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(I) INTRODUCTION

In this section we list some of the basic theorems and definitions

which are used in the analysis of dynamic systems. The proofs of the

theorems will not be given but can be found in the references which are

listed at the end of this section. Wherever possible, examples will be

given to facilitate the understanding of the theorems and definitions.

The first part of this section will be a "naive" discussion of non-

linear phenomena. The second part will be concerned with the properties

of the dynamic systems whose stability is desired. Finally, the last

(and main) part of the section will contain a list of the important theorems

and definitions in the "stability" and "boundedness" fields.

(II) THE NONLINEAR WORLD (I) to (8)*

Before giving various examples of linear and nonlinear phenomena in the

physical world, let us define in mathematical terms a linear and a nonlinear

operator. Suppose that @ is an arbitrary mathematical operator which maps

a given space into another space. Suppose further, that f=f(x) and g=g(x)

are arbitrary functions of a variable x, and a and b are arbitrary constants.

(In our work we will usually think of 0 as mapping the reals into the reals,

or an n-dimensional real vector into another n-dimensional real vector.)

Thus, we say that @ is a linear operator if it satisfies

@ (a f(x) ) = a @ (f(x) ),

@ (f(x) + g(x) ) = @ (f(x)) + @ (g(x)),

for all constants a and functions f,g under consideration. If e is a linear

.............................................................. . ............. m

*The numbers in the parentheses refer to the references at the end of the

report.
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operator and g is not identically zero, then @(f(x) ) = g(x) is a linear,

nonhomoEeneous equation; and @(f(x) ) = 0 is a linear, homogeneous equatio n •

If @ is invariant under a translation in x, then it is an autonomous

operator; if it is not, 0 is called a nonautonomous operator.

Some examples of linear operators are:

(i). @(f(x) ) = f(x), identity operator,

(2). @(f(x) ) = 3 f(x-5),

(3). @(f(x) ) = d f(x-2),

dx

I

(4). @(f(x) )=_ f(x-s)e-Sds,
fb

(5). @(f(x) ) = x f(x), nonautonomous operator.

In the physical world, the governing equations of motion for certain

phenomena are often linearized. The physical assumptions which are invoked

in some of these cases are:

(i) Ideal, homogeneous, uniform fluids,

(2) perfect insulation,

(3) isotropic media,

(5) infinitesimal waves,

(6) small deflections.

The deficiency of an operator @ is defined as, (8),

D = O(f(x) + g(x) ) - O(f(x) ) - @(g(x) ).

If D is not identically zero for all the functions under consideration, then

@ is a nonlinear operator. An example is:
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O (f(x)) = f(x) dr(x),

dx

D (f(x) + g(x) ) = (f(x) + g(x) d(f(x) + g(x))_ f(x)df(x)_ gd___

dx dx dx

= fdg + gdf,

dx dx

which is not in general zero. Some other nonlinear operators are,

(i). @ (f) = f2(x),

(2). 0 (f) Sa f(x-s) f(s)ds,
/

(3). 0 (f) = exp (f(x)).

Som_ examples of physical phenomena which are nonlinear are,

(i). certain springs and oscillators,

(2). gases at high pressures,

(3). finite displacement theory of elasticity,

(4). rigid body dynamics,

(5). movement of flood waves in rivers.

Reasons for studying nonlinear systems in physics and engineering are:

(i). physical measurements have grown more refined and thus non-

linear effects are exhibited in the collected data;

(2). certain systems are by their very natur_ L_OLLI_U_=L.............., _u_,L_ as

rigid body motion in three-space;

(3). nonlinear devices are sometimes far superior to linear ones;

i.e., nonlinear controls can often far outperform linear controls.

"The basic mathematical tool used for expressing change and its causes in

certain mechanical, biological, economic, electronic, and control systems is

the ordinary differential equation. This equation may be linear or nonlinear

and autonomous or nonautonomous. Some examples of nonlinear equations which

describe certain physical phenomena are given below:

(i). from Newton's 2nd Law of Motion, we have the equation of the

oscillating pendulum

+_/L sin O = 0,
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where @ is the angular displacement and L is the length of the pendulum;

(2). Van der Po1's equation

-_ (1-x 2) + x = O,

•Z4 >0

describes the variation of the current in a radio circuit, certain periodic

biological processes, and business cycles;

(3). the theory of finite waves progressing over the surface of

a water mass of infinite depth reduces to

= A exp(-3x) f(L);

(4). the theory of large elastic deflections produces the

following equation

W" + AW_-(W') 2] ½ = 0.

The question might be asked, how do linear and nonlinear systems differ

in behavior? If a system is linear and homogeneous, then any linear combin-

ation of solutions of the system is also a solution; this is called the

principle of superposition. Nonlinear systems, in general, do not obey

this principle.

The global behaviour of a linear, autonomous system can be predicted by

local behavior, which is not the case for nonlinear systems. In some non-

linear systems, local properties can be determined by linear approximation,

but usually the global properties require that the nonlinear terms be

investigated. There are nonlinear systems in which local phenomena can not

even be determined by the linear approximation.

In a linear, autonomous system the phenomenon of resonance can occur if

there is no damping in the systemand a certain bounded forcing function is

impressed upon the system. Thus, a bounded imput can cause an unbounded

output in a linear system. If damping is present, bounded imputs produce

bounded outputs. In nonlinearsystems, linear resonance does not occur because
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the periods of oscillations are amplitude dependent and thus, in some cases,

the nonlinearities produce stable conditions in a system even though

damping may be absent. But there are nonllnear resonance effects which go

under the names of subh_rmonic resonance, jump phenomenon, parametric

excitation, and hysteresis effects.

In nonlinear systems (such as Van der Pol's equation) there may exist

self-sustained oscillation_. _iese oscillations may occur without the

influence of external forces, but simply arise from the internal structure

of the system and the manner in which the system's energy is transformed from

sidering the nonlinearities.

Two great names in the theory of differential equations are Poincare

of France and Liopunov of Russia. Poincare studied the geometric properties

of solutions and invented certain techniques for the computation of solutions.

His work stimulated the development of certain topics of modern abstract

mathematics. Some of the ideas of Poincare are considered in the next part

of the section.

Liopunov studied the stability properties of the solutions of ordinary

differential equations by generalizing the work of Lagrange. In his second

or direct method, Liopunov analyzed the stability of systems without

obtaining the actual solutions. His work stimulated the development of

quantitative and qualitative information about the stability of various types

of systems. In the last part of this section we will list many of these

results.

r
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(III) The Systems Under Investigation

(A) 2nd Order Systems (3), (8), (9), (12)

Consider the second order system defined by

= P (x,y),

• (1)
Y = Q (x,y).

The XY-plane is called the phase plane or state space. The equations in

(i) give the flow in the state space, and the corresponding velocit_ of

flow is given by the two-dimensional vector

V = (_,_)= (P(x,y), Q(x,y) ). (2)

If P and Q are not both zero, then _ is not _, or the state of the system

is changing at each point in the xy-plane (for which _ # _). The points

where _ = _ are called rest points, equilibrium points, singular points, or

points of no flow. An ordinary point is any point where _ # _. The flow

lines in the xy-plane are the solutions of (i) or the trajections of (i).

We assume that P and Q are such that through every ordinary point there passes

one and only one flow line, and that each singular point is isolated.

From reference (8), we ha=e the following example of a second order

system. The system is a simplified model of Volterro's "struggle for

existence between two species", where one species preys exclusively on the

other. The defining equations are

X1 = -2Xl + xlx2,

X 2 = -x2 + XlX2,

having singular points located at

(3)

(0,0) and (1,2). In the phase plane plot

given below, the arrows point in the direction of increasing time. It can

be shown by Poincare's singular-point analysis that (0,0) is asymptolically

stable and (1,2) is unstable.
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X,

E
Phase - Plane_lot for Eq.(3_

By assuming that equation (i) could be expanded in series form,

= alx + bly + clx 2 + dly2+ elxy + .... ,
(4)

= a2x + b2Y + c2x2+ d2y2+ e2xY + .... ,

Poincare was able to classify the singular points of (I) according to their

stability properties, and he also described the trajections in the neighbor-

hoods of these points by considering the linear terms in (4). This work is

repeated in many texts, such as references (8), (9), (i0), (12), and (37).

For certain critical cases the linear approximation fails, and the nonlinear

terms must be considered, see reference (17).

Another topic of interest in second order systems is the search for

periodic solutions or limit cycles. Some results of this work for autonomous

and nonautonomous systems can be found in references (8) to (14) and (17).

In references (15) and (16), the geometric properties of third, fourth, and

higher order systems are investigated, in analogy with the second order systems.

These references also list extended bibliographies in this area. In reference

(14), a survey of non-autonomous systems, as applied to mechanics, is

presented for second order systems.

(B) Higher Order Systems (12), (18), (19), (20).

The state of a system, described by the n-dimensional vector _, is the

minimum amount of information needed about a "physical dynamic" system at

some past time in order to predict its future behavior. The dynamic system

may be described by the following n-dimensional vector differential equation:

= ! (5)
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The vector U is a specified m-dimensional control vector or forcing function;

is the state vector; t is a scalar variable (usually taken to be time);

and f is an n-dimensional function which satisfies sufficient conditions

for existence and uniqueness of solutions as required by whatever problem

is under consideration.

If the control vector _ is identically zero, then (5) becomes a free,

nonlinear, nonautonomous system

= ! (t,_). (6)

A free, nonlinear, autonomous system is defined by

= ! (._-)- (7)

In all of our problems, we will assume that t and the _omponents of

are real numbers.

Suppose our nonlinear, nonautonomous system is given by

Y = a (t,z), (8)

where _ = _ is a particular solution of (8) whose stability properties are

desired. The first step in the analysis is to derive the equation of

perturbed motion about _ =_ . Thus, the perturbation about is defined as

X = f (t,x), (9)

where £ (t,_) = _ (t,_ +__) - g (t,_).

The unperturbed solution of (9) is _ = _. Throughout the remaineder of

this report equation (9), with an isolated singular solution at _ = _,

will be the subject of our investigation. An example of a perturbed equation

is given below; it was obtained from reference (21).

Example : Atmosoheric Reentry System.

Consider the simple reentry problem of a "point-mass" space vehicle
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reentering the atmosphere. We assume that the motion is two-dimensional,

and the earth is spherical (radius R I) and non-rotating. The required

notation is defined as follows:

0 = angle of latitude

= flight path angle

_ = angle of attack

S = reference area of vehicle

L = lift force on the vehicle

D = drag force on the vehicle

= velocity vector, _ = V

R = radius vector from the center of the earth to the vehicle

h = altitude of the vehicle

go = gravitational acceleration at

= R = R1

= density of the air

CL(), CD( ) = lift and drag coefficients,

m = mass of the vehicle.

From Xewton's second law, the state of the system is given by

X = (X,D,

where the state vector is defined as Y = _h,V,_] and the control, _, is the
-T

scalar quantity o(. The corresponding components of _ are gl = V sin_,

_ = V
g2 = -g sin_- D , and g3

m

R = Rl+h and g = go i R] ]_ "
' L RI= h_

cos_ -3 cos _ + L where L = CL(_) _(h)VXS
V _ ' 2

If we now assume that ] is a nominal solution of __ = _ _,_), then the

first-order perturbation equation is given by
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t
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k
m

where _h, _V, _and _are the perturbations with reference to the

nominal trojectory. The matrix coeffients of these variations are

evaluated along the nominal trajectory and these are known functions of time.

These, the first-order perturbation equation is a linear, nonautonomous

system for _h, _V, _along with a specified control £_ .

Now, let us consider some of the necessary local properties of the right

hand side of (9), f (t,X), and some definitions of terms needed in the

following discussion. Any solution X (t) of the system in (9) is called a

trajectory in the n-dimensional Euclidean space. Apoint solution or-singular

solution of (9) can be expressed as X = C, constant, and satisfies f (t,C) = O

for all t in some interval. In the remainder of this section we will

consider various norms of the vector X, such as,

i1 -!1, = Y-ix l
i.=1

tlxl1_ = sup ( ix, l,..., Ixnl),

Since in our work these norms are equivalent and the form used is usually

di6tated by proofs of the theorems in which they appear, we will denote any

of the above norms of x by il The particular norm wich is used will

be dictated by the convenience of its use in a particular problem.

As in the above example, we canconsider the linear approximation of (9)

about X = O if f satisfies _'i_,___-a_*_-+___*,_-- _ , (;=)

Of course, this linear approximation X = A(t)X _or (9) is only valid in the

neighborhood of X = O.



(II)

We say that _ is a Lipschit_ function in _ in a region R* of the (t,_)

space if

for all _ and _, and t in R*. The constant M is called the Lipschitz constant.

Some theorems dealing with Lispschitz function are the following:

Theorem I

(H) (i) If _ (t,_) is continueus in (t,_) - space,

(ii) _ (t,_) is linear in _,

(c) then _ (t,_) is a Lipschitz function for all t in some interval.

Theorem 2

(H) (i) If region S is defined in two-dimensional space by o__l_-_l_

and o _. IY-Y_I -_ _ or _y o_ |x-Y-oJ_--'_
and o _ l_fl_

(ii) f (x,y) is real-valued on S,

(c)

(iii) _/_ exists and is continous on S,Y

(iv) l_I _ _ for all (x,y) in S,

then f(x,y) is a Lipschitz function in S and K is a Lipschitz

cons tant.

Examp ie s

(I) Consider f(x,y) = xy 2 in the region S:

thu+,we have I _ I = _z_yl _ _. =

and J'_(_,Y,_J" {'(_ly_) _ : _I J %_''_ _

for all x in S. -- I _, a ! y, + "A. I I y, - y_, I c_ z I "/, "Y_, i

(2) Consider f(x,y) - y 2/3 in the region S: |_-- i _,,.,_ |'/Ig!

i Y,V_I

which has an unbounded "Lipschitz constant" as Yl _0. Thus, y 2/3 is no____tt

a Lipschitz function in the neighborhood of (0,0).



(12)

(3) Consider f(x,y)

Even though ;--!_

ay

function because

= x2 i Yl in the region S: _I--_ _ =_L |_ I _i

does not exist at y = 0, f is a Lipschitz

1 "f(_,y,_--f-L'x,,y,._i = Ixl_'i iy, l-Jy, JI _ Iy,-y,.I

for all x in S.

(4) Consider the second order, time-varying system defined by

where S : I t I _ _ and II_ I)":co • Thus, we have that _ is a Lipschitz

function because

+ Ix, -y .l

__ 3Jx,-y, i e31_'y_l = 311x-'--Yll

(C) Existence and UniGueness Theorems /Reference (12)/

We now consider the initial value problem (autonomous and forward in

time) defined by

-- (12)

x(o) = c,

where X beongs to a region R--_I_: ll_-_c-ll _-_

The function f is continuous in R.

and O_t_ s (b_°_ o

Corresponding to the initial value problem

(I.V.P.) in (12) is the integral equation given below:

_(t) = _ +/ _ (_L$_ r._5 • o_ * _ _ (13)

In seeking a unique solution to (12), the following nonlinear integral

transformation is very important• For any _(t), continuous and defined on

with values in R, the transformation is

0

(14)
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Since X and f arc continuous functions of their respective arguments, then

Y is a continuous function of t. Also, for sufficiently small t, _ is in

R since X is in R and T is a continuous transformation. Since R is compact

and F is continuous, for any X in R. An invariant

set S of the transformation T is defined as the set of all continuous

functions X in R for such that for any X in S,

T_) is in S.

The existence and uniqueness of the solution of the I.VoP. is proved by

the Met_od of successive approx_nations, making use of the fixed point

theorems for contraction mappings. The sequence of transformations is

defined by

= C ,

_Xl = r 0),

X 2 = T (X I ),

. .
where the fixed point _ is the unique solution of (12) and is defined by

_,i -qp, _m,

,provided T is a contraction mapping.

Theorem: /reference (12}/

(H) ([) If Xo = C is in S

(ii) X_ k+l = T X_k)-_C +i f X_k(s_ds' k= 0,1,2,...)

(iii) f (x) is a Lipschitz function in R for o _ _ •

(C) then, (i). Xo, XI, X2 .... , Xk,... converges to a solution of the I.V.P.:

(2). this solution is unique;

(3). this solution is a continuous function of the initial vector

_; and

(4). if _ = _(_,k), where K is a system parameter, then the

unique solution of the corresponding I.V.P. is a continuous function of K.
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Exa_n_21es

Let us now consider examples illustrating the various aspects of the

above theorem.

(I) Consider the I.V.P. defined by | x | + | x _ = 0, X(o) = I.

Since the only solution of the equation is X(t)E 0, then no solution of

the I.V.P. exists.

(2) For the I.V.P. described by _ = x 2/3, X(o) = 0, there exists two

solutions; they are X = 0 and X = _ • We note that X 2/3 is not a Lipschitz

function in the neighborhood of t = 0.

(3) In the system defined by

= f (t,x), x(0__ = 0,

where

f (t,x) =

I 4t3× (t,x) # (0,0)

t4 + X2

0 , (t,x) = (0,0) ,

we ebtain an infinite number of solutions,

X = C2 - _--t4 + c4 • , c# 0.

Again, f (t,x) does not satisfy Lipschitz's condition in the neighborhood of

t = 0.

(4). The above theorem verifies the following two statements:

o

a. if x = log (l-x2_, then the corresponding I.V.P. will have a

unique solution for all (t,x) in the strip -_• _ •+|

_. if _ =It + sin X , x _ 0
+ x2 , x < 0

then the corresponding I.V.P. will have a unique solution for

all (t,x) in the whole plane.

(5) Consider the linear, first order equation _ = g(t) X + h(t),

where g and h are continuous in some interval I. The solution of

the corresponding I.V.P. is

#

(:,,



(15)

The interesting result is that #l_is unique and exists for all t in i.

This is not generally true of nonlinear systems. For example, consider the

" X 2system X = and X(o) = + I. The _ (t,_) in this case is analytic for

all t, but the solution is x = L i/t-l. This solution blows up at t = I.

The conclusion is that any general existence theorem for (12) can only

a_sert the existence of a solution in some interval near the initial value

of t.

(6) As an example of the application of successive approximations,

consider:

X 1 = X 2 , X 1 (o) = 0

I

X 2 = -X I , X 2 (o) = i.

T_ integral transformation is

o- [;j/' j _;o,_,_._ .....

T_

[ ]- I - _:_/z

, i
_ So o_.
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!t can be shown that __V._. _ [ 5_lCD_t

(7) Finally, we giw_ an example of the fourth conclusion of the above

_e

theorem. Consider the satellite equation X + X = K x2, where K is a

system ........_,=_,,_eL_.To analys_ this problem let X i = X, X2 = _ and

X 3 = K. Thus, the state-variable form of the problem is given by

Consider a second system defined by

D

From the equation (14) we have

ll_x-gll __ i_.-v..,l +.,,,,.,I II_o,5-ycslii ,_s
e

where

C,

Ca

K

111
J

and where M is the max _ i_,i _ I, J_jK|+y,j_ im some bounded region

in the state space. From Gronwall's Lermma, reference (12), we have

Me

11 ,X-'t II _ I _..'r.-, | P-.

or _±
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Thus, if t is restricted to sortie interval, _ -----_ as KI_K, thus

proving the continuity of the solution with respect to K.

The next theorem relaxes the Lipschit_'s condition on F (x) in (12);

thus we get an existence theorem but not the property of uniqueness.

Cauchy - Peano Existence Theorem:

(H)

(c)

reference (12).

(i) if f (_), is continuous in the neighborhood of x_(o) = c,

then there exists a solution of the I.V.P., defined by equation (12).

Example

Condider the equa[ion X = I x I

infinite number of solutions. The function defined by | x |

at X = 0 but does not satisfy a Lipschitz condition.

, 0<_<i, X(o) = 0. This i.V.P, has an

is continuous

Theorem

GO (i)

(ii)

(iii)

(i-_0

(v)

(c)

(Generalization of the above Example)

If _ = f(x), X(o) = 0,

f(x) is continuous if X # 0,

f(x) >0 if X # 0,

f(o) = 0,

Cx has integrable singularities at X = 0

f(×)

then the I.V.P. has infinitely many solutions.

We now consider two theorems for nonautonomous systems.

theorem is more general than the first.

The second

Theorem: reference (20)

(H) (i) If _ = f (t,x), _(to) = _o, is Rn n-dimensional system,

(ii) R is some region of the n + 1 -dimensional Euclidean space of X

and t,
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(c)

(iii)

then

f has continous first partial derivatives in R,

(l) there exists a unique solution

[(t) of _ = !(t,_) such that X(to) = Xo;

(2) X can be extended throughout R;

(3) X is a continous function of Xo and to in R.

Theorem: reference (12).

(H) (i) If f is continous in X and t for
.}

(ii) ]i} Ji _ _ _{=] for Ii _-M_- )] _

(iv) each K(t) and re(t) are integrable on

and o ¢. _ & _ j

•- k= , there exists a and 8 such
(v) for any b I, such that 0 < _, - b,

that r b, _ [_ rA_ _ Z% _..=A fo _,(_ _'L = _ < Ij7o

(vi) X (0) (t) is continous and ___Xt'_- _-o _ "_ _ for o< %-_ 5!

(vii) X : _o + - --

(C) than the sequence X (°) X (I) ,X (k) converges uniformly to

a unique solution. _ of t_e I.V.P. or_ the interval t) __ ___ _

Examples

(I) the system defined by _ = (I/$--_) X 2, X(o) = i,

satisfies all the hypotheses of the theorem.

(2) the system defined by X = (2/t 3) X, X(o) = 0, has an infinite number of

solutions; hypotheses (iv) and (v) are violated.

(3) the system defined by X = _/--_ _ , X(o) = O, has an infinite

number of solutions; hypotheses (iii) is violated.

(4) this next example has a unique solution but it does not follow from the

above theorem since hypothesis (iii) is violated. The system is

= t x -2, X(o) = 0, whose unique solution is X = 3/_7"_ t 2/3
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(D) Types of Tra|ectOries and Their Continuity Properties

Let us consider the system defined by

X_ = _f (t,x,_), (15)

where X is the n-dlmenslonal state vector dnd_ is an m-dlmenslonal state

vector whose components are the parameters of the system. First, we llst

several theorems dealing with the continuity of the solutions of the I.V.P.

corresponding to (15).

Theorem: reference (12)

(H) (i) If X = f (x_) and X (o) = _C,

(li) [ _) satisfies a Lipschltz condition,

(iii) the system passesses Kth order continous derivatives,

(C) then the solution X(t) of the I.V.P. possesses a (K ÷_l)-st order

continuous derivative with respect to t.

Theorem: reference (1.2)

(H) (i) If _ in (15) is analytic in X, aS_ and t,

(C) then X is analytic in c _ and t

Theorem: reference (12)

(H) (i) If _ in (15) is analytic in X,I__ and continuous in t,

(C) then X is analytic in _ and __ and is continuously differentiable in t.

Theorem: reference (12)

(H) (i) If _ possesses Kth order continuous derivatives in m__, X, and t,



_ (C) then,

(20>

(1) the solution X of the I.V.P. possesses Kth order continuous

derivatives in __ , _, and t;

(2) X possesses K-th order continuous derivatives in _ , _, and t;

Two important notes about the above theorems are: one, the theorems

are the basis of present day perturbation theory in mechanics; two, the

theorems are local and thus t is restricted to a finite interval. Therefore,

the theorems are not directly applicable to perturbation problems concerning

periodic solutions.

We are now turn to a short discussion concerning the possible trajectories

of the I.V.P. corresponding to the system X = _ (t,_). The existence

theorems discussed in this report were local theorems. But by a stepwise

application of the theorems, the unique solution of a problem can be uniquely

extended in the backward or forward direction to some finite value of t, or

tO _.

We will dismiss the case of the trajectory being discontinuous after

finite time by giving two examples. The remainder of the report will then

be concerned with infinite time extensions of the trajectories.

Examples

(1)Consider the system X = l/l-x, X(o) = 0. The unique solution is

X = I - l_-2t, which is well-deflned for t _ [o,½], but undefined for the

"reals" beyond t = 1/2. The solution is bounded throughout the interval

(2) Consider, again, the system X = X2, X(o) = I. The unique solution,

X = l/l-t, is well-defined for t 6 I0,I). But X is unbounded over the

interval O_ _ _ I. We say that this system has a flnlte-escape time

_a£ t = 1/2).
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Let us now consider only systems having unique solutions to the I.V.P.

and which possess unique extension in both the backward (t to) and forward

(t,to) directions. Let _ be this uniquely extended trajectory. As

t _+_ or -am , the trajectory,_ , will exhibit one of the following

properties or combinations of these properties:

(I) _ will approach a singular point;

(2) _ will approach a closed trajectory which contains no singular

points (periodic solution of the system);

(3) _ will not approach any particular set of points;

(4) _ will approach a separatrix; that is, a closed curve made up of

singular points and connecting paths.

We know give several examples to illustrate above limiting conditions

for f.

OQ • Q

(i) the system defined by X = - g, or X 1 ffiX2 and X 2 = - g has

parabolic trajectories which do not approach any finite set of points as

t-=_ co or t--_-_ .

OG • •

(2) the system defined by X + 3X + 2X = O, or X I = X2 and X 2 = - 3X I

- 2X2 has trajectories which ap'proach (0,0) as t--_+_

(3) In the following system the trajectories approach the closed curve

XI 2 + X2 2 = I as t--_-_ As t _ +_ , the trajectories starting

X12 2 2 + 2inside + X2 = I appraoch (0,0) and the trajectories outisde X I X_ = i

approach infinity. The system is

• 2 2

xI = x2 +Xl ( Xl +x2 - I),

• 2 2

X 2 = - X 1 + X2 (Xl + X2 - I),

whose solution in polar coordinates is given by

:T ,-A

e.=-t +O_
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(4)

where

The system defined by

OO

X + f_) =0,

f(x) " 3x - 4x 3 + X 5 = x(x-l) (x+l) (x + 3) (x - 3).

has singular points at (0,0), _ 3, 0), _ 1,0).

It can be shown that (0,0), (_+ 3, 0) are stable centers and (+ 1,0) are

unstable saddle points. In the _x- phase plane, the equation of the separtrlx

is given by X 6 - 6 X4 + _ X 2 + 3 2 2 4. All of the trajectories in

the phase plane are closed curves (except the singular points) as shown below

in the figure.

°° X 3 X 5Phase-Plane Plot at X + 3X = 4 + = 0.

(I@) Definitions auJ Theorems of Stability Theory

The Second Method of Liopunov is currently the best known method of

analyzing the stability of dynamic systems whose laws of motion are described

by ordinary linear and nonlinear differential equations. This part of the

report presents a brief review of the baisc theorems and definitions of the

Second Method, along with illustrative examples. We will keep the discussion

about these theorems and definitions to a minimum, letting the "examples"
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do most of the talking. For completion, we will make a few remarks

concerning Liopunov's First Method, and the concept of boundedness.

(A) Liopunov's First Method : reference (22)

Liopunov's First Method consists of the construction of the general

solution of

x = f (t,x) (1)

in the form of a series and then to investigate the problem of stability of

the ho_0geneous solution of (I) directly from its outer form. Assume that

(I) can be written as

•. x; +i % x, ...
(2)

where Xs is the s-component of X. The P's in (2) are real continuous

bounded functions for t _ 0, or they are piecewise continuous. The series,

,converges for all t _ 0 and | Xs | _ S _ constant.

Tke linear approximation of (2) is given by

= _ (t) _, (3)

and A_ are the characteristic numbers of the linear system.

The assumed form of the solutions for (I) are given by:

where the L's are continuous functions for t _ 0 and

era,,..,sm.% -.L,

L s e _ o as %--_=o
ml

for any _ > 0 The _. _5 are constants.

from the solutions in (4) are as follows:

The results derived

(I) If the characteristic numbers _ of the linear system in (3) are

all positive, then the series in X s converges for all t _ 0 and ]C& _ _
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a positive constant. Thus from the outer form of these series (41,

we have that the homogeneous solution of (i) is locally asymptotically stable

(the definition is given in the following discussion.1.

(2) If one of the characteristic mnmbers is negative, then the nonlinear

solution is unstable.

The disadvantage of the First Method is that the characteristic numbers

of (3) must be determined; this is a difficult job if _ is time-varying.

Also, the First Method only gives information locally. Thus, Liopunov

developed the Second Method.

(B) Definitions of Stability and Boundedness

We consider the following nonlinear, nonautonomous systems:

_ _ (t,_). (5)

The conditions placed on _ are given in the following statements, reference (_31.

(11 f has values in Rn, the n_dimensional Euclidean Space.

(2) f is defined and continuous on some set I x S =_{_,_.)¢_'_]_T_o,ll_|l,r 1

(3) f is sufficiently smooth on I x S such that given any (to, Xol

there exists for all t _ te a unique solution in S. This solution is denoted

by X = F (t;to,Xo) and depends continuously upon (to, X o) and equals

Xo at to.

(4) _ (t,_) = O on I. Thus, X = _ is a null solution of (51. We assume

that X = _ is an isolated equilibrium solution.

Note: In the above discussion S is the set of all points in Rn satisfying

11 _ ]1 _ r j and I is the set of all values of t satisfying _ l'_ O ,

T being fixed.

The first nine definitions of the various types of stability are taken

from reference (23). These definitions are local properties of the system,
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in (5), in neighborhood of X = O.

/
Definition ia (23)

The solution X = O is stable if for any & _o

there exists a 6 = _ ( _,_o ) • O

implies Ii f _ ; t., __°) j! <

and any _o A ]_

such that I| _. _ _

for _ _ _o °

Definition 2_ (23)

The solution _ = _ is uniformly stable if for any

a S _6_ _ D such that _o _ _ and _ _olJ _

IIE (t,t., _._ al < _ for * _ to .

_o ,there exists

imply

Definition 3_ (23)

The solution X = O is quasl-asymptotlcally stable if for any

there exists a _ (_o_ > 0 such that JJ _'i_ _ _ implies

Definition 4; (23_

The solution _ = _ is asymptot_ca]l_ stable if it is both stable and

quasi-asymptotically stable.

Definition 5_ (23)

The solution _ = _ is quasl-equiasympt0tically stable if for any

there exists a _ _ >O such that _J M,o _ • _ implies

(t_ _. • _.)--_ ._O as _ _ _ uniformly on I! _.11 < $.

Definition 6_ (231

The solution X = _ is equiasymptotlcally stable if it is both stable

and quasi-equiasymptotically stable.



(26)

Definition 7, (23)

The solution X = O is quasi-unlform-asymptotically stable if there +i

exists a _.--O such that _o +_ llX. ll • _+ imply E_s_.,M._-_o ii

as _ _ _ knlformly for _o _ _ ,and, o-- II _olI < &o -

Definition 8, (23)

The solution _ = O is unlform-asymptotlcally stable if it is both

uniformly stable and quasl-unlform-asymptotlcallly stable.

Definition 9, (23)

The solution X - O is exponentlal-as)nnptotlcally stable if there exists

a A _ o , and for any _ _ o , there exists _ _(_ _O such that _o_l _"

for all % _"_o

From reference (23) we obtain the following relationships between the

above definitions ;

(I) Definition 9 implies all the other definitions.

(2) Definition 7 implies definition 5, and it in turn implies definition 3.

(3) Definition 6 implies definition 4 and 4 implies definition i.

(4) Definition 2 implies definition i.

(5) If _ (t,_) is Lipschltzion on some set I x H, H being a subset of S,

with a time-varying "Lipschitzlon Constant" K(t) ) 0, and if K(t) is

defined and plecewise continuous on I,_ then deflniton 5 implies definition 6.
<,

(6) If _ (t,_) is Lipschitzlon on the set I x H, with a constant (k7 0)

"Lipschitlan Constant_ then definition 7 implies definition 8.

(7) If _ (t,_) is independent of t or periodic in t on I x S, then

definition 1 implies definition 2 and definition 4 implies definition 8.

(8) If _ (t,_) is linear in _ on I x S, then definition 4 implies definition

6 and definition 8 implies definition 9.
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(9) If _ (t,_) iS a scalar function, then definition 4 implies definition 6.

In the next few definitions (these are also from reference (23)) we

assume that _ (t,_) in (5) is defined over I x Rn, where Rn is the entire

n-dlmenslonal Euclidean space.

Be finition I0= (23)

v'.?o

Every solution of X = f (t,x) is bounded if for any _. & I and any

, there exists an _E.j _) _ O such that /[ ;(. _[< _'o

implies II I= £e', .a,,, ,_) I! < _ for , >_o.

Definition II, (23)

Every solution of X = f (t,x) is uniformly bounded if for any V'.>0

there exists an _(_0) >o such that _o _'_ and II_o _i< r.

imply H Y 4"; _., _°) II < v. for _ _ _o.

_e finition 12, (23)

Q

The solutions of x = f (t,x) are ultimately bounded if for any V'. and

where %_e >Y_I >0 ,there exists an %_(V',) _0
/

such that _o _ _ and I_ --_° I_ _"I_o imply II [ (*; _=., z_.) Ii<V"

for' % _, _:. 4-'IC.

.Definition 13z (23)

The solution X = O of (5) is asymptotically stable in the large if it is

stable and if

Definition 14_, (23)

The solution X = O of (5) is unlform-asymptotically stable in the large

if every solution is uniformly bounded and if for any positive %"° and _I '

there exists a Z (%_) >o such that e D _ I and _o%_<%, °

imply II E re; eo, x_.) II < r, for all "(; >.,. "t.o + "2.
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A relationship exists bet_en deflnltlorrs (13) and (14) if f

satisfies certain conditions. "If _ (t,_) is Indepent Of t or periodic in

t on I x Rn, then definition 13 implies definition 14."

To aid in the understa_dlng of the above definitions, we will consider

several examples illustrating these concepts. From reference (18) we

obtained several elementary examples from physics. They are:

(I) a solid homogeneous sphere resting on a horizontal flat table is

stable.

(2) A small solid ball resting in a large rough spherical cu@ is

asymptotically stable.

(3) If the size of the cup in example two is constant for all time,

than the ball is uniform-as_mptotlcally stable.

(4) If the ball is in a rough cup whose inside surface is defined by

, _ _ _ L , then the ball is asymptotically stable in the large, or

globally-asymptotically stable.

Z (5) If the ball is in a rough hemlspherical cup of radius I/_,

then the ball is asymptoticallystable b_not uniformly in to.

/

We now consider examples of equations which illustrate the above

definitions.

Example I

a

From reference (25) , we have the system defined by X = -(I/l+t) x, whose

s°luti°n is x = x° ( t° + I) ' If _" _ O ' then x = 0Ist • I

equlasymptotlcally stable.
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Example 2

From reference (26), we consider the system whlch exhibits on impulse

response with growing peaks. The system is defined by X = (4 _ sin t - 2t)x.

The solution is given by

• Q_p_4 (2+ I*1 + It.I)-%* +*_

thus, t x | ---P0 as t ---_ ,uniformly in to and I Xo |--_ r° _at the

peaks of the impluse resonse increase indefinitely as to--Co , as seen from

the following _ O.x_ _4-'N')(4_t_] when _o = _ _a _._ (%_i_

Therefore, the motion is not uniformly stalbe or uniformly bounded, but relies

greatly on the value of to.

Example 3

From reference (26), we consider the second order systemdeflned by

Q

. g (t,o) r,
r = g (t,O)

_ = O_

where t" O_ V" • c_ ; 0 _ _ %_T

• _ _t,e) -- _g.*e + i

,_+e +(l-__'e)_ ,+.z
The solution of this system is given by

J

r_= r(t;to,r O, OO) = _.(t.O )
r.

e - e(t; _..% e.):e.
The motion (r, O) is continuous with respect to (ro,8o) and the null solution

is quasl-asymptotically stable. But the system is not stable and not quasi-

equlasymptotically stable because at t I = (sin Co) -2 we have that _(_e_(S_ 1

and aS e. ----_ _ 7Fs %'--'_ _'
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Example 4

From reference (27), we consider the system X = I - X 2. The singular solution

X = - I is unstalbe as t_+oo since the general solution, as defined by

X = tan_ (t - to + K),

K = tank -I xo, - l_Xo--I,

approaches + I as t ------e-+co. For the same reason, the singular solution

X = + i is asymptotically stable for all Xo in (-i,+I). The idea of an

unstable solution in this example is that the singular solution is not

stable in the sense of Definition I. The stability in Definition i is

Liopunov stability. A formal definition of an unstable solution in the sense

of Liopunov is given below:

Definition 15, (19)

The solution x = 0 of (15) is unstable if there exists a number _-_o

with the following property: there exists a sequence of numbers tl, t2, ,,,

..... ,tn, ..... and a null sequence of initial points XI, X_2,...,X_n,...--_

sucht that _] _ (_._. ; _•s_J_ _ a _= ',%n ....

A special case of instability occurs when every motion tends away from

the equilibrium. This case is defined by:

Definition 16, (19)

The solution X = _ of (15) is completely unstable if there exists a

number _ >o with the following property: after finite time, tl,

each motion E (t, to, _o) reaches th_ sphere H _ I_ =6 ,where b4||__| _

and _! _ Co (Actually, in the previous example X = -i was

completely unstable.)

The next example shows that boundedness an d stability are different

concepts.
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Example 5

From reference (271, we first consider the system defined by

: -t + v,

Every solution ofthis system can be expressed X = C sin (Ct + d 1, where

C and D are constants. It is obvious that X = 0 is stable as t--_ .

But any nonzero solution is stable neither as t---e-+_ or as t--am -a: .

This can be proved as fo!_ows: consider the two so]utlons

X I = CI sin (c2t + d2) and X 2 " C2 sin (c2t + d2) , where CI # C2, C2/C I

is an irratlo_number, but CI is sufficiently close to C2. Then it can be

shown that the upper limit of /XI - X 2/ satisfies

_ / _I'_LI= i _',| 4- I C._| as _" _ t _ Therefore, only

the null solution is stable while all solutions are bounded as t _ +

The canverse situationcan be shown by the follolng system, reference (27)?

X=I,

where any solution is given by X = C + t, C a constant. All solutions are

unbounded as T---p+ _ ; but every solution is stable as t---p+

since if X I = C + _C + t and X 2 = C + t, then /X I - X 2 / = _c for all t.

Example 6

Weconsider several linear equations from reference (271 whose solutions

OQ

exhibit various properties of boundedness. All the solutions of X + X = 0

o• •

are bounded. All the nontrlvlal solutions of X - 2/t X + X = 0 are unbounded

since the general solution has the form

X = Cl[ sln t- cos t_ + C2 [ cos t + t sin t_

oo

In the interval I _ t • _ , all the nontrivlal solutions of X + 2/_+ X = 0

are bounded and asymptotically stable because any solution can be written as

X = C I sin t + C2 cos t.
---V-- t
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Example 7

Consider the system, reference (27), defined by

r = h r,

h

where h = ( 1 + t3sin2¢) (1 + t + t4sin4_) -i,

and where ro_ 0 and_oare the initial conditions the unique solution is

given by

For any _"o _ 0 and _o we have that r(t) _ 0 as t _m. But for

O • _ _ _ , P'o • o , and I_I - (&_ _)'_/2 we have

_'_,) :
[.+ .-

where r(tl) __m as _ _ 0. Thus, (r_) ; (0,0) is not stable in

the sense of Li_punov.

Example 8

Consider the following system from reference (12),

+Lx-e_x _ :oj x._ _o_

the solution is given by

thus, if

there exists a finite escape time, or X --_

I I *X -- , XQ _ .

xo(_-e t) + I

Xo _ i, then the system is exponentially stable; if Xo • i, then

as t _to_ (_°i_ from below.
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The next several definitions are concerned with somepractical unstable

motions (that is, unstable in the sense of Li_punov) such as orbital

stability, stability in a neighborhood of an equilibrium point which is

itself unstable in the strict Liapunov sense, and stability with respect

to a certain subset of the components of X. We also mention the practical

type of stabillty where bounded imputs produce bounded outputs from a

physical system. The stability of the differential equation is considered,

that is to say we consider the Structural Stability of the system with

respect to the parameters and physical constants in the system. Amore

general definition of th_s type of stability required that the system be

stable withrespect to persistent disturbances.

Orbital Stability

In reference (18), Krasovskii gives the following intuitive picture of

orbital stability. We say that the null solution X = _ of a system is

orbitally stable if some function of the dependent variables changes only by

a small amount as t _ w_en X_o_ X__o(t) is restricted to be in a

sufficiently small neighborhood of _ = _. Weshould note that this is not in

general Liapunov stability since some _) may change only a small amount

itself might change a great deal as t _

An example of this type of stability is a planet constrained to move

under the universe square law of a central force field. A slight change in

the position or velocity of the planet may perturb it to another orbit with

a different period. Thus, two planets with their initial positions and

velocities nearby the same may eventually be very far apart while their

angular momenta, ecentricities, and certain other parameters that describe

the orbits remain close together for all time. (In the previous paragraph

represents the velocities and positions and _) represents momenta,

eccentricities, etc.)
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In the taking of pictures of a fixed region of the earth's surface by

an artificial satellite, the concept of orbital stability is more important

than Liopunov stability. For rendezvous problems in space, Li_punov

stability is required. In a meteor shower the orbits of the particles are

close to one another due to common source, but the particles are not

stable in the sense of Li_punov.

Definition !7 a reference (18)

Let there be (n - i) or fewer independent continuous functions

fk_) of the arguments X i, where K = I,..., n - i and fk_) = 0. Then

= _ is called orbitally stable with respect to the orbit functions fk

provided that for every • _o there exists a _i _ (_ >4) such that

I fKl _ & for all K, t _ to, and all X__osatisfying _ _-o|I <_-

In reference (28), Hochstadt considers the nth order system,

= _(t,_). Let C* be aclosed orbit of this system in the state space.

Thus, C* is a trajectory of X = _(t,_).

Definition 18_ reference (28_

The distance between a fixed p&int X and the closed orbit C* is defined

by d _,C*) = Min _I_ - _ _I
Y on C*

Definition 19_ reference (28_

The orbit C* is orbitally stable if for every K•o , there exists a

o such that for X__osatisfying d_o,C*)_%then N(X,C*)_6>

for all t_ to.

Definition 20_ reference (28)

The orbit C* is asymptotically orbitally stable if lim d _,C*) = 0.
t -_

and if C* is orbitally stable.
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Example 9

Consider the system defined by

o

X = r2y,

_= - r2X,

r2= X2 + y2.

Rewriting these equations gives us the following:

= 0,

where r = c constant are the integral curves. On a given orbit, r = c,

the parametric equations for x and y are

X = sin c2t , y = cos c2t.

Thus, the periods for themotlon are 2_/c 2, which vary from orbit to orbit.

In conclusion, we say that the system (a particular orbit) is orbitally

stable but not asymptotlcally orbltally stable.

Example I0

Consider the system defined by

_i m X2 + Xl (I - r2),

_2 = - El + X2 (i - r2),

2 2 2 -i
where r = XI + X2 and 0 = tan X2/x I. In terms of r and 0, our system is

_ = r (1 - r2),

0=- I.

The equilibrium solutions are defined by r = 0 and 1, r = 0 being a singular

point and r = 1 being a closed curve or orbit. The general solution is

_= [I_ C_'I_3-II_ " Thus, for any c # 0, r---_l as t---_; therefore,

r = I is asymptotically orbitally stable and r = 0 is unstable.

Example ii, reference (28)

We now consider a second order system containing a discontinuous function:

ge

X + Sgnx = 0,
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where Sgnx = I, x 0

=0, x=O

= -I, x 0.

The corresponding first order system is

X 1 = X 2 ,

X 2 = -sgnx I.

For the _-_i _vnd_!vns x i -........ _ _+ _ = O and X 2 = A)" 0, we have the following

solution, which is periodic with period 4A:

X I = At - ½ t 2, 0 __ t__ 2A,

= (t - 2A) (t/2 - 2A), 2A_ t_ 4A,

X 2 = A - t, 0 _ t __. 2A,

= t - 3A, 2A_ t _ 4A.

the orbit in the phase plane is defined by tXl| -- 1/2 (A 2 - X22). Thus

the solution is a periodic solution whose period depends on the initial

conditions, A. A small change in the initial condition given by A produces

only a small change in the orbit, but it produces a large change in the

"particle's position" after a certain length of time. The system is

orbitally stable but not stable in the sense of Liopunov.

Practical Stability, references (29), (30), (31).

There are many physical systems where the desired state of the system

is not stable but yet the system always tends to return sufficiently

close to the desired stateso that the performance of the system is acceptable

and thus possesses a practical stability.

Definition 21_ reference (30_

If all solutions X (t; X__o) of X = f (x) appraoch a neighborhood N of

= O, N being a measure of the satisfactory performance of the system, as

t--_ , then the system X = _(_) has a practical stability.
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The notion of a practical stability is closely related to Yosbizowa's

ultimate boundedness, Definition (12).

Definition 22

If all the disturbed motions _(t,to,X__o)_ 0). of X = _(t,_) are

bounded, the system is La_ran_e Stable.

Definition 23

If all the solutions in definition 21 start in the complement N c of N and

tend to N as t--l'_, then the system is called asymptotically stable in the

sense of LaEranEe.

The important of Definitions 12, 21, 22, 23 are in systems which possess

a dead-zone andwhich may ultimately be bounded but never asymptotically

stable in the sense of Li_Dunov.

Example 12_ reference (29_

Consider the system _ = E2X - X 3, where E70 is a small constant and

the equilibrium points are at X = O, _ E. The point X = 0 is unstable and

+ E are stable; that is, a moving point displaced from the origin will remain

in (-E, + E). A moving point to the right of + E approaches + E as t--_,

similarly for points to the left of - E. Since E is small, the origin is

stable for practical purposes.

Example 131 reference (297 .

Consider the system X = - E2X + X3, E•0. In this case X = 0 is stable

and + E ire unstable. Thus a mvoing point in ( -E, E) moves to 0 as t-_;

and ponits in (E,_) or _, - E) move to infinity as t--_. Thus,

X= 0 is unstable for practical purposes.

Example 14_ reference (22_ First Order Time-VaryinE System

Consider the system defined by Y = g(t) y, whose general solution is
p

I I
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(i) This system is Stable if and only if _L_ d_ is bounded from
_o

above for all t _ to. But stability may still be "bad" from a practical

point of view. Let

g(t) = _ _0 for 0 _ t _ I0,

= 0 for t > I0.

Thus, y(t) = 10tyo , t _ (0,I0),

= i0 i0 yo, t _ (I0,_).

The system is stable in the matematical sense; but if @ t = 0, y -- yo = 10 -5 ,

when t • i0 the value of y is 105'

(2) This system is asymptotically stable if J_f _O_ _-oo

as t _ +_ But asymptotic stabili_-y may still give trouble in a

practical way. Suppose

g(t) = _I0 for t _ (0,I0),

= - I for t _ (I0,_).

Thus, y = 10tyo for t _, (0,I0),

= I0 I0 exp(10 - t) Yo for t G (10,ore).

If Yo = 10 -5 at t = 0, then at t = I0, Y = 105 and at t = 20, y% 3,

even though as t---_, y--_ O.

(3) This system is unstable if and only if J4 _ t_)cA_ is not bounded

from above as t _ +oo . B_t instability as t _ +oo , need not be

"bad" practically speaking.

Suppose g(t) = - I for t G [0,I00],

= i0 for t i_ (100,oO).

Thus y(t) = e-tyo for t _ [0,I00]

= Yo exp [-i00 + I0 (t - i00)] for t _ (I00,_).

Therefore, if the time of action is limited in this system, the instability

as t_+oo can be neglected in a finite time interval.
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In reference (31), the author compares_i_punov stability with

bounded input- boundedoutput concepts, the latter concepts being very

closely related to Lagrange stability. Supposethat the input vector of a

system is given by the m-dimenslonal vector _4 and the output vector by the

-dimensional _ector

Definaition 23 a reference (317

A physical system is stable if every bounded input, H_ _ constant,

produces a bounded output, H_ H _ constant.

The concept of stability in given in Definition 23 is a gross or

global phenomena of a system, whereas Liopunov stability is a specific or

local phenomena about a partics%ar system response or motion. A system may

be unstalbe in the Liopunov sense, but stable according to definition 23.

And a particular motion may be asymptotically stable in-the-large and the

system will not obey Definition 23. For linear systems the two concepts

are equivalent, but not for nonlinear systems.

Example 15_ reference (317

we .....d by _ ta_L X _ U; v is the output.Consider the system _ _ = • _

The equilibrium of the unforced system, U = O, is totally stable in the large.

But if we consider the bounded input U = (i + E ) tanh X, E • O, the output

is defined by X = E tanh X. This leads to an unbounded output. Thus, the

system does not preserve bounded outputs for all bounded inputs.

Structural Stability

Structural stability, not the topological dynamics variety, is the

insensitivity to disturbances in the parameter space of the system. For
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example, consider the second order system

X = P (x,y),
G

Y = Q (x,y).

Suppose that P and Q are approximated by polynomials. Therefore the

coefficients of the terms are somewhat in error. If the system is

structually stable, the qualitative picture of the exact system and the

polynomial approximation miLqt be the same. Structual stability need not

only be with respect to parameter variations, but may also be with respect

to changes in the matematical model, functional dependence, etc. Thus,

a more general definition requires that the system be stable with respect to

persistent disturbances or constantly acting perturbations.

Let the system defined by

X = f(t,x) + _I (t,x), (6)

be a real, physical system upon which certain small perturbation forces act,

described by _ (t,x). It must be realized that often these forces are not

accurately known; thus, _ (t,x) represents an estimate for the true

perturbations. For this reason we can not assume that _ (t,O) = _0; but we

do assume that both f and _ in (6) satisfy the conditions of f in equation (5).

Also, we assume that the equilibrium solution of the unperturbed system is

X = O, that is, f (t,0) = O. for all t_ tO.

Definition 24_ .....reference (19)

The equilibrium solution X = O of X = f(t,x) is called stable under

constantly actin_ pertur_tions if for every E _ 0, there exists two constants

_l _) and _(_ , such that for every solution F (t;to,Xo) of (6),

the inequality

I| F (t;to,Xo)_l _ E

holds, provided that

Ii Xo II

and _ _ (t,X)_ _

(t _ to)
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in the domain J_X_] _ E and t _ to.

If the magnitude of the disturbing terms _ (t,X) are measured in a

different way, that is if lJ.g. (t,X)11< _. is replaced by J _ J[_s_.)]Jc_'_.d.._.
o

one obtains the definition of integral stability, reference (35). In the

case of integral stability the perturbations may be large in a small interval,

whereas in the stability under constantly acting perturbations they have to

be small, but they may be persistent. The properties of both these types

are possessed by stability under persistent perturbations in the mean

value, for short, call this stability in the mean, reference (35). This

type of stability is obtained if _ (t,X) _ _ is replaced by

J_ _ _,_)_a_ _S,_T) where both _, and _ depend on T.

Definition 25 a reference (35_

The solution _ = _ is asymptotically stable under constantly acting

perturbations_ if it is stable under constantly acting perturbations and if

to any sufficiently small numbers _ >DI_ ( i._._ _ • Kj_ _

there exists numbers T_;_ 7_j _j_ _ > D such that for every

solution _ (t'_o"vn_,_,=., of (6) II __ __,_I_ <_ _ _°+T(_"/_I'_

whenever ]J _o _ _ _ J JJ _,_JJ _ _(_ °

If one requires that the perturbations _ (t,_) are smaller than _ in

the sense of the inequalities corresponding to integral stability and

stability in the mean, ane obtains the asymptotic analogues of the respective

above mentioned concepts of stability. The following list is a comparison

between the different stabilities affecting equation (6):

(i) Asymptotic integral stability implies asymptotic stability in the mean,

and conversely.
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(_)

(3)

Asymptotic integral stability implies asymptotic stability under

persistent perturbations.

Asymptotic stability under persistent perturbations implies stability

under persistent perturbations.

(4) Asymptotic stability in the mean implies stability in the mean.

(5) Stability in the mean implies both integral stability and stability

under persistent perturbations.

(6) In the autonomous case, all three asymptotic types of stability axe

equivalent to each other. Furthermore, _L_U_Ly-_-_I_......_,_er_ ...._o_._°+_

perturbations is equivalent to stability in the mean. Finally, each

of the above types of stability implies integral stability.

Example 16_ reference (44) Linear_ Variable-Parameter System

Consider the system defined by

_I = X3,

_2 = " 3 XI,

X 3 =_X I + 2X 2 - X3.

The characteristic equation is

K3 + K2 - _K + 6 = 0.

If _ • - 6, the system is asymptotically stable as t---_+_ .

the system is stable as t _+_,

If _ = -6,

If =K'_- 6, the system is unstable as

Example 17_ reference (27)

2
Consider the system X = 0, with the perturbation X

unperturbed system X = 0 is stable as t---_ _ .

X = X 2, X = 0 is unstable as t-_÷ =0 .

Example 18_ referemce (27_

Consider the system _ = X, with the perturbation - e t X3.

unperturbed system X = 0 is unstable as t--_ .

Thus, in the

In theperturbed system,

Thus, in the

Since the general solution
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is X = C et. In the perturbed system, _ = X - etX 3, X = 0 is asymptotically

stable as t--_+_ since the solution is given by

where X_ 0 and X ---l,0 as t-_.

Example 19_ reference (27_

Let the unperturbed system be defined by

dl

X = A(t) X (2rid order),

where all = - a, a12 = a21 = 0, and

a22 = Sin (log t) + cos (log t) - 2a, t _ 0.

The general solution is

X 1 = C 1 exp (-a t)

X2 = C 2 exp ( t sin(log t) - 2at),

where XI-_0 , X2_ 0 as t-_for a 71/2. Thus, the unperturbed

system is stable (not uniform). Now, let the perturbed system be defined by

_x= (_A(t)+ B(t) ) X,

where bll = b12 = b22 = 0, b21 = exp(-at).

We will restrict "a" to the interval 1/2, a--i/2 + 1/4 exp(-If'). This

perturbed system is not stable.

The general solution of the perturbed system is

X I = CI exp (-at),

X2 = [exp(t sin(log t) - 2 at)] _C2 + Cl/_exp(-_sin(l°g_) _ •

The upper limit of [X2|is infinite as t--p_ , if C1 # 0. We can prove this

we let t = tn _ exp [(2n + 1/2)IT] , n = 1,2 ....if

Hence we can show that the integral in X2 is l_ger than
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Thus, we can finally d_rive the following _nequality:

_$ _--_

Conditionally Stable Systems

A conditionally stable system is a system which is in general unstable

but one in which under certain initial conditions or relations, which limit

the choice of disturbance, is stalbe. Suppose we consider the n=th order

system in (5); and suppose we define _o b_ (_o_;_l"'J_,_, where _ll...sy .

are m ( m4, n) of the variables or components of Xo. We can now define a type

of conditional stability_ that is, a stability depended on a subset of the

components of X e

Definition 26_ .reference (19_

The equilibrium solution X = O of __ = _f (t,x) is said to be stable with

respect to a subset of the variables XI_ ..... Xn if there exists for each

> 0 a number _ > 0 such that the inequality

From reference (27), Cesari defines a conditional stability with respect

to a given manifold, M, of solutions of the system being investigated.

The equilibrium solution of the system is only stable with respect to the

manifold M.

Example 20_ reference (27_.

OO

The system defined by X - X = 0 hasd an asymptot_cally stable equilibrium

solution, X - 0, as t--_+_ with respect to the manifold of solutions of

the form X = C e -t. The solution X = 0 is asymptotically stable as t_-_

with respect to the manifold of solutions of the form X = c et.
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The system X " IX_ = 0 has an equilibrium solution X - 0 which is

asymptotically stable with respect to the manifold of solutions which are

nonpositive.

A few Othcr T_pes of Stability

We will now list a few other types of stabillty which arise in the

study of de_rm_,,istic+__ system_ _escribed by ordinary d_fferent_al.... equations

If one was to considered stochostic systems and functional differential

equations, the list of definitions would grow considerably. In passing, we

make not of Ingverson's fine article, reference (24_, in which he basically

clothes the definitons found in Antosiewicz's article in the language of

control theory.

Definition 27_ reference (27_

The linear system _ = _(t) X is restrictively stable if the system

itself is stable and if the corresponding adjoint system is stable. The

adjoint system is defined by X = e A_*(t) X, where A_* (t) ms the conjugate

transpose of A.

Restrictively stable systems are uniformly stable; the converse is not

necessarily true.

Definition 28_ reference (207

If the null solution of X = !_) is asymptotically stable over the whole

state space (asy_ptotically stable in-the-large), then the system is called

completely stable.

The next two stability definitions arose out of the work of G.D.

Binkhoff, Consider the autonomous system defined by _ = _), where _I is
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is the equilibrium solution. That is, _f _i ) = O.

deal with the stability of X1 of mth order.

Definiton 29_ reference (27)

The equilibrium solution XI of X = f_) is parturbatively stable of

order m if for any _ _ 0, there exists two positive constants K and L such

that any solution F (t;to,Xo) satisfies H F-__,|I _ IK_-

and for all t with it - to I Z L _-m.

Defintion 30_ reference (27)

The equilibrium solution X I of X = F(x) is tri$onometrically stable

of order m if for any solution F (t;to,Xo) in definition (29), for all fixed

T and for all polynomials P_) whose terms have degrees ",/S, the function

FIX(t); to, Xo] cand be represented in [ to - T_ to + TIDY a trigonometric

series

The following definitions

where I_ -AJI _ _ • o , of not more than N + i terms with an

error less than or equal to Q _ m +s (Q,A,N are constants and S = 1,2...)

Some notes about these last two defintions are given below:

(i) Stability of order m implies stability of orders 1,2,..., m - I.

(2) Complete stability im;lies stability of all orders.

(3) Perturbative stability is similar to Liopunov stability.

(4) If _) is an analytic function of X in the neighborhood of the

equilibrium solution _I' then anana_ytic transformation X = _) can
be applied to X = _, the result being _ = _).

Both perturbative and trigonometric stabilities are invariant with

respect to their analytic transformations.

(5) Neither Liopunov stability nor boundedness have in_ariant characteristics,

in general, with respect to a change of coordinates, as the following

examples will verify.

when I1 _o-511 ._ _.
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Example 21 a reference (27_

A mechanical system may have a stable solution with respect to a given

system of L_grt_rgi_n coordinates and be unstable with respect to another

system. Consider the system.

The solution (x,y) _= (0,0) is stable, and all other solutions are unstable

in the Li_punov sense since the general solution has the form:

X = C cos (ct + d),

Y = C sin (ct + d),

C, d constants.

Now introduce the new coordinate r and d by the equations

X = r cos _

Y = r sin _,

8=rt+d.

The new system is defined by

r=0,

d =0.

The solutions r = c, d = ca are all stable in the Li_punov sense.

Example 22_ reference 427)

Consider the equantion of the pendulum

el

X + sin X = 0,

whose general solution is

X = C sinl_(c) t + d] ,

where C and d are constants and (c) is a function of c given in te_-ms of

elliptic functions. In the Li_punov sense, X = 0 is stable and all other
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solutions are unstable. Transfrom the above system by introducing the

equation

X = r sin [_(r) t + d_,

Y = r cos [_ (r) t + d ] ,

The new system is r = 0 and _ -- 0, and all of the solutions are stable in

the sense of Liopunov.

Let us now consider the dynamic process (could be a control process)

defined by

/ J:,

y - @(oh

0_ - YC_w_

In these equations, _ J _ and _L are real constants. The

"characterist_: If' _ is an arbitrary, slngle-valued, piecewise,

continuous, real functiQn, defined for all real values of (_ and satisfying

the conditon _ (0) = 0. The function _ also satisfies the conditon

where K is a positive constant or infinity. Thus, X = O is a null solution

of the above system.

Definition 31_ reference (35)

We say that for a given K, the above system is absolutely stable if for

any _(_ satisfying all of the above conditions, the zero solution _ =

is asymptotically stable in-the-large, or completely stable.

_C. ) Definitions of Closedness_ Definit_ness_ and Liapunov Functions

Consider the system defined by'

= ! (t,_)

(7)

£ (t,O) = O, t_ to,
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where f satisfies properties sufficient for the existence of unique

solutions of (7). Wedenote the spherical neighborhood of X = O, I_I_II_

by R(h), and we denote the half-cylindrlcal neighborhood _ _ l_(_j _)_e _O

by R(h,to). We will consider real scalar functions defined in R(h) and

R(h,to) and will denote these fucntions by V(t,x), W_), etc. Usually,

we will assume these functions are continuous and possess continuous first

partial derivatives with respect to all of their arguments.

Definition 32_ reference (19)

V_) is positive (negative) semi-deflnite if V_) = 0 and if

V_)_ 0(_0) in R(h).

Definition 33_ reference (19>

V_) is positive (neKatlve) definite if V_) = 0 and if V_),0 (_ 0) in

R(h) for X # 0.

D_finition 34_ reference (19>

V(t,x) is positive (negative> semi-definlte if V(t,O) = 0 for t _ to and

if for some suitable h, _ h, V(t,x) _ 0 (_ 0) in R(h,,to).

Definition 35_ reference (!9)

V(t,x) is positive (ne_ative_ definite if V(t,O) = 0 and V(t,x)_ W(x)

(_ - W_) ) in R(h,), where h,( h and W_) is positive definite.

Definition 36_ reference (19_

V(t,x) is radially unbounded if for any Q() 0, there exists _ >O)

such that V(t,x) _ _ whenever _I _ _[ >_ and t _ to. (that is, V

becomes infinitely large with g_ |[ ).
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Definition 37, reference (19)

V(t,_) is decrescent or admits an infinitely small upper bound in

R_n) at X = O if the limit of V(t,_) is zero as H_ 11-alpO uniformly in t.

An equivalent definiton is that there exists a positive definite function

W E) such that Iv(t,_) I S w(_) in R(h,to).

Definiton 38, reference (18)

The derivative of V(t,_) along the trajectories of the system in (7)

is the basic relationship in the Liapunov theory between the differential

e_uation and the Liapunov function. The derivative is defined by

where _V is the gradient of V(t,_) with respect to XI

Defintion 39 a reference (19)

If the total derivative of V along the trajectories of (7) does nto

exist, then the following expression is defined to be V_

Definition 40_ reference (23)

Antosiewics defines V in the following way when the total derivative

does not exist. The generalized (upper ri_ht-hand)total derivative of

V(t,_) with respect to X = _(t,_) defined on R(h,to) is the function

defined by

_0_,= _ 1 V(_'_'_÷K_{'_--V('s_) I

We now consider several theorems dealing withthe a_ove definitons.
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If V_) is positive definite, then V_) = C (positive constant)

represents a family of closed curves or surfaces about _ = _. As C -*-0,

V = C contracts to the origin.

to Letov.

Theorem 1

(H)

(c)

The following "closedness" theorem is due

(1) If V_) is positive definite in the entire space, and

(ii) V_.) _ _ as || _ j_u,_,

then V(x) = C is closed as c_.

The next three theorems deal with the "decrescent" property of

V(_) and V(t,_).

_heorem 2 a reference (19)

(H) (i) If Y_) = 0, and

_ii) V_) is continuous at X =

(C) then V_) is decrescent at X - _.

Theorem 3_

(H)

(c)

reference (19_

(i) If V(t,0) = 0, and

(ii) V has bounded first partial derivatives in R(h,to) with respect to X.
l

then V(t,_) is decrescent.

Theorem 4 a

(i)

(ii)

(c)

reference (19)

If V(t,_) has a power series expansion in X i in R(h,to),

the series has no constant terms, and,

(lii) the time dependent coefficients are uniformly bounded in t_

then V(t,_) is decrescent.

The next three theorems deal with the positive definiteness of

quadratic forms.
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Theorem 5 a reference (32) (Bhatia)

The quadratic form _ D(t) X is positive definite if

where

is an arbitrayy constant.

I DIX /_]1 are the principal minors of the determinant _D(t)land

Theorem 6_ reference (32) (Zurmuhl)

The necessary and sufficient conditions that _XT D(t ) X is positive

seml-definite for t _ to is that

[ g,,{*)l >. o

I -Pml .°
Theorem 7_ , reference (32)

( K= Ij '"s _")

._ov "t.= to

(Malkin)

The sum of a positive (negative) definite quadratic form and a positive

(negative) semi-definlte quadratic form is a positive (negative) definite

quadratic form.

From references (!8), (19), (33), and (34), we get the following

examples of definite and semi-definite functinns.

Example 23 ..... x,_2 - plane

2
(i) v = x,

2
(2)V = X 1

2
(3) v = x1

2
(4) V = X 1

2
(5) V = X 1

2
(6) v = x1

2
(7) V= X I

is positive seml-definite.

- 2XlX_ is indefinite.

2 4

- 2XIX 2 + X 2 is positive seml-deflnlte.

-2XIX22 + X24 + XI4 is positive definite.

- 2X,X22 + X24 + XI 4 + XIX25 is indefinite.

+ X22 + XIX22 + X23 is positive definite

- X22 + XIX22 + X23 is indefinite.
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(8) V = Xl 2 + X22/I + t is not positive definite for all t 0.

(9) V = X12 + X22 + i/2XlX 2 sin t is positive definite in (Xl,X2)-space for all t.

2 2
(i0) V = Xl + X2 is positive definite in the XIX2-space but is

2
1 + _ only closed for V = C I.

X!

(i1) V = f(xi)dx 1 + X2 , where f(x,) x, 0 for x, # 0, and

is only closed if V = C4_ b.

2 2

(12) V = X I + X2 t is not decrescent because it violates uniformity.

(13) V = XI 2 + X22 sin t is decrescent, and indefinite.

_xample 24 _ (LaSalle)

Consider the function defined by

%
V_z_ = x. +_blx,,...,_,_)_ 4 a (_,,...,_

" x,_ +_ _ +_ +l_-b _') .- (x,+b)* +(a-_ =)

where ( a - b 2) is a function of Xl, .... ,X n-l" If ( a - b2) is quadratic

in Xn.l, then repeat the above "cpmpleting the sqnare" process, and so on for

lower orders. As an example of this procedure , consider:

L _x,_ _= ÷ _ + _ x;x,+ s,'" _ ÷ X, z qMd, Xz +%

which is positive definite.

Example 25_ reference (34)

Consider the quartic form in two variables given by
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A necessary condition for positive definiteness is that

Thus, we can divide V4 by q4o_ and get

V4": x4+%x 3 +'i,x" ÷'l,x +%

where X = xIIX 2 and _ : q51_/_4o > O

of V*
4

_4o'.B_ and _44 YO

.The positive definiteness

and V4 are equivalent. The following Newton Sums must be evaluated:

From these sums the matrix _4 is formed: $4 : S, S, S41

Ls: s, s:5,j
The principal minors of _4 are denoted by DI, D2, D3, D4, DI being So and

D4 being I_ 41 The signature of the S matrix is denoted by (_ and

defined as l_"= r - 2_ , where r is the rank of S and V is the number of
--4

siBn @ariations in the sequence I, D , D2, D ,
I 3

is positive definite if _40 )0) _44 ,_0 , and

Xj)t: +

thusj _40: _4_ =I ) 0
and

... D . Therefore, V _)
r 4

O" = O. As on example, consider

_:-I ) S_ : 0 therefore, r : 4, DI = 4,

D2 - 13, D3 i0, D = 12, and _" = 4 - 2"2 = 0. V4_) is positive definite.4
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(D). Stability Theorems _ Boundedness Theorems

In this part of the report we will consider the system defined by

= [ (t,_) (7)

where f satisfies the same conditons as in equation (5), except we may want

to replace set S, JJ_ll (_ , by the entire s_ace R n on occasion. Let the

function V(t,_) be a real scalar function defined and locally Lipschitzian

on some set I o x S o =_ (t,_) _ R x R n j t) To_ 0, Jl Elj _ r o

and such that, given any X in SO, V is continuous in Io, and V(t,_) E 0.

for all t in I o. It is assumed that the intersection of S and S contains
o

a neighborhood N of X = _, say N = _ _ K _,_ _ _ I1_1| _ ,where

/_ _ 0 is some fixed constant. Also, we assume that_o_.: ]. =_'_amo_o

To be consistent with the notation in Part C, let us denote T by to, and

by h, and I x N by the "half-cylinder" R (hjto).

There are many ways in which one might define a Liapunov function but

the definition we use here comes from reference (23).

Definition 41_ reference (23)

V(t,_) is a Liapunov function on R(h,to) for the equation _ = _(t,_)

if it is defined, locally Lipschitzian and positive definite on R(h,to); if,

given any _ in || _ JJ• h , V is continuous for all t_ to and V(t,_) = 0.

for all t; and if V(t,_)_0 on R(h,to).

Definition 42

The vector function _(t,_) is said to be, on R(h,to), of class C k

_K positive integer) with respect to X if, on R(h,to), _ is continuous and

has continuous K-th order partial derivatives with respect to _.
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Theorem 8, reference (23) (Liapunov)

(H) (i) If there exists a Li@punov function V(t,x) on R(h,to),

(C) Then X = O of (7) is stable.

Theorem 9 a reference (23) (Converse Theorem of Persidskii)

(H) (i) If f(t,x) is of class Ck with respect to X on R_,to) and of class

Ck'l with respect to t for any t _, to and any fixed X, _ _|_,_,

(ii) for any initial point in R(h,to) the solution of (7) is continuable

for all t_to,

(ill) _ = O of (7) is stable,

(C), then there exists in some half-cyllndrical subset of R(h,to) a

Liapunov function V(t,x) of class Ck in X and such that V is negative

definite for any finite time interval in this subset.

In Theorem 9, if _(t,_) is linear in X, then there exists a real

quadratic form in X with tlme-varylng coefficients of class C1 which is a.
i

Liapunov function.

Theorem I0 a ref,,ence (23) (Persldskii)

(H) (i) If there exists on R(h,to) a Liapunov function,

(ii) V(t,_) is decrescent,

(C) X = 0 of (7) is uniformly stable.

Theorem II a

(H)

reference (23) (Converse of Kurzweil)

(i) If _(t,_) is of class C_ on R_,to) with respect to _.

(ii) for any initial point in R(h,to), the solution of (7) is continuable

for all t_to,
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(iii) X = O of (7) is uniformly stable,

(C) there exists on some half-cylindrical subset of R[h,to) a Liapunov

function V(t,_) of class C_ such that V is decrescent in this subset.

Theorem 12_ reference (23) (Massera)

(H) (i) If _(t,_) is linear in X on R(h,to),

(i_) _ (t,_) is independent of t on R_,_o) _,

(iii) X = 0 of (77 is stable and thus uniformly stable,

(C) then for any even positive integer m there exists a real algebraic

form V_) of degree m which is a Liapunov function on R(h,t_).

The above theorems dealt with the local phenomena of stability and

uniform stability. The next several theorems will be concerned with the

study of asymptotic stability as a local phenomemon.

_neorem 131 reference (23) (Marachkov_

(H) (i) If _(t,_) is bounded on R(h,to),

(ii) there exists a Liapunov function V(t,_) on R(h,to) such that _ is

negative definite on R(h,to);

(C) then X = _ is asymptotically stable.

Corollary m reference (237

(H) (_) If _ (t,_) is independent of t or periodic in t on R(h,to),

(ii) there exists a Liapunov function V(t,_) on R(h,to) such that V is

negative definite on R(h,to).

(C) then _ = _ of (77 is uniform-asymptotically stable.
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Thereom 14_

(HI

reference (237 (Converse of Massera>

(i) If _(t,_) is linear in _ on R(h,to), and for every X in

_(t,_) is of class Ck-I with respect to t (t_to), K_I_ ,

(ii) X = 0 of _7) is asymptotically stable (hence, equiasymptotically

stable),

(C) then there exists a Liapunov function V(t,_)defined and of class Ck

On R(h,to) such that _ _t,_) is negative definite on R_n,to).

_heorem 15_ reference (237 (Massera)

(H) (i) If there exists on R(h,to) a real scalar function V(t,_), locally

Lipschitzian, and positive definite_

(_i) there exists a real scalar function W(s), defined, continuous and

increasing for t 0, where W(0) = 0 and,

(t,_) _ - W(V(t,_) ) on N0n,to).

(C) then _ = _ is asymptotically stable.

Theorem 16_ reference (237 _assera>

(H) (i) if there exists on R(h,to) a Liapunov function V%t,x_ such that

_(t,_) is negative definite on R(h,to), and

(ii) V(t,_) is such that for any _D , O_ t_ ,and any _o

there are constants _) , D_ _ t , and _ _#_ _ such that

for any S _ [to,_] and any E in I_!_|_, the inequalities t >_ _ and

V(t,_) _ V(s,X ) imply II_ H < t '

(c) then _ = _ of (7) is equiasypmtotically stable.

Theorem 17_ reference (23_ (Malkin and Massera)

(H) (i) If there exists on R(h,to) real scalar positive definite functions

U (t,_) and V(t,_) such that Vis continuous on R(h,to) and decrescent,
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less than h,

(C) then_ = _ of (7) is equiasymptotically stable.

(59)

for every

Corollary, reference (237

(H) (i) If _(t,_) is Lipschitzian for some constant K • 0 on R(h,to),

(ii) hypothesis of Theorem 17 is satisfied,

(C) then X = _ of (7) is uniform-asymptotically stab|_,

Theorem 18_ reference (23)

(H) (i) If X = 0 of (7) is uniformly stable,

(ii) there exists on R(h,to) a Liapunov function V(t,_) such that _ is

negative definite on R(h,t0),

(C) then _ = _ is equiesymptotically stable.

Theorem 19_ reference (23) (Liapunov and Persidskii)

(H) (i) If there exists on R(h,to) a Liapunov function V(t,_) such that

V(t,_) is decrescent and _ is negative definite on R(h,to),

(C) then _ = _ is uniform-asymptotically stable.

The next theorem, themrem 20, deals with a "differential Inequality"

property of Liapunov functions. (We dealt with this topic in one of the sections

in the main part of our report.)

Theorem 20_ reference (23)

(H) (i) If V(t,_) is a Liapunov function on R(h,to) such that V is decrescent

and _ is negative definite,
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(C) then given any constants p! and _ , _ _/OL ¢_i _ _ ,there exist

constants _ (_l I_L) > = ' _2_p.) > = such that _^! [_.'_ h

W(t,_) = exp(A t) V(t,_) satisfies W(t,_)_ --_/ for t_ to,

Theorem 21_ reference (23} (Malkin's Partial Converse of Theorem 19_

(H) (i) If _(t,_) is of class Ck with respect to X on R(h,to) and for

every X in |_lJ(_ , _(t,_) is of class Ck-I with respect to t _ to,

(ii) _ = _ is uniform-asymptotically stable,

(C) thenthere exists on some half-cylinder subset of R(h,t0) a Liapunov

function V(t,_) of class Ck with respect to X__such that V is decrescent

O

and V is negative definite.

Theorem 22_ reference (23) (Converse Theorem of Malkin_

(H) (i) l_(t,x) is linear in _ and bounded on R(h,to),

(ii) X = _ of (7) is uniform-asymptotically stable (hence, exponential-

asymptotically stable),

(iii) W(t,_) is a real scalar function defined and continuous on

R(h,to) and is a positive definite form in _ of degree m_0,

(C) then there exists on R(h,to) a real scalar function V(t,_) of class Ci

which is a positive definite form in X of degree m such that V is

decrescent and _ =-W on R(h,to).

_heorem 23# reference (23_ _4assera_ Converse of the Corollary of

Theorem 13)

(H) (i) If _ (t_,) is locally Lipschitzian on R(h,tO_,

(ii) _ = _ is uniform-asymptotically stable,

(C) t_en (I) there exists a Liapunov function V(t,_) on some half-cylindrical

subset of R(h,to) possessing partial derivatives with respect to t and

of any order, such that V is decrescent and _ is negative definite.

(2) If _ is Lipschitizian on R(h,to), the partial derivatives of V are
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bounded on the subset of R(h,to).

(3) If _ is independent of t or periodic in t in R(h,to), then V is

independent of t or periodic in t on the subset.

The next three theorems, 24, 25, 26, are very useful in applications.

The topic being treated by them is still local asymptotic stability.

_Theorems 27 and 28 are concerned with uniform asymptotic stability in the

large for _ : _ of (7).

Theorem 24_ reference (23)

(H) (i) If _ = _ in (7) is uniformly stable,

(ii) there exists on R(h,to) a bounded Liapunov function such that

is negative definite on R_,tp),

(C) then X : _ of (7) is un%form-asymptotically stable.

Theorem 25_ reference (23) (Massera_

(i) If _ (t,_) is Lipschitzian on R(h,to),

(ii) there exists a real scalar function V(t,_) defined, locally

Lipschitzian and positive definite on R_h, to),

(iii) there exists a real scalar function W(s) defined, continuous and

increasing for s_ 0, and W(0) = 0, such that _ (t,_) _ W(v(t,_ ) on

R_,tO),

(C) then X = 0 of (7) is uniform-asymptotically stable.

Theorem 26, reference (237 (Massera)

(II) (i) If there exists a real scalar function V(t,_) defined, locally

Lipschtzian and positive definite on R(h,to), and there exists real
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scalar functions W(s), g(s) defined and continuous for s >d0, and

W(s) is an increasing function for s _ 0, w(0) = 0, g(s) is positive

for s _ 0, and _ = _ such that _(t,x) _ - W (V(t,x)) and

_)T f (t,x) _ J|XJJ g(||X||) on R_,to),

(C) then X = O of (7) is uniform-asymptotically stable.

Theorem 27_ reference (237 (Massera)

(H) (i) If there exists for t _ to and _ _|J_, a Liapunov fucntion

V(t,_) such that V is decrescent and radially unbounded,

(ii) $ is negative definite for t_ to and _ _|_==,

(C) then _ = _ of (7) is uniform-asymptotically stable in-the-large.

Theorem 28 a reference (237 _Converse Theorem of Massera_

(H) (i) If,_(t,x) is locally Lipschitzianfor t _to and _ _||<_,

(ii) _ = _ is uniform-asymptotically stable in-the-large,

(C) then there exists (i) for t _ to, ]__ J_K_ a Liapunov function

possessing partial derivatives with respect to t, _ of any order such

that V is decrescent and ra_ially unbounded and _ is negative definite.

(2) If _ is Lipschitzian for t _ to, _ _, the partial derivatives

of V are bounded in every bounded subset of the state space for t >4 to.

(3) If _ is independent of t or periodic in t, then so is V(t,_).

In the next set of theorems, we state some of the more important

"instability" results.

Theorem 29= reference (197 (Liapunov's First Theorem on Instability

The equilibrium solution _ = _) of (7) is unstable if there exists a

decrescent function V(t,_) which has a domain where V_ 0, and whose
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derivative V is negative definite.

The next two theorems give both necessary and sufficient conditions for

instability, and thus are equivalent. Theorem31 is usually more convienent

for applications than Theorem30.

Theorem 302 reference (197

The equilibrium solution of (7) is unstable if the following holds: In

the domain z R(h,to), there exists a bounded function @ V(t,_) with the

properties:

(a) Its total derivative for (7) is of the form $ = gV + W(t,_) where

g is a positive constant, and where W is a semi-definite function;

(b) If W(t,_) does not vanish identically, there exists in each domain

R(h_,t I) with arbitrarily large tl and arbitrarily small hlS h such

points _ that V and W have the same sign for t • tI.

(Liapunov's Second Theorem on Instability

Theorem 31_ reference (197 (Chetaev's Instability l_eorem_

Given that the differential equation (7) and a function V(t,_) with

the following properties:

(a) In every domain R(_), _ >_ is arbitrarily small, there exists points

such that V(t,_) is negative for all t >/ to, to bring sufficiently large.

The totality of points (t,_) with I[ _II Kh and V(t,_) _ 0 shall be denoted

as the "domain V < 0". This domain is bounded by the hypersurfaces l_ _I = h

and V = 0, and is possibly separated into several subdomains, UI, U2,... ;

(b) V is bounded below in a certain subdomain U of the "domain V < 0";

g

(c) In the domain U of (t,_) space in (b) the V for (7) is negative; in

II
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particular, _ - _ ( |Vl)_ 0, where _ (r) is continuous, monotorically

increasing, and _ (0) = O. The existence of such a function V(t,_)

implies that _ = _ of (7) is_stable.

In Theorem 32, Chetaev uses two functions to establish that _ =

of (7) is ustable.

Theorem B2_. reference (!9) (Chetaev_

If there eixts a decrescent function V (t,_) and a function W(t,_)

such that (I) the "domain VV t0" is not empty for any t in to_ t _ (which

has to be considered a closed interval), and (2) for arbitrarily small H _ll

theEe exists a "subdomain W 70" of the "domain VV_ 0" where W has constant

sign on the boundary of the "domain W>-0", (the boundary is W = 0.), then

the equilibrium _ = _) of (7) is;um_aable.

Theorem 33 considers the concept of complete instability.

Theorem 33= reference _19) (Persidskii_

_e equilibrium is completely unstable in (7) if a function V(t,_)

exists which has the following properties in R (h,to):

(i) V >0 for _ # _;

(2) _ _ 0;

(3) the function V tends uniformly toward zero as t increases.

The next two theorems are the time-invariant results corresponding

to Theorems 29 and 31.

Theorem 34_

(H)

reference (20) (Liapunov's First Instability Theorem)

(i) If V_), with V_) = 0, has continuous first partials in some

neighborhood N of _ = _,

(ii) V is positive definite arbitrarily near _ = _,
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(iil) V assumes positive values arbitrarily near _ = _,

(C) then X = O of X = f(x) is unstable.

Theorem 35, reference (20) (Chetaev's Instability Theorem)

Let N be a neighborhood of _ = _ and let there be given V_) and a

region N I in N with the following properties:

(i) V_) has continuous first partials in NI,

(2) V_) and V(_) are positive in NI,

(3) At the boundary points of N I inside N, V_) = 0.

(4) the origin is a boundary point of N I. Then, under these conditons the

origin is unstable.

We nextconsider LaSalle's theorems on the extent of asym,ptotic stability

for autonomous systems. A more thorough discussion of this wor_ can be

found in references (20), (30), (37), and (38). The autonomous system is

defined by __ = !_) , _f_) = _0, where the usual properties required for

existence and uiniqueness of solutions are assigned to _. We must first

introduce two notions from the work of G.D. Birkhoff.

Definition 43_ reference (38)

Let X(t) be a solution of the autonomous system. A point XliS said to

be in tNe positive limiting set of X(t), if for every G>0 and each T_,0

there is a t_T such that _ x(t) - XI_ _ _ _.

One of the important properties of limiting sets is the following; "If

X(t) is bounded for t _ 0, then _+ is a nonempty, compact, invariant set."

Definition 44_ reference (38)

A set M is said to be invariant, if each solution of _ = f(x) starting
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in M remains in M for all t_ t .
o

Another important property of limiting sets is: "If _(t) is bounded for

t _ 0 and if a set M contains /_+ , then _(t) ---w set M as t--_."

Theorem 36 gives criteria for determining the extent of

asymptotic stability.

Theorem 36_ reference (387 (LaSalle)

(H) (i) If N is a bounded closed setwhich is also an invariant set of the

system _ = _),

(ii) V_) has continuous first partials in N and _ _ 0 in N,

(iii) set E is the set of all points in Nfor which V = 0,

(iv) set M is the largest invariant set in E,

(C) than every solution starting in N approaches M as t--_

In Theorems 37, and 38, the set N is defined by the Liapunov function V_).

Theorem 37_ reference (3oj........ kLa_a1±e2

(_) (i) If Ni denotes the closed region defined by V_)_ ,

(ii) VQ_) has continuous first partials in N L and is postive definite

in N L ,'

(iii) N L is bounded and V_) _ 0 in N L ,

(iv) E is the set in NL where V = 0 and M is the largest invariant set in E,

8

(C) then every solution of _ = !(_) starting in N L tends to M as t-_

Theorem 38_ reference (20) (LaSalle)

If _)_ 0, X # O in N L , replace V_) _ 0 in Theorem 37, then X = 0f

is asymptotically stable and every solution in NL tends to _ as t--_+=o.
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_ne next two theorems deal with the concept of stability in-the-large

for the null sollution of _ = !_.x).

Theorem 39_ reference (38) (LaSalle)

(H) (i) if V_) has continuous first partials for all _,

(ii) V_) > 0 for all _ # _,

(iii) _) _ 0 for all _,

(iv) E is the set of all _ such that _) = 0,

(v) M is the largest invariant sat contained in E,

(C) then every solution of __ = _(_) bounded for t'_W 0 appraoches M as t--ma).

Theorem 40= reference (36) (LaSalle)

(H) (i) If V_) has continuous first partials for all _,

(ii) V_) > 0 for all _ # _,

(iii) _(_) _ 0 for all _,

(i_ V(_) _ _ as 1i_|I-_=o .

(v) V is not identically zero along any solution other than 0 ,

(C) then _ = _) is completely stable.

THe next set of theorems deal with _racfical stabiliy and Lagran_e

stability.

Theorem 41_ reference (38> (LaSalle)

(H) (i) N is a bounded neighborhood of _ = _,

(ii) Nc is the complement of N,

(iii) W_) is a scalar function with continuous first partials in Nc,

(iv) W >0 _ for all _ in Nc,
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I (v) _T_ 0 for all X in Nc,

(vi) W'-_ as II x }J--pQm ,

6

(C) then each solution of X = f_) i_ bounded for all t .

I

Theorem 42= reference (39) (Rekasius)

(H) If (i) N is a bounded region containing _,

(ii) V(._x) is a scalar function with continuous first partials in N c,

(iii) V_) > 0 for all _ in N c, and is locally Lipshitzian in N c,

(iv) v--_== as II x_ II_ ,

(v) _ • 0 for all X in Nc,

(C) then the system --_= _f_) is asymptotically stable in the sense of

Lagrange; that is, every solution of X = !(_) starting in N c approaches

N asymptotically as t--_==

A Theorem similar to Theorem 42 is the following theorem from reference (30).

Theorem 43= reference (30) (LaSalle)

(H) If (i) N is the set defined by V(_) _ _( and h_ is the complement

(V_)>=_), with V hav6ng the usual continuity properties,

(ii) _) _ 0 for all _ in Nc,

(iii) _ does not Vanish identically along any trajectory that starts

in N c ,

(iv) _ = [_) is Lagrange stable,

(C) then every solution of __ = _) approaches N as t---_

From the reference (29) we have the following theorem dealing dealing

with the problem of practical stability of an autonomous system.

i
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Theorem 44; reference (29)

(H) If (i) there exisSs a scalar function V_) with continuous first partials

such that V • 0 and _ 0 in the whole state space except in a small

neighborhood N of _ = _, and

(ii) V---_ _ as II _ II'--_'_,

(C) then there exists another small neighborhood N of the origin such that
o

N o contains N and such that any moving point _ having departed from No will

return toward No as t--P=_ . (that is, the origin is stable in the large if

small unpredictable oscillations within a sm_ll neighborhood N o are neglected).

Theorems 42 and 44 are basically the same.

The next two theorems aer concerned with the regions of eventual

asDan_totic stability for the nonautonomous system __ = _(t,x), where _f has

continuous first partials. We will denote the solution to the system by

(t; to, _o). In Theorem 45, regions of eventual asymptotic stability

i

are discussed. In Theorem 46, a method for determining a region of eventual

asymptotic s_abiiiny is given.

Theorem 457 reference (40) (LaSalle & Rath)

(H) If (i) N is a bounded closed set containg _,

(ii) N o is a subset of N such that solutions starting in N at time to
o

To remau_n for all t _/t in N,
o

(iii) V(t,x) is a scalar function such that V(t,x) _ U_) as t--_ _*=

uniformly for _ in N,

(iv) V(t,x) _ - W_) as t _ uniformly for X in N,

(v) UQ_) and W(x) are positive definite for X in N,

(C) Then there exists a To _ 0 with the property that F(t;to,X_o)--_O as

t _ for all X in No and all to_ To.--o
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Theorem 467 reference (40) (LaSalle & P_th)

(H) If (i) N is a closed bounded set defined by U_)_ L (L>0),

(ii) conditons (iii), (iv), and (V) in Theorem 45 are satisfied,

(iii) for any S _ 0, N is the set defined by U_) _ L - 6,

(C) then there is a T_ _ 0 such that _ (t;to,Xo)----_ 0 as t_

Xo in N_ and all to> I T .

for all

In Theorem 46, a sufficientcondition for set N, defined by U_) _ L, to

be bounded for all L is that U(x) ---_ as II x_l'_" Moreover, if

#_ II"_=

then N is bounded for all fixed L• Lo. Thus, Theorem_ 45 and 46 are

useful in determing how large a region of stability exits around _ = _.

The next two theorems are extensions of LaSalle"s work on the "extent

of asymptotic stability." Theorem 47 is due to Yoshizowa and is concerned

with _i_._._LaSa!le calls the "pertubbed autonomous system," references (41)

and (42),. The basic sysnem x is defined by

= F (_) + P (t,×) + _ (t,_), (S)

where _ and _ are different types of perturbations. We assume the following:

(I) if _(t) is continuous and bounded for all t_ 0, then L_|_

(2) The function _(t,_) ----_0 as t---_ uniformly for _ in any compact set.

Theorem 47_ references (41) and (42) (Yoshizawa)

(H) If (i) all solutions of (8) which start in a compact set N remain in N,

(ii) there exits a scalarfunction V(t,_) which is nonnegative for all

t _,,0, and all X in N,

(iii) V(t,_) _ W(_) _ 0 for all t _ 0 and all _ in N,

(iv) set E in N is defined by W(_) = 0 and M is the largest invariant

set of the system X = _(_) in E,
-- i

(C) then every solution of (8) starting in N approaches M as t_.



(71)

In Theorem 48, Matrosov, in references (41) and (43), considers a

more general situ_Ltion; he gives sufficient conditions for the asymptotic

stability of an equilibrium state of a nonautonomous system. Two

11 o

Llapunov functions" are used; thus he is able to relax the condition of

positive definiteness of the Liapunov functions by relating the second

function to the set where the time derivative of the first function vanishes.

The system considered is given by

= _(t,_),
(9)

F (t,O) = O for all t.

The two "Liapunov f_nctions" are V(t,x) and W(t,x). Relative to a set E,

_T is defined to be definitely not equal to 0 in the set.E if given numbers

o¢ andd A there exist r and _ such that _WI > _ for all t'_ 0 and all

..v*-_'_-_.,.,,_., ,_ clstance r o_ set E .... SUCh ..... c_ !!_ll.._ A

Theorem 48_ references (41)and (43) (Matrosov)

(H) %f (i) V(t,x) and W(t,x) are defined in some n_ighborhood of X = O,

_ _L,_. I _ V , _-_,C_C_ T_ __._ _. ...... C_I-_I_vLIS-_" - _ _t_.\.j/ = 0)

(iii) _T(t,x) --_- w(x) 0, where w is continuous,

(iv) W(t,x) is uniformly bounded for t @ 0,

@

_v) W(t,x) is definitely not equal to zero in E, where E is the set of

points X for which w(x) = 0,

(C) then x = 0 of (9) is asyr_ptotically stable. ---

Note by LaSalle reference (41)

The introduction of W(t,_) assumes that the solutions cannot remain too

long near E but must approach _.



(72)

The next _ou_ theorems are concerned with the _erturbed system

given by equation (6), which is repeated below:

_x= f(t ) + (6)

where _(t,!) = _ for all t _ to and _ is the perturbation term.

Theorem 49= reference (19) (Gorsin an@ Malkin)

(_q) If (i) X = O of X = f_t,x) is uniformly asymptotically stable,

(C) then X = 0 of (6) is also stable under constantly acting perturbations.

Theorem 50_ reference (19) (Malkin)

(H) if (i) a positive definite Liapunov functiion V(t,_) exists whose partial

derivatives are bounded in a domain, and

(ii) with respect to _ = !kn,_) is negative Qe_nlte,

(C) then X = 0 of (6) is stable under constantly acting perturbations.

Theorem 51= reference (35) (Vrko._____cc)

The solution X = 0 of (6) is stable under constantly acting

perturbations, if and only if, there exists a function V(t,_) with

continuous partial derivatives and satisfying the following:

(I) V(t,_) is positive definite;

(2) V(t,_) is bounded uniformly with respect to t;

(3) there exists a continuous function U(_) which is positive except at the

point _ = 2, and the function

Theorem 52_ reference (35) _)

The solution X = 0 of (6) is integrally stable, if and only if, there
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exists a function V(t,>_) with continuous first partials fulfilling the

zol!owing conditions:

(i) V(t,_) is psoitive definite;

(Z) V(t,_) fulfills a Lipschitz condition with a constant independent of t;

(3) 0.

Note by Vrko[_ referenc_ 3_55)

In the case of stability in the mean only sufficient conditions are

known at present.

The last set of theorems which we will list are three due to Yoshizowa

dealing with boundedness, namely, theorems dealing with Definitions I0, ii,

and 12.

Ti_eorem 53_ reference (23) (Yoshizawa)

(H) If (i) there exists for t _to and _ in ||_.xJ|gh, a real scalar function

W(t,_) defined, locally Lipschitzian and positive definite, such that

W(t,_._) --_ with _ _.-_..... o ....ly for t _ to, and

R

(ii) W(_,_) _ @ for t _ to and ;_;f _ h,

9

(C) then every solution of _ = f(t,_) is bounded. _ having the usual

"n_ce" properties).

Theorem 54_ reference (23) (Yoshizawa)

(H) If (i) there exists for t _to, _ _ _ h, a real scalar function

W_t,_), defined, locally Lipschitzian and pesitive definite, such that

for any open sphere S containing _ _H< h, W_t,_) is bounded on the

intersection of S and _ _U_h , for all t _ to,

(ii) W(t,_) _ == as _I _ _ uniformly for t _ to,

(iii) W(t,_) _ 0 for t _ to and _ _H >I h,

(C) then every solution of _ = _(t,_) is uniformly bounded.
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Theorem 55 reference (93) (Yoshizawa)

(ii) If (i) conditons (i) and (ii) are satisfied in Theorem 54, and

(ii) _(t,x) is negative definite for t_to, and _ x_J >/ h,

(C) then every solution of X = f(t,x) is ultimately bounded.

(E). Examples of Some of The Theorems in Part D.

_ I. + _+ of +_: ........... _........ I_ _ _^_- illustrate

some of the theorems in Part D.

Example 26_ reference (2 i)

In the systemdefined below we consider the Liapunov function as a

distance in phase space. The system is given by

o 2 2

Xl - I i +x I ),
• 2 2

X 2 = = X I - a.X2 (X i + X 2 ),

a = constant.

2 + X02, where
Thus, let V = X I

= 2XT(X 2 - aXIV) + 2X2(- X I

2

- aX2V ) = - 2aV

Solving for V, _£nere V = V ° > 0 for t = to, given

V = V O

i = 2aV o (t =_o)

Three possibilities exi:t; namely,

(I) for a>0 and any V • 0, V-_p0 as t--_, thus the system is completely
o

stable;

(2) for a = 0 and any V ° > 0, V = V for all t_0, thus the system is stable;
O

(3) for a< 0 and any V • 0, V--_+em as t---_to -I/2aV o, thus the system
O

has a finite escape time and is obviously unstable.
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lxar:ole 27 (First Hethod Vs. Second Hethod)

(A) From reference (44), we have the system defined by

X = - y - X 3 ,

e

y=X- y 3 .

o

Let V = X 2 + y2 ; thus V = -2 (x4 + y4 ).

Therefore by Liapunov's Second Method, the system is completely stable.

But the linear approximation only says that the origin is locally stable.

(B) From reference (44), consider the system defined by

= Y +=4X - X 5,

v = - X -v5

whmme_ is a system parameter. From the linear approximation the origin

is _ _±oc_ly as}_._ptoticaliy stable if_< 0 and unstable of_>0. By the

_-_ X 2 + , then = (X 6 + -_ ). Thus, ifo_ond Method, if V = _ y2 _ -2 y6 X 2

• 0 , the system is completely stalbe.

WhenmK = 0 , we have the critical case. The First Method says

(0,0) is locally stable. The Second Method says that the system is

y2 " ,.. 6 6 ,compie_ely stable because if V = X 2 9 , then V = -2<x + Y ).

Example 28 Unstable Cases

(A) From reference (12), consider the system defined by

• 3
X i = - X + X ,

X 2 = X 2 + X I

The linear approximation shows that _0,0) is unstable. We can also prove

the Second Method if we let V = X 2 - XI2 Then, we haveinstability by

V = 2(X12 _ X22 + X12 X 2 - X1X23 ).

Thus, in any neigi-%orhood of (0,0), V can be both positive and negative,
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e

jj !11 is su ficien=lys=  ll(l;xll # 0), thenV >0.

Z_ _he ins_aoiiity _heorems (0,0) is unstable.

(B) From reference (44), we obtain the following example:

X 1 = X23 + X15_ ,

X 0 =X 3 +X25
" I

Let V = XI4 - X24 , then _ = 4(Xi 8 - X28 ). If _x II> _ x2] , V and

_ are bo[h positive. Therefore, (0,0) is unstable.

Example 29, refernce (45) Time-Denendent Domain of Asvm__totic Stability

Consider the first order system defined by _ = -X - X (i - t3X2). For

t _ ___

to > 0, the solution of the linear approximation is given by X= _o_o __.---'---

Thus, as t--_, X---_0 and tk_ origin is locally asymptotically stable for

stability for the nonlinear system is given by x[ _ 1/t o . Thus, as to

becomes large, the domain becomes small; and for large to, the system is

_.,stable for practical purposes.

Exam_) ie 38
- £OAN

Ye ierelice \J_)

Consider the forced Duffing equation defined by

X 1 = X 2 ,

X 2 = - X I - 2X 2 - bXl3 + g(t),

_h_e b _,0 and I g(t)_ < m. Let V = I/2(x I + X 2 ) 2 + b/4 Xl 4

Thus, V = -(X i + X 2 )2_ bXl 4 + g(t) (X I + X2 ) _ _(Xl + X2 )2 _

bX_4_ + m I XI + Xg]_ Choose the neighborhood N to be _: IX I + Xml_m-

Therefore, in the complement of N, N c, we have V _ 0, V--_= as _l X_]---_,

and V _-_ 0 Thus, by Theorem 42, the system is ultimately bounded and is

"pr_e =ically stable".
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As,_._ototicaiiv Stable Non-null Solution

Consider the following _quations which define a nonlinear regular:

- 3

X 1 = -X 1 + X 2 ,

X2 = X 1 " I/2X 2

By linear approximation we see that (0,0) is locally asymptotically stable.

Also, as can be easily seen, 2XI 2 - X24 = 0 is a solution of the system.

_y Lia}unov type arguments, we want to prove that this solution is asymp-

_.ticaliy stable.

2
Let V = 2Xi - Xo 4

Thus, any initial point {X,(0), X2(0) ) not on the curve 2XI 2

Then, V = -2V. The solution of this V-equation is

V (,:4 : z. X_(=,_ .e (..o) ¢._c,j - X z

- X24 = 0 at

pt = 0, wil_' ap_ roach the curve asymptotically as t--_0.

_- _ 32 Some _xam_les of LaSalle"s Theorems

(A) From reference (12), consider the "vibrating spring" problem with a

nonlinear damping factor> f(x,._), defined by

O_ m •

x + f(:_,x)x + W2X = 0,

or X = X ,
1 2

X2 = -w2XI - f(xl,X2) X 2-

9 a, X22Let V = w2Xl 2 + X2- , w # 0. Thus, V = -2f(XI,X 2) Therefore, the

s),o_ is completely stable if f(xl,x 2) >i 0 but not identically zero, and

if f(xl,x2) _ 0 on any non-null trajectories of the system.

(3) From reference (20), we have the famous Van der Pol system which is

defined by

x I = xo- - E 3 - XI)"

X 1 =-x I ,E<0.
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= (x12 - = _ (:<_2 )
Lc,- V i/2 + x2 2) glving _" -_" X12 _a_ - 1 .

3

Thus V _0 for X_._2_ 3. Ti:e_-cfore tberegion XI 2 + X22 _ 3 is

interior- _o _i_e rgion of asymptotic stability for (0,0). Thus every solution

s_-_":n, _ inside XI 2 + X_." = 3 ao_roaches (0,0) as t--_+_

(C) Example due to LaSal!e

The following example shows that Theorem 39 can not be used for

nonautonomaus syaeems. Consider

"" t) ÷x o,X- (2+e =

4

or X 1 = X 2,

x 2 = -x i - _, e t) x 2.

Let V = X I- + X 2. •
2 ' thus, V = -(2 + s t) X22. The set E, V = 0, is

the X 1 - axis. The _'_ -,a_ges_ invariant set in E is (0,0) Therefore, all

tOpoLt_eses of ,he_._m 39 are satisfied; but for the initiai values

(2b, -b), X = c<, + e- ). Thus as t-_+_, X-_b and X-_0. The origin is

ne___ asy:npnoticaiiy stable as the incorrect use of Theorem 39 would indicate.

(D) From references "_i) and (42), we see that the Theorem of Yoshizawa

<±neo:-em _; covers the problem in Case C. Suppose, _he system is defined by

O

X I = X 2 ,

8

X 2 = -Xl - a(:) X2,

where a(t) is bounded by M>a(_)a,m_0 and a(t)--_ao_0 as t--_. Thus,

X12 + X92, giving V = -a(t) X22. By theorem 47, the system islet 2V

completely stable. (_he trouble in case C is that 2 + e -t is unbounded as

t--_ .)

_xa._c_ 33_ _-eference (42) E_:an_ie of Theorem 47

Consider [he sys._em defined by _ + f(x) _ + g(x) = e(r) "

where f(x) and g(x) are continuous for all x, e(t) is continuous for
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o _ t_, x g(x) > 0 for -.__ 0, g(0) = 0, f(x)>0 for x# 0 and f(0)_ 0,

Y(x) = Joi f(x) dx----_-:__ as >:---_+__ , and E(t) = __J_|e(t) 1 dt_.

Now consider the equivalent system

X = Y,

Y = -f(x) y - g(x) + e(t)

We define the set N:

ix] < c and IY] < e, m c a positive constant.

: exp _ -2E(t)] [ g(x) + y212 + I_ ,

Thus sot E is made up of the points on the x-axis satisfying Ix _ & c, and

::,e poi'=ts satisfying f(x) = 0, it':! _ c and Iyl _ c. _e l_=gest

invariant set, M, in E is (0,0). Thus (0,0) is asymptotically stable by

.... o._., 47.

_._ .... p.-c 34_ reference (39) Example of Theorem 42

Let

Consider the system defined by

_! = X°_ + X_ ( 1 - X12 - X22),
D

X2 = - X i * X 2 ( i - X12 - X22).

V = 1/2 (X!2 * X22); thus,
4 9

V = (x_ 2 + X2-) ( i - X12 - X22)

=2v, ( 1 - 2v)

Thus the o_=__,,-4_{_is usntalbe. The region N in Theorem 42 is defined by

2 < i. Thus the hypotheses of Theorem 42 aee satisfied in Nc, andXi2 + X2 _

any solution starting in Xc approaches N asymptotically as t--l-_. Any

2
solution starting insde N approaches X 1 X22 = 2+ I, therefore, X I + X22 = 1

is a limit cycle.

)
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- ,oo, Z,£a-,-,_l of Theorem 44

Con_idcr :l*.e s,;sLer., defined by

X = - X,_ + a E X_ - S<_3

X 2 = X 1 + a E X 2 - aX2 3,

2

Let V = XI2 + X 2where a and E are positive constants and E is small.

Thus, _ = 2a [ E (XI 2 + X22) - (Xl4 + X24) l V is less than or equal

0 _ _ 4E. Thus inside the n_zgnDornood,N, defined byto z_ro when \T.- + X
_ 2

XI2 + X22 _ 4Z, the system is useable; but any solution starting in N c

9
a._Dreaehes X_2 + Xa" = 4E. Therefore, the origin may be regarded as stable

i

in-t .-large if small osciiia_ions of amplitude less than or equal _o 2_

.round nhe origin are neglected.

_..r .......... r ,'."-'% Lz.-.a::p, Lc of _'-'_.._,...... 48

Let us consider a syr_,_etrical, heavy, rigid body with one point fixed,

and under the presence of resistance forces of the medium. The equations of

_otion are

o

%

The function R is a homogeneous function of P, _ of order m >_2_with

coefzicients- _ich are continuous and _:_n_c_:_-; functions of time t. M_ is
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-_......---_ _,_:_n res::ac_ :o ::_a axis of symnetry _ of the driving

_nd :-asiszanca for-cos. The acua_ions of mozion admit the solution.

describing the irregular notation of the body around the vertical axis of

s)_e try.

The V and W functions in Theorem 48 are defined by

_"z:=eco-_,_.__,_o.-<'n,).u_.,oti:ne de<rive[ires are

V = - mR(O,

,,v- , [ r?..-.,-' %

The set E (V =O) cot-responds to p = 0, _ = 0. For this set E,

• 7o_- _ ;9:=o

ii

Therefore, because of the continuity of W and the bounds on the coefficients,

it is possible to find rl_ 0, such that

_.us, I_"is definitely not equal to zero in set E (V = 0).

If _o < 0 (center of gravity is forcer than the point of support) then

Theorem 48 is satisfied and :he autonomous =otion ( p =_= 0, r = r (t,ro,to),

01 _m= 0, r 3 i) is as)nmozoticaily stable
i
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