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CASSINI'S SECOND AND THIRD LAWS1

G. Colomb o2

Introduction

In 1693 G. D. Cassini published the three following empirical laws on
the Moon's rotational motion:

1) The Moon rotates uniformly about its polar axis with a rotational
period equal to the mean sidereal period of its orbit about the earth.

2) The inclination of the Moon's equator to the ecliptic is a constant
angle approximately 1% 5.

3) The ascending node of the lunar orbit on the ecliptic coincides with
the descending node of the lunar equator on the ecliptic.
These laws describe fairly well the main rotational motion of the Moon, as
well as the behavior of some of the lunar orbital elements, in particular the

effect of solar perturbations on the motion of the nodal line.

Physical libration of the Moon means the departure of the Moon's

rotational motion from that defined by Cassini's (1693) three laws.

In the literature on the subject, Cassini's laws are taken as a reference
motion, and the perturbations due to the gravitational torque acting on a
rigid body are studied. Naturally the parameters (principal moments of
inertia) are adjusted in such a way that the motion can be a dynamical solution,

after which the small oscillations about this solution due to the different

lThis work was supported in part by Grant No. NsG 87-60 of the National
Aeronautics and Space Administration.

2Srnithsonian Astrophysical Observatory, Cambridge, Massachusetts, and
University of Padua, Italy. .




torques are investigated taking advantage of the fact that the equation

can be simplified if one assumes that the actual motion of the Moon is close
to that described by Cassini's laws. To my knowledge no specific investi-
gation has been made of all other possible motions of the Moon permitted
by the actual gravitational dynamics, in order to understand the properties

of the actual motion.

I will be concerned only with Cassini's second and third laws, since the
first one seems to be quite clear and easily understandable if we assume the
inertial ellipsoid of the Moon to be triaxial. With this in mind, I have studied
the motion for a model representing the real case to an extent that I judged
sufficient for the main purpose of understanding the second and third laws.

I will show that the second and third laws are independent of the first one, at
least qualitatively, in the sense that even if the Moon's inertial ellipsoid were
rotationally symmetric, the second and third laws could still be satisfied
(provided the rotational angular velocity of the Moon is the same) since they
represent a motion corresponding to the minimum dissipation of energy by
internal friction. For a different rotational angular velocity, only the inclina-

tion of the Moon's equator on the ecliptic would change.

This very simple theory applies to any satellite or planet whose nodal
line on the invariable plane shifts because of perturbations, that may be of
different origin (e. g., oblateness of the primary body, a perturbing third
body, or both). We will treat the case of Mercury, the case of an artificial
Earth satellite (gravitational torque only), and finally the case of Iapetus
since G. D. Cassini was the discoverer of this, for many reasons peculiar,

satellite of Saturn.

1. Equations of motion

We study first the general problem of the motion of the rotational axis
of a rigid satellite due to a gravitational torque. We deduce the equation of
motion in a closed, very simple form since in our model a reduction to one
degree of freedom is possible and also a first integral is easily found. The

motion may also be represented in a very simple geometrical form.
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Let Z be a satellite of the primary E; G the center of mass of =Z; i, j, k
the unit vectors along the principal axes of the inertia ellipsoid of Z; and
A, B, C the principal moments of inertia (A < B < C). A permanent rotation
of Z about C is a stable motion, and internal dissipation minimizes any possible
wobbling of the spin axis in relation to the external torque. We assume that
only the gravitational torque is present and that the body is rigid. Later on
we consider the effects of internal dissipation. The gravitational torque acting

on the satellite may be written

T=2g {(c SBYE )T WTHA-C)r- K)r - D+

(1)
fB-AE DE-DES

Here p is the product of the gravitational constant and the mass of E, r is the unit

vector from G to E, and r is the distance GE.

a) Suppose A = B; then the torque reduces to

e

T=22(C-A)(F  B)r XK. 2)

= w
w

b) Suppose the rotational angular velocity w4 is much larger than the
orbital angular velocity. We may then consider rand k constant during one

rotational period; and averaging we find

%:iH<C-A;B>(?-T€)(?><K). (3)

c) Suppose the body is moving in such a way that the axis of minimum
moment of inertia is nearly pointing to E (stable relative equilibrium position);
and suppose that B-A is small compared to C-A. Thus, neglecting second-

order terms, we may write

T:%(C-A)(?-i{)(?xi) . (4)
T




The perturbing torque, being generally small, may be averaged over an
orbital period.

Let us call £ the unit vector along the ascending node of the orbit of E
with respect to G; n the unit vector normal to the orbital plane; m=n X;
¢, N an inertial reference frame centered at G. We have

and Cys Cos
(5)

r=cos W+ v) ¥+ sin (W + v) m (
_a(l - ez)
"1l +ecosv
and v are the semimajor axis, eccentricity, argument of perigee

where a, e, @,
and true anomaly, respectively, of the orbit of E with respect to G. Now let

us consider the dynamical equation (with K the angular momentum vector)

%‘(c S AT - R)(r X K) :
/ ©

-2

&lm

*UI

f—gc A)r - K)(r X K)dt -
U

where P is the orbital period of E about G. We may also write

—?,—=—f Hc-aF DEXDE (7)
Since
1/2
2o o 2mat( - &b
v = h = B s




we have

1 _ Pr2
Voo2n az(l - ez)l/2
and consequently
2
AK _ _— 21/2_[ E;E(C-A)(?-E)(?xl?)dv. (8)
P 2ma (1 - e7) 0

Let us now introduce the unit vector a from G to the periapse and define the

. —> — — —
unit vector b as b=n X a. We have

?=Zcosv+1;sinv s
and
AK 3p(C - A) .
5 = 3 > 3772 (1 + e cos V)(ka cos v + kb sin v)
2wma (1 - e7) o

[Zsinvk -bcos vk +;1>(k cos v - k_ sinv)] dv
n n b a
(8"

K
3u(C - A) n nl g
=3 2,372 °" 2 (kba kab>
2ma (1 -e")

where n is the mean motion of E.




Now let us write the angular momentum vector

As is usual in the treatment of gyrophenomena, we shall now assume as a

first approximation that

K= Cw3_1: . (9)

For the Moon A 2 B = C, and we may write

K:(A—C)wl1+(B—C)w23+C(w11+w21+w3k)

Neglecting small terms of the order of 3 X 10_6 of the main term leaves

By writing the equation of motion in the form

2

__d_— — _—3— n C_A) —> . — - —
dt<Cw k1>_2 —_1?—377&1 m(k, x 1) (10)

(1 )

we neglect only very small terms. From now on we shall call 1_()1 = k and go

back to the fundamental equation

> 2
dk 3 - > > > s
cw i) n (C ?)2 (k * n)(k X n) . (11)

(1 - ez)

The derivative g_t is naturally evaluated with respect to an invariable system.




It is much simpler to study the motion of K with re spect to a moving
reference system, that is, the rotating system _N>, 5, N X €= M. Letus call
ON the angular velocity of this system around N. The sign of Qis positive if
the nodal line is advancing and negative if (as for a low-inclination Earth

satellite  or for the Moon) the nodal line is regressing.

The preceding equation may be rewritten as

- 2
dk Lo TY.3 n(C-A) 7o
C(D<E +QNXk>—2 —2377—2— (k* n)(k X n).
(1 -e
Dividing by Cw we may write
a)k - —> — — - — —>
& = -ON X k+a(k: n)kXn), (12)
where
q = 3 n2 C -A
2 (1 - e2)3/2 Cw

Let us now introduce the inclination i of the orbit. We have
K:- siniI\—/E+cosil<T)
K=k Q+k M+k N

x vy 4

“For an Earth satellite we have

JZ
Al rev = - 3‘rr-—2 cos i
P

2 -3 -~
where p = a(l -e"), Jz =1,083 x 10 RO’ and RO = 6,378 km.
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and the following three equations:

N

dkx . a 2 2
= _ Q + k N ol . . _
It kY a ykz cos 2i + > sin 21 (kz ky)
dk . 2 aQ
—Y = _Qk -ak k cos“i+=sin2ik k > . (13)
dt x X z 2 Xy
dk “ >
—2 = -k _k_ sin2i +ak_k sin“i
dt 2 Xz X'y )

The path of the vertex of K on the unit sphere
K2+ k2 kS =1
X Y z

is determined by the quadratic integral
o cos® 1k® +a sin® i k° - 2a sinicos i k k_+ 20k = H. (14)

Z y vy z z

2. Relative equilibrium configuration of the k axis

Let us first consider the relative equilibrium configuration. It is easily

shown that the only equilibrium configurations are in the 1\7[, N plane. That is

k =0

x >
(15)
.- ° e ° .,a . . °2 °2.
Qk +ak k cos2i+=sin21i (k -k 7}=0.
Yy y z 2 b/ y
Let us put
k =sinX, k = cos \ . (16)
y z




We have
2Q sin X +a sin2(i+\) =0 . (17)
This relative equilibrium configuration for ;,naturally corresponds to a
regular precessional motion of the body, the precessional angle being \, and
the angular velocity of precession being Q. The two Poinsot cones (the body-

fixed and the space-fixed) are easily computed.

3. Precessional and nutational motion

Equation (14) may be written in the following form

a (k_sini-k cosi) +20k =H. (18)
y z z

It represents a family of parabolas in the M-N plane determined by the
value of H. The axis of these parabolas is independent of H as is the latus

rectum. The equation of the axis is
k sini-k cosi-cosi— =0 . (19)
v z a
The intersection with the z axis is aty = - g ; the inclination is i. The length 2p

of the latus rectum is

2p = Zi;ll_ﬂ _ (20)




The convexity of the parabola is determined by the sign of S— ; ifg is
positive, the convexity of the parabola is directed toward negative y; if
fl—z is negative (as for the Moon), the convexity is directed toward positive y.
The relative motion is in some cases a pure regular precessional motion
but, in many cases, it may be very different from regular precessional

motion.
4, The Moon

For the Moon (case c) of p. 3) we have, assuming the unit of time to

be the sidereal period of the Moon's orbital motion,

, 2 = -2.525 X 10_2 rad/rev

El

C -A

a =10.188 C

rad/rev s

i=528"'43"

From equation (17), assuming the Moon's axis of rotation to be in the relative

equilibrium configuration, we have

C-A _ -2 sin A
IOISST-—-2525X 10 sin 2(1+)\) .
. . . ) C - A
From this relation, using the observed values of X and i, we have for C

the usual value 6.3 X 10—4.

In Figure | we have shown the unit sphere and the p_x;g\jiction on the y-z
plane of the possible motion of the k axis. In this case (k, N small and also
i small) we may very easily compute the angular velocity of the relative preces-
sional motion about this relative equilibrium configuration, that is, the angular

velocity of nutation about the absolute precessional motion of the Moon defined

-10-
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by Cassini's second and third laws. Neglecting small quantities, we find for

—

this angular velocity Q +a. The absolute velocity—dal%- will be to a first

approximation
_c_l_g___ ON X k + 6 cos [® +(§2+a)t]: + sin [® +(§'2+u)t]:
dt 1 0 1 0 24"’

61 and <I>0 being the amplitude and the phase of the nutation. We may also

write

dk

E:[Xcos(9t+\lfo)+6

1cos[<1>0+(9+o.)t]c1 +

[\ sin (2t + \Ifo) +6 sin[éo +(S2+a) t]]_c>2

1

We have consequently

dk | _ .2, .2 1/2
la—t— =[x +91+2)\91cos(0t+\1/0-®0)] ]
dk
For small 91, we have the average value Of_d? roughly equal to \, but the

maximum value is \ + 61 and the minimum value is \ - 91 .

We may here observe that internal friction produces a dissipation of
energy, because both the magnitude of the angular velocity and the
instantaneous axis of rotation change. In fact, in a simple way, let us
consider two neighboring points P and Q, in the body, and let P’ and Q°
be the projection of P and QQ on the instantaneous axis of rotation about
the center of mass. The accelerations of the two points in the motion

relative to the center of mass, are

-12-




— g i e g —
_wzplp+%“ti><op; -wZQ'Q+%‘9t-><OQ

When the motion is a uniform rotational motion, the second term in each ex-
pression goes to zero and the inertial forces correspond to a static field of
forces, and no relative motion occurs. When the angular velocity vector

w changes, internal forced elastic vibration takes place under thé action of
internal friction. If the internal friction dissipation is linear with the ampli-
tude of the forced vibration, any regular precession-nutation will dissipate
the same amount of energy as in the pure precessional motion; but if the
dissipation is an increasing function of the amplitude with a positive second
derivative, the energy dissipation will also increase if nutation is present.
For any nonrigid body (elastic) any precessional motion will be damped out
and a pure rotational motion will finally result. Since here a pure rotational
motion is dynamically impossible, the forced precessional motion will cor-
respond to a minimum dissipation of energy by internal friction. We conclude
by saying that the second and third laws correspond to a motion that, among

all possible dynamical solutions, minimizes the internal dissipation.

5. An artificial Earth satellite

We shall consider a 24-hour satellite (case b) of p. 3) at an inclination of
30°. We suppose the inertial ellipsoid to be rotationally symmetric about the
axis of maximum moment of inertia. In addition, we suppose that the

magnetic torque is minimized by suitable design. We have

Q = -2.5 % 10_3 rad/day a=6w rad/day

where w is the spin velocity about the symmetric axis.

13-



and w = 104 rad/day; we then have

[ 6)}
=]
ge)
o)
o)
0
o
@
!
Wi

=0.7

n

0.7,’—29— sin i
a

The path of the spin axis is represented in Figure 2. We note that there are
three stable and one unstable relative equilibrium configurations, as for
the case of Mercury. We considered the satellite case in order to give a

very clear picture of the behavior of the path of k on the sphere.

6. Mercury

For Mercury, assuming B-A negligible with respect to C-A, we have

(case a) of p. 3)

i =7° z
Q = 6"2/year = 8.1 X 10~8 rad/day ,

-2C - A

8.1 X10 C

a

rad/day S

and hence the following result:

C-A -3 4
- 10 10
Q . -
L ~1073 ~10"2
Q
29 sin i - -
' sin | 2.6 x 1074 2.6 %103

The configurations of the possible paths of the rotational axis of Mercury are
represented in Figure 3 . If Mercury is locked-in as the Moon is, Cassini's
laws make it possible to infer the position of the axis of rotation. In this

case, three equilibrium configurations are compatible, but for one of them,

even if actually stable, the region of stability is very narrow. Moreover, the
argument given above for the Moon needs to be revised from the point of view of

the effects of internal dissipation. Remembering that Mercury rotates in a direct

-14-
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From Left

Projection of the relative paths of the vertex of the unit vector along the spin axis

for a particular 24-hour artificial Earth satellite.

Figure 2.
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fashion, we shall compute only the relative equilibrium configuration with K

very near n. In fact, we find for the angle between n and K, the result 4'28"

with c E:A = 10—4 and the result 26"8 for C E:A = lO_3 .

Since the precession of the node with respect to an invariable system
is at present very slow, we cannot be sure that Mercury has had enough
time to settle down into the final configuration in accordance with the first
as well as with the second and third of Cassini's laws. Naturally this dis-
cussion is true only if A - B is small compared to C - A and C - B since
otherwise none of the three cases we have considered at the beginning is

consistent with the Mercury case.

There is no need to emphasize the importance of the determination of
the orientation of the rotational axis of Mercury. We may determine this
orientation within the next few years by obtaining accurate delay-doppler

radar maps of Mercury's surface.

7. lapetus

This very simple theory may be applied to many of the satellites that
are in some way locked-in to the primary. Since G. D. Cassini discovered
Iapetus (Oct. 1671), we want to end this paper by devoting a few words to
this particular inhabitant of the sky. Actually lapetus is peculiar from two
points of view. Revolving with the same face toward Saturn, Iapetus'
brightness varies during a rotation by a factor of 6 (Whipple, 1963). On
the other hand, the perturbations due to the Sun and the oblateness of Saturn
cause the pole of the orbit to describe a circular path about a mean pole that
lies in the great circle passing through the pole of Saturn's orbital plane and

of Saturn's equator. It takes the pole of Iapetus about 3, 000 years to describe

-17-




its curve with a mean radius about 8 (Tisserand, 189l; Jeffreys, 1953).
Taking for granted all these data, we will find out what the theory gives in

this case assuming case c)of p. 3. Thus, we have

i=8°, Q =3—(:;:()lo.years-l , L 366)

79.33 ° =%
asgn St PP SR e SR
and
_SZ—="30001><6.9 C?A='4'83X10-SC?A |
and
é’%n_l =1.3x10'5'c—c:‘x

Suppose, for instance,that, C ?A = 104; we then have

Q
—0—"-'-'-0.483,

We examine only the relative equilibrium configuration 1—:1 . As a first approxi-
mation we have \ = -2i. If the body, as suggested by Whipple, is very ir-

regular, we should have (_ZE:—A— much smaller and El will be close to n.
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