" +g(t) (X} +X )< -(X4 +X )2 -
i > 1 2 1 S 1 2 - 1 2
bX,* +m | X, +X,/ . Choose the neighborhood X to be ¥: |X, + X,|¢m.

Therefore, in the complement of N, N, we have V> 0, V=@ as [f v

e

and V «€ 0 . Thus, by Theorem 42, the system is ultimately bounded and is

"sruccically stable'.
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wamnie 31, reference (39) Asvmototically Stable Non-null Solution

Consider the following squations which define a nonlinear regular:
. 3
X1 = -X1 T X2 s “
o |
X2 = X1 = 1/2){2 . |

By linear approximation we see that (0,0) is locally asymptotically stable.

2 4

Also, as can be easily seen, 2X;° - Xp = 0 is a solution of the system.

g e e

Zv Lizzunov type arguments, we want to prove that this solution is asymp-

.tically stable.

2 .

Let V = 2X3 - }{2[‘L . Then, V = -2V. The solution of this V-equation is
. 2t o 4
VY= V() & V(oY= 2X,(0) - Xy (o) £ 6
i
Thus, any initial point (X, (0), X2(0) ) not on the curve 2X12 - X24 = 0 at :

t = 0, will apvoroach the curve asymptotically as t—0. i

Fxample 32, Some Examples of LaSalle's Theorems

(1) From reference (12), consider the "vibrating spring" problem with a j
non.inear damping factor, f(x,x), defined by ;

X + f{x,x)X ~WX=0,

L .
or 1 = ‘2, ,
. 5 ) ;
X2= -wfX1 - f(x1,X2) X2-. |

2 [
Let V = w2X12 + X9° , w#0. Thus, V= -2f(X1,X2) Xzz . Therefore, the

sysc... .s completely stable if f(xl,xz) > 0 but not identically zero, and

if f(x1.x2 0 on any non-null trajectories of the system.
2 y 3

“Ht

i
H
i
|
;
[
{

(3) From reference (20), we have the famous Van der Pol system which is

defined by |

W
ot
!

Xl) .

-
%)
w

>4
o
i
1
P
i3
A
[en]
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- 2 2 . 5 v w2/ 12
Lec Vo= 1/2(xy= + x27), giving V = -E x1°{ X1 - 1),
3
. é _ .9 - - . 2 o s
Thus V &0 for Xi1"& 3 fnercrore theregion X1© + k22<; 3 is

interior O tae rgion of asymptotic stability for (0,0). Thus every solution

starzing inside X1° + X,7 = 3, approaches (0,0) as t = + o .

(C) Example due to LaSalle

The following example shows that Theorem 39 can not be used for
nonautonomous syseems. Consider
e -
X+ 2 +eb) X+X=0,
or X7 = Xs,
L4 A
Xp = -X; - {27 eb) X,.

L]
thus, V= -(2 + ) X22. The set E, V= 0, is

the X7 - axis. The largest invariant set in E is (0,0). Therefore, all

Hh

or the initial wvalues

rh

the hvsorlheses of Thacrem 20 m igficd: Bt
Lne hypotneses of Theorem 329 are satisfied; but

= -
(Zb, -b), X = b{l +e 7). Thus as t=»+ew, X—»b and X-¥0. The origin is

2ot asymprotically stable as the incorrect use of Theoren 39 would indicate.

(D) From references (41) and (42), we see that the Theorem of Yoshizawa

p—
{(ZTh
. L
re =
X7 hz,
]

Xy = =X1 - a(2) X,
where a(t) is bounded by M>a(t)>m>»0 and a(t) —yao>0 as t —wco. Thus,

2 2

let 2V = X3 + X72, giving V = -a(t) X5”. By theorem 47, the system is

completely stable. (the trouble in case C is that 2 + el is unbounded as

e T,
Exar=zc 33, reference (L2 Examcle of Theorem 47
. - ] .
Consicer the system cefined by X + f(x) X + g(x) = e(t) -

where f(x) and g(x) are continuous for all x, e(t) is continuous for

leoren 47) covers the problem in Case C. Suppose, the system is defined by
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Now consider the equivalent system

[
X =y,
Y=-f(x) y - gx) + e(t)

‘e dafine the set N:
ixj<c and |y[<€e, m c a positive constant.

Let V{(t,x,y, = exp{ -?_E(t)] : [ G(x) + Y2/2 + I—J R
* ’

where C(x) = S z(x) éx 2 0. Thus, V£ - exp [ -2E(a )_‘ 4N vyzl .
Js - ‘
Thas set Z is made up of the points on the x-axis satisiying |x] ¢ c¢, and

=]« ¢ and }Y[ & ¢. The lamgest

invariant set, M, in E is (0,0). Thus (0,0) is asymptotically stable by

Examnlice 34, reference (39) Example of Theorem 42
Consider the systen defined by
L J
, « 2 ,
X, = X, + X (1-X72-X2),
1 2 i 2
@
- - .2 2
e v oy _ 2 _ 5
X2 X, X, (1-X% - X,2).
. . ) .
Let V = ;/2 (‘ ]2 a )\2"), LhUS,

. D) 2 2 2
V=2 X)) (- Xt - X

Thus the origin is usntalbe. The region N in Theorem 42 is defined by

Alz +X2< 1. Thus, the haypotheses of Theorem 42 aze satisfied in N¢, and

i

any solution starting in N® approaches N asymptotically as t—pw. Any

solution starting insde N approaches Xlz -+ X22= 1, therefore, Xl2 + X22 =1

i
g.
!
}
'
i
§
|

vty e Y & 4

O ————
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(]
(52

. Namn o

Lons LT

X =-X,+akEX - aX:3,
l bt A -

where a and E are positive constants and E is small. Let vV = Xl2 + X2 .
.

Thus, V = 2a I E (Xlz + on) - (Xl4 + X24)] . V is less than on equal

A

e
to zcro when X:©7 T X2

> 4E. Thus inside the neighborhood,N, defined by

» — . . ‘ .
£ 4E, the system is ustable; but any solution starting in N

. ;2 v 2o e e R
&pproachcs ‘\lﬁ + X,° = LE. Therefore, the origin may be regarded as stable
iq-t-.-large if small oscillations of amplitude less than or equal to 2,/}2

~round the origin arc neglected.

S5, refercnce {43} of Theorom 48
. Let us consider a symmetrical, heavy, rigid body with one point fixed,

and uncder the osresence of resistance forces of the medium. The equations of

L
A - e
AR+{c-AYars X E Y- N‘/g,:

. S
H

ﬁ .,
o
(2]
'
-‘
O‘

&3
"
N
e’
0
&
™

T-e function R is & homogeneous function of P, q of order m 2 2 with

cocTficicnts which arc continuous and limited functions of time t. M;_,. is




v

The V and W functions in Theorem 4§ are defined by

F At 2 VR SR % &
Al dqn) -4 P2, (G0 v 87}

time dorivarives are

The set & (V =0} corresponds to p = 0, ¢ = 0. For this set E,

v e Tl b iy
72 - <y by SRR VIR 2z J
P L -
If B, ¢ 0, then

fos . b2 ! g\ = e =
IWj>+ Dizsjat™ 79w pZg=o
Al 2 i Ky
oext<pt + 4+ X< AT HY,
L]
Thereiore, because of the continuity of W and the bounds on the coefficients,
it is possible to find ry; 7 0, such that
1 Z
EN R R PR R LS LY

. - b3 R >
wWis L E}"t o waen t P O,
[
Thus, W is cdefinitely not equal to zero in set E (V= 0)

Ii = < 0O (center of gravity is lower than the point of support) then
<O Py

aeorem 48 is satisfied and the autonomous motion ( p =q=0, r=r (t,ro,to),
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