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CASSINI'S SECOND AND THIRD LAWS' 

2 G. Colombo 

Introduction 

I 

In 1 6 9 3  G. D. Cassini  published the three following empir ica l  l a w s  on 

the Moon's rotational motion: 

1 )  The Moon rotates  uniformly about its polar axis  with a rotational 

period equal to  the mean s iderea l  period of i t s  orbit  about the ear th .  

2)  The inclination of the Moon's equator to the ecliptic is a constant 

angle approximately 19 5. 

3 )  The ascending node of the lunar orbit  on the ecliptic coincides with 

the descending node of the lunar equator on the ecliptic. 

These laws descr ibe fa i r ly  well the main rotational motion of the Moon, a s  

well as  the behavior of some of the lunar orbital  elements,  in particular the 

effect of solar  perturbations on the motion of the nodal line. 

Physical  libration of the Moon means the departure  of the Moon's 

rotational motion f r o m  that defined by Cassini ' s  (1693) th ree  laws. 

In the l i t e ra ture  on the subject, Cassini ' s  laws a r e  taken a s  a reference 

motion, and the perturbations due to  the gravitational torque acting on a 

rigid body a r e  studied. Naturally the parameters  (principal moments of 

iner t ia )  a r e  adjusted in such a way that the motion can  be  a dynamical solution, 

after which the smal l  oscillations about this solution due to the different 
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torques a r e  investigated, taking advantage of the fac t  that the equation 

can be simplified if one assumes  that the actual motion of the Moon is close 

to  that described by Cassini ' s  laws. 

gation has  been made of all  other possible motions of the Moon permit ted 

by the actual gravitational dynamics, in order  to understand the propert ies  

of the actual motion. 

T o  m y  knowledge no specific investi- 

I will be concerned only with Cassini ' s  second and third laws, since the 

f i r s t  one seems  to be quite c lear  and easi ly  understandable i f  we assume the 

iner t ia l  ellipsoid of the Moon to be tr iaxial .  

the motion for a model representing the r ea l  case to an extent that I judged 

sufficient for the main purpose of understanding the second and third laws. 

I will show that the second and third l a w s  a r e  independent of the f i r s t  one, a t  

l eas t  qualitatively, in the sense that even if  the Moon's iner t ia l  ellipsoid were  

rotationally symmetric,  the second and third laws could s t i l l  be satisfied 

(provided the rotational angular velocity of the Moon i s  the s a m e )  since they 

represent  a motion corresponding to the minimum dissipation of energy by 

internal friction. 

tion of the Moon's equator on the ecliptic would change. 

With this in mind, I have studied 

F o r  a different rotational angular velocity, only the inclina- 

This very simple theory applies to any satell i te o r  planet whose nodal 

line on the invariable plane shifts because of perturbations,  that m a y  be of 

different origin (e. g. , oblateness of the p r i m a r y  body, a perturbing third 

body, or  both). We will t r ea t  the case of Mercury,  the case  of an a r t i f ic ia l  

Ear th  satell i te (gravitational torque only), and finally the case of Iapetus 

since G. D. Cassini  was the d iscoverer  of this, fo r  many reasons peculiar,  

satellite of Saturn. 

1. Equations of motion 

We study f i rs t  the general  problem of the motion of the rotational axis 

of a rigid satellite due to a gravitational torque. We deduce the equation of 

motion in a closed, very simple f o r m  since in our  model a reduction to one 

degree of freedom i s  possible and a l s o  a f i r s t  integral  is eas i ly  found. The 
motion may a l so  be represented in a ve ry  simple geometr ica l  fo rm.  
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? - +  
G the center of m a s s  of C; i ,  J , k 

+ 
Let 2 be a satell i te of the pr imary E; 

the unit vectors along the principal axes of the iner t ia  ellipsoid of C; and 

A, B, C the principal moments of inertia (A < B < C).  
of 

wobbling of the spin axis in relation to the external  torque. 

only the gravitational torque is present and that the body i s  rigid. 

we consider the effects of internal dissipation. 

on the satell i te may be writ ten 

A permanent rotation 

about C is a stable motion, and internal dissipation minimizes any possible 

We assume that 

La ter  on 

The gravitational torque acting 

- ?  + - +  + +  ? =  9 ((C - B ) ( T -  j ) ( r  * z) Tt (A - C ) ( T *  k ) ( r  - i )  J t 
r 

t (B - A)(;. 7) g} 
-+ 

Here p is the product of the gravitational constant and the m a s s  of E ,  r is the unit 

vector f r o m  G to E, and r is the distance GE. 

a )  Suppose A = B; then the torque reduces to 

+ - +  T = 3 (C - A )  (F'. k) ( r  X z) . 
r 

b )  Suppose the rotational angular velocity o3 is much l a r g e r  

We may then consider r and k constant 
-+ + 

orbi ta l  angular velocity. 

rotational period; and averaging we find 

+ +  T = ( C  - y ) ( T -  k ) ( r  X z) . 
r 

than the 

during one 

( 3 )  

c)  Suppose the body is moving in such a way that the axis of minimum 

moment  of ' inertia is near ly  pointing to E (stable relative equilibrium position); 

and suppose that B-A is smal l  compared to C-A. 

o rde r  terms, we may write 

Thus, neglecting second- 

-+ + +  ? = %k (C - A ) ( r  - k ) ( r  x c) . 
3 r 
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The perturbing torque, being generally small, may be averaged over an 

orbital  period. 

--f 

Let  us  cal l  the unit vector along the ascending node of the orbit  of E 
+ + + +  

with respec t  to G;  n the unit vector normal  to the orbital  plane; m = n X i2 ; 
+ + +  

N an iner t ia l  re fe rence  f rame centered at  G. We have c 2 J  and c l ,  

r = cos (w t v) dt sin (a t v) m -7 --* 

2 a(1 - e ) 
1 t e cos v r =  

where a, e ,  a, and v a r e  the semimajor  axis,  eccentricity,  argument of perigee,  

and t rue  anomaly, respectively, of the orbit  of E with respect  to G. Now let  

us consider the dynamical equation (with K the angular momentum vector):  
+ 

where 

Since 

d g  % + - +  - -  
dt - (C - A)(; - k) ( r  X z) 

r 

P is the orbital period of E about G. We may  a lso  write 

211 
AE 1 + + - +  + d v  - = -I %f (C - A ) ( r  - k) ( r  X k)  . P P  

o r  

112 2 
r + = h =  J 

2 2na (1 - e ) 
P 
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. 

we have 

2 1 -  Pr 
Ti 2 2 1 /2  ’ - -  

2rra  (1 - e  ) 

and consequently 

+ 
Let us now introduce the unit vector a f r o m  G to the per iapse and define the 

unit vector b as b = n X a .  We have 
-+ - + + +  

- + - +  -+ 
r = a c o s v t b s i n v  , 

and 

21T 

- -  (1 t e cos v)(k cos v t kb sin v)  a 
3p(C - A )  
3 2 2  2.rra (1 - e  1 3 /  

-+ -+ + 
[a  s in  v k - b cos  v k t n(k cos v - k s in  v ) ]  dv n n b a 

k 
- 3 p(C - 2 A )  312 2 l ~  9 (,, 2 - k a c) 3 - 

2 r a  (1 - e ) 

3 

where n is the mean motion of E. 
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Now let u s  write the angular momentum vector 

As is usual in the t reatment  of gyrophenomena, we shall  now assume a s  a 

fir s t app r oximat ion that 

-+ 4 

K = C w 3 k .  

F o r  the Moon A B C,  and we may write 

+ -+ -+ + 
K = (A - c ) w 1  i + (B - c ) u 2  j t c ( w  i t w T t  w Z) . 1 2 3 

-6 Neglecting smal l  t e r m s  of the order  of 3 X 1 0  of the main t e r m  leaves 

By writing the equation of motion in the form 

+ +  2 
A( dt CW Zl) = 3 2 3  2 (c, n)(kl X z) , 

- e  1 

( 9 )  

+ +  
we neglect only very smal l  t e rms .  

back to the fundamental equation 

F r o m  now on we shal l  cal l  k = k and go 
1 

3 

d< . 
dt The derivative - 1s naturally evaluated with r e spec t  to an invariable system. 

-6 -  



. 
-+ 

It is much s impler  to study the motion of k with respec t  to a moving 
+ + + - +  

reference system, that is, the rotating sys tem N, 5, N X 

G!N the angular velocity of this system around N. 

the nodal line is advancing and negative i f  ( a s  for  a low-inclination Ear th  

satellite 

= M. Let us call  

is positive if 
.+ + 

The sign of 

d. ‘P 

o r  for  the Moon) the nodal line is  regressing.  

The preceding equation may  be rewrit ten a s  

Dividing by C w  we may write 

- + +  + + +  -+ dk - = - !hN X k t a (k  * n)(k X n)  dt , 

where 

C - A  2 

2 3 / 2  C w  * 

3 n 
2 

a = -  
( ] - e )  

Let  us now introduce the inclination i of the orbit .  We have 

+ + + 
n = - s i n i M t c o s i N  
+ 
k = k x S t k  e t k  Z N’ 

Y 

.L -2. 

F o r  an Ear th  satell i te we have 

J2 A a l r e v  = - 3 ~ r -  cos i 2 
P 

- 3  and R =: 6 , 3 7 8  km. 2 where  p = a ( l  - e ), J = 1 .  083 X 10 R O J  0 2 
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and the following three equations: 

L 

a 2 dk 
3 = h k  t a k  k cos  2 i  t - sin 2 i  (kZ - 
dt Y Y Z  2 

dk 
2 = -bkx - a k  k cos2 i t a sin 2 i  k k 
dt x z  2 X Y  

a dk 
z -  - - - - k k s in  2 i  t a k  k sin2 i 

dt 2 x z  X Y  

+ 
The path of the vertex of k on the unit sphere 

2 2 2  
Y Z  

k x t k  t k  = I  

is determined by the quadratic integral  

2 
Z Y Y Z  Z 

a cos2 i k t a sin2 i k2 - 2a s in  i cos i k k t 2Qk = H. 

+ 
2. Relative equilibrium configuration of the k axis 

Let US f i r s t  consider the relative equilibrium configuration. It is eas i ly  
+ +  

shown that the only equilibrium configurations a r e  in the M, N plane. That i s  

0 i k = 0 ,  x 

0 0 0  

hk t a k  k cos 2 i  t 5 sin 2 i (k 
Y Y Z  2 Z Y 

Let us  put 

0 0 

k =sinX,  k = cos A . 
Z Y 
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We have 

2h  s in  x t a sin 2 ( i  t X) = o . (1 7 )  

+ 
This relative equilibrium configuration for k,naturally corresponds to a 

regular precessional  motion of the body, the precessional  angle being X ,  and 

the angular velocity of precession being L? . 
fixed and the space-fixed) a r e  easily computed. 

The two Poinsot cones (the body- 

3 .  Precess iona l  and nutational motion 

Equation (14) may be writ ten in the following f o r m  

a (ky sin i - k cos  i)2 t 2 h k  = H .  
Z Z 

- + +  
I t  represents  a family of parabolas in the M - N  plane determined by the 

value of H. 

rectum. 

The axis of these parabolas is independent of H as is the latus 

The equation of the axis is  

- 9 -  



i2 s 2 .  The convexity of the parabola is determined by the sign of - ; i f  - 1s a a 
positive, the convexity of the parabola is directed toward negative y; i f  
s 2  - is negative (as for  the Moon), the convexity is directed toward positive y. a 
The relative motion is in some cases  a pure regular precessional motion 

but, in many cases,  it may be very different f r o m  regular precessional  

motion. 

4. The Moon 

F o r  the Moon (case c )  of p. 3 )  we have, assuming the unit of t ime to 

be the s iderea l  period of the Moon's orbital  motion, 

-2  
,, 52 = -2.  525 X 1 0  r a d / r e v  , 

' i = 5."8'43'' . 

F r o m  equation (17), assuming the Moon's axis of rotation to be in the relative 

equilibrium configuration, we have 

C - A  - 2  s in  X 10. 188 - -2.  525 X 1 0  C s in  2 ( i  t A )  

C - A  
C 

F r o m  this relation, using the observed values of X and i, we have f o r  - 
the usual value 6.  3 x 

In Figure 1 we have shown the unit sphere and the projection on the y-z  

plane of the possible motion of the k axis. In this  case  (k, N smal l  and a l so  

i smal l )  we may very easi ly  compute the angular velocity of the relative p reces -  

sional motion about this relative equilibrium configuration, that i s ,  the angular 

velocity of nutation about the absolute precess iona l  motion of the Moon defined 

+ --*A+ 

I -1 0 -  

t 
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by Cassini’s  second and third laws. 

this angular velocity 0 t a .  

approximation 

Neglecting smal l  quantities, we find for  

The absolute velocity- w i l l  be to a first d c  
dt  

and being the amplitude and the phase of the nutation. W e  m a y  a l so  0 
wri te  

--2. 

[ A  s in  ( h t  t q0) t e l  s in  [ Q P ~  t ( 0  t a) t ] ]  c2 . 

We have consequently 

d c  
d t  F o r  small e l ,  we have the average value of - roughly equal to  1, but the 

maximum value is X t 0 and the minimum value is X - 1 

We may  here  observe that internal friction produces a dissipation of 

energy, because both the magnitude of the angular velocity and the 

instantaneous axis of rotation change. In fact ,  in a simple way, let  u s  

consider two neighboring points 

be the projection of P and Q on the instantaneous axis of rotation about 

the center  of mass .  

relative to the center of mass ,  a r e  

P and Q, in the body, and let P’ and Q’ 

The accelerations of the two points in the motion 

-12-  



4 + 
2-dw --w - 

- 0  Q Q t - X O Q  . 
dt - W 2 P ' - j ; +  dw x O P  ; dt 

When the motion is a uniform rotational motion, the second t e r m  in each ex- 

pression goes to ze ro  and the inertial  forces  correspond to a static field of 

forces ,  and no relative motion occurs. 

w changes, internal forced elast ic  vibration takes place under the action of 

internal friction. 

tude of the forced vibration, any regular prece ssion-nutation will dissipate 

the same amount of energy as in the pure precessional  motion; but if the 

dissipation is  an increasing function of the amplitude with a positive second 

derivative, the energy dissipation w i l l  a l so  increase i f  nutation is present.  

F o r  any nonrigid body (elast ic)  any precessional  motion will be damped out 

and a pure rotational motion will finally result .  

motion is dynamically impossible, the forced precessional  motion will cor -  

respond to a minimum dissipation of energy by internal friction. 

by saying that the second and third laws correspond to a motion that, among 

all possible dynamical solutions, minimizes the internal dissipation. 

When the angular velocity vector 
-+ 

If the internal friction dissipation is l inear  with the ampli-  

Since he re  a pure rotational 

We conclude 

5. An artif icial  E a r t h  satell i te 

We shall consider a 24-hour satellite (case b )  of p. 3 )  a t  an inclination of 

We suppose the inertial  ellipsoid to be rotationally symmetr ic  about the 30" . 
axis of maximum moment of inertia. In addition, we suppose that the 

magnetic torque is minimized by suitable design. We have 

b = -2. 5 X rad/day C L = ~ T  - - A rad/day 
C W  

where  w is the spin velocity about the symmetr ic  axis. 

- 1 3 -  



4 Suppose - - A = -  and w = 1 0  rad/day;  we then have C 

a 

The path of the spin axis is represented in Figure 2. 

three stable and one unstable relative equilibrium configurations, a s  for  

the case of Mercury. 

very c lear  picture of the behavior of the path of k on the sphere.  

We note that there  a r e  

W e  considered the satell i te case  in o rde r  to  give a 
-+ 

6. Mercury 

F o r  Mercury, assuming B-A negligible with respect  t o  C-A, we have 

(case a )  of p. 3 )  

a = 8.1 X 10 -2  - - A rad /day  C 

and hence the following resul t :  

C - A  
P I 10-3 
L I I 

s2 - -  
a 

The configurations of the possible paths of the rotational ax is  of Mercury  a r e  

represented in Figure 3 . If Mercury  is locked-in a s  the Moon is, Cass in i ' s  

laws make i t  possible to infer the position of the axis of rotation. 

case,  three equilibrium configurations a r e  compatible, but fo r  one of them, 

even if actually stable, the region of stability is ve ry  narrow.  

argument given above for the Moon needs to  be revised f r o m  the point of view of 

the e f fec ts  of internal dissipation. 

In this 

Moreover,  the 

Remembering that Mercury  rotates  in  a d i rec t  

-14- 
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. 
-+ 

fashion, we shall  compute only the relative equilibrium configuration with k 

very  near  n .  

with '2 = 10 

+ + + 
In fact, we find for  the angle between n and k, the resul t  4 '28" 
-4 C - A  3 and the resu l t  26"8 for  - = 10- . C C 

Since the precession of the node with respect  to an invariable sys tem 

is a t  present  very slow, we cannot be su re  that Mercury has  had enough 

t ime to sett le down into the final configuration in accordance with the f i r s t  

a s  well as with the second and third of Cassini ' s  laws. Naturally this d i s -  

cussion is t rue only i f  A - B i s  small  compared to  C - A and C - B since 

otherwise none of the three cases  we have considered at the beginning is 

consistent with the Mercury  case.  

There is no need to emphasize the importance of the determination of 

W e  may determine this the orientation of the rotational axis of Mercury. 

orientation within the next few years  by obtaining accurate  delay-doppler 

r a d a r  maps of Mercury 's  surface.  

7. Iapetus 

This very  simple theory may  be applied to many of the satell i tes that 

are in some way locked-in to the pr imary.  Since G. D. Cassini  discovered 

Iapetus (Oct. 1671), we want to end this paper by devoting a few words to 

this par t icular  inhabitant of the sky. 

points oi view. 

br ightness  var ies  during a rotation by a factor of 6 (Whipple, 1963) .  

the other hand, the perturbations due to the Sun and the oblateness of Saturn 

cause the pole of the orbit  to describe a c i rcu lar  path about a mean pole that 

l ies  in the grea t  c i rc le  passing through the pole of Saturn 's  orbital  plane and 

of Sa turn ' s  equator. 

Actually Iapetus is peculiar f r o m  two 

Revolving with the same face toward Saturn, Iapetus' 

On 

It takes  the pole of Iapetus about 3, 000 years  to describe 

-1 7-  



its curve with a mean radius about 8" (Tisserand,  1891; Jeffreys, 1953). 

Taking f o r  granted all these data,  we will find out what the theory gives in 

this case assuming case  c)of p. 3. Thus, we have 

s i n i  
a 

-1 _2ao, 
79.33 yea r s  , n -  21-r i = 8 " ,  !2 -- - 3000 

= 1 . 3  x 10' 5- C - A  

3 C - A  3 2 ~ ( 3 6 6 )  C - -  - A C - A  
2 C 2 79.33 a = - n - = -  - 2l-r(6. 9 1 7  > 

and 

-5 c - - 4.83 X 10 - 1 C 
- -  3000 x 6. 9 C-A- C - A  ' 

s i  - -  
a 

and 

Suppose, 

I .  I 
h 2Q s in  i - =  a - 0 . 4 8 3 ,  1 a I = 0.13 . 

-+ 
We examine only the relative equilibrium configuration k 1 '  

mation we have A = -2i. 

regular ,  we should have - much sma l l e r  and k 1 will  be close t o  n. 

A s  a first approxi- 

If the body, as suggested by Whipple, is ve ry  ir-  
-+ 

C - A  
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