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I. INTRODUCTION

- (1930)
Slater screening constants and Slater orbitals / have enabled

a whole generation of chemists and physicists to calculate approximate
values of many of the physical properties of atoms. The use of
screening constants implies that an atomic orbital corresponding to

a given set of electronic quantum numbers is the same, except for

a uniform scaling of the coordinates, quite irrespective of which

atom or ion is under consideration. This concept of interchangeability
of orbitals has greatly simplified our mental picture of atomic
structure.

An adequate simple model of a molecular orbital certainly must
be more complicated than a Slater atomic orbital. The molecular
orbitals vary in size and shape as the internuclear separations are
changed. Nevertheless, as chemists we feel confident that is must
be possible to develop the concept of interchangeability of molecular
orbitals on some sort of corresponding states basis. We are
impressed with the simple regularities which characterize most
molecules: the additivity of bond energies; the accurate
reproducibility of bond lengths, bond angles, and bond force
constants; etc.

As our theoretical treatments and mathematical experimentation
give progressively closer analogues to natural phenomena, it is
evident that two types of theories will emerge. First, due to

the development of computers capable of remembering and manipulating



very great detail, there will be the highly complex formulations
representing numerical models of physical systems which'eanebe
assimilated only by the high speed computing machines which generated
ﬁhem. And second, there will be the simplified semi~empiriba1’ )
formulations which the human mind can comprehend and manipulate in
a sophisticated conceptual or analytical manner. The computing
machines will provide specific answers to specific ‘questions in much
the same manner as the results of laboratory'experimeﬁté. Hdwe&éf,'
fﬁere is a great need for the output of the computing machines
describing these "numeric systems" tolbe in an accessible and usable

form. These simplified representations will help the scientist to

see the important features of the model and make it easier for him

to develop a simple concept or understanding of the phenomena. The"

scientist will then make quantitative definitions of the important
features and use the numerical output of the computing machines to’
interpolate and extrapolate the change of these important features
which occur when the "experimental" conditions are changed.

In seeking a simplified formulation of the behaviour of a
class of systems, we inevitably try to develop :a corresponding
states treatment in which all of the systeme obey the s ame equations
when each system is characterized by a set of parameters. Thus,
the aerodynamical behaviour of geometrically similar objects moving
through different media can be characterized by Reynclds, Prandtl,

and Schmidt numbers. The volumetric behaviour of a gas or liquid




can be characterized by the critical parameters: Pc’Vc’ and TC.

In chemistry, a compound is characterized by its atomic composition
and by its chemical bonds. In quantum chemistry, we further
characterize a compound by its molecular orbitals. Underlying each
of these uses of corresponding states is the inherent notion of the
interchangeability of systems of a particular class. This inter-
changeability is certainly only an approximation, but it may be
useful in helping us to comprehend and to predict the behaviour of
complex systems. In the present paper, let us consider on a simple
basis, first, how Slater screening constants relate to the
interchangeability of atomic orbitals and second, their role in

molecular orbitals.

II. Atomic Orbitals

The notion of screening constants stems from a well-known
theorem of classical electrostatics. Suppose that an atom is
composed of a nucleus of charge + Ze surrounded by a spherically
symmetric cloud of electrons having a charge density - é}?(r).
Then the electrostatic potential V(r) at a distance r from the

nucleus is

V(r) = +e( 2 - S(x))/ r = +e Zeff(r)/r (1)
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Here the screening constant S(r) = lurjo;r'z dr' is the number

of electrons lying within a sphere of radius r . The effective nuclear
charge Zeff(r)= Z - S(r). It is a remarkable fact that V(r) and:
Zeff(r) are unaffected by that part of the spherically symmetric
electronic charge cloud which lies outside of the sphere of radius r.
If the electrons were distributed in a set of spherical shells, thén

for electrons in the n-th shell the electrostatic potential would be

vV = e(Z-Sh)/r where Sn is the screening constant. If there are

N, electrons in the k-th shell, then

k

s. = ) N +.’i<Nn-1) (2)

The reason why each of the other electrons in the n-th shell is only
half effective in its shielding of a particular electron is that
(if the shell has finite thickness), it is equally probable that an
arbitrary other electron has a radius greater than the radius of
the particular electron under consideration.

In real atoms, the atomic orbitals are not highly localized
in a spherical shell. Thus the concept of a screening constant for
each type of orbital represents an approximation. And, indeed, for
the expectation value of each different type of property, we should
use a different value for the screening constant.

Already in 1921 Schrodinger suggested that the orbits of the

semi-classical Bohr quantum mechanics be divided into segments.




In each of these segments, the ellipsoidal trajectories were
approximated by assuming a coulomb potential with an effective
nuclear charge characteristic of this segment. Schrodinger's
concept of atomic structure was a crude beginning of the Hartree
(1927,1932)

atom. In 1927, Pauling/used Schrodinger's procedure to estimate
(rather accurately) the molar refractivity, the diamagnetic
susceptibility, and the sizes of various atoms.

In 1930, Slater made the use of screening constants simple
and practical. It would have seemed logical to use hydrogenic

Naqvi 1952-4, Naquvi and Victor 1964)

orbitals/ However, with hydrogen-like orbitals, many of the
integrals required for the estimation of atomic properties are
quite difficult to evaluate. Slater was impressed by Zener's (1930}
work on analytical Hartree wave functions. Zener found that, as
far as energy is concerned, the nodes in the orbitals are quite

unimportant. Thus, Slater simplified the Zener wave functions to

obtain the familiar Slater orbitals:

Rir) = r°  lexp( - @z -8)r/n") . (3)

Here the screening constant S and the effective principal quantum
number are embedded parameters which Slater determined so as to
give good values for the x-ray energy levels of atoms, atomic and

tonlc raciis

for the determination of atomic properties are simple. For example,



the mean value of the k-th power of the radius of an electron is

given by the relation
n * k k
k _ i o % . k
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Much has been written elsewhere on the many different types of
(Hirschfelder, et al 1S64)

applications of Slater screening constants / TFor some properties

such as the ionization potentials and the atomic radii they give

excellent values. For other properties, they give only fairly

good approximations.

For really high accuracy it is necessary to have different
screening constants for different properties. For example, consider
the expectation value of a property which varies as rk . If k
is large, those portions of configuration space where r 1is large
(and the screening by the other electrons is large) must be given
the most weight. Thus, properties which vary as rk require large

screening constants if k 1is large and small screening constants

if k 1is small, On this account, the energy screening constant




(corresponding to k = -1) should be less than the diamagnetic
susceptibility screening constants (corresponding to k = 2). With
(Sanders and Hirschfelder 1965, and Robinson 1965)
the use of perturbation theory and hypervirial theorems/ we are
now able to calculate good values of the screening constants
appropriate to a particular property. In the perturbation theory
calculations, the screening constant is adjusted so as to make‘the
first order correction to the expectation value vanish. Table 1
shows a comparison between the Slater screening constant values,
the perturbation theory values (calculated with hydrogenic orbitals)
and the exact values of the expectation values for a number of one
electron operators.

Table 1.

Expectation Values of One Electron Operators for

a
Helium Ground State . All values are given in atomic units

_ Slater Orbital Perturbation
‘Operator with S = 0.30 Theory Exact
rg 0.882 0.923 (S=0.375) 0.929
ri. 1.038 1.170 (S=0.398) 1.192
r? 2.694 3.745 (S=0.434) 3. 944

r? 13.05 23.63  (5=0.460)
r12 5.78 5.977 (S=0.271) 6.017
(z) 4.913 5.616 (S=0.223) 5.688

a. Sanders and Hirschfelder (1965).



I11. Molecular Orbitals

Slater type orbitals (STO's) have formed the building blocks
for a vast number of calculations on molecules (Karo and Allen 1960).
These have ranged from very exact treatments on H2 to semiempirical
 electron calculations. The simpler of these approaches uses at
most one Slater Orbital on each atom of the molecule to represent
each molecular orbital. The more arduous and sometimes more refined
treatments express molecular orbitals as a linear combination of
“many STO's on all centers of the molecular system. The MO's obtained
by the former treatments may be conveniently called minimal basis
set MO's and by the latter extended basis set MO's.

Due to their feasibility and often their qualitative success
minimal basis set calculations have been and are extensively pursued,
particularly for large systems (more than 2 centers). It is thus
‘useful now that extended STO basis set MO's very near the
Hartree-Fock solutions are available for many diatomic molecules
(Nesbet 1962, Kahalas and Nesbet 1963, McLean 1963, Wahl 1964, Huo 1965
Wahl et al, 1966a,b) " to present some comparisons between the
minimal STO basis set MO's and the extended STO basis set MO's.

In Table 2 we have compared Total energy, Binding Energy,
Ionization potentials, and where relevant dipole moments. Extensive
comparisons of this sort which also involve quadrupole moments and
field gradients are given in the papers cited.

Several points have become clear. One is that the minimal basis

set provides a poor and unreliable quantitative representation
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of the molecular orbital: (see, for example, dipole moment behavior),
second the Hartree-Fock values of one electron properties are quite
good and definite while small basis set properties can oscillate widely
with charge in basis set composition. Third we obviously must go beyond
the Hartree-Fock model to describe chemical binding in a non-empirical
(Nesbet 1965).
manner/ Perhaps the most compelling reason for pursuing the exhaustive
and expensive calculations necessary to obtain HF solutions is that
they provide us with good one electron properties and a solid and
consistent platform from whiich we can build the improvements necessary
(Das and Wahl 1966, Gilbert 1965)
to adequately describe molecules/ . Last it is encouraging that the
molecular Hartree-Fock wave-function seems to be attainable with an
extended but manageable basis set of STO's, derived from atomic SCF calculations.

Although not sufficient as an accurate déscription of charge
distributions and not suitable when crudely used for predicting
molecular properties, the Slater screening constants and the single
Slater atomic orbitals seem to provide a rough measure for the size
of many molecular orbitals. Although, of course, there are other
molecular orbitals which are so distorted that they bare little
relation to the atomic orbitals,

(Wahl, 1966)

The preceding paper/has presented the electron density of very
nearly the Hartree-Fock molecular orbitals of the homonuclear diatomic
molecules in the first row of the periodic table. As a step in
parameterization of these orbitals, (since we now have them we should
try to put them in a simpler form) it is interesting to see how

accurately we can estimate some general features of these molecular

Hartree-Fock orbitals with a very unsophisticated used of Slater screening

constants. First of all, we can consider the distance from the nucleus



at which a 2s or 2p atomic orbital has a maximum charge density.
According to Slater orbitals this should occur at rmax = (Z-S)-1 ao.
If the molecular orbitals were the same as the atomic orbitals in
the separated atoms, and if neglect of overlap is justifiable, then
the values of T ax measured towards the outside of the molecule for
the 20 g’ 2 0"u, 11tu , 3 d"g, and lng Hartree-Fock orbitals should

all be comparable to the (Z-S)-1 a, for the separated atoms. Table 3,

0
shows this comparison, whereas our simple Slater screening constant
prediction of the L is excellent for the 1nu, 3¢rg, and lng .
It is very poor for the 20‘g and the 2$‘u.

The next question which we can ask is how well do the Slater
screening constants with Slater orbitals predict the position of the
outermost electron density contour as shown in the preceding paper.
This contour corresponds to an electron density in the orbital of
6.1 x 10-5 eao-3. Table 3 shows this comparison. The agreement
is excellent for the ].G% and ldilcmbitals which, except for H2

really "look like'" atomic cores.



Comparison of r
max

T for Slater Atomic Orbitals.
max

Table 3

Here

for Hartree-Fock Molecular Orbitals with

is the distance
auter

from the nucleus to the maximum electron density in the/orbital.

The Hartree-Fock Molecular orbitals are given in the preceding

paper.

Minimal
STO
Atom -

(z-s)7!

1.54
0.77
.65
.51
b

.38

2.3

1.7

1.0

.80

.75

.70

Extended Basis MO's -

26
u

0.90

.75

.65

.60

.57

1n
u

0.80

.65

.50

.45

.35

3¢
g

.50
.45

.35

In

.40

.35

12
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For the other orbitals the outer perimeter predicted by non

overlapping single STO's with atomic screening constants is quite

poor. The 26 g. Hartree Fock MO perimeter shows a '"pulling in" along

the molecular axis relative to the simple Slater atomic orbital while
the 2&; Hartree Fock perimeter has moved out relative to the Slater
atomic orbital. The I, 305 and lmg orbitals all have a much
larger perimeter than the corresponding Slater atomic orbital.
However, the charge along this perimeter is extremely small and it
is only as they reflect more significant shifts in charge that these
observations are important. The differences displayed in Tables 3
and 4 arise from 1) neglect of overlap, 2) the HF MO's form an
orthonormal set while the Slater AO's are only normalized, 3) The
inadequacies of a single STO in representing any orbital, atomic
or molk cular, 4) The Slater AO has been "frozen'" in the molecule
and not allowed to distort through the variatiomal procedure. Since
these are just the &4 consequences of the usual assumptions made in
the most simple use of single STO's in molecules, these comparisons
may be instructive.
IV. Conclusion

Certainly these are crude observations and a detailed analysis
of these MO's is needed, but we feel that some "Slater-type"
parameterization of these accurate '"MO's" can provide us with
molecular building blocks and '"Molecular' Screening Parameters
useful for proceeding to larger systems and estimating molecular
properties just as Slater Screening constants have enabled us to

think about and represent atoms adequately for many purposes.
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