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This repart contains the following:

““Duration of Cyclotron Harmonic Resonances Observed by Satellite.

-

v’ Appendix I

Dielectric Tensor in Vlasov Plasmas Near Cyclotron Harmonics.
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P in Plasmas.
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DURATION OF CYCLOTRON HARMONIC RESONANCES
OBSERVED BY SATELLITES

I.P. Shkarof sky
RCA Victor Company, Ltd.
Research Laboratories
Montreal, Canada

-~ ABSTRACT -

I35/ 3

Cyclotron harmonic waves which travel at a group velocity equal

atellite velocity are investigated. The long duration of the

resonances observed by satellites is associated with these matched con-

ditions.,

Such a match can be accomplished for electrostatic waves

when these waves are backward (frequency much less than the upper hybrid)

but only for harmonics less than the fourth when these waves are forward

(frequency above the upper hybrid). The relevant wavelengths are slight-

ly greater than the free space wavelength parallel to magnetic field but

much less than the free space wavelength perpendicular to magne tic field.

Wave matching can also be obtained near the Appleton-Hartree

values when such waves can propagate. In this region we require a full

electromagnetic plus relativistic analysis. The relevant wavelengths

here are very large (of the arder of an earth radius) parallel to magnetic

field and slightly greater than the free space wavelength perpendicular to

magnetic field,

The time response of these waves depends, of course, on the extent

to which they are excited. Assuming that the Appleton-Hartree waves are

excited

with most of the input power (a plausible assumption) one finds

the correct order of magnitude for the time response for these matching

points.

To obtain the correct dependence on harmonic number as well,

(i1)



the above assumption is modified to include non-linear sheath effects
and a model of the sheath field is deduced. With the same assum>tion
(here probably incorrect, because of stronger sheath effects) for the
electrostatic wavega much longer time response is obtained. In zeneral,

where both matching points exist, one can expect both to be important.

.a,ujﬂc”"d

(1ii)




I INTRODUCTION

We find that the asymptotic time behaviour of the local
plasma and magnetic-field-resonance phenomena observed by satellite
topside sounders can be explained as follows. We consider the te-
haviour of the Vlsov plasma waves whose group velocities are equal
or nearly equal to the satellite velocity. The physical concent
is simply that only these waves stay with the satellite and account
for the electric field long after excitation. The signal-amplitude
decay is essentially due to wave-packet dispersion and varies typically
as t “exp(-iwot), where a is a positive fraction, t is the time, and
wo the frequency for which the group-satellite velocity match is
achieved.

Although the satellite velocity is much less than the electron
thernal velocity, it is not correct to take the group velocity equal
to zero because of important changes in the behaviour of the plasma
dispersion equation. Also, while the ratio of the satellite velocity
component perpendicular to the magnetic-field lines (VL) to the elec-
tron thermal velocity (vt) is small (~ 1/50), it is still much larger
than the ratio of the electron thermel velocity to the velocity of
light (c). However, the velocity of light may not be taken always to
be infinite as electrostatic treatments of the same mroblem do, since
the relevant wave numbers in many cases are comparable to the free-
space values, and the full electromagnetic equations must be used. This
is in contrast to the resonances (e.g. cyclotron harmonics) actually

observed in the laboratory which are associated with sharter wavelengths



and longitudinal waves.

In the satellite frame of reference (using a Galilean trans-
formation), the matching of velocities emerges naturally from the
"pinches" in the inversion of the Laplace-Fourier transformed Green's
function. e shall discuss the application to electron-cyclotron
harmonic resonances.

Matching points near free-space wavelengths, based on non-
relativistic calculations, yield a resonant frequency so near
[(w-nmb)/nwb < v’t/cz] to the rest-mass cyclotron harmonic value,
that the nonrelativistic theory is invalid. Relativistic theory
must be used, which gives relative deviations up to 100 v"'t/cz. The
various mtching points are investigated and values for W= 0l
k, and time duration are calculated. The K, velues turn cut to
be so srwall that further work should be done to include magnetic
field nonuniformities along field lines. The time duration agrees
as far as order of magnitude with observations. We hypothesize that
the excitation mechanism is due to sheath effects. With certein
sheath models, we provide the necessary decrease of excitation level
and the relative independence of signal duration as a function of
harmonic number.

Yatching points for electrostatic waves are obtained. The
signal duration is deduced and compared with the results of other
authors. The saddle point method is shown to be equivalent to the
pinch method.  Such matching points exist when the electrostatic waves

are backward, but only for n< 4 when the electrostatioc waves are forward,
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The time duration of these waves is much longer than observed,
This is attributed to the fact that the excitation level of these
waves is not strong and that the sheath, larger than the wave packet,

may inhibit these waves.



II SIMPLE CALCULATION OF THE SINGULAR TIME BEHAVIOUR FROM PINCHES

Let J(k,w) be the Fourier-Laplace transform of the source
current and let E(k,w) be the corresponding electric field where,

for example

) = [@r far o007 Dg(r,0) (1)

Here k is wave-number, w is angular frequency, r is distance fron
source and t is the time. Suppose that the plasma medium has a
dispersion relation given by the zeros of a dimensionless determi-
nant D and let Rij be the dimensionless minorsof D. Then using

the summation convention on j

iw R, ,
B, (k) = = RJ:'I')I Jj(}s,w) (2)
and
E,(r,t) = [dt' [d’r' 6 5(x-z") Izt (3)
where
G;5(z,t) = 3 €0 /’%’ e [dsk o %L E%i (&)

is the Green's function. For an infinitessimal current dipole with

moment IL,

I(r',t*) = IL 8(r') P(t') (5)

where 1 is the current vector in the direction of the dipole whose

half'-length is L. e then find,




-bh =

R
-iwt iker 1
E.(r,t) = eoiZw /‘%w_ P(w) e ¥ [d’k e~ 5-3‘1IJ.L (6)

In the above P(t') represents a pulse of frequency Q, duration T, SO

that

~oi(w- Q)r_,~

Pl =T Sy

S|

(7)

The above integrals will be calculated in the neighbourhood

of pinch .points1. For a stationary observer, a pinch is a point
satisfying D = 0 and aw/a}g, = 0, i.e. a zero velocity point on the dis-
persion curve. However, for an observer moving at a nonrelativistic
velocity V, such as a satellite, pinches occur when the satellite velo-
city matches the group velocity, satisfying D=0 and dw/3k = V. Ve
let w and k be the angular frequency and wavenumber in the plasma}frame
of' reference and w' and l'g' be the corresvonding values in the moving

satellite frame of reference. For nonrelativistic velocities

w'=w-keV, k'=m 5-(4)}]/02 so that w=w'+k'"V and k=k'+wV/c?
(8)

In the plasma frame of reference D(w,k)=0. Assuming 3D/dw £ 0, we

have
3D dw oD oD aD
8w3]$+8£c'0 or an*'@:()

if dw/0k=V. In the satellite frame of reference, use of the above

result shows that
8D_@8§w'+¥"w oD _ oD
3K' w ak * 3k -1 o0

vanishes. Ve, therefore, expand D(w'+ X'V, k'+wV/c?) to secord order



in k' near a pinch point, although for w', we expand D only to first

order. “hus in Cartesian coordinates
i ' \2 1, - 2 A - 2
D= (&' = wo)D, + 3ky = ke )?Dyy + 2k =1y oD, + 2l =k, )Dyy (98)
- ' - 2 1)2 \
where Dw..[aD/éw Jw,=wa and Dy, = la D/a(ki) ]ki'=ki; (9b)

assuming Dw and Dii to be non zero. Here wo and ki' are the values
0

of w' and ki' at the pinch point. We calculate only the response from
w'=we . Of course, a similar calculation can be done for w'=-~wo',
which will essentially change the e-iwét expression in the final equa-
tion to a sine or cosine with a pnhase factor,

It is convenient to evaluate the integrals in the moving frame
of reference with the satellite detecting the response. That is, we
let r = Vt. In Eq.(6), we can change dwd’k to dw'd’k'. The factor
in the exponential -i(wt=-ker) becomes =it(w=~k*V) = -iw't, since any
additional factor such as il'g"i' is zero at 5' = 0 where 5' is distance

from the moving satellite. [ear the pinch point, the most important

variation in the reletion for E occurs due to the zeros of D, assuming

that Ri,j is normalized to have no zeros. In fact, we then replace

Rij(kx,ky,kz) by R. .(k

i xo,kyo,kzo) and take it outside of the integrals%

Similarly, *(w)/w can be replaced by P(wo)/wo. The relation for £ in
2£q.(6) with the substitution from (9a) then becomes

. iB+oo o [
- 1 RiI LP -iw't -2
50 - gy [ e [ag fag fag

y
ic-w

N

- 0o - 00 -00

X 1

Ve gyt Ikt = k! )2
(w wo)Dw + c(ky kyo) Dyy

(10)

+ =g )0, v 0 =k ),

* A case when this is only approximate is given in Sec. IX(a).




where ¢ > 0 is the usual constant in the inversion of tne Laplace
transform. The k) integral can be evaluated using fd.x/(x +a?)=m/a
to give with e..(lr' ke ) -

ictw

iR, T IP -y
8;(t) = grytll e f Wity fdk'[ds
ZZ XX

x (11)

(D e,

Now only the singular part of the integral around € =0 is of interest
so that we can replace the limits by =5 to & and ocbtain the result
1

. -1 -1 - z ! . t t -7
2 sinh™"'[ ] or 2 cosh™'[ ], where [ ]_S(Dxx/Z) [(w'-wd)D +3(ky kyo) D ]
depending on whether [ ]/5 is greater or less than zero. In the
vicinity of the pinch point (0' = w¢' and k' = kj'ro)’ we can use the
logarithmic approximation for 2 sinh™'[ ] or 2 cosh™'[ ] of large
argument, viz. 2 1n[ ], and keeping only the singular part, we write

: 3 - LI Y | 2 ' o (] . Tnt

this sivply as -1nf (ky kyo) + (W' =wy )2Dw/Dyy]' Changing variables
again to x = (k' =~ k! e find
gain to (g yo) W

. ict+ow
-iR, 3. -a)o')2D
e I L
ic-x

8m’ eowow/D D

Now ‘/ln(xz-raz)dx = xIn(x*+a%) - 2x+2a tan"'(x/a). The most singular
contribution arises from the region x » 0 but x/a large, i.e. from the

2a tan"(x/a) term which gives 2ma. Thus we are left to evaluate



iR, ILP ic+e 1
55(t) = - =2 f W M ur —ugZat (130)
bar” oo DzzDchDyy ZDw ic=

=t 3 P 3
The value of the integral is simp1y2 —e"1wd tw/?/t;’éw/-i = o XoO 1-'w/-Iw/i'c/z,

so that
~iwo't 1
R, ILP e 2% - -2iD 5
w ‘
By(¥) = - =y 7D D_D (130)
Lweot Pwo 2z XX yy -

The same result can be obtained more directly by performing
the w integration before the k}': and 1(3'( integrations in Lq.(11). That

is we write

iR, .I Lpe wo't 1°"°°_.(w,_ "
E.(t) = iy J jdk' fdk' 1 Wo
16w €0uo D D

x d(w' = wg')

- D D . %
L -wo)+(k' k&o)z-zsliu+(k' -k! )% ===

X0 2D

iwo t oo

iv-i R I LPe
= dk!? v__ t )2 .l
j exp[ kyo) t

817 EowoVTt D D 2 -

[-s]

faw exp [;l (1) - &y )ZJ (14a)

R, I Lpe i¢o't
L

= = —— -

Lreowo t/? . nD_D D
22 xXx

X
2

] (14b)

el . . 2
which is identical to 3q.(13b). In the above we have nsed the relations
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] iC-’me_iwt . eiat
f dx exp[ia(x=-x0)?] =Vvir/a  and -~ = V-in
w+a)? Vi
-00 ic=e
It is convenient to express Dxx and Dyy in terms of D, =
[:azp/a(k‘;)2 o (We also denote D, = D__.) To obtain this
.:.“-' ki, z22

relationship, we now specify the direction of X, to be along the
x-axis, and magnetic field to be along the z-axis. In general, if

one changes from a Cartesian (kx’ky) to a cylindrical (k,,$) system,

one has
3D 2, 3°D  2cos¢p sinp 3%D sin®s 3°D 2cosp s aD
STF = cos%¢ - + =T + =
ks oky k, 3k, ¢ © K& o9 . o
24 3D
R (152)
P 3
and
i) 2, 3°D . 2cosp sinp 3°D cos?¢ 32 2cosp sind aD
= = sin ¢ — + - —-ﬁr_ﬁ —
3k 3k; k, 0k, " k&  op° k3 o
. coge 3 (15b)
k, OJk,

3 | - | - - - 3
We also find from aD/akxo_ aD/akyo- 0 that aD/aklo_ 3D/ o= 0 Since
dD/0¢ is propotional to 8(w'+ k'°V)/ 3¢ (see below), we find that an/a¢o=o
when k} = is parallel to X” Thus since we take V along the x-axis,$o=0 and kj
is also along the x-axis at a pinch point. We also note that aD/3k} = 0

at the pinch point. Thus we ocbtain

- __1 3D
Dxx = D‘ and Dyy- k;.o -a-;z

The angle ¢ occurs only in the w'+'15"g=w'+hk';§‘+ kzvz=w'+ kjV cosp + k,V,
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argument of D since everywhere else D is a function of k, and k,

rather than kx or ky separately. This means that we can write

D _ aD d(w'+k'y) _ .

3 ~ 3(w'+k'V) o - aw kjv, sing
and

oD _ 2D (k}V, sinp)?- k 1V, cos¢

3T T BwT Vi

Thus at the pinch point where ¢ = 0, we obtain

2

3°D _ ' _ N 1
398 = Dy KigVy o that D =D, aend D =-D i (16)
ki

Substituting this in 3g.(13b) finally yields

1 - t
R, ILP e % 25 ky — 1 TR, T.pe ot
3,(8) = - 2Ll [ 5| (17)
1 Leo t2ug TDuD,V, JTEot 2 woT
where T = [7D,D,V,/2k] ]2 (18)

Rij can also be written in terms ¢o, k, and k,, with ¢
dependences such as 1, cos®¢, sin¢p, and cosp, sinb,. Thus at the

pinch point(see previous footnote)

le Ny (1’ l: ( )cos bo +N§ )sm ¢o+N (L*)cosrﬁo sux,«{l(k,_oc /05)
= N(1> (i)kzocz/(dg (19)
The crucial naramcter is T which is proportional to the pro-
duct oi’ tne square roots of the curvatures of D with respect to k,

and k. As the dispersion curve becomes flatter, T becomes smaller

and the tire res-onse for a given excitation level becomes longer.
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The approach given above is, relatively speaking, simple-
minded. A generalized and somewhat more rigorous approach is as
follows., Let us include an exp[ik'er'] factor in Eq.(10) where r'
is distance measured from the satellite. Also as indicated in “:he

previous footnote, Rij should, in general, be kept inside the iate-

gral. Similar to Eq.(19) we write

R

(1) [ (2) (3) (&)
15 = Nij + Nij k; + Nij k; + Nij kkky c2fud.

Also we define new variables (this notation will be used only in the rest

of this section)
1 4
- | . | ] E = E = - =
Ki_(ki kio)(nii/z) , Ri_r:'.L(Z/Dii) » 0= (0 “’°')Dw and T-t/Dw
Then
'15! 0£l "'(l)'t = Eolozl - wolt + Eog - QT

RT = (rp)?(2/0) + (mp)2(2/D))) + (r1)%(2/D,)
and

9
Ak'dw! = D;’ (nmnyynzz/s)‘2 d*kan.

The modified Eq.(10) becomes

ilP expli(ko'*p' - wo't)] _ iK°R .3
E;(R,t) = p 7 (0351 T4 [" me[Lu%i_
eo(2m) woDw(DnchyDzz/B) N+K

where we have written Rij==roij]R’ to be explained. Any factor in-

side the integral such as

1 1 1
1t ' Lt ' Zz ' 3 - P
kik! = kiokj°+ kiohj(Z/DJ.J.) +kj°Ki(2/Dii) + Ki}\j(l./DiiD jJ.)



- 12 -

can be changed into the following operator outside of the integrals

1 1
t t 2 - 2l . - Za2
k! k! 1ki°(2/njj) a/aRj mdo(z/nﬁ)a/ani (z./niinjj) 3 /aRiaRJ.

io Jjo

Thus foi,j]R is the differential operator with respect to R given by
(2) ;2
N % 2
(1) ij © 2_ ey (23 __2 2
Mog4lg = Ny o ()= 2k (5%) mp-- 5 a2
(3) g :
3) ¢ 2_ opr (2 2.2 3
* N3 T <(k' ) 21k§o<n > 3R D 3'i§>

1 1
(4) e Vg [<2) 2 v (22
+ NlJ w3 k;cokyo ikxo D 3R ikyo D 3R
NAY
,
_ / L >§ 32 >
\Dxxnyy 3R R

Ve now apply the well-known exact result for the three-dimensional

Fourier transform:

F%@@K=hzgﬁR
0+ K? R

which shows immediately that the Laplace-transformed Green's function in

-V}
space G(R, Q) varies as e R/R. As a result, the electric field is

ilP e}Cp[i(ko"r' -w 't)] ic+e ~a R
B, 1) = fo, g oo R
L eowoD (b D D /g)z 1J R

XX yy 2z ié=ow




It is easy to see by expanding the exponential exp(-w’ﬁ R) and taking

the first singular term in Q = ('~ No')Dw, that the above relation

reduces to 3g.(13a) upon applying the previous simplication that
The final integral can also be evaluated exactly by using

the Laplace transform identityz:

ic+o v . %
[ o-inT 0 R a0 = <£TE> % exp(-iR? /) T)
ic-e

with Tat/Dw, we obtain

‘ 2,8) =y emfa(ior -urt)] (25— oy 1, emp(-in/ur)

Lreowo t /2 X'yy zz

which is identical to Eq.(13b) upon taking r'=R=0 and simplifying
foij ]R to Rij' More generally, using the operator expression for

foij ]R, we find

[oij]R"N(1) Fiﬂ:....i:( +DiT:]

(&) 42
—'}_[(W Tf—>.D T:] N <"°- R:Dvxc;” w'zn_)

If we now take r'=R=0, corresponding to satellite reception, and

k:;rog 0, corresponding to letting y.tbe along the x-axis, and using

Eq.(16) yields
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2

[ 2 k!
o, 1 =m0, w2 (RN (4, e\, () [0y s
1R 4§ T L)\ wo kjo)*Dyt) 7 Tij \wo ) kjoV,t

If we select only N§;) and the first term in Ngib, our equation for
E is identical with those obtained previously. The terms N§§> and Nég)
are only important in one case, to be considered in Sec. IX(a). In
fact, these terms are rederived there, starting from the simpler
relation given in Eq.(14a).

The analysis given up till now is general and can be aprplied
to the response due to any pinch point in a moving frame of reference.
The following sections are concerned with the deduction of T near

cyclotron harmonics. But first we give the formulas for the determi-

nant and the minors in Sec. III.
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ITTI DETERMINANTS AND MINORS FOR CYCLOTRON HARMONICS

The determinant giving the dispersion equations in the plasma
frame of reference can be written in the following form in terms of
the "warm" dielectric elements (&4 )W’ (e,;)w and (t-:”)w and with
k, = k,cosp, ky = k,sinp

khe®  kie® : ac? L o2
Ry= 7 = 7 8in¢+ (e14)y, UK _~(e11)y] + ——sinp cosp K Kupz cosp + (€13,

kK*c? Kkje? ' &
K,- Tt sin% + (e44 )W i(eys )W"'k,;kn;! sing

k2 02

~A[K (241 )] + —r—sinp cosp

c? . c? I of
k,k, o cosp + (€j3)w -1(513)‘;""]&1(" we sing Ku= Wzt (333)w
=0 (20)

w? w? wie

- b
K:.=1'E’:Lw§’ K"'1-3g’ Kx'_';&?ﬁubf (21)

wp is the plasma frequency, wy is the electron cyclotron frequency
and ¢ is the velocity of light. We have considered only first order
terms in A = (k:.v1,/“’b)z so that i(eqz)w = (311)W = (en)w. Near the

th
n " cyclotron harmonic (n 3 2) and to first order in ky, we have
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I(E”)W/(S”)WI of order A and I(eu)w/(a“)wl << 1« To calculate
the determinant, one can for simplicity set ¢=0 since the answer is
independent of ¢.

We first look for solutions having (€14 )W of arder (e“)c or of or-
der X which will yield the extraordinary and plasma waves. In this
case, one can neglect all (313)W terms. Denoting by D the determi-

nant af'ter dividing by the (33) element, one finds

2

ka¢? Kic? '—T" + (511)
=< B TL(k;kn \[1- T
/ / N _J

22 c2 k22

-—T-x{ +2(8") l_Kl--_? -z;w-_}

To first order in k./k,, one only has to keep the k, dependence in

(81 4 >W’ so that

o
R

KK, - xK; + (811),‘,‘, [2K1- x) (22a)

where

wZ

. 22 /,2 — 1
Kjc?/w®  and Ky o= Rw—:zwv' (22b)

In order to evaluate the integrals in the previous section, one

]
[t

needs to know the min:rs of the determinant including the ¢ anguler
dependence. After division by the (33) element, one finds far these

extraordinary=plasma waves

.- kyc*  kic’cos?ep re)om Kikic* sin®¢ 25 (e11)
M=l T T T + (&1 % Ky= X cos®d+ (€1
W 1
w‘[ u'kicz/wz]

(23a)

W
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kjc? kiknc* sing cosp
R =-R = -i(Kx-(e”)W]- —r— sinp cosxp+ ——g
12 21 [K,,-kicz/wz]
% ~i[K -(e11)g] - x sing cosp (23b)
Similarly,
Rz = Ky~ x sin®+ (€44 )y (23c)

We next look for solutions having (a;;)W'~ (s;;)c ~ K which
will give the ordinary wave., After division by the product of ele-
ments [(11)(22) - (12)(21)] = 2(s,,)w fxl- kic®/w? - k3 /20?] and

thereby normalizing Rss to one, we find that

D =K = x+ (e33)g+ (efs)y/(e11)y (2)

and even including the ¢ dependence we see that Rss = 1.

We finally seek solutions having (ezz)w ~ A'z(ezz)c ~ A"2K
to yield an extra wave which can exist. In this case, we have to
include the small diff'erences between (ezz)w, (811)W and (E‘Z)W =
-(821)W. Here (613)w and (s;;)w are both negligible and one ob-
tains to first order in k, after division by the (33) element multi~
plied by (€11)y, that

D=2K1‘§:i'§'{i:i + (922) '(812)W(e“)wz - X "'(ezz) + (8122 )W
T A P Wi LARCTIO N
(25a)
The warm elements cancel up to second order in A. Since the warm
elements are much larger than the cold elements, the minors after

division by (€14), times the (33) element are

R11= R22= 1 and R12= -R21= i so that R11+iR1a= 0, R11- i.R12=2. (25b)
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In the following section, we investigate more fully the

dispersion equations upon inserting the warm dielectric elements.

DI SPERSION EQUATIONS

In this analysis, we assume w to be complex and k to be real,
since we are interested in a decaying signal after a pulse trans-
mitter is shut off. We also assumed already that A = (klvt/bb)2:1’
that the frequency (w) of concern is very close to a cyclotron
harmonic (nwb) and that only first order terms in k, are nacessary
to consider.

The dispersion equation for the extraordinary-plasma waves
then has the form (see Eq.(22a) or Appendix II, Eq.(4) and

Appendix I, Eq.(4)),

1 (2K, = x)x
X 1
- = - I A ——— (263)
€14 w Pki(n 6—%’14'3/2 K’.LKr- K‘Lx
where
w2 v 2(n-2)
g /7t n®
wy) \wb/, n!2

and F is a function of k,c/w and of nwb/b. If k, is exceedingly
small that a relativistic analysis is necessary (see Appendix I;

then

2
Foi?) =Ty (k3c*/2viw )(Fms/2 -t Py ) = Fra2y* K3 B (27a)

where the argoument of the F functions is u§ with 8:=(w-nwb)/b,

u =c‘/ﬁi, vt=:VxT7m is the thermal velocity and Eq.(27a) defines B.
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If k4 is somewhat larger that nonrelativistic analysis applies,
then

- -(vtw/w/'?: kne? )z(%) (27v)

where % = (w-nwb)/wfz- k,v
3

of Fried and Conte~”.

% and Z is the plasma dispersion function

The ordinary wave (for n> 1) shows aprreciable disper-
sion effects only for very small k, when relativistic analysis is
necessary in which case its dispersion equation is (see Eq.(24) or
Appendix II, Zq.(9) and Appendix I, Eq.(32))s

(513)

Kp=x = "(533 W €11

2

kit
- ngc
=5 == Py {Fm [3(1* 7 zpm% *Fn+’/2 )

F
n+

ARy By ) ]}
= 2N 5;- P, {Fn+5/z + K2 ‘Bon} (28a)

where
2(n-1) 1

P" = <—> (28b)
and B is defined from kq.(28b).
Finally, the dispersion equation for the extra wave is

(see Eq.(25a), or Appendix II, Sec. II(d)).
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(512) (e21)

where terms on the right hand side cancel up to the second order
in A« To first order in k, (see Eq.(27a)), the relativistic

analysis in Appendix II (Sec. II(d)) and Appendix I (Eq.(33)) yields,

2K -x = By pa(n-2) [22 F __A

n+l Yne'h = 7

1
%405

p 1z (nes ){n+2 ﬂf&

F +,-
ex n+l “n+'4 Fn+%

4,2
+ : k"z n+2 ( - 2F 4,+ F )"'
?tw 1 V'n+Y ne'h T n+%

2
+ F;-Jﬁl (F % -2Fn+;/2 +Fn+1/2 ):l}

—A(F 7% /2+Fn+;/2)

n+
F
_ ¢ ned n+2 _ % 2
= o7 Tex k-zl( ‘){n-m Fn-r"/z F_a, *Kn Poy (29b)
n+ /2
where
CA N 2n 9
P = # (3) T (29¢)

and where ﬁex is defined by the above relations.
In the following section, we use the relations deduced
here to calculate the wave number for which matching between satellite

and group velocity occurs in the direction parallel to the magnetic

field.
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V VALUES OF k, AT THE PINCH POINT

Let us first match satellite velocity to group velocity
in the direction parallel to the magnetic field. An examination
of the dispersion equations reveals that the most rapid variations
of w_(the real part of w) and k, arise from changes in the ¥
functions, rather than from the K functions.

When k, is minute, £q.(27a) applies. The kK second
term is assumed to be smaller than the dominant first term. Ve
note that all functions except F are more or less real with T
since Wy << W o Hence, it is necessary to mske F real as well in
order to satisfy the dispersion.equations. This can be accomplished
to first order by making real the first term, e.g. Fn-t-’/z’ in Eq.(27a).
In fact, we sgy that the imaginary contributions in the k® factor
are cancelled by the small imginary terms elsewhere in the dis-
persion equation. As a result, we are dealing with a function,

such as

Re;;l+% = Fo3,+ (Kiofevie? ) Re [F 4~ 2F 3 Fo ] (30)

where Fn-o-’/z is taken, with complex argument, along its real track
and where Rel ] is the real part of the indicated combination of
functions along this same track.

In arder to match satellite to group velocity, we differ-
entiate Zq.(30) and set aur/ak,, = Ve Defining 8 = (wr-— wb)/wb’
we find to first order that we can match the extraardinary-plasma

waves with
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o = wbvn aFn+3/z/a(ﬂ5r) MV..aFn+3/2/3(I-l5r)
n - == c2 -

Re[Fm_% —2Fn+% + Fn+5/2] Zmb Ref

(31)

where B is given by Eq.(27¢c).
For the ardinary wave, we have a different factor
(see 2q.(28a)) multiplying k? in the dispersion relation wita
Fn+5/2 as the dominant part. Using similar arguments to the above,

a match is obtained for

1;,=-me" OF 5, /0(us ) “HVWIF s/ /3(us )
c® -

R.el 5 Fn+"/2 -2Fn+ A +Fn+’/z

——p

_2 (Fn+"yz-Fn+3/2 ﬁ i 2rw, Re op
F
n+7 (32)

where Fn+5/ is takern along its real track and Ref, is the real
2

part of the indicated combination of functions in Eq.(28a) slong
this same path.

For the extra wave, we note that we require very large
values of F to satisfy the dispersion EqQ.(29b). Using the rela-

tions in Appendix I, Zq.(28), for large F,we note that

F2 o F 1
n+2 _n+%h n+%%
n+1 Fn-q."/2 Fn+3/2 ~ (n+1)(2n+3 (33)

Similar considerations to the above show that a match occurs for

lJV.. aFn+%/a (#Sr)

Kt = = Tot)(2n+5) 2 ReB (34)

where F 7, is taken along its real track and Rep is the real
n+' ex

part of the indicated combination of functions in Eq.(2%b) along

this same path.
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Plots of the functions Fm,/z and Fn+3/2 /[alv'm,/2 /a(usr)]
= F/F' for n=1 to 7 are shown in Figs. 1 and 2 in the region vhere
F is large and negative. One notes that the ratio F/F' is alvays
of arder one in this region.

Let us now investigate whether one can match with slightly
larger k, values where the Z-function is valid and where one can
use nonrelativistic theory. We still assume A < 1. Note thait
for A << 1, we use large values of Z, thereby requiring the ana-
lytic continuation of Z (see Appendix II, Sec. IV). To satisfy
the dispersion relation (Eq.(26a) with (27b)) for the extraard: nary-
plesma wave, the Z-function has to be real. The most rapid varia-
tions result from the » and k, dependences of Z/k,. Whether or
not we need the analytic continuation of Z, provided it is real,
it can be written as a function of Z. = (wr- nmb)/V§ kyv,o The
matehing condition then gives the following result.

3(2/ca)  8(z/k,) v, ,
ak" + Vn awr =0 or n——vt - gr = -7—az agr (35)

When A << 1 or more accurately (nFA""/?"n!)<(wvt/bpc)zKL,
the analytic continuation is used to provide large values of 7, given
by (see Appendix I, 2q.(29))2 = + 2r¢ expf(ﬂ/hér)z] and Z increases
as £ » 0. Thus z/(az/a::r) = 82:,;/1r2 which is small compared to % ..

As a result we have from Eq.(35):

C:I‘ = vn/vt\fz. (368)

This fixes the value of Z as well. However, in the A << 1 region,
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we want Z to attain huge values which vary as w, varies, even
though assigning a value to k,. The value in Eq.(36a) is use-
less since Z camnnot become too large once the argument of the
exponential is fixed.

Vhen A is larger (n?A""'/2"ni> (wvt/wpc)zKL), we do
not need the analytic continuation of Z, As a result, for &>> 1,
z = =Z"'[1+(222)"']. Ve can almoneglect the imeginary part of

and take Z to be real. Thus Z/Z' = =%(1-Z"%) and Eq.(35) becomes

g = f2- vt/v" or ud = 2k,,cz/wv,. (36b)

which is consistent with the preassumption that £> 1. In arder
for the asymptotic expansion of Z to be valid, we also require
ud>> 1, which is obeyed provided k,c/w>>V,/2c. (See the dis-
cussion in Arpendix I, end of Sec. III) The largest value that
wvtz/w/-z' c®k, can attain is (u8)~' of order ome. The electro-
static dispersion equation for this case can be obtained from
Eqs.(26a,b) and (27b) for A<1, x>>1 and with f;lz(vtw/fz' k,c?)
STV (1 +1/222) = us(4 + 1/222), viz.

2 25N~=1
W - nw. A
b

w? n kK vi
= —_r——— 3
W ;g 2'nlK, <1 * Ew- nwbi!> (37)

Near the mateching point, the term in the parenthesis is of order

[1+ (Va /2vt)2] % 1. Because of the limitation that ud> 1, we can
allow the rest of the right-hand side to be as small as vi/c® before
the large inverse argument approximation for % becomes invalid.

This means that (n®A""'/2"n!)> (wvt/wpc)zx,‘ which is the inequality
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we stated at the start.

We conclude that we can match k, for A<< 1 (that is
near electromagnetic modes) when relativistic F function applies
but not when the Z function applies. For larger A when the waves
become electrostatic, we can match with a larger k, value using
the nonrelativistic Z-function.

In the following section, we perform the analysis for

matching perpendicular to magnetic field.

VALUES OF k, AT PINCH POINTS FOR LARGE REFRACTIVE INDEX

The next task is to match satellite and group velocities
perpendicular to the magnetic field direction. Since the k, term
is very small, we shall neglect it in the following discussion.

First, we show that for n> 4 and w> W where
2 - 02

wy b+w;, we require unrealistically small values of V, to ob-

tain a match using the Bernstein electrostatic mode. For w>> Wep

(or K, = 1), the matching points (if they exist) would not be far
displaced in frequency from the nth harmonice Hence only the nth
term in the well-knowm In expansion is necessary and then the electro-

static mode is given by
w-nw, =w nI G-A/QAK (38)
b P n byt
This equation is the extension for larger A of Zq.(37). Note that

here, (w=- nwb)/w is sufficiently large that the (-Z~') limit applies

for Z and one does nct need the analytic continuation of Z.
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For metching, we differentiate Eq.(38) with respect
to kx and ky (in the two directions perpendicular to magnetic fi eld)
and vwe equate ao)/akx = Vx and 6w/aky = Vy. The derivative of K,
gives a negligible contribution. Combining the x and y~ expressions

gives

VJ/Vy:kx/ky and hence V_l/kj_zvx/kx=vb/ky or k,*V, =k,V, (39a’

Using this, we find that the matching condition is

w; w 2n -, In+1 ( )
v <——!—> —_—K = - I e -A_<1 - ———> + n=- 1] 39b
1 L l
Vily ) Moy )\./2 n I
Since Vl/vt car be as large as 1/16 and w;/w.; varies between 1/4

and 100 for satellite altitudes between 500 and 30,000km (see Fig.}),
we note that the raximum value of the left-hand side is 4/16=0.25.
Even assuming V,/V = 1/40, we require, for X, = 1, the right-hand
side to attain a value of 0.025., 1In Fig. 4, we present plots of
the right-hand side for n=2 to 5, and we find large enough values
for n< 4 only and not for larger n. The maximum group velocity
points are also tabulated in Table 1. Thus using the Bernstein
electrostatic mode, we cannot match perpendicular to the magnetic
field for n> 4 amd w> W

The lack of this matching capability is equivalent to the
lack of a stationary point in the integration over k, to obtain the
time response. The stationary phase method has been used by Deering

and Fejerl‘“, In order to evaluate the k, integration, they look for

points where aki""®+ k,r, is stationary where in our notation a.kf'.("'1 )
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is simply the small A limit of (s3n Ine-)‘/wb)LKL)t. The stationary

point is mare accurately obtained by solving

5 [¥2 mI e . 3 (n=1)

31‘;[_ axk, klr‘:l = 0 (rather than m[aki t k,r,]=0)

which yields exactly Eq.(39) with r,/t replacing V,. Thus by adopt-

ing properly the In function rather than its expansion when A~ 1,

we do not find any stationary points for satellite reception (r_t:V‘t)

when n> 4 and K; ~ 1. Deering and Fejer remark that the

Shkarof'sky and Johnston's requirement that a matching point exist,

is not necessary for electrostatic waves. This argument is self-

defeating since they require an identical comdition to calculate

their time response in the satellite by the stationary phase method.
When v << @, or (nwb)2<<mp2 or K, = -w;/w;(n’d), the

electrostatic waves are backward and matching in the perpendicular

direction is much easier to accomplish. In this limit, we have

an extra (n?-1) factor coming from K, which helps the matching to

such a degree as to make it far mare often possible. Equation(39)

can be written as

-A
v, 2(n2-1 )nIe I
- n n+1
— - _A(‘] - Q- 1] (40)
Ve AA [: In

In Table 2, the maximum of the right-hand side is given. These
values are only an indication since they are based on the approxima-
tion using a single In’ which is especially bad for backward waves.

Nonetheless, we conjure from the values (aw/vtak values greater than
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TABLE 1
Maximum Group Velocity for the Bernstein Electrostatic Mode When
2 2
vy << (wb)
w? w
ow b b
n A (—- - K, (- 1w )-T'KL
dk /max vtwp b wp
2 0.2 0.1475 0,041
3 1 0.055 0.0245
L 2 0.0269 0.0137
5 3 0.0151 0.00757
TABLE 2

Approximate Maximum Group Velocity Values for the Bernstein

static Mode when w? >> 2)
p >> (wy

ow 1
n A = - (nw, -w)/mw
<ak>max Vg b b
2 0.2 0.4425 0.061
3 04440 0.0653
" 0.401 0.0513
5 0.378 0.0363

Electro-
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0.25) given in the Table, that a match is possible up to quite
large n values.
When matching occurs for backward or forward electro-

static waves with A< 1, we use the small argument approximation

I, in Eq.(39) and find

Vv, 2"n! ws (n®-1) 2/l 2n-3]
A =[- v,2n(n-1)(n*~1) 1- w’p ):I (1)

(We note that the small A approximation breaks down for large n
since Eq.(41) indicates that A » 1 for large n.) Equation(37)
yields

w = o, v, v, 2"n: w2 (n?-1) | 71/120-3]
W, = Zn(n-1 )vtE?;ﬁm(n-ﬂ (n®-1) 1- wpz )_‘J
(42)
= v&k,_/[z(nq)mb]

In arder to satisfy the requirement that I(nwb-u)/mbl > (vt/c)’ ,

we need
V‘_cz i v; n-14 %
<7t_> 7, | tenlee)] D) (43)
2"n1<1 -lw?—— )
p

For example when n=2 we need |V;°/V§| >[é/11- M;/uy ]% and
when n= 3 we need Ivic’/v;b 2, [6/]1- &v;/w;] ]% which are
easily satisfied for satellite parameters. Far larger n, the
inequality in Eq.(43) becomes even easier to realize.

Substituting Eq.(42) into Eq.(36b) yields the magnitude
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of k,c/w, namely: k,/k, = V,V,/ [hvt"’(n- 1)] and

kee V,V,c v, 2"n! wp (n®=1) \ = 1/ 2n-3]
e ) Ml O T C DI ) <" o ):l (i)

Far typical values k,c/w is sorewhat less than one. (The condi-
tion that k,c/w be gre:ter than V,/2c is the same as requiring

8] >1). Ve see from Eq.(L4k) that the pinch point for electro-
static waves parallel to magnetic field occurs for wavelengths
somewhat greater than the free space value. Perpendicular to mag-
netic field, the wavelength given by Eq.(41) is very much less than
the free space value.

The frequency measured by the satellite isw'= w-keVxu-kpe V, .

The Doppler shift Aw associated with the electrostatic matchking

point is
b k¥, v,
- o, nv,
so that
Aw
"o, = 2e-) (45)

The Doppler shif't is larger than the deviation from the harmonic
due to matching.

It remrins to be shown that in snite of the relatively
large value of k, in Eq.(4k4), no other terms in the electrostatic
dispersion equation are as important as those used. In general,

the electrostatic dispersion equation for all k, has the f‘orm5
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ki [(e44) + (&4s )W] + k[ (es3) + (e33)g]+ 2k1k"(€1:)w-

Substituting the cold and warm dielectric elements in terms of the
Z function given in Appendix I, Eq. (31),yields

2Aﬂ ~-1

KK, + kf.x,.+ [kzz - 5" 22'-kk, V2L z':I =0

wk"v

Using 2 = =2~ '[1+ (222)"'] and 42' = &' gives

KK, w?n?At"? k3 VZ vk, 22 vk
K+ —)?‘__-MZ"n!(w-mb)li w-wb)z o= mb) tolu- wb)":l=o

The latter two terms in the brackets are small near the pinch values

of k, and & - nw Use of Eqs.(44), (42) and (41) shows that the

b*
second term in the brackets is larger than the third and fourth
by order (w/k,V,)’ and w/k,V, respectively, and is also larger
than the K3K,/k,* term by order (vt/V‘)z. Hence the dispersion
equation we have used previously in Eq.(37) is correct in the neigh-
bourhood of pinch values having A < 1.

Deering and Fejerl* use Eq.(37) without the k* additional
term. To obtain the time response, instead of integrating over
k§ as one should, they estimate the value of this integral based on
Landau damping considerations. This approximation inherently intro-
duces an error which indeed leads to the wrong time dependence.
They obtain a t' decrease, whereas we find in SecJVIII at t‘s/z decrease,

The correct approach should be based on the k, pinch value using

Eq.(37) which, as proven sbove, contains the most important terms.
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We conclude that one can match satellite to group
velocity for n< L4 with electrostatic Bernstein waves both in the
perpendicular direction with a wavelength much less than the free
space wavelength and in the parallel direction with a wavelength
somewhat larger than the free space value. For n> 4, one can
only match when w; >> (nwb)z, i.e. where the Bernstein waves are
backward., Figure 3 shows that this can occur below 800km or
above 15,000km, Since Alouette 1 travels at 1,000km, these back-
ward waves are infrequently observed. Alouette 2 should satisfy
the conditions for backward waves at lower altitudes. When
(nwb)2>>w; which very often occurs for Alouette 1, it is very
difficult to obtain a match for harmonics greater than the fourth.
The reason for this is that the dispersion relation for the electro-
static mode is very "flat" i.e. varies over a very large range of k,
for a slight change in w, so that the group velocity is small and
the satellite travels faster than the wave. (Parenthetically,the
extra wave mentioned in Sec. IV is even "flatter™ when x >> 1 by
about vzt/c2 and hence no matching point can be expected for this
additional wave for large reflective index values.)

There is, however, the distinct possibility that the match~
ing condition in the perpendiculer direction may not be required for
electrostatic waves because of finite antenna length. The reason
for this has been recently implied by Calvert and Van Zandts.
Suppose we are dealing with excited wave packets having very small

group velocities, but spread out throughout the original region of
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excitation, which is about an antenna length. Since in the time
that the cyclotron resonances last, the satellite travels about
an antenna length, the satellite, in this picture, is essentially
moving through and sampling in distance the more or less station-
ary blobs or wave packets in the excited region. However, an
analysis including finite antenna size is too complex and will

not be done here.

VALUES OF k, AT PINCH POINTS FOR REFRACTIVE INDEX NEAR OR LESS

THAN ONE

Let us now attempt to obtain a match for lower k, values
near or less than the free-space values. As shown in See. V, k,
can only be matched in this region if the relativistic analysis is
used. We therefore restrict the following analysis for mtching
k, also to the relativistic analysis.

Case(i): Consider first the extraordinary wave given in Egs.(26a)

to (27a) with k, = 0, vis.

1 (le -x)x

Pki("-z)Fn-o-’/z i KR -Kx

(46)

Denote F' = aFm_,y /a(par) with the derivative taken along the track
2
of real Fn+3/ o Differentiate respectively with respect to kx and
2
k, and equatedu r/akx = V_ and r/é)lcy = Vye The terms involving
derivatives of the K- and x- functions with respect to 'wr are negli-

gible since w, >> k;V,o Omitting, for simplicity, the n+’% subseript
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on F and F', one has

F'u k_V 2(n=-2)K? 2xk_? -x)K,x —
X X X ~ X 2(1&-1) ¢ — 2K1

- n- bad ~ - _
GNP wy, PECTRE (KK - Kx) KK -~ K,x

Subtracting the x- and y- derivative expressions gives
v/, =k x/ky. Hence V,/k = V /k =V y/ky or k,* V,= k,V,

Adding the x- and y- expressions then yields

Flu k,V, 2(n-2) (2K, -x)K,x —

- ( - ) - _ |:2(K1-'x)+ l

P2 e PE(n-2)p (K K - K,x) KK - Kx
(47a)

Substitute Tq.(46) into (47a) for F or F? end obtain

(n- 1)2;:1- nx +

(2x1- x)K,x . < .- le\/ F'u k,V,

1. K_,_x 2% Pki("'z)Fz W

. <2K1; xXF;u k;Z;) _ (2’;122' ;)x kaz(n 2)pr, ___*_ > (47c,d)

There are three regions where one can satisfy the

>(wn>

above equations, namely near (i) the Appleton-Har tree solution,

x KIKI/K_L (ii) near x = 2K, and (iii) for x << 1. Let us

consider these separately.

CASE (i): When x = K1K/K:- > 0 we £ind from £qs.(46) and (47c)




- 35 -

ZKTI.Kr Fuw

K, F"kx-vx (48a)

3K
Kl r  2(n=-2 )PF
o - . ot k =
K ¢
where K, = (Fj+ Kr)/2. Also from Eq.(42d), we note that

{%): -z (n=2), F';ﬁ (48b)

vhich shows that (V,k,F'/w)< 0. Hence from Eq.(48a), we can have

<
x 2 KlKr/KJ- depending on whether F > 0. This is consistent with
the signs of F used in Appendix IT, Figs. 3(a) and 3(b), near the
electromagnetic solution. Since * k,= uv/;/c, Eq.(48a) gives a

very small deviation & x from K K r/K-l-’ of the arder of v’t/cv .

K F ¢
SofLEL (48¢)

Equation (48b) cannot be satisfied for n=1 since the

55

X -

right~hand side is much larger than the left-hand side. This is
again consistent with the results in Appendix II. For ns= 2,
Eqs.(4Ba=c) can be satisfied for values of F of arder one. In
fact for x < K1K1/K.|.’ we can use the region where F > 0 and both

w and k; are real. As is shown in Appendix II, Section ITI(a),
dw/dk, is of order vzt/c at w=mw, and increases to about ¢ as w
tends towards the Appleton-Hartree solution. At some intermediate
point, the slope must equel V,o Thus a metch is readily obtained
for n=2 and w > nw, on the F > 0 branch with real w and real k,.
Of course, one can also match for x > Kle/KL and n=2 on the F<O0

branch with complex w, using the analytic continuation of F where
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both F and F' are very large (see Figs. 1 and 2). Since two
matching points exist differing relativistically in w and by devia-
tions from KlKr/Kl of'vi/cvl, beating between these pinch points occurs, but
after a time duration much longer than the interference times on
the second harmonic resonance observeégby Explorer XX, (We shall
snow later that multiple pinch points also exist for all harmonics
near x==2K1 when K1> 0, but again this cannot explain the inter-
ference effects ohserved6 even for high harmonics.) In References
4 and 6, the interference is associated with beating between electro-
static wave packets.

For n 2 3, we can only match both k, and k, near
b -1 KlKr/Kl using the F < 0 branch, with the values in Figs. 1
and 2. If we attempt to use the F > 0 branch, we have to recall
the behaviouwr of F shown in Appendix I, Figs. 3 and 4. Since
n2 3, aw/akl at w = nw, is of arder ¢ and lower group velocities
only occur in the region W< nwy (not shown in Fig. 4 of Arpendix
I) where the F curve turns around. In fact, F is not large here
but F' goes to = at the turn around point. In order to satisfy
2q.(48b), we have to go quite close t0 F'= ce. This, lowever,
upsets the k, matching point in Eq.(31), since upon substituting
Eq.(48b) into Eq.(31) we find that k, becomes too large. As a
result for n > 3, we can only use the x > KlKr/Kl matching points
and the calculations given below were actually done only for F< 0.

We note that the above matching points are presert only
when there exists an Appleton~Hartree solution, i.e. when KlKr/xl>o’
When Kl’ Kr and K, are all greater than zero, the Apple ton-Hartree

wave is called the X-wave, and when Kl> 0 but Kr < 0 and K, < 0, it
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is known as the Z-wave. Equation (48c) shows that x (the square
of the refractive index perpendicular to magnetic field where the
wave group velocity equals the satellite velocity) is composed of
the Appleton~Hartree part plus a correction term. These two
parts are plotted separately in Fig. 5 versus u;/w; for n=1 to 7
and for the x > Kj_K;/K:. matching point. The X and Z-wave values
are both illustrated, the Z-wave curves being the more vertical
ones. In Fig. 6, the corresponding values of c¢? (ur- nw.b)/nwbv:;
are given which provide an indication of the deviation from the
exact cyclotron harmonic value in the plasma medium., The devia-
tion recorded by the satellite is the above value with the Doppler
shif't k,V, subtracted. The calculations were performed by solving
Eq.(48b) as a function of u;/w; to yield F', teking vi/cV, =0.03
and c’/v;=3x 10°.  Then Figs. 1 and 2 for F¢ O were used to give
F and (wr- mb)/mb. With these values,one can also calculate
from 2q.(31) the magnitude of kn¢2/wV,, the normalized wave number
in the medium where the group velocity matches the satellite velo-
city in the parallel direction. Plots are shown in Fig. 7.
The results in Figs. 5 to 7 indicate the following:
k,c/w)®: The theory is only valid if the deviation from K.lKr/KL
is small. Figure 5 shows that K’],Kr/k.l. varies from about 5
to 0.02 in which range the deviation is between 5% and 30%.
For the lower values where Kl or K r approaches zero, or less
than 1% near a cut-off, the approximations begin to fail.

Over most of the range of w;/u;, one can conclude that the



wavelength perpendicular to magnetic field is several times
larger than the free-space wavelengths The analysis may

have to include both finite antenna length and possibly sheath
effects for the Z-wave values giving smaller wavelengths or

(k,c/w)? > 1.

gw--nwb)c2 w, v2:  In all cases to within 0.6% of a resonance or

a cut=off, this parameter is less than 100. Usually it is
greater than 10 for the X-wave and n > 3. The Doppler shift
correction, k,V,/w = JE;K;ZEI V,/c is also of the same order of
magnitude. This theory therefore indicates very small devia-

tions from the harmonic.

k,c’/wV,: This parameter is generally sbout 0,25 for the third

harmonic decreasing to 0.15 for the seventh. Since c2/wV,

is of the order of 0.25 earth radii, such small values of the
k, indicate characteristic lengths (~1/k,) of one earth radius
This length is larger than the nonuniformities in the magnetic
field which one can expect to be present over distances greater
than 0.1 earth radius. However, the energy, travelling at the
light velocity, has not arrived yet in the times of comcern to
these large distances given by 1/k,. All that the analysis

is attempting to say is that the satellite travels in a uniform
static excitation field spread over huge distances in the paral=-
lel direction., Nonuniformities in magnetic field may produce
some effect on the signal amplitude. The question of whether

one can have k,» 0 in magnetic field systems with nonuniformities
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at the ends depends on boundary conditions, and will not be
theorized upon here. One can suggest looking for possible
correlations of variations in signal strength with non-

uniformities along magnetic field lines.,

CASE (ii): VWhen x = 2K, >0, we can also get, from Eqs.(L46) and

(47), two matching points on each side of x < 2K, with F 20
respectively. To see this, expanding around x = 2K1, we find from
Eq.(47b)

2
P eV,
] B 8Pk2n-svzw (h‘9)
1 t
so that F'k,V,/w< 0 and from Eq.(47a,c) we obtain
i I B e

x-2K1= or lx-%l:?@?

_2Pki(“'2 )p b P KV, , oV,

(50)

Our basic Eg.(50) is still valid very close to x = &,
although in this region, the F > 0 and P < 0 branches couple (see
Appendix II). To prove this, we note that the coupling occurs
for a value of FPki("'2)~ A~ cz/vi whereas Zq.(50) only requires a
value of FPK? (n-2)_ cVL/v; which is much smaller. Supposedly
there are two other matching points, even closer to x = 2K1 in the
coupling region of the F> 0 and F< 0 bra.nches,near the point of
zero group velocity for this particular dispersion curve. Simi-
larly, thé'extra wave (to be investigated later on) has four match-

ing points near x=2K1, two sufficiently far away from the coupling

region and two within the coupling region (see Figs. 3(a),(c),(d),(e)
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in Appendix II). The points within the coupling region will not

be considered due to the complexity of the analysis. We only
calculated the two points for the above extraordinary wave and the

two for the extra wave where matching can occur near but outside

of the coupling regions. The interference effects due to these match-
ing points would only be observable after a time of the order of

vi( oy > which is of the order of 0.1-2 sec.
[]

01. We = Wa

In Figures 8a, b, we show values of the two parts in Fq.(50)
versus w;/m; based on the x = 2K1 matching points for positive and
negative F respectively. Corresponding values of (wr- nwb)/nwb and

of kyc?/wV, are given in Figures 9a, b and 10a, b.

CASE (iii): We now consider the matching point for x << 1. This
point is a direct consequence of the relativistic analysis which shows
that w rises rapidly above w, as k, tends to zero. Because of the
rapid use, the slope aw/ak,. becomes large enough to effect a match with
V,. TFor x << 1, Eqs.(46) and (47) reduce to

2(n- 1)viw F
kys=-—ary— v, T (51)

For n=1, we obtain no matching point.

(b) ORDINARY WAVE

A similar analysis cen be performed using the ordinary wave

dispersion relation given in Eq.(28b) with k,= 0, viz.
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1 X

= (52)
P,.ki("'1 )Fn.',% K,- x

Equating E)aur/ak_l =V, and letting w >> k,V, we find

Ky= x)2 P k,V P v
n(Ke- %)+ x = ( x ne% H<aVs = -k, (K,- x) _Eiia ﬁzi (53)

(ney ) 2 w
2xP K3 R, 2F .5

As x » 0, we obtain a matching point when
- - 2 '
ky = -2nVieR s, /o V.F | (54)

(Compare with Eq.51). The values for matching on each side of x=K,

are given by

x-K, = 2T e —Z or |x -k, =2vF 1’3171 i (55a)
w = = Ryl = " -
AN Frs oV,

and

B!, 5 = =2 v:/[cv‘fK_,,- P.,ki("" )] (55b)

In particular, for n=1 and x~ Ky» there is a matching point for real
k,, w and F-p/2 (see discussion in Appendix IT after Eq.(17)).

In Fig. 11, we provide plots of K, and the additional correc-
tion term in Eq.(55a) for the ordinary wave matching point giving x 2 Ko
(The x < K, matching point suffers when n > 1 from the same difficulty
as the extraordinary point x N KlKr/KL. Namely, one requires huge
values of P' and this jeopardizes the k, matching point in Eq.(32).)

In Figs. 12 and 13, the values of (0~ mb)/mb and k,c?/wV, are also



given. The conclusions to be drawn here are similar to those for
the X-wave given above.

The advantages of the matching points near these coupling
points are the negligible difference (wr- nwb)/hw , the negligible
imaginary part of w, the negligible Doppler shif't, that it may be
easier to excite a wavelength of the order of the free space wave-

length and that the n = 1 case can be included for the ordinary wave.

(¢) EXTRA WAVE

As pointed out above, two matching points occur for the

extra wave given in Eq.(29b) near x = 2K, but sufficiently outside of

1
the F > 0 and F < 0 coupling region. When k,= 0, Eq.(29b) combined

with Eq.(33) is

(n+1)(2n+3) - x
2n
Pe " Fn.‘]/z 2K1- x

Equating awr/akl =V, and letting w >> k,V,, we find

(56)

(2K -0%(n+1)(2043) B! 7/ k¥, ) -(2K1-x)Fr'H1/2 uk, vV,

(2K, = x)(n+1)+x = - " -
] o, X7 Fo

(57)

The matching point as x » 0, is

ky= =2(net)viw Fp o) [V, FL L (58)

We are mainly concerned with the points near x = 2K1, which are given by
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F 3 F s, v
_ n+ W _ - n+é t
X - 2K1—1+K1 IT;::"/AZ kv, or lx 2K1l -ZVZKl FI'H."A —OVL (59a)
and
B0 ~2(n+1) (2n+3)v}/[ eV V2K, P, X:"] | (59b)

In Fig.14a, b, we give plots of the two parts in Eq.(59a)
for negative and positive F respectively. Figures 15a, b and 16a, b
give the corresponding values of (wr- nmb)/hwb and k,c?/wV,.

Having investigated quite carefully the pinch values, we
now proceed to use the analysis in Section II to determine the tire

response for the various waves.

TIME DECAY OF CYCLOTRON HARMONICS FOR ELECTROSTATIC WAVES

All calculations are done in the satellite frame of
reference (w', k') where from 2q.(8)
- . —  } 1 2
w=w'+k'sy and k =k +wx/c (60)

From Eqs.(223), (23a, b) and (37), we can redefine D, Ry,

and Ry2 by dividing through by -x to give

: ) [ 2\V\2,..2
D=K,+ € -'K-fz' "t 1+(kn+(dv"/c)vt
=K, + €11= K, oy 2"nt(0'+ kY, + kiVn- nng B R A e
(61)
and
R“("r”o): cos’¢o =1, R‘2(¢o)=-R21(¢°)2 singo cospo = 0 and
(62)

Rzz (¢o) = Sin2¢o =0



We take V, and k':l-o along the x axis, since near the pinch point we
have from Eq.(39a), k:.ol IV_._. We can also neglect, if we wish, the small
differences of « in the K; and A quantities.

According to the analysis in Sec. II, we have to calculate
D,= 3°D/3(k;)? and D,= 3°D/3(k,)? at the pinch points.

One can readily show from Eq.(61) that 8D/dk,! = O when
L
(kyo= wo'V,/?) = (Vy/2v}) (wo'=ko'*Y - mw, ) (63)

which is identical to Eq.(36b) using Eq.(60). Taking the second deri-

vative, one obtains

w2n AD~Y(2v2 - 4V2) XK,V
Dy =- 2 t - - & (6x)
wb2"n£(wo'+’150' 'l{-nm.b)3 (wo'+ Eo“l{'m’b)z

Similarly 3D/3k} = 0 at

(kio+wo' V,/c? )V, = 2(n-1)(wo + ’150' v - nwb) (65a)

which agrees again with Eq.(42). Note that the correction wd' V,/c?

to kjo is negligible. 1In fact, solving Eqs.(65a) and (61) obtains
' 2n=3 _ 250 4 2 _
(k‘-°vt/wb) = Kywp2"nt V_'_/[vthZn(n 1)] (65b)
which is identical to Eq.(41). The second derivative of D yields

D, = = 2(n-1)(2n-3)K,/(k}o )?

1
Evaluating the quantity T in Eq.(18), namely T = [ﬂ’D"DLV&/?-kL'o]?, and

using Eq.(65a, b), give the following result:
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v - 2K,y "t(“; 1) <21r(2n- 3)\%
(k}o) 2 Voo )

v wb2" ‘K, (66)

= 2K, v, <:;:'>%(n- 1)’/z<_£_21' 311- 22>%I: vgup2nin- 1) '_l s/Tan-s]

The expression for the electric field response as a function of time

follows from Eq.(17):

II LP(nw )

0 - T o[ [y - R ]

[%(n(%-}); ) [2(n—1)]/2 ]‘: . znl(l:(*ﬂ] 5/“"-‘](67)

where from Eqs.(42) and (45), we have applied

Wo' = Wo -mb- klov‘.'b wb = "klovl(‘, -m) + mb = mb" &;12% klovl

(68)

It is instructive to prove that we obtain the identical result

by using the stationary phase method of Deering and Fejerz+ and working

in the plasmae rather than satellite frame of reference. Ve shall redo

their analysis with the proper ki, dependence given in Eq.(37). e

start with their Egs.(84-86) for the potential & which in owr notation

reads

@) ek K T

iI_LPcosp (w-nw, )exp[ ~i(wt-ker)]
Pz, t,00 =0) = || wd i~ =% Lr—h—zﬂ——-
’ /] >[: ' wa"n!K‘ ( (w-w )\ :|

W=




- 46 -

where we consider only the w =, resonance and as before we take

r, parallel to the x-axis (po=0)e (The = -pw, Tresonance can
similarly be calculated.) Also E(r,t) = -grQ (r,t).

Using 278 Jy(k,r,) = |2"ape ¥1T1%0%con  we can immediately
-}
perform the ¢ integration to yield

jct

2 - 3, on
§ (r,t) =-f dwe ™30t [ i dke, 7y (kyrg)( TP >(“’ mwy )@, 2" niK,
~ 81”801( K,w

it~ 0 4 w;nh""vt
]" d.k,,eik"r"
x
2 3 n
K k:+[(w-mb) ) (w-mb) 0 2" niK, ]
w; nAF‘v;

o
Using the Fourisr transform identity f ewdx/(xzq-a’) =1re-a|y|/az /e,

where the approximation applies near a=0, we find

3 2 nikK,
§ (r;st) == a-k;Jl (klr]_) EoKJ.V J[
(]

ic+eo
-iwt(w nw, )2

L (-4 - omer: |

The w Laplace transform can be evaluated next, using

dwe-Mth e-iataz
= =

[w = a]% vt

Using this velue, we cbtain E = -3¢/or, = ~k,3¢/3(k,r,):
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3
e-im’th LP a/2 >

E(r,,t) = Vi/m x k"2 J'(k&r,_)exp(-iaki(""))dk‘
K, v Lweonw. t2 1
1°¢ b °
v 200 yent
where a = =
{Ub wb2 n!K_'.

To evaluate the ky integral, we note that for electrostatic waves and

for reception near the satellite during the time of interest k,r, ~

k,V,t >> 1, so that we can apply the large argument expansion of J1'(k‘_r1):

1\ 1 i(k,r, - <%) oiKaT,y
I (kyr,) = - <21rk,_r_,_> il:e LT -c.c.:]m'( 21rk&r_,_> *

where c.c. means "complex conjugate", which we shall omit in the follow-

ing for simplicity. (Including it changes the final exponentials

into sines or cosines.) Thus
-inwbt

E(r"t)____e ILP&

[ % expl i(k,r,~ alci(""))]
K,v, Ver, mhaeono 8 o

Similar to the analysis in Deering and Fejer, we look for stationary

points for the exponential (see Section VI sbove). That is, denoting

£(k) = k,r, - aki("")

the stationary point occurs at af/ak*o =0 and the value7 of the integral

is approximately

[ ) ki:-% éia’rj:ki‘,)%exp[if(k‘o)]
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We obtain immediately

r 1/[zn-:s] ) -
] ) vt
2(n-2)

and 9*f/dKo = 2a(n-1)(2n-3)k,o
Thus
1
Vi I LPal2(n=1)(20-3)1r,172 - r, — (an=1)/(en-6)
E(ryt) = - hnsonwa&vttz [?a(n-fj

RO )

e (e)0e1)/Genes)

] z.:reo)(cnwbﬁz R/ ey “"{'i(mb’(k*“ﬁ%)}

x[:K wE( >1 7IV 19 22"ntK, —s/lan-6)
ViV "'-67\ 1r(2n-3)v [2(a=1)] %L v 22n(n-1):

This expression reduces immediately to Zq.(67) when r,=V,t and is the
proper result that Deering and Fejer would obtainhad they started with
the correct k, dependence.

The above more complex calculation essentially substantiates

the simpler analysis in Section IT and indeed emphasizes the importance

of the pinch points as discussed in Section VI.
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IX TIME DECAY OF CYCLOTRON HARMONICS FOR THE OTHER WAVES

(a) EXTRACRDINARY WAVE
From Eqs.(27a) and (26a) we obtain the following formula

for D.

KK - xK - Prer2 ) ron _
D = KK - xK,- Pkj x(2K, x)Fms/z

-

<k.'. R g:fl’kf (n-tx(ox, - ) ﬂ?w—:%ﬂ’ R°En+’/z'2Fn+’/z st

(69)
where the argument of F is [(w'-wb+ kjeV,+ k,‘,v,,)/nwb]. Let F!'
A 7
denote the derivative of F with respect to this argument, Setting

aD/3(ks) = 0 yields the same relation as in Eq.(31), viz.

WV, v, F! 5
ky + e - - M:T % (70)
Re( Fn+5/z -2Fn+3/‘, +Fn+'/2 ]
We next calculate the second derivative
D, = -PkZ("'Z)x( - x) et Re[F s, =2F_ 3, +F_ 4,]
" L X W n+ oo+ nels
o -(K.lK ) ot _ Reme% -2Fn+;/z +Fn+1/z ] (74)
r 0 (v ) Fn+3/2

since the k5 term in Zq.(69) is small.

Since k; = k, with a negligible correction, one finds

A c? n-3 ¢? 2(n-1) &2 Vye?
ak; = "Xy T ky - 2(n-1)Pe("Y S P32 - Pk} " R— P, 2K

ct 2n c* Vjye? (72)

2n-1
v BT O Fryyt P vt Ty
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and solving 3A/3k} =0 with Eq.(69) yields exactly the same result as
in Eq.(47b~d). Differentiate again Eq.(72) and substitute into the
answer the value of 21{_,.02/(-12 obtainedby equating Eq.(72) to zero.

The result is

?;2‘_‘1):“ 2 ([ -y ot ol e (el % 2L

(“V*k*> (’"2"1) P } (73)

\ B, Fn-a»/
Let us first consider the x << 1 matching point (for n > 2)

given in Eq.(51), viz.

t b

k_,.o ~ klO = -2(n-1) v F' 3
+7z

(7%)

(Note that even here, kio >> 0'V,/c® by arder vi/V'LV,,.) In this limit,

all three parts in the braces in Eq.(73) are equally important and using

2q.(74), we f£ind

. 5| (=) ene) - 26t %/%‘,‘r/&] (75)

From #igs. (71), (74) and (75), one obtains for T in Eq.(18):

V2 Var TRV
Kl r ct:m )Bg(n_1)/2 <:§->

(nw )2

Re(F L2 5/ +F L1 )
{ a 5; - [.n-1)(2n-1) 2(n-1)?2 ~211§--1£ }
/ (%! 3 3 )2

(76)
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The minors Rij when x << 1 and ¢o = 0 are obtainable from

Egs.(23a-c):

Rie=Rp2 = Kl+(tu)’= K,- Pki("-z )x Fn+3/2z K,- K1K1/2K1= K1/2

Riz =Rz = *i(Kx-(en)w =-i(Kx+ KI/Z) = "iK1/2
since K, . = (Kit Kr)/2. Defining

Bl p=Bt 3B, , I = T #dT (77)

l,r x y

and since Excc(R“Ix- : ) zIy) and Ey“(R'zIx"' RzzIy)’ one finds from

2q.(17) that E.=0 and
.. Ay LP(wo')e'i“’:'t {:(mb)’v‘t 2(n-1) /2 Cmyz )3/2:” }-% o8
VoK e (muyt) 2 >V Vi ety AN

where | J is the quantity within the braces in Eq.(76).

Next we consider the matching point near the Appleton-

Hartree extraordinary wave, given in Eq.(48¢):

N

X

K K.K\°F_3 +v°
_K;r__:z(lr) n+4h t (79)

" K, F!"H-;/z eV,

This time, the last term in Eq.(73) is the largest since czv‘lg/ftmb

is much greater than one. Using x-ZKl x -K,i/K_L here, we obtain

D (K.K ) o Tne%
Lo Kl r s v‘;:(mbjz F'n+3/z

(80)

Combining the various expressions with Eq.(79) readily yields T:
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1

(mT,b )é _ <2”Z >2 v ]((;’b): <K1K > [(;tj:/ )ZRe/F S/Z-ZF"*’A +Fn+'/z>]'§(81>

The minors in Eq.(23) are more complex in this case since
the sin®¢ and cos®’$ parts have to be included in the integrals. We
can most readily do this in Eq.(14) where neglecting the contribution
at « from the integrals, we can write

[»exp(iayzq)ypd\v = exp[% <p+1>:\r <%1—> o (P*1)/2a

- 00
assuming (p+1)/q is an odd integer. If (n+1)/q is an even integer,
the integral is equal to zero.
For the sin’¢ or cos’¢ terms we find

/ kzeia(k-ko)zdk TR <k§+%;>

-0
where ko = 0 for the sin’¢ term since we take ¢o = 0 and k k“sinﬁo =0,
The Vimr/a has already been included in T; the additional factor shown
needs to be inserted. Also, since €44 ¥ (KlKr- xK, )/ €K, + x) is much

less than K, or Kx ,we find

iD (Kl-K )2 1czD (Kl-K) i vt2 F' 3
Ry1 =K;= X 1+ﬁ$] I&K‘. TDT ’-OKL —4{;:) FT::'%

= - - 2@t .
using D (ler xX, )e Fn+3/2/vfh an+;,/z and Eq.(80). The additional

term in Ry4 1s usually small. Ve can also obtain R, using Eq.(16):

] 1e?D_ ic K K.}
zz-*—r——-% K*tV<K>
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Rz = -Rz¢ ® ~iK_ = -i(Kl- Kr)/2
One finds as a result of combining all the above parts that

4

I & Sl (= >’1’, S A ¥ (Fruz "
= - ,
sy I.nreo(m»bt)/zKL 21V, L <KAKI‘/ 1"‘;’1'.‘;/2

|
Re[Fn+§é-2Fn+’a+Fn+3é]_J

.{ I:(Kl'Kr)z _ _i_{_ (_v_§>’ :—éf:f'}xl' +_i,_(_111;;_(r_) IyL} for E_

LK, oyt \Vy
o /R 105,71,
.{ [#L + nwti; \ K1r>%] IyL" 5 r IxL} for Ey (82)

Actually, one should investigate fully the applicability of

or

the above results when k3a such as kio Dxt/bw is of order one, since
the expansion method in Section II may only be valid for k2 a >> 1.
In any case, the additional ki « terms, being of order one, do not
introduce a major error.

Comparison of the results on the response in Eq.(82) with
that in 8q.(78) shows that the pinch point for small x << 1 gives a
smaller contribution by order (vi/cvi)(vl/o)%. Hence we can neglect
this contribution, Because of the complex nature of Eq.(82)’we do
not plot any response results for this particular matching point,

We finally calculate for the extraordinary wave the con-
tribution from the pinches at x =» 2K1. Although the above values for
D, and D, can be used, it is mare rigorous to redo thse calculation, by
defining a new D and new Rij quantities equal to the previous ones,

to s _ z(n-z) . .
divided by -€14 =Pk} x Fn*ié' In this manner, the magnitudes of Rij

!
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do not become large. From Eq.(69)

=x 2y (R ARG (), ]

A " Re[FMZ-reFm,/2 +Fn+,/2]
\kn +—le. (2K x) {(mbvt Fn+3/2

(83)

Since in this case, €441 is much larger than K, Kx or x, we find from

Eq.(23) (after renormalizing by dividing by -€44) that
R11 =R22 =-1, Rz ==-Rzoq1 =-1,

From Eq.(83), one can readily show that

c* (x-ZKl) c* K_i Re[ ]
Dn = (nwbvt)TFn+3/2 Re[ ] = ?t. szut"'”c! f:!n.";/z

where Re[ ] is the quantity in Eq.(83). Also using

2
by By o A

X~ R - — g R 2(n-
X, u Fr'1+% k oV, Pk_,_( ) (e /w? )Fm_;/2

one finds near xx 2K1

o = [ T (e

2(
PKi " 2Fn+/ Fre¥,

Thus

1

1 4

, 2 4.4 o e ' " -

r =i( K, )% < nvl\ 2F: 3 Fpy > Re(Fm,yz 2F 3t Frov )T z
% - t '
(nw.b)“ UJ v £ ¢ / \ Fn+3/2 F;1+3/2 Fn+’/2 -

(84)

Finally El= 0 and
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”iﬂ&t 1

.. IrLP(wo')e 2(mw, )3 ( . >§
P»fi'lmreo(nmbt)7z (2K1)*c‘ 2mv,

l:(-—é' M) Re[F s/ - 2F 3/ +F 1/]] (85)

n+% n+% FI‘H /e

The time response nwbt can be seen to be proportional to

" [F s -2F s+ F 4 ] "1/3
[(Gnth - ak) 2Ty 2yt Fovy e 86)
A= < n+:'/ F;1+3/z/ l;'l!H"/z K'.L) ) (

This quantity is plotted versus (w;/w;) in Figures 17 and 18 for x 2 ZK1

(positive F) and x < %, (negative F). Note that
21 Lwav,c * 2
E_hmeoct <2uv 1) :J (87)

We now proceed to consider the pinches for the ordinary wave.

- 2
nwbt-nA

(b) ORDINARY WAVE

The dispersion relationship for the ordinary wave is given

in Eq.(28b) and can be written as follows in the satellite frame of ref-

erence

e? wV,,

D = Ky- x= P k2" W L (k.'.+—z' P, 3" T_FR"(BOR) (88)

Using the same procedure as for Eq.(69), we find

Dy= =2P,k2" z—-)-,-Re(BOR)P(K - x) 57— / F——Re(B) (89)

+z
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3D/dk; = 0 gives 3q.(53), and D, = 3°D/3(k5)* becomes

D, Q&'—-l{m(unh Ty e (1-4n) - (“mo)z Fﬁs/‘} (90)

(k 0)2 W W

n+? 2

We recall that there exist matching points {or x<< 1

and for x = K,. First consider the x<< 1 pinch point. We obtain

Du z -2K"R330R/Fn+5/2

je

~
~

(Eqe(54)) and all three terms in D are important.

o 4¢<~
<

ko =2n

)
i Fn+"72

D, ® r__,_y!_znx (en+1)- 2n Tne% Fned
1 kio n Fr'1+52 *

Ve therefore find that

p . /MPeDiVng Ko’V m ( my\% Rel Bp/(c*/2v30* )]
(mb)%r Gk&°mb/ t(wbszn 2; \Fp, +%/ g’ Fn+%

and using Rss =1 (see Eq.(24))

B = - fi__JLP(wo')e/imt':(m ) V ZnJZ\ n+ é\/z [2n+1)-2n o " s F . _]‘_;_12_
Meo(m) )2 5ViK,, / / |

RN A SARINTY | A Fpn- Fryz)” -z

x Re ! 7
L n+% Fn+3/2 I;.n-o-"‘/z .

(91)

‘le next consider the x x K, pinch point which gives a larger
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response. Here the last term in D, is most important. Also since

Fres )
-K, = 2K ——
X ul " F;u.s/z #kiov‘.
we obtain
= mrr— a
" F;1+5/2 pk}_oVL ’ 1 k‘{o Fn+5/2 p ,
Hence,
1 1 F" 1
T _ <21TV.|.>2 °‘§Kn24 { n+% Re B ok }E
- N 2
| ‘ (wb)§ c Vt nwb Fn+5/2 "c ;2;tw
and

i A
" yaeo (o, £)72 (k,)% ¢t \2rv,

F® o i~ 2(F_ s/~ F_3,)3
(B re 30 28,0 7, ) o werad [

The time response is propartional to

-
A, =L } (_K,T'Z_ (9%a)

so that

N}

mbt = A, 1?

I,LPwv 2
" bt/c
E b0 c® (217V1> ‘ :] (95b)
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where (r } is the quantity in the braces in Eq.(93). The normalized
time pgrameter A, is plotted in Fig. 19 versus w;/wi for nz 2. (The
case n = 1 requires not too large F values, and is slightly more
difficult to calculate. Two pinch points exist. Values have not been

calculated. )

We next provide similar results for the extra wave.

(¢) EXTRA WAVE

The formulae for this wave are obtainable from Eqs.(29b),

(33) and (25b), namely Ri¢1 =Rs» =1, Ryz =-Ro¢ = =i and

F - 2 : 2
- - xe 2(neq) €2 n+ﬁ wV (ne1) ¢
D = 2K1 * Pex ky w® (n+l 2n+3) <k"' + ?"> Pexki FRe(ﬁex)

(95)
One readily finds (see also Egs.(57), (58) and (59a))
D, = (x-2K1)2R3‘36x(n+1)(2n+3)/Fn+7/2 (96)
(X-ZK-L) - F' 2, uvk! uVk} 2 Fn ,
_ n+/ ~1a° 10 n+'%
D,= W i\lo-n(n+1 )+ (4n+3) Fn+7/2 Prommiind o Fn+7/z (97)
Matching at x << 1, i.e. at k;0 ¥ -2(n+1 )vinn+7//cvaF;l+7/ ,
2 2
yields

Dy = 4K ReB (ne1)(20e3)/, oy

(n+1) F* 7, F -
D,.:h—xl———l—_(zms)-z(nn) —“ié——n*—ﬁ—!

(kjo)? (1"1:1_,,7/2 )2
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v K, 0°V% 7(2ne3) %/FI'“%)’/zg»Refpex/(c‘/zvfth)]
(mbﬁ ] vft(m,'b)3 An+1) \Fn+7/2 Fn+7/2
" ., F o ~%
X E2n+3)-2(n+1) —E:AM:, { (98)
(F,'H?/z)z J
1= 0 and
VI I _IP(uot)e ot o vi 2(net) z g 1\ -
e -
K, b47eo (mbt) 2 v w(2n+3) ;1+7/2 (

where {‘ } is the quantity within the braces in Eq.(98) and the real part of
Bez/(c‘/ZVZUZ) is given in Eq.(29b).

Finally, the two pinch points for positive and negative F

at
F
x = 2K + Sk o
F;H-.’/ uklov‘.
give
8Ref
D, = 2 K., (n+1)(2n4+3)—2
F!' 5 1 uk!eV
n+'/s 107y
"
D. = )"'K'.l. Fn-»-"/z HkjoV,

+ - 2
(klo) FI:1+7/2 ]

T . (21rv,|_>% c‘(le)z {F;H»’/z

(mb)% o '

B ¥ 1
R oX [ (n+1) (20+3)F (100
vt(mb)s ns% )2 ° [ c‘/ZVfth:] } n1) (2ne3)FF (100)

and
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VI I_LP(agt)e 200 2(nwy )>v, ( . \"’

Ep 72 \Z 4 :
Lareo (nw, t) (2K1) c . 2av,/

(n+1) (2n4+3)F" 4 n+2
X { 5 ) nla Rel o7 (Fn+°/z -ZFn-ov'/z +Fn+%)

1
-)-5

n+ 72 -ZFH""/ +F n+% )+ f‘!_/‘( +7 -2Fn+3/ n+’/z )] )

(101)

The time response can be normalized with respect to

...."/3 4
Aex = { } 2—7- (1028.)

(2K, )%

so that

: %
e = i [ (s37) 1] (102

where [ } is the quantity within the braces in 2Eq.(101). The para-
meter A, is plotted versus w;/w; in Fig. 20 for x 2 2K, (negative F)
and in Fig, 21 for x ~ 2K, (positive F).
The above completes the analysis on the time response, The time
results near x = 21(1 or K, have been plotted in Figs. 17 to 21. In
the following, we discuss these results and show how the experimental

harmonic dependence when compared with theory can provide a gross picture

of the sheath around the satellite.
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X DISCUSSION ON TIME DECAY, EXCITATION OF HARMONICS AND SHEATH EFFECTS

The time response given by theory for the electrostatic
pinch points is much longer than observed experimentally. As an excmple

let us consider £q.(68) for n=2, wP=2wb=21:Mc, so that [K; | =% and

_ |ILRyg 1
wbt B Eljne, 21«-1/317

applicable to Alouette 1 data. The receiver sensitivity is 10? above

2/3 2
@‘) « Let us assume the experimental values
t

XTB, which at 10" °K (galactic noise temperature) and 2 x 10*cps band-
width is 2,76x 10" '°watts. With a matched load of 40002, the antenna
voltage at the terminals is 3.32 x 10"volts, and an antenna length of
4L7m gives a minimum field sensitivity of 7x10°°V/m. The trans-
mitter dipole moment, using the output of 100 W into 4L00Q,is 23A-m.

We also take (see Eqf7)), P(w) ~ 7 ~ 10"%sec, corresponding to the
centre of the pulse train. Other representative values are as follows:

v.=1:7x10°nm/s and vV, = 3.3x10°n/s. We thus obtain

2w.bt= 1.2x 108 or t=0.19 sec.

which is sbout two orders of megnitude too large. Higher order har-~
monics have even a much longer response because of the extra factors
of vt/VL that appear in Eq.(68). To explain the observed smaller time
response when pinch points exist for electrostatic waves, we say that
it is difficult to excite, with the dipole antenna and its associated
surrounding sheaths, wavelengths in the perpendicular direction which
are much smaller than the free-space ar antenna length. Thus the
electromagnetic pinch points are much easier to excite and are not
affected as much by sheaths since their wavelengths are of the order

of that in free-space. The minute electrostatic wavelengths probably

[ -
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cannot be sustaired in the sheath for the length of time that the above

theory based on homogeneity predicts. This does not say that they are
not important. In general, when electromagnetic and electrostatic
matching points exist, one can expect both,to be important.

We now discuss the time decay of the electromagnetic pinch
points. Because of the complexity of Eq.(87a) for the extraordinary
wave near x = K‘.I.Kr/K-l’ we calculate only results for the x = 2K1 and
x # K, matching points. In all these cases, we have a formula such

as

1
ILP3 v 224
- a2 bt/ ¢
ShEE |Elq.1reoc'(21rvl> l (103)

where I Jenotes either I, or ZIr. Let us assume again the experimental
date for Alouette 1 given sbove. We also adopt a typical value Tor

W= 1.2mMc/s (or frequency = 0.6 Mc/s), and cbtain from Eq.(103)

w, t = n’Ax5.5x 10%¢cycles (104)

The parameter A varies between 0.6 and 1.5 and is given for various
pinch points in Figs. 17 to 21.

The experimental data on nwbt as given by Fejer and Calvert8
is given in Fig. 22. We see that the cyclotron harmonic ringing
lasts typically for 10° to 10*cycles which agrees as far as order of
magnitude with Eq.(104). There do not seem to be any pronounced
effects for n > 2 on wp/aub which again agrees with the relative
insensitivity (within a factor of 3) of the parameter A, even very close

to cut-offs, in Figs. 17 to 21, The experimental deviations® from
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cyclotron harmonic values are within 1% as predicted by this theory
in Figs. 6, 9, 12 and 15. (Note that the theoretical deviations
measured by a moving body are the values plotted in the Figures with
the Doppler shirt subtracted. ) Lockwood ' © states that the favoured
orientation for cyclotron harmonic resonance is when the antenna :s
oriented along the magnetic field. Theoretically, this indicates
the importance of the ordinary wave contribution, given in Fig. 19.
Calvert and Van Zandt6 also find increases in signal exactly perpen-
dicular to magnetic field which can be attributed to the other waves.
The only apparent disagreement of this theory and experi-
ment seems to arise from the n® factor in Eq.(104). (We note that
the electrostatic theory in Section VIII suffers as well from such a
serious discrepancy.) The n®* factor says that higher harmonics last
for a longer time. Physically this is a result of Eqs.(17) and (18)
where it is shown that the response is larger when the curvature of
the di spersion curve is less, and this theory predicts "shallower"
dispersion curves for higher harmonics. If higher harmonics last
longer, why do the experimental ringing durations decrease slightly
with harmonic number as shown in Fig. 22? This contradiction is
only an apparent one, since we have assumed in Eq.(104) that all
harmonics are excited to the same degree with the same field amplitude.,
Obviously, the excitation mechanism favours the lower harmonics.
That is we hypothesize that the higher harmonics are excited to a lesser
intensity than the lower ones but, once excited, last for a longer time.

In effect, we want the two effects to balance out in order to reproduce



the more-or-less independence or slight decrease with harmonic
number shown in Fig. 22. The slight changes in the A factor with
harmonic number ae sufficient to account for the ret decrease in re-
sponse.

In order to include the excitation effect, we have to
adapt a physical method for higher cyclotron harmonic excitation.
The picture adopted below is identisal to that postulated by Johnston
and Nutt&ll“, and essentially rests on the non-linear variation of
the electric field within the sheath. We assume that the very strong
antenne field acts on the electrons in the antenna sheath whose
motions are influenced by the steady nonuniform electric field of the
siwath and the ambient magnetic field. Johnston and MNuttall (Eq.(5))
show that the perturbed exciting electric current density varies with
harmonic number n as bnn, where b is defined below. Thus in order
for all the harmonics to last the same time, we require, according to
Eq.(103) with I«b n,that bna:nf‘. In the model of Johnston and
Nuttall, the magnetic field is along the z-axis, the electric field in
the sheath is along the x-axis and varies with x. An electron in the

sheath oscillates according to the solution of the equation:

%+ w;x+ (e/m)[E(x)=V]=0 (105)

where V is constant and a dot signifies 3/3t. The coefficients bn

are defined by the solution of Eq.(105), viz.

x(t)/x0 - ¢ = an(cosmbt.’- ﬁn) (106)

1
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where xo and ¢ are constants. Let us work backwards to calculate
E(x), assuming that b« n"*. With Po=m for simplicity, we assume

a solution of the form
oo

x(t)/x0-c = -Z(cosnwbt)/n‘ (107)

1

Let oos(mbt)z cosf where 0 € 6 < 27, 6 = wt-2mr with m an integer.

Then we can use the following identities12:

“
x cosnb _ 7t w6 70> 6%  72/0° g6 42 (8-m)* =*
Tx t°F LT'9O'12 MY T"z‘*%‘)' "EL"%
1
(108)
b4 : cosne 1r 70 62
L >+ (109)

since a/at=wba/ae. For x=x at t=0, we let c=7*/90. If we

solve 3q.(109) for 6 in terms of %, we obtain

1
2 z
oer| et (110

Substitution of Eqs.(110) and (109) into (108) yields with ¢ = 7™ /90

(x5 (111)
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Finally, substituting this into Eq.(105) and choosing the constan%

V=Eo +xow.:1r2m/6e, where E=Eo at X = X5, results in

3
“ai G - (B) (112

We have succeeded in deriving two possible gross varia-
tions of the electric field in the sheath which can provide the proper |
apparent independence of the resonance duration on harmonic number.
Figure 23 illustrates these two variations. For sufficiently large
x/xo, E has to tend to zero, but this is not accounted for in the
simple-minded theory presented above.

We have also shown that the excitation mechanism favours
lower harmonics whereas the resonance relaxation after the pulse is
shut-of f favours the higher harmonics. The long relaxation times
have been associated with pointe on the dispersion curve where the
wave group velocity matches satellite velocity.

For electrostatic waves, such matching perpendicular to mag-
netic field can be accomplished when the waves are backward, but only
for the lower harmonics when the waves are forward. Matching with
electrostatic waves may, however, not be necessary due to finite antenna
size where the whole volume surrounding the antenna is excited with the
satellite moving faster and thereby sampling the wave packets. This
analysis including finite antenna size has not been done here and should
oe considered in any future work. Furthermore, sheath effects have
to be included since the sheaths are larger than the electrostatic per-

pendicular wavelengths., Sheath effects may explain why the electrostatic
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resonances do not last as long as theory predicts.

For electromagnetic waves, matching points of importance
are those near x =~ lef/k&’ x =K, and x » 2K;, the first two having
one such point and the latter having at least four such points. The
resonance duration predicted by these points, modified by the exeitation
effect on harmonic number, is in agreement with observations. The
theory requires further analysis on the effect of magnetic field inhomo-
geneity in the parallel direction. Also one should check the applic-
ability of the analysis in Section II for kiD‘t/ZDwz k,V,t of order one
rather than much greater than one. We do not expect a more exten-
sive development to produce significant changes. Finally, for all this
theory based on pinch points, one should investigate the time that one
has to wait before the asymptotic time behaviour becomes valid. Here
again we believe that, even though k,V,t may be small, the theory is
correct to first order, as is indicative from the generalized approach
also given in Section II.

Appendix III provides a list of publications and a discussion

13

on previous work “ and the modifications that have been found necessary.
In Appendix I and II, we give the material corrected and condensed from
Parts I and II respectively in a previous report13. The nonrelativistic
analysis has been elaborated upon and its regime of applicability is
i11lustrated. Both of these reports are scheduled to be published in

the February 1966 issue of Physics of Fluids,
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CAPTIONS FOR FIGURES

Calculated plots of the Fn+’/ functions for n=1,2 ... 7
2
in the region where the function are large and negative,

The real part of w is denoted as W.e

' .
Calculated plots of F‘n+% /Fn+’/2 » the derivative taken
with respect to the abscissa c? (wr- nwb)/meft, for
n=1,2 .,. 7 in the region where Fn+3/2 is large ard

negative.

Ratio of plasma to cyclotron frequency (or Larmor radius
to Debye length) versus altitude with an assumed model
of electron density and magnetiec field at the equator

for daytime and sunspot minimum conditions.

Plot of the normalized group velocity versus A = kivzt/wi
for the Bernstein electrostatic mode, when w? >> w;+ w2
for n=2, 3, 4 and 5.

The values of (k,c/w)? zKlKr/K& versus (wp/wb)’ for the
extraordinary X or Z-wave and the additive deviation
A(k,c/w)® where the matching occurs for n=2 to 7. The

more vertical curves correspond to the Z-wave and the

flatter ones to the X-wave.

The values of (wr- nmb)cz/mbft where matching occurs

for the X and Z-waves near (k,c/w)?= ler/K-V



Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure

Figure

Figure

Figure

8(3’b’°)

9(a,b)

10(a,b)

11

12
13
14(a,b,c)

15(a,b)

16(a,b)

17
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The values of k"cz/hwa" where matching occurs for the X
and Z-waves near (kLc/b)zzzKlKr/Kl.

The values of (k,c/w)’x 2K, versus (wp/'wb)2 for the extra-
ordinary wave (Fig. 8a) and the deviation A(k,c/w)® either
additive (Fig. 8b, curve ---- (k,c/w)®> 2K,) or subtractive

(Fig. 8¢, curve (k,e/w)? < 2K1) where matching occurs.
Dif ferences in Figs. 8b, ¢ are negligible for n > 6.

The values of (wr- nwb)cz/hwbvi for the cases in Figs. 8b, c.
For curve ---- (k,c/w)?> 2K, and for curve (kye/w)?< 2K .
Differences are negligible for n > 6.

The values of k,,cz/nwbv,, for the cases in Figs. 8b, c.

Separate plots are not shown since the differences between

values for (k,c/w)® greater and less than 2K, are negligible
when n > 2, For n=2, some values are shown for (k*c/b)2>2K1.
The values of (k,c/w)?=~K, versus (wp/’wb)2 for the ordinary
wave and the additive deviation A(k,c/w)® where matching occurs.
The values of (wr- nwb)cz/nwbvt
The values of k"cz/hwa" for the cases in Fig. 11.

The values of (k,c/w)® = 2K, versus (wp/bb)2 for the extra
wave (Fig. 14a) and the deviation A(k,c/w)’ either additive
(Fig. 14b, curve ———- (k,c/w)®> ZKI) or subtractive (Fig. 14ec,
(k,c/w)? < 2K1) where matching occurs. Single

curves are shown when the differences in the magnitudes of the

for the case in Fig. 11.

curve

deviations are negligible.

The values of (wr- nwb)cz/hwbvi for the cases in Figs. 14b,c.
For curve —--- (k,c/w)?> 2K, and for curve (k,6/w)? < 2K, .
Differences are negligible for larger n.

The values of k"cz/hwbvn for the cases in Figs. 14b,c.

Single curves are shown for larger n.

Plot of the normalized duration response parameter given in
Eq.(86), corresponding to the cases in Figs. 8b, 9a and 10a.
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Figure 18 Same as Fig. 17 corresponding to the cases in

Figs. 8¢, 9 and 10b.

Figure 19 Plot of the normalized duration response parameter
given in Eq.(9%a) corresponding to the cases in

Figs, 11, 12 and 13.

Figure 20 Plot of the normalized duration response parameter

given in Eq.(102a) corresponding to the cases in
Figs. 14b, 15a and 16a.

Figure 21 Same as Fig. 20 corresponding to the cases in Figse

14c, 15b and 16b.

Figure 22 These cyclotron harmonic observational results are
from Fejer and Calvert (1964) Fig. 4. Their theo-
retical curves have been removed and relevant fre-

quency conditions -~ nw, equals Wps Wns wp, wr
have been indicated by R, T, P and L respectively,
(wR, Wy wp and w; are the values of w for which

K.» Ky» Ky and K, go to zero respectively.) In
their notation fH and fN are the cyclotron and plasma
frequencies wb/21r and wp/2u'. According to Fejer and
Calvert the data points remresent the results of

averaging one to three dozen observations.

Figurq 23 liodels of the electric field variation in the sheath
near the antennas which can explain the independence

of the time duration on harmonie number.
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DIELECTRIC TENSOR IN VLASOV PLASMAS
NEAR CYCLOTRON HARMONICS

I.P. Shkarofsky
RCA Victor Company, Ltd.

Research Laboratories
Montreal, Canada

- ABSTRACT -

The relativistic expression for the dielectric tensor obtained
by Trubnikov is simplified in the very weakly relativistic limit at
and near electron cyclotron harmonics., 'Vave numbers parallel to magnetic
field are included, leading to relativistic damping when this wave
numﬁerismdnﬁn and to cyclotron damping when it is sufficiently large.
The transition to the nonrelativistic Z-function is shown and the
regions of validity of the various functions are indicated. Collisional
damping is neglected. The dielectric elements given here are also
applicable to cases of complex w and real k. An exaﬁple of such a
situation arises in Alouette cyclotron'harmonic reception when one is
concerned with an initial time value problem. For this application,
we provide the analytic continuation of a complicated function and

investigate the tracks vhere it is real for complex w.



I.

INTRODUCTION

In this paper, we discuss and simplify the dielectric tensor of a
plasma near electron cyclotron harmonics. A relativistic approach has to be
used since the difference w -, (betweén angular frequency and cyclotron
harmonic frequency) is of order wvj"b/c2 in many wave number regions of interes.
We restrict ourselves to small transverse wave numbers i.e. we take
A= klzvtz/wb2 less than one. At first we consider general values for k,
(wave number parallel to magnetic field) but later we consider only the region
k"cz/¥t? <1.

A relativistic expression for the dielectric tensor:i of a plasma was
obtained by Trubnikov1 which will not be rederived here. This expression is
exceedingly complicated and simplification is necessary for further analysis
of dispersion equations. For k, =0, Dnestrovskii et al2 have obtained such a
simplification. Original contributions in this report are the inclusion of k,
in the analysis and the derivation of the dielectric tensor elements for
complex w and real k rather than vice versa. The latter extension requires
the analytic continuation of a complicated function.

Application3 of the analysis is aimed towards explanation of cyclotron
harmonic resonances in the local ionosphere observed by the Alouette 1 satellite.
The Alouette emits a pulse of energy and observes long lasting time returns
exactly at the cyclotron resonances. Since we are dealing with a time decaying
signal or an initial value problem, we have to consider complex w rather than
real w. The uniformity in space is sufficient that we can consider very small

values for k,. In the laboratory, this would require unrealistically large

1. B.A. Trubnikov - Collection -~ Plasma Physics and the Problem of Controlled
Thermonuclear Reactions, Editor, M.A. Leontovich, Pergamon Press, N.Y. (T§59),
Vol. III, p.122. See also the derivation in W.E. Drummond & M.N. Rosenbluth
Phys. Fluids §, 276 (1961), egs. (19-21).

2. Yu.N. Dnestrovskii, D.P. Kostomarov, & N.V. Skrydlov, Sov.Phys.- Tech.Phys.
8, 691 (1964).
3. I.P. Shkarofsky and T.W. Johnston, Phys.Rev. Letters 15, 51 (1965).
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plasma containers so that the very long wavelength disturbances considered
here may be difficult to simulate in the laboratory. This in in contrast
to the cyclotron resonances actually observed in the laboratoryu, which are

associated with shorter wavelengths and are somewhat shifted from the exact

cyclotron harmonic values.

In the analysis, we neglect collisional damping since it is negligible
for the times of interest during which harmonics effects are measured on tne

Alouette.

DIELECTRIC CONSTANT FOR GENERAL VALUES OF k,

Trubnikov's equationll for the elements S“B of the tensor g for a

(relativistic) Maxwellian velocity distribution function is
2

1o 4 ) Ko (VR ) x(w (2)
€ap _aaﬁ - ww}L : 5\ [d}-;{ R wp _3472_)-’]?“(3 } (1)

b v AK [~

toe\vy S0
where
cos & - s8in & 0
Taﬁ(1) = sin & cos & 0
0 0 1
/ k,%sin’g - k,®sing(1-cosE) kK& sing
2 2 _
Taé ) w—‘;; k,%sing(1 - cosg) - k,2(1- cosE)? k,k,E(1- cosE) ;
k,k & sing - k,k,E(1 - cosE) k,2E2 j

Kv is a MacDonald function of order v.

o2 w \2 k,c\2 k,2c?g?
R = (—g-v -i&;}—) + 2 P > (1—cos€>+—-z—
% b b “b

4. F.W. Crawford, G.S. Kino, H.H. Weiss, Phys.Rev.Letters 13, 229 (1964).




w = yne"/Eom is the plasma frequency, w, =eB/m is the angular

P
cyclotron frequency, v

b
=i/KT7m is the thermal velocity and i, n,s €, So,

t
m, B, ¢, ¥k, T and » have their usual significance. The wave numbers
perpendicular and parallel to the magnetic field are denoted as k, and k,
and taken along the x and z directions respectively. In the following, we
denote by p=c?/v, %, the square of the ratio of light to thermal velocity
and let this be very large.

In the very weakly relativistic case (u >> 1), the asymptotic
expression, Kv(x) = e Wu/2x for large argument, applies.

We also simplify the expression for R by assuming (k*vt/bb)z <1,

so that

: . 2 k,?v, 2 %

W/'R=u[< —%) + —-——;—52] + A(1-cos E)
Ho, Hay B
where 2 1
k-lavtz gﬂ 2 knz vtzg -2
Aw ——— - + T
“y, l: < “"’b> Hiy, :l

The above expression for VR has to be used in the exponent. However, in

the T , matrices and in the R factors, we can omit the A(1-cos E) part of

B
VR. Thus we see that klzcz/bszh ~ A. At this stage we can introduce the

2
familiar modified Bessel function (In) expansion, exp(Acos &) = ) In(A)exp(-ing).

S
Using this expansion, we can express all the sin & and cos § e
combinations in series form. For example, denoting I ' = dIn/HA we note that

cos £ exp(Acos E) = > In'e-lns. Further observation shows that
—

-R Jok

Ezknzcz/beR = k,0e . and changing variables to t = gw/hwb, we find that



_)+_

w w
t = 10 exp(-inu %’ t)/8 (nu -31) Hence the form for ©ag becomes

1
[ k"ZCZtZ o ) wb
w ? = fn dte-ATaB(B)exp{u—u ‘ (1 -i‘t)z + -—-0)1—_— -1y o t
eup =g i —Ep Z | e
n= o [(1-11’.) + —“'u-)g—
(2)
with .
n In o
-3 '
A m(In In)
1 2
3 2 k zcztz 2 - n _ '
Tap( ) . [(1 - 1t)° 4 S in(Ir; In) — ¢ 2A(In In) 0
0 0 In<1+k"
/ nI
0 0 T
k, k,c?
15 3
0 0 i <I '- 1 > o
+
“ n n G nu_p.\
W
nl s
- [
== <I In> 0
/
1//
/
and
X, 2 242 _% k. 2v 2
A:A[(1-it)z+ —r , A m —;'.13-
b

Let us now restrict ourselves to A << 1 rather than A ~ 1, so that

I~ A"/2"nt




It is also proper to change the sum over n to start from 0. Note
that I_n= In. Define furthermore a function Jq dependent on two dimension-

less parameters uwbn/w and k"c/w besides q.

-~ o dt exp {u—y [(1 -it)? + x tz z] - iy '—'t}
}( b,£‘-h°>a-if (3)
q w w [(1 ’t)"' k.2¢2 42
0 -1 —H""‘—

w w
As a result writing i<:>= i(uf,%)i ;<-p—b’-1§a|2\ we

have for A << 1:

€11 -1 = €22 -1 (combination a) n2)\n-1 N ®)
. =) B T, (he)

i€eq; = - i€y (combination b)

£33 -1 -f-z’ip{g%- k, (o —n-):|+ i ai" <k" }(a) 2>} (4b)

n+ 7

€43 = €31 (combination a) k,k,c?

wz
= - Ly 4

-1823 =is3z(combination b) b

T an-1 (®)
nA d
Z/znn! a(nuq)/T } 5/2 (ke)

n+

ITI. APPROXIMATIONS FOR THE } - FUNCTION

(a) The case of k,= O and the F-function

Exactly perpendicular to the magnetic field, the }q function reduces

to the F function:
q o0
. W -
Fq(“a) = - i [ dt :l_uat 5 = n‘”’b

=1t)9 ° ’ w (5)

o}



first given by Dnestrovskii et alz’ 5who also plot the real and imaginary parts
of the function for real w and n=1,2,3 (see their Figs. 1,2).

Starting from Eq.(5) with q a half integer and assuming Im(z) > O for
complex z = u8, we can integrate by parts a sufficient number of times until

the power q is reduced to 3. We obtain

34 s w
i r(g=1= 1(-1)3 7 3 [ %t

Fq(z) = (-2)P J%G’—ﬂ + F&T)-— V7 2972 jm (6)
p:

]

This reduces to the following expression for real w and & < T, given5 by
Dnestrovskii et al.

’3/2 1 1

al a-% -lusl ¢

F (us <0) = |u8|P L(LIJTL). _M{TZL; & at

p=0 °

- -
o us| 9 e sl (7)

o)

The imaginary contribution in (7) arises from the region around it = 1 as
shown by Dnestrovskii et al who rotate the contour through 90°. Note also
that for real sz, Fq has an imeginary contribution only for z < O since q is

a half-integer. Note that

1}

" olotay T % 1

f 2 gk 1/;.5 Lua(«;):\ = a(aE)

) (1 -1t)

Thus the more general expression in (6) valid for complex w can also be
expressed in terms of the error function & or in terms of the 2 function6

which is already tabulated and usually defined by

2 ix 2
Z(x) = 216 * f eV dy (8)

- 00

5. There is an error in Dnestrovskii et ald, The sign of the last term is

negative as given here and not positive as given in their Eq. VIII and Fig.2.
6. B.D. Pried & S.D. Conte, The Plasma Dispersion Function, Academic Press,N.Y.(1961]




Thus
_34
' -1 - VT b e . u
Fq - f?; (_Z)P r(g(q) p) + P(g) (-z)¢ / [}VE Z(IfEZJ (9)
p=0

To be of greater use, the Fq(z) function defined above only for Imz > O
has to be analytically continued for Imz < 0. Fortunately, we have succeeded
in expressing F in terms of Z, a function whose analytic continuation has
been considerably investigated (see Fried and Conteél Thus we can 2llow
Eq.(9) to be valid everywhere in the complex z plane using the proper
continuation for Z.

The following expansions of 4(Z) are valid throughout the complex &

pla.ne6.
2(8) = v e -z Z(-f)lﬁ/r(lﬁ/z) (10)
1=0
For || >> 1, 2(%) ~ iVdo e_z‘2 - Zé-(ﬂ"’") T(L+ %) N (11)

where ¢ = 0,1,2 for ImZ > 0, Im& = 0, Im & < O respectively.
Let us now substitute Eq.(10) into (9). We obtain, using the formula
I'($+n)r(3¥-n) = 7/cosm :

hed
M0+ %R, 30 = ) (2 Mampsd) - a(-2)" VF o (12)
p:
For large arguments, |z|>> 1, it is convenient to substitute Eq.(41) into

(9). Using again q = n+7% , we find

D(a+ %), ,3,(2) = - 10(=2)" ¥ oF - }“ ﬁh—p-él (13)
p=0



where o = 0,1,2 for Im iVz greater, equal or less than zero respectively.

(b) The case of small k,

We investigate first order k, values satisfying
ly*| << u™' and [py(28-y®)l << 1 (14)

where y ® k,¢/w. Subject to these conditions, Eq.(3) reduces to

}q(ﬂs) = - i/ z1d_—tityq exp [iust - Ezﬁ -<1—_t:-$y:| (15)

We can further expand to first order the t? exponential part, and
using -t* = (1-1t)® - 2(1 -1it) + 1, we relate fq to the Fq function in

Eq.(5).

7 (urwy fo, v) = B+ (Fu/2)(F g =2 4F ) (16)

g+1

The same relation holds for j’-q(-unwb/w, y) if we substitute u(w +nwb)/w

for the argument of Fq. We note that Egs.(4) now apply with the following

substitutions.
' (b§ .
?a—f’-{-; (x, 3(9))- F(a) M (F(a) 2F(a) Féﬁ and 3 vl g‘tiz q(b)
(17a,%)
where
F((f) = ¥y [“(w B ““’b)/“’] t R L u(w +nwb)/w] (17¢)

For larger k, velues limited by |y?| < |8, we can still use

Eq.(15), but expanded to higher order. We write




-9 -

-ut?y?/2(1 -it) = - itwy®/2 + uy?/2(1 -it) - py?/2 and expand in a power

series the resulting exp (uy?/2(1 -it)) term in Eq.(15) to yield
1~ - &HY /2 uv 1 P B (o5 -2
q T(p+1) "a+p| 2 (28 -y%)

We now show that the exponential part of F (see Eq.12) can be summed. Denote

this part of }q by }q(1)' Then, since z = u(28 -y?)/2 here, we obtain

7 (1)
q

o] T e (- (4

(5 7 e[ u-v) | @702 5 v -y | (ea)

1

-7 exp| u(s- yz)'J (=254 82 1y - za)ﬂ (18)

where J and I are Bessel functions. Since q is a half-integer, we note that
for real y and §, ?q“) and the total }q are real only for 25 » y®. (In
particular for y = O and real w, we have seen that Fq is complex only for
8 < 0.) An indication of the y* = 25 boundary, equivalent to k,%c®= w? -nzwbz,
has already been given by Rukhadze and Silin7.

The small argument expansion of (18) yields (16) in conjunction with
(12), justifying the second restriction in (14). These approximations and
limits are illustrated in Fig. 1. We also indicate in the figure an

A
"intermediate" region where | 28| >> |y?| and |uy(25 -y2)2| >> 1 from which

7. A.A. Rukhadze and V.P. Silin, Sov.Phys. - Tech.Phys. 7, 307 (1962), Eq.V.
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. 4 (1
jt follows that Iﬂal >> 1, Here we can use é = [2/}1(28— yz)] + 0 qu( )
where é{q(1) is given by Eq.(18a) and o = 0,1,2 depending on whether

In [iV28 =y2] = Im[-Vy® =28] 4is greater, equal or less than zero.

(¢) Large values of k, where nonrelativistic analysis is applicable

We can obtain the nonrelativistic expression under the conditions

(see Fig. 1)

[S1E

Iy|2 >> 28], |yl >>#™% and |y*(y*-28)] >>u”" (19)
In this case the main contribution from the integral in (3) arises from

1
t << 1, so that [(4-1t)2+ y?t2]2 = 1 -4t + y®t?/2. The integral we

are left to evaluate is

iz

* nw 2,2 2 2 v w2
gq=—ifatexp{mt(1-wb)-‘ﬂzt}=-ie'4[exax -1;:—02->
0 -00
vtw
il z(%) (20)

where Z is the plasma dispersion function6 defined in Eq.(8) and
Z = (w-—nmb)/vtk"Vé = &Vu/yW?2 (21)

Substituting these results into (2) we obtain in terms of the Z- function,
the well known expression36 for eaﬁ’ which need not be rewritten here. 1In

particular for large arguments |%| >> 1,

_ w2
z(%) = Ve ae-gz 2z ! and ;}q = - V7w ov,we s /K V2 + (us)~* (22)

where ¢ = 0,1,2 depending on whether Im & = - Im y is greater, equal or
less than zero. Note that in using the relativistic analysis for small X,

values, we are not faced with the "problem" of which is »maller k"vtVé or
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w-wb

together with (19), we see that (22) is valid provided

|u®8?| >> |2uy®l >> |48l >> 4 (23)

in the Z argument of the less exact Z-function. Combining |Z| >> 1

To prove the assertions in (19) on how large k, has to be before
nonrelativistic analysis becomes applicable, we will show the transition from
(18b) to (20) for the exponential part of }q . We use the original definition

in (3) and make the transformation

. 1-6 .
it = —ﬂ‘: (YY(-I-S‘ -)2872] + ie

The motivation for the above transformation is that first order & terms
cancel in the expansion of the exponential factor in ;}f1 and only terms of

order €° or higher survive. We find

1 -
yd -y

5‘q(1) . (y2452-25) Y2 exp [u-(a.—yz) +uy(¥z+82-28)1§:| foas exp [. %y“iz 'y2+52-2s>3q
[}

rol-a

exp (24)

- ijz (¥2+5‘2-23)Q/2-3/‘ u(s—? )+uv(y +8%-28)
* yiz 1oy _l

1 .
This relation applies for |uy(y* - 28)2 >> 1, since then Eq.(18b) yields the

same result as Eq.(24) for |yl << 1 and |8%| << | 8] << 1, namely

]q(“) = -3 /_77—2; %(1 --3-8:>q/2_/‘ { l:f)?——ﬁ - V:D (25)

In the limiting situation of |y?*| >> ||, we find from (24) that

3'q(1) = - %/—%‘P -;82' (q -’Vz)] exp [-232 (1 +-7>:] k“c _zz : (26)

WV

2

Since iVF e is one of the parts of the Z function (see Eq.(10)) and

recalling Eq.(20), we see that the transition of the jq function to the



7 function has been demonstrated at least for part of these functions. That
is as k, ranges from O to above w/vt, the exponential part of '?q changes from Eq.{12)
i.e.(-1)q_% ﬂ(uﬁ)q—1 e“a/r(q) to - ivw e-éz(vtp/k"czVQ), the latter corres-
ponding to part of the Z(q) function. From (26) we note that the Z function
becomes valid only for k, large enough that lv?l >> |81 , which is the first
condition in (19).

We have shown that different functions are required for cyclotron
harmonic effects in various ranges of y and 8. For sufficiently large |y|
given in (19), one ean use the nonrelativistic 7(Z) function whereas for
sufficiently small |y|, given in (14), one requires the F(u3) function derived
from relativistic theory. In the intermediate region, one can use one of
the forms in (18), (24) and (25) for the non-principal part.

Of particular interest in the large argument expansions are the
situations for validity of just the inverse argument part (e.g. -é" part in
the Z function), and of the exponential part alone. When |u8| >> 1, the first
part of 3; seems to be equal to (us)™' for all y except y = 2§, since in
the intermediate region we obtained 2/u[28 -y*] = [u8]™'!, with similar results
in the region of validity of the F and Z functions (see Egqs. 13 and 22). The
(4;') expansion can thus be used even outside of the region of validity of
the Z-function itself, provided we do not need the analytic continuation
(or exponential part) of Z. The only restrictions are Iél >> 1 and |u8| >» 1.
However Z has an additional exponential contribution either for situations
where w and k, are both real, with k, taken to be complex (and then o =1) or
if Imw < O with real k, and k, as for time-decaying waves (and then o = 2).
The exponential part is small compared to Z"' only if Re Z >> Im & in which
case |2] < 1. Since by (23), Vilyl >> 1, we see that |wvtz/bzk"|< 1. When
Im Z >> Re %, the exponential part gives the main contribution to Z and then

IZI >> 1. Thus we must be cautious of analyses on cyclotron harmonics which
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use z = ¢°

rather than its exponential part in the region where large

values of lwth/bzk"] are required. Actually, large values are needed to
counteract the small In(A) function in all regions of A << 1 for n > 2 except
for the Bernstein electrostatic modes and very close to the Appleton-Hartree
modes. The coupling region between the two and the region of k, values much
less than the Appleton-Hartree values, need a very large vatz/bzknl magnitude.
These regions exist only for Imv < O since only then can the exponential

part of the functions attain huge real values as demonstrated in the next

section.

IV. THE TRACKS OF REAL Fq»and ReZ

We are interested in the frequency track of real‘Fq i.e. in finding
the values of real and imaginary w for real Fq. Strictly speaking, we
should actually be concerned with the function 5% rather than Fq. However,
the previous section indicated the great difficulty in a complete analysis
or expansion of %f We restrict the analysis to small k, values for which
we get a substantial component of group veloclty propagation perpendicular
to the magnetic field lines, and then the damping of the wave (viz }g(1)
in Sec. III) is small. We are mainly concerned at first with k,2< vtzwz/b‘
in which case Eq.(16) applies to a first approximation and ja = Fq to zero
approximation. Hence the track of real Fq very nearly follows the track of
real }a for very small k,.

In a nonrelativistic treatment, w/[u(w-—nwb)] is the real function
that replaces Fq in the analysis. Thus nonrelativistically, the function
goes to X «» as w » nmw. . Relativistically, we note that Fq remains real for real

b

w >nwb. For real w < o, , Fq is complex and boundedz. The track of real

Fq to be found below is identical for w 3w, and w is also real here.
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Beyond this o =ney point on the track, we can expect the track for complex w
to yield larger and larger values of Fq as IuSl increases and eventually

Fq goes to +w. There is also a distinctly separate track for negative Fq
for which Fq goes to -w. These tracks in some sense imitate the non-
relativistic behaviour.

The mathematical statement of the above is simple. e recall Eq.(13)
valid for large |ud|. The positive Fq track which follows the cw've of
Dnestrovskii et &l up to w=mw, 1is obtained by teking Im iVis > 0 which is
satisfied since pd is real and positive here. Hence o =0 and for ud > 1,
Fq is a decreasing function behaving as (48)”'. However, beyond the w =rmw,
point, we change to the lower sheet for which Im w < O or Im iV < 0.
Although the real part of w initial dips below o, it soon rises again above
mw, , 8o that the real part of ud is positive and steadily increasing. Since
0 =2 in this case, Fq goes to infinity as 2m|u8| q'-1e|“8‘/1‘(q). 0f course we
cannot believe our analysis if & is not small, but even for 8 =0.1, e“s is
an enormous nhumber.

The negative Fq track is also readily understood. The track always
lies in the lower half plane. The initial part of the track follows at first
(u8)~'. Although for this track Im ivps < O always, and o0 =2, we note that
the real part of z =ud is negative and consequently, the exponential part in
Eq. (13) decays as e-lzl and F decreases as 2z~ ' for large negative z.
However, as @ . increases, the real part of z becomes positive. Keeping
93 mag negative (o= 2), Fq goes to minus infinity as -21r|u6|q-1e|“8|/r(q).
Note that the singularity of Fq(z) is located at Im iVz m _w Or z = o on the
lower sheet. The tracks one must take in either the z or ivz planes to make
Fq real are shown in Fig. 2. (If one follows the indicated w points, one gets

the tracks for real w and complex Fq corresponding to the results of




-15 -

Dnestrovskii et al”.)

A schematic plot of the real function Fq versus the real part of v
is shown in Fig. 3. The enclosed region refers to § < 1 and is the region
where our analysis applies. Figure 4 provides accurate plots of the F
functions in those parts of the enclosed regions where they are large in
magnitude. Also shown are the corresponding values of w, versus W .

It can easily be shown how F is made real for large |z| values. In
this case we use Eq.(13) with o= 2: Fn+;yz(z) % 1/z - 2ﬂ(-z)n\f; eZ/I‘(n-p-%).

Writing z =|z|ele we see that

1
. (cosf -isinf) 21|z | ™2 |z]cos6 -im(n+1) i(n+3)6 ilz|sind
Fm_;/z(z) = T + TToe e e e e

When 2% > 6 > 3w/2 for which cosé > 0, we require the argument of the sine
function part of the exponential to be very near zero for large real positive

F and very near -m for large real negative F.
|z|sin0 + (n+2)8 = 7(n+1) =0 or = -7 (27)

In this case and provided |z| < u, we have respectively

1
. 21r|zin+2 e|z| cosé

T'(n+34)

Fn+3/z(2) ~ (28)

2 2 - 2 2 - .
Also (c /vt )(wr mb)/m).b ~ z cosf and ¢ wi/vt w, = |z]sing.

b

A similar analysis canbe performed in the region of applicability
of the Z-function. Here the variation is simpler, since the exponential part
goes to % at w = nu similar to the %' part. To find the track of real Z
for large IZI > 1 and Iél »1, we write £ s x+iy, y < 0, so that
2 yz-xz
7 % 2iVE e-r, =2V @ (sin 2xy -i cos 2xy. Thus the positive and

negative tracks of interest are given respectively by
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¥

2

Z=tomed and 2xy = £ w/2 (29)

“Je note that in this region where Z is large, the imaginary part of £ or w

can be considerable indicating that the wave is dasped in time. Note also that’

Eqs.(27) and (29) are the least damped solutions of many other tracks and ‘are
the only ones which ecomnect up with opposite limits having more.or less real

arguments.

THE DIELTC.RIC isliSOR ELEMENTS

Near the nth cyclotron harmonic (n # 1 - see end of this section),

twxmw Besides the n = 0 and n = 1 terms, we need to keep only the nth

b.
harmonic term. Then we can write cold (c) and warm (w) elements for e=g + E
where the (u8)™' approximations apply for £,» Viz. 73/2 =vt2/c2 for n=0

and -7% =vt2(wtw.b)/wcz for n = #1. Thus (4) becomes
(erasez = 1 -w 7 (W* - 5 (g )ss =1 - wpz/w2 (30a,b)
and -i(e 1z = i(e a1 = w ® @ /0(0® -a®) (30c)

For the warm terms, it is convenient to consider positive w near .,
independently from negative w near ), . ¥hen o = ™y the contribution
from -w is negligible of course and vice versa. For this reason we restrict
ourselves in the following to positive w, bearing in mind that negative w
can be treated in a similar manner. Thus in the Z-function we consider only
the argument Z = (w- mb)/k,,vtw/? and in the F function we consider the
argument ud = pu(w -nwb)/w.

For the nonrelativistic case subject to (19), the approximation

F = -vth/k"czwa yields the following warm elements when A << 1.

2

(ew)"’" = i(ew)’z = -i(ew)z' = wk,,%twfz 2'n! z(%) (31a)

wpz N
(ew)33 = = wk"vt.fz 2"n= ; Z'(é) (31b)

-
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2
w © n-
. s __ > nA
-1(€W)23 = 1(5w)32 = wk,,vt ISR z'(2) (31c)

[N

It

(SW)13,31

where 2'(Z) = 82/0%Z. (The approximation Z2 = -%~' for large £ is invalid in
certain regions, see Sec.III.)
From relativistic analysis subject to (14), we find using the

equations ir (4) and (17)

(Sw)ﬂ,zz = i(ew)u' =-i(€w)z1
W 2 2,n-1 2 4
__ D n°A"" k,“c _
- we H oMt [Fn+3/2+ 2v_tzwz (Fn+5/z 2Fn+3/2 + Fn+’/2) :l (32a)

(ew)” = - 2&% H ?%Lan/z + ZLI;:;%; (7 L 2'F'n-«-s/z + Fn+%) :| (32v)

. . 1 "1
(EW)13’31 = -l(ew)23 = l(ew)32 = _% H ~ow 2'n! [Fn+5/z - F.n-4-72 :l (320)

In certain case38 we require higher order A terms to the dielectric
tensor elements. These terms will now be derived for k, =0 using Eq.(2) and
expanding e-AIn(A) to two higher order terms. In the manipulations yielding
Eq.(4) from (2), we note that every extra power of A raises the order of q

in ';q (or Fq for k,=0) by one. Thus we obtain, using the series expansion

of e-LIn(A) :

2
w 2
- - n n-+ - 2 1 1
(s”)w =H _aE;!- 2"nt A I:Fm% A'Fn+5/z *A Fn+7/‘, <2+ 1) T 2>] (332)
o T 2 1 AN
(e”)w = W 2'nt Lan/z - mn+7/z A Fn+9/z <l.. n+1 + §>_J (3%)

8. I.P. Shkarofsky, "Dispersion of Waves in Cyclotron Harmonic Resonance Regions
in Plasmas", submitted for publication.
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2
w 2
. _ (s - - n n-1 _ A(1+n)
(...1821)w = (1812)‘1!' = ~U —Erw ST A [Fn-i-% Fn+5,é

n

2
+ An' <2+Z§I$5 1 % > FM’/J (33¢c)

2
240

w 2 2 2 2

- g n n-1 - A n n
(s“)w = H e 2™t A [Fn-r’/z A Fn+s/z - (2 +2n+2+ 1) T 2>Fn+7/21
(33d)

When the Z-function applies, the above equations can be used with all F's
replaced by -vth/k"czwf2. The additional terms provide correction terms in
the dispersion relations and give rise to a completely new wave as is shown
in Ref. 8.

For the fundamental frequency, the "cold terms" in Eq.(30) are
incorrect except for €33. For the "cold terms", we allow only n=-1 in €44

and €12 keeping n=1 for the "warm terms". Thus
1~ (ec)n =1- (ec)zz = '1(50)12 = i(g )21 = wpz/[Zw(w+us)] (34)
To order A%, the warm terms are given by Eqs. (33a-d) for k,=0. If we wish

to include k, to first order we can use Eqs.(32a,b,c) with n=1.

RELATION TO OTHER WORK

Tru‘bnikov9, Drummond and Rosenbluthm, Bee\.rd.11 , Beard and Baker12 ’

14

1
Oster 3 and Bekefi et al = have all considered cyclotron radiation from a

3. B.A. Trubnikov, Phys. Fluids, J, 195 (1961)

10. W.E. Drummond & M.N. Rosenbluth, Phys. Fluids 3, 45 (1960); 3, 491 (1960);
6, 276 (1961) wa -~

11. D.B. Beard, Phys. Fluids 2, 379 (1959)

12. D.B. Beard & J.C..Baker, Phys Fluids i, 278, 611 (1961); 5, 1113 (1962)

13. L. Oster, Phys.Rev. 116, 47k (1959); 119, 1huk (1960); 12T, 961 (1961)

V=l

14. G. Bekefi, J.L. Hirshfield & S.C. Brown, Phys.Rev. 122, 1037 (1961)
A
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hot plasma. Their basis is either the individual particle approach with
perhaps some account for the distribution function or otherwise the full
relativistic approach (3q.1) without applying the expansion in terms of
Bessel functions. The values for the dielectric matrix elements are integrated
either using a computer or applying a saddle point method as first indicated
by Trubnikov. They also provide results as k, varies away from zero or for
sufficiently large k,. However, one basic assumption of these workers is
that k%c®/w®=1 and w >> Wy which simplifies the analysis exceedingly.
Essentially, they consider only the electromagnetic extraordinary and ordinary
waves near the light line rather than investigating wave dispersion for the
whole range of k values with A < 1 as we do in Ref.8. The saddle point method
is useful when vt/b is not too small and cyclotron harmonic lines can overlap.
In the very slightly relativistic limit when the lines are distinct, the
Bessel function expansion is more appropriate. Some work when w = wp for the
strongly relativistic case is given by Beard15, who also provides an excellent
summary of the above papers.

Demidov and Frank—Kamenetskii16 have treated less rigorously the
same problem as Dnestrovskii et a12. Their results disagree and it seems that
Demidov's final function, equivalent to our F function, is in error. On the
other hand, the works of Rukhadze and Silin7 and Gershman17 conform in
principle with our and Dnestrovskii et al's results.

Many authors have treated the line shape and absorption effects near
cyclotron harmonics using nonrelativistic theory. (See for example, Silin and

Rukhadzgs, Gershman19.) If k, is sufficiently large that the conditions in

15. D.B. Beard, Radiation and VWaves in Plasmas, Editor - M. Mitchner, Stanford
Un. Press, Stanford (1961) p.66¢ Phys.Fluids 3, 324 (1960)

16. V.P. Demidov & D.A. Frank-Kamenetskii, Sov.Phys. - Tech.Phys. 8, 686 (1964)

17. B.N. Gershman, Sov.Phys. Doklady 6, 314 (1961) =

18. V.P. Silin & A.A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-
Like Media , Glavatomizdat, Moscow (1961), pp. 144-7 (in Russian)

19. B.N. Gershman, Sov.Phys. JETP 11, 657 (1960)
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(19) are satisfied, these analyses are valid and the concept of "cyclotron"
absorption" is meaningful. Our development here and in Ref.8 covers the
range of lower k, values, after the transition from "cyclotron absorption" to
"relativistic absorption®" has occurred.

TJe complete this report having shown that the relativistic analysis
is necessary in certain regions. The transition to the nonrelativistic
case has been clearly illustrated and its region of applicability has been
indicated. The necessary dielectric tensor elements have been derived with

which we can investigate the dispersion of waves near cyclotron harmonics.
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CAPTIONS FOR FIGURES

Figure 1 Regions of applicability of cyclotron harmonic dispersion functions
when p =10° shown here for real y and 8. In this case, the
functions are real below y°* = 25 and complex above. The F-function
is valid in the lower region and ud =1 separates the r egions
where the small and large argument expansions apply. The |
Z-function is valid in the upper region and has a similar

division at Z=1 or us® = 2y°.

Figure 2a The two tracks of real F in the complex z plane. The positive

F track runs from w = -0 through w =nw. and then turns to the

b
lower sheet. The negative F track runs from w =0 on.the lower

sheet. Both tend towards the singularity of the F function.
2b The same tracks in the complex i¥z plane.

Figure 3 Schematic plot of the values of F versus real part of w for
complex w and real F. The rectangular cut indicates the region

where the analysis is valid.

Figure L Calcglated plots of the Fn+'72 functions for n=1,2...7 in those
parts of the r ectangular cut where the functions are large. Also
shown are the values of the imaginary part versus the real part
of w. The equations used for the calculations are (27) and (28).
Also z=pu8. In (a) is plotted the tracks of 1nF for positive
real F and of 1n(-F) for negative real F. In (b) and (c) are

2

shown the values of -wicz/nwbvt for the respective positive

and negative real P curves.
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DISPERSION OF WAVES IN CYCLOTRON
HARMONIC RESONANCE REGIONS IN PLASMAS

I.P. Shkarofsky
RCA Victor Company, Ltd.

Research Laboratories
Montreal, Canada

- ABSTRACT -

The dispersion of waves near electron cyclotron harmonics is
investigated including to first order, wave numbers parallel to the
magnetic field. The proper relativistic form for the dielectric tensor
elements is applied. The relativistic formulation is compared with the
nonrelativistic one applicable for larger wavenumbers parallel to
magnetic field and the differences are noted. In either analysis,
different behaviours result depending on whether the wave number or
frequency is taken to be complex. In the former case, the waves near
the Appleton-Hartree values are localized and a gap exists between them
and the Rhigher order cyclotron harmonic plasma waves. In the latter case,
this gap does not occur but the relativistic analysis shows a rapid rise
in frequency above the harmonic as one tends to zero wave number perpen-
dicular to magnetic field. We also show that the large argument expansion

in terms of inverse argument of the non-relativistic Z--function produces

incorrect dispersion results in certain regions.



I. INTRODUCTION

In this paper, we investigate the dispersion of plasma waves near
cyclotron harmonics when A = kfvtz/wbz < 1, applying relativistic analysis1
and comparing the results with those found fror nonrelativistic analysis.

The former approach is valid for very small and zero k, whereas the latter has
to be used for sufficiently large k, given in Ref.1. In either analysis, we
have to take either w or k;, to be complex in certain regions and we find

totally different dispersion curves very near nw, depending on these two

b
situations. For complex k, and real w, the case of a steady r-f signal
decaying in space, it will be shown that we get the extraordinary, ordinary
and plasma waves but with gaps in the k, spectrum except possibly for the
second harmonic. That is, regions exist where one cannot obtain a real w
for a given complex k, and these gaps effectively separate the Apple ton-Hartree
and Bernstein electrostatic plasma waves. On the other hand, for complex w
and real k,;, the case of a time-decaying r-f pulse, we can cover the complete
A < 1 spectrum except for a tiny region near k, =0, where relativistic analysis
indicates & rapid rise in frequency above the harmonic, but in nonrelativistic
analysis @ approaches the harmonic with very strong damping. The existence of
an extra -wave in addition to the ordinary and coupled extraordinary-plasma wave
is also indicated. These results are in essence, the original contributions
here on the subject of dispersion of cyclotron harmonics.

Dnestrovskii and KOStomarov2 and other authors have, for k,=0, used
the inverse argument approximetion of the nonrelativistic Z--dispersion function.
As shown in Ref.1, the applicability of this for A << 1 is limited to the

Bernstein modes and very close to the Appleton-Hartree modes. This incorrect

1. I.P. Shkarofsky - PDielectric Tensor in Vlasov Plasmas Near Cyclotron
Harmonics", submitted for publication.

2. Yu.N. Dnestrovskii and D.A. Kostomarov - Sov.Phys. JETP 13, 986 (1961);
14, 1089 (1962). _ ven

\nan
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use of nonrelativistic theory predicts for minute k,, three waves with both
real v and real k, near each cyclotron harmonic, and no gaps exist in the k,;
spectrum. In Ref.2, dispersion curves are computed based on this analysis.
Some of the analytical results will be presented here with remarks on their

limited regions of applicability.

THE DISPERSION EQUATION FOR A = k_'_zvtz/wbz <1 AND k,Fct/v.2e® <1

(a) Basic Relations

We shall derive the dispersion relation for the above values of very
small k, and moderately small k, where k,, k, are wave numbers perpendicular
and parallel to magnetic field lines, wy, = leB/m| s vt2 =kT/m, and e, m, B, c,
w, k and T have their usual significance. The analysis will use the relativistic
dielectric tensor elements expanded to first order in A and k"a. We shall point
out in Secs. III and IV the corresponding nonrelativistic results and the
substitutions required to obtain them.

The dispersion relation for waves in a plasma is

k3c? c?
D = __w'z-aap*'w’.kakﬁ"'eaﬁ =0 (1)

We write €ap = (eaﬁ)c+ (eaﬁ)w’ which are respectively the"cold"Appleton-Hartree
dielectric tensor elements and the "warm" elements associated with a particular
cyclotron harmonic.

We now insert the dielectric tensor elements given by Egs.(30) and (32)
of Shkarofalcy1. With k, along the x axis and k, and B along the 2z axis, the

elements of determinent D to be evaluated are given by

2
2 C
D11+k|| .F_K.l

2
c .
D:z + K=r -K, = iDyz +K = -iDas +K

- ‘k12(n—1) ;37' P(P + ﬁk"Z)




_3...

2(n-1
])1:,_1{'L1;"c2/w2 = Diy —k"_k"cz/w2 = -iD23 = iD3z2 = "k,_kn(°4/“’4)Qk_|_ ( )77

k“'zc2 2n 2 .
D3z = K, - 0w k; 0z Pn(Pn"'Bnkn ) (2)

2 w 2

w w W zwb
where K, =1 - w0 - ar H K,,:‘l-;g—; Kx .=Z)-b-<K,,-K‘_>= W (3a,b,c)

2(n-1) 2n

2 2(n-1) 2 2
W V. 2 W W v 2 w v
\ t 1
P=%(ﬁ) = Q#‘?G} ol P%(") —
t \'b n:2" bt b nt2 t b n!2
(ﬁ,e)f)
04
p = Fm%(“s); B= 5;;!;? (mez- 2P, 0, *Fn+sé)3 n= P -Fos (3g,h,i)
4
20 N
Pn = Fn+5/z 3 o = 2vt w (Fn+3/2 -ZFn+5/z +Fn+7/2) (35,k)

Also wp: Vnee27e:°m is the plasma frequency, k° =k,_2+k"2, ng is electron
density and n is the order of the cyclotron harmonic (n #1). The function
Fq is defined by Fq(u'o‘) = - / dtemat/(1 -1t)? where p= c‘g/vt2 and § =(w-mw b)/a)

o]
and was investigated at length in Ref.1.

(b) The Extraordinary and Plasma Modes

Let us restrict ourselves at present to the extraordinary and plasma
waves; later we consider the ordinary wave. Since the ordinary wave is
associated with the 33 element of the determinant, for the other waves the
warm part of this element is of higher order in A and can be neglected. That
is we approximate the 33 element by (K,-k,’c®/w®). Now one can expand the
determinant by using the subdeterminants of the 33, 32 and 31 elements and
dividing the result by the 33 element.

An order of magnitude comparison of the terms involving § with the

product term Pﬁk"2 shows that all the Q terms are negligible for the ranges of
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k, and k, of interest. Thus the determinant simplifies to the following

expression:
k?c?
K -
k> > L7 Y2 k,2c? 2(n-2) 2
"X[Kx. - —-ﬂ;z— 1 -———lz;zgz- + Kl- —tz— Pk, (p +Bky )
Kn= 7

+ x° [Pklz(n_z)(p-;-ﬁk"z)] + (Kl— 5%—;—) (Kr- 1‘-"-‘3-2-> = 0

= (%)
where
w 2 w ?
= = - . = - - - {
R R e R R LR e W (RN (52,D)
w ? k,%c?
K, = (K1+Kr)/2 =1-7= =y and X = —=r (5¢c,d)

2(pe ;
The quadratic equation (4) in x can be solved wheankL (n 2)(p4-ﬁk"2)l<< 1.
The smaller x solution is

k2c?
C x,2c? I, 2 c? k2l K- 52 '
x = (1' -;,‘z—><r '7:'"—> [Kx S B ] (62)
K- 27—/

which is the extraordinary electromagnetic mode. The larger x solution is

K, -

k%c?
—_—
x = [K; - B (1 A > ]/[kf(“'z)P(m ) ] (6b)
Ky = 57—

which is the mode for large wave numbers. If we consider real w and complex
k, or x, thenlp[lies within bounds of order one riear the harmonics. Since
|Pk12(n-2)lis always less than one for A < 1, we see that the above condition
onIPklz(n_z)p|<< 1 is satisfied. As a result the solution of Eq.(4) can never
deviate much from the cold em mode or large wave number mode. One cannot
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propagate a wave for k, values between these two modes. These arguments do
not apply to n=2, which is reconsidered in Sec.III.

The situation for real k, or x and complex w is different. As shown
in Ref.1, the F function orp ean be continued into the lower half plane and

2(n—2)p can easily become

can attain huge real values. Infact the product Pk,
of order one. Under these conditions one can obtain solutions of Eq.(4) for
any non-zero value of x.
We note that for n > 2, K;, K and K, are given in Eqe(5) whereas for
n=1, we use Eq.(34) of Ref.1 to find equivalently that K, =K +1 = 1-wpz/2w(w+wb)

so that

K = 1—wp2/w(w+wb), K, =1 and K, = (K1+1)/2 (7

Dispersion effects based on this will be discussed in Sec.III.

(c) The Ordinary Wave

Besides the extraordinary-plasma wave mode, there is another wave
assaciated with the Eq.(2), namely the ordinary wave. To obtain the dispersion
relation for this ordinary wave including first order k, terms, we expand D
and divide this time by X, where X denotes the following combination of
elements [(11)(22) - (12)(21)], viz,

2e2  KaC K22 Kot 2(n-1) ¢? k,fet
X = LKl_ =z ’W:I[Kr""w""'ﬁ',’“&; o Plo+Pky?) | = =

To obtain any noticeable deviation for n > 1 from the "cold ordinary wave"

K, -k,2¢®/w* = 0, we require k_LGczP,,p,,/m2 to be of order one. In this case
2

we note that the k:_t‘?(r1 1) %z- Pp terms are much greater than one by order

A™', so that in X, we can neglect K., k?c?/w®, etc with respect to the warm

term.
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> k,2c?
- 2(11-'1) c2 2 a2 1
X =~ -2k, oz Fp Kl——"";r i (8)

Similarliy in cvoauating D, we keep only products of warm tones, viz. PQ, Q?

and PQZ. The PQ2 and PQ terms concel. The detcrminant thus becomes the

following, afier division by X and then inserting Eq.(8).

k':'zcz 2n 02 2
Ky - oz T ky i Pn(Pw"’ ﬁORk" ) = 0 (9)

where from Egs.(3d-g,i,k) we have

2.2 4 4
- _8nc __c _ _om2 .
P“ﬁOR = DuPu Ppw and ﬁOR - 2vt2w2 [3Fn+§2 2Fn+i§ + Fn+3§ 2Fn+’z/%n+§g}

(4) The Extra “ave

By restricting ourselves to k, =0, we can investigate mare fully the
higher powers of A neglected previously. Using the proper relativistic
approach, we find the additional terms negligible flor the two waves given
above, except when 2K1:=x. An extra wave exists if one investigates the
dispersion relations using two higher orders in the A expansion. This wave
is decoupled from the ntner two in this limit of k,=0. For larger k, where
the nonrelativistic Z-function is applicab1e1, a third wave also results,
coupled to the extraordinary wave. A coupled third wave has also appeared
in caleulations of cyclotron harmonics upon the ad hoec incorrect application
of the —é-' expansion of the Z-function in nonrelativistic anzlysis
(e.g. Dnestrovskii and Kostomarov2 — see Sec.IV for a full discussion).

For k, =0, the dispersion equation (1) for the extraordinary and
plasma waves redices to €11(€z22 - X) =€42621 = 0 with x =k?c®/w®, k =k,
Inserting the cold elements given in 5q.(30) and the warm elements given

in Eq.(33) of Ref.1, we find
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2(n-2 n+2 n
ok a2 7 - S (o) o Bw (T +§)]

2(n-2)_ .2 2+n 2,2(n-2) 1 .
-k PxA.KL;l-z-Em;-Fn+'l/z+xk P n+72 5 +AF 1 m-}g

4(n-2) P2x?A* n+2\ _ 2 _
k “n? Fn+72 Fn-n-"/z n+1 Fn-o-"/z =0 (10)
where K,, K , K, and P are defined in Eqs.(3) and (5) and A = kzcz/wbz

If higher powers in A are neglected in (10), we simply obtain

’ 1 b22"n! 4 ) (ZILL—x)x
l:k2(n-2)P:| Fn-o-3/z - I::pzAn-an:] Fn+3/z ) KIK;- Kx (1)

2(n-2)

Since k P is extremely small, F*l+3/2 has to be large for x to deviate

away from the electromagnetic mode (KTLKr ~ K,x) or the electrostatic mode

(x >> 1). For large F,all x values are rossible except when x » 2K’.L for which
we might seem to require F + ». This, however, is not necessary since we then
include the higher powers of A given in Bq.(10). 1In fact, when x =~ 2K1 R
Eq.(10) shows that a higher order of magnitude of F is required of order
(7~.k2(n-2)P)'1 instead of (k2(n-2)P)-1 . Equation (10) also shows that the only
case we need these higher A values for A < 1 is near x = ZK'.L

A new vave appears if one looks for solutions having even larger values of

F of order (Azkz(n -2) P)' « One can readily deduce the dispersion equation in this

case to be

_w,-2'nl (n+ )n*7
e eyl e

This wave is decoupled from the coupled extraordinary-plasma wave, Near

(12)

= ZKl each of the two combine with extra terms of order (AkZ(n-Z)P)_, ~F




III.

and smoothly pass through this transition. This wave exists only if w is complex
and k real in which case F can become very large1, When w is real and k complex

we would not expect this wave to exist.

DISPTRSION CURVES BASED ON RELATIVISTIC ANALYSIS

(a) Real w, Complex k Curves

We can now plot w- k dispersion curves for zero k, based on the above
analysis. First we consider the case of real w, complex Fq and hence complex k.
Then we investigate the case of greater interest to us, namely real Fq, real k
and comrlex w.

When w is real, the complex function Fq is plotted in Figs.1 and 2 of
Dnestrovskii et alB. We note that both the real and imaginary parts of Fq lie
within bounds of order one near the harmonic. As a result k2(n—2)P Fq is an

extremely small number for n > 2. Noting that K, = (K1+ Kr)/2, we can readily

solve the quadratic equation (11) to yield under these conditions:

K5 2(n-2) K, *®
x = —K:.— <1 -k P Fn+3/2 'K:! > (13a)
and
K K'.LK K
1 L
x - + 2K - =L (13b)
NI C=) N - X a2, 5
n+/2 n+7z

These represent respectively, the electromagnetic amd electrostatic solutions.

When n > 2, a schematic drawing is given in Fig.1a to 1d for the four possible

situations, namely

3, Yu.N. Dnestrovskii, D.P. Kostomarov and N.V. Skrydlov, Sov.Phys. Tech.Phys. 8

691 (1964). The sign of the imeginary part of F is incorrectly given as
positive. It should be negative as discussed in Ref.1.
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(1) Kl’r,x > 0 (i1) K,

b Al

<0 (iii) K1,1> 0, K.<0 (iv) K >0, Kr,:o (14)

or

(1) W< Op< wp < M0y (13) mwy < wp< wn< ep (ii1) wp < Wp< M < wp

3 L] =0
(iv) W< Mo < Bp< wp o, where wL,R,T are the w values for which K’l,.r,;
respectively:

vg, R (¢ wb/z) + (wb2/4+wpz)% and Wy, = (wpz+wbz)%

The first solution in Eq.(13a) only exists if KlKr/K.L is positive and
then it represents the Appleton-Hertree equation (extraordinary mode )
k?c?/w? = x = ler/k:. with a small correction term (for n > 2). One notes
from Eq.(13a) that for w3 no, X< KlKr/k,; since F > 0 whereas for w << nu, ,
F is more or less real and negative so that x > K.J_K!/KL (see Fig.1 of Ref.3).
Hence the dispersion curves hawe a very small "wiggle" around nw, for n> 2
as illustrated in the left-hand parts of Figs. 12 and 1d. The slope dw/dk
at w =, is altered negligibly by the warm terms for n > 3.

Vhen n=2, the change in dispersion is significant. The "warm" term
gives the dominant contribution to the slope at w =0,
the "cold" part by cz/vtz + Using dFr/ /a(u8) = - 4/15, we have

since it is larger than

(3w/ok)/(w/x) = 15(K-'.vta)b/chwp)2 at =20 . Hence the slope is very minute

at this point, changing greatly as w recedes from 2w, towards the Appleton-Hartree

b
values. The behaviour as the real part (kr) of k goeé to zero is more difficult
to sort out and more investigation is required. When Kr is negative, we

conjure that @ + 2w, as k -+ 0 and the imaginary (ki) of k remains finite and
is given by the solution of Eq.(11) with F7/2 = 2/5 and x = -kiz.

Upon substituting Eq.(7) into Eq.(11), we obtain the dispersion equation
for n=1, namely
XK -x = LZKI— (Kl+ 1)x:| wzvtz/wpzczF% (15)
Since IF%I is of order one in the region of w =0, 1
viz. 1“2K1+K1'2a"zvt2/"’p2°23'%' The warm term provides a negligible correction

s X 1s localized around K

of the opposite sign to that in Eq.(13a). This solution exists only if K > 0.
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We now investigate the other branch of the dispersion curve associated
with the solution in Eq.(13b). This solution occurs for large values of x
whenn > 2. When n=1, Eq.(15) shows that no extra solutions exist for
x >> 1 >> A so that this electrostatic mode does not exist. Using Eq.(3d) for

P, B¢.(13b) can be written as

v 2 2 n-1 2 w? -
2 _TGQ_Z) <w >= [”b _ b Jg"nz (16)
e \Vy ., wp2 w" - Fn+3/2
Te thus see that k « F—1/[2(n-1)]. Using the plot3 of complex F versus Wd,
ana 7/1200-0] e

we present here in Figs. 2a and 2b, polar plots of F!
latter can be used to give the variation of kr versus ué when K‘L > 0 or
W > e In the opposite s.ituation when K, < 0 or w < Wy We present in these
figures, plots involving (-F)™' and (-F)‘1/[2(n'1)], taking the root in the
sector which gives positive ki and negligible dampling for large -kr. The
dispersion curves are shown on the right-hand sides of Figs. 1a-d. The
dashed portions of the curve are the regions where k is quite complex.
Figs. 1a-d show a minimum value for the real part of k or A below which the
dispersion relation cannot be satisfied for n 2 3. This minimum value is
much larger than the kr values associated with the extraordinary em mode.
Note that for n=2, the angle 7/2(n-1) = n/2, and Fig.2b indicate that no
such minimum exists. If K, < O one can obtain very low values of kr with
non-infinite damping. A detailed analysis is necessary to sec if the em
and es waves can Jjoin, but this will not be done here.

Let us now evaluate the group velocity of the es mode when K; > O
at the point w= o, . Write k equal to E"'1/|:2(1r1-"'):l times a factor which is
more or less constent with respect to w. That is, we assume that the crucial

variation in w is due to F. Ve find using dk/ow =1/(dw/3k) that
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(3w/3k)/(w/k) = 2(n-1)(n-3) vtz/cz at w=mo . Also since 3%k /Bw® =
-(0%w/01¥¢)/(3w/0k)*> and szn+3/2/d(u8)2 =2(nf-D""(n-%)" atw= w, , we
can evaluate the next derivative to obtain (8%w/0k®)/(w/k?) =
L.,(n-1)(n-:l_-)3vt2/(n-3/g)cz. These relations indicate that the slope and curvature
of the es mode are very small. The slope only becones large in the immediate
vicinity of the turn around point wnere k is quite complex.

We also look at the nonrelativistic limit for F of the form (u8)™', i.e.
F = wvtz/Icz(w-nmb)] = 2w2vt2/ [e?(w?- nzwbz)] . The latter expression includes
-w values as well, and applies outside of the relativistic range at both ends

1

of the em solution, but only when u~' << |§] << 1 for the

es-solution. In the latter case, one can write using Eq.(16)

2 2 2 2 2
WS- n“w _ <v tk> <nwb>z 1 [Al.b w.b :l -1
t4 = 1 B -2t Z_ Z
20 wb w 2'n! wp w wb

which is the usual relation quoted for the Bernsteinl" es mode when A << 1.

2(n-1)

Besides the extraordinary wave, we have the ordinary wave. When k,=0,
its dispersion relation is simply

2
w

b 2"'n!
€33 = 0 or w 4 n—1 e = X (17)

PoA g, (1 -:—Ei>- x

where A = kzvtz/wbzv and x = kzcz/wz. Because of the bound character of IFI

for real w near w,, a solution exists for n > 1 (including n = 2) only when
w? 3 wpz , 1.e. when the denominator on the right-hand side is near zero. One
can readily show that a wiggle occurs in the dispersion curve similar to that
for the extraordinary wave and that the deviation of k from the x=1 -wpz Jw?

curve is very small.

The obvious conclusion from Fig.1 is that no direct coupling when A<< 1

4. I.B. Bernstein, Phys.Rev. 109, 10 (1958).
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exists between em and es waves at cyclotron harmonics for real w. The only
coupling point occurs at Weps which we have not considered. Here no gap exists
and the em wave converts to an es wave as k increases.
When n=1, the Appleton-Hartree solution experiences a large "wiggle"

around v, . Neglecting higher arder A terms (viz. A.Fg/ << 1), Eq.(17) is

2
valid for n=1 also and we cbtain x =[1 -w /w21 / [1 +0 ® Py, /20 %].

p’b p /'

At w= Wy s F-;/zz 2/5. This equation has previously been derived by Dnestrovskii

et a13 and Gershmans.

(b) Real k, Complex w Dispersion Curves

In contrast to the real w situation, a slightly complex frequency
permits dispersion for all k values except a tiny region near k=0. The
reason for this is that F becomes very large for complex w (see Fig.h
of Ref.1) and the k variation in Egs.(11), (16) and (17) can become largs.
We neglect the imaginary part (wi)’ of w in KL, K‘l’ Kr etc. The importance
of wi arises only in the argument of the F function where it may become
comparable to w.- , whereas in the K functions it need only be negligible
compared to W the real part of w. Thus, provided F is made real, k will
al.so be practically real.

Let us consider the four possible situations given in Eq.(14) for
the dispersion curves. These are illustrated in Figs. 3a to 3d.

For the high-frequency case in Fig. 3a, Kl’ Kr and Kl are positive
and K.L > Kr or mu, > wp > Wp > Op. The solution for the combined
extraordinary-plasma wave is that given in Eq.(11) with the correction

from Eq.(10) when x = ZK].' We also require the plot of F versus .

given in Figs. 3 and 4 of Ref.1. We can follow the Bernstein

5. B.N. Gershman, Sov.Phys. - Doklady W6_‘, 394 (1961)




es mode from large to small A up to =y using real w, real k and the real
positive branch of F. As k further decreases, we continue using Eq.(16) along
this positive branch, passing through a minimum W, < oy value when

ak/awr Zew Or aF/awr = o in Fig.3 of Ref.1. Then the curve passes again

through W, =m The frequency rises steadily sbove mw,_ as k decreases and

b’ b

x » 2K, since F appears to be infinite at this point according to Egq.(11).

1

However, Eq.(10) limits the maximum values that F and w attain. Essentially
around x= 2.'[(1, coupling occurs between the F > 0 and F < O branches which
accounts for the awkward behaviour. For values of x < ZK,_L, we therefore shif't
to the F < 0 track and the dispersion curve connects with the em wave when

W << nwb. On the opposite side of the Appleton-Hartree solution, we again use

the F > 0 track. We follow the same behaviour as for the es mode, with w

decreasing slightly below rnw, and rising again. A remarkable result is that

b

near k=0, F becomes larger and larger resulting in @ increasing more and

more above ., rather than tending to o, . As w increases above ., by an

appreciable fraction of nw, , our analysis which restricts w to be near R
fails. A full investigation of what actually happens then, is beyond the scope
of this work and is actually not necessary for further analysis.

The low-frequency case, shown in Fig.3b, is for K‘.L < 0, Kr <0,K, <0
and IKrI > |K1| OF My < Wy < Wp < Wpe For large k values, we must choose
the F < 0 track and, since no Appleton-Hartreé solution exists, we follow
this t rack for all lower k values as shown in Fig.3b.

The high-intermediate-frequency situation in Fig.3c is for
L < Op < MO < Wp. For large k,
we must use the F > O track which can be followed for lower k values up to

K.l>0,Kr<0,K1>0wi‘chK1>|Kr| or w

x # 2K;. At x=2K; , We apply the correction in Eq.(10). For x < 2K, , we

change to the F < O track and continue for all lower k values.
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(the low-intermediate-frequency situation), the Appleton-Hartree solution

WhenK1>O,Kr<0,KL<0with|Kr| > Ky or wp < 1y < up <o

x=K1Kr/K1 occurs at a higher x value than x=2K1. This case is illustrated
in Fig.3d. For large k values we require the F < 0 track which connects to
the Appleton-Hartree solution as shown in Fig.3d. Between x:KlKI/KL and

x .-:21&, we use the F > 0 track and for x < 2K1 we use the F < 0 tracke.

In all four cases, the large-k portions of the curve meke a smooth
transition to the appropriate well known electrostatic cyclotron harmonic
mode (sometimes called a Bernstein model").

The above formulation applies to n=2 as well except that the excursion
from the Appleton-Hartree solution occurs for larger values of w- nw, and it
connects up sooner with the es mode.

For n=1, @, has a negligible effect. Equation (15) shows that for a
large excursion from the Appleton-Hartree solution, Fs/z must become exceedingly
Small (rather than large as for n > 1). Since F cannot go to zero before
going to » (see Fig.3 of Ref.1), the dispersion curve for complex @ is about
the same as for reel w, viz. x=2K; and only exists if K, > 0 (See Fig.h).

In Figs.3e and 3f, we show the addi.ional wave given by Eq.(12) which
has different behaviours depending on K__L greater or less thar sero. When
K’.L < 0, one requires negative F values, and when Kl » 0, a transition occurs
from F < O for x > Z_K_L to F > 0 values for x < 2_K1. These waves are not
included in the combined plots in Figs. 4-7.

In Figs.4-6, we provide schematic plots of w versus k including several
harmonics on each plot for ratios of wpz/w; ranging from O to 2 (Fig.lL),
n(n+1) to n(n+2) (Fig.5) and n(n+2) to (n+1)(n+2) (Fig.6). These include all

possible combinations and can be readily adopted to topside ionospherie conditions.-

These plots are obtained by making use of our previous results in Fig.J.
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Figure 7 shows corresponding curves for the ordinary wave, and the
inserts show sample conditions around nw, when w i wp respectively. Equation (17)
(valid for n=1 also) shows that if w > wp one needs F < 0 for large x values,
x> (1 -wpz/wz), ald F < O for x < (1 -wpz/wz). If w < w,» one can follow the

F < 0 track for all k values.

NONRELATIVISTIC ANALYSIS

To dbtain1 the nonrelativistic formulation, we replace everywhere above
the function p +pk,? or F by -vth/k"czﬂé. 'If we then apply the Z-plasma
dispersion function, we get a completely different picture. This formulation
can be done improperly by assuming that the ad-hoc approximation Z = ~ £~ ' where
g = (w-—nwb)/k"v6f2, applies even for very small k, values. In Ref.1, Eq.(23),
we have shown that this approximation is limited to |u®8%| >> |2uk,2c2/w?| >>
IhuSI >> 1 and to values of |wvt;/czk"| < 1. However, the nonrelativistic
results show that  we need for n > 2, values of IuSl << 1 and |wth/czk"| > 1

in the transition region between the Appleton-Hartree solution and the electro-

~ static solution as well as for very small values of k, less than the

Appleton-Hartree values. This formulation is therefore incorrect in these
regions. At the end of this section, we present the proper nonrelativistic
formulation. At first, we look at the results obtained by adopting the

above ad-hoc nonrelativistic limit, which in Eq.(18) includes -w values as well:

P v, o k,,vtwfz k,,vtwfz 2vt2 2
a7 T2 <w-nwb + w+nwb> = et wz--n’wbz (18)

In Eq.(10) we again neglect higher arder A terms except for the last
)4-( n-2) )

- term. The equation for w?-n?w 2 becomes

product (k, b



- 16 -

n-4_2 Lo “A*"n?
(“-nw)(KlK K,) - (0®- n®o?)(2K - x )2w25-,r3n—-+ L =0
° (n+1)22" (n})?

where we used the expression for P in Eq.(3d). Solving the above equation

for w®- nzwbz yields with the definitions of K, K and K, in Eq. (5):

MZnZAn-1 KL
R T S

2An+1

et = P /[ J (190)

These two solutions are decoupled provided k,’c?/w® is not near 2K,.

and

We note that Eq.(19a) is the equivalent of Eq.(11) as is evident upon
substituting Eqs.(18) and (3d). In addition we have succeeded in deriving a
third wave given by A9b). Since for this wave w® - nw ® ~A"', the wu-k,
dispersion curve is very much localized around w = w, and never deviates
apprecisbly from o, except near coupling points between it and the other
waves. This is the localized third wave which appears in the calculation of
Dnestrovskii and Kostoma.rov2 using nonrelativistic analysis. We note, however,
from Eqa.(19a,b) that |w®- nzwbzl < vtz/c2 for (k,2e*/w?)"™" < (c:z/vtz)""'2
so that the above derivation from nonrelativistic analysis is incorrect.
Furthermore, we know from Ref.1 that for F or Z to be large, we require its
analytic continuation with Imw < O, and then its form differs from the large
values derived from Eq.(18) as w - m, . Actually as F becomes large,
increases sbove nw, for k, =0 (see Fig.3) rather than approaches m, .

As k, » 0, Egs.(19a,b) yield v®- nzw.bz = wp’n“x"“/nzz“xr and

w?- n’mb2 = wpz A" /(n+1)2"nlK . When k,%c?/w?® >> 1, the equations give
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the Bernstein longitudinal wave w® - n®w ? = 2{4);)21'127\""1 /n!2"K_L plus the

b
additional wave nw ®-0® = 2wp2wz}»n+1/ (n+1)ni2"k2e2.
Near xz = 2K, the n- 1 and n+ 1 waves (viz w?- nzmb2 « AN, AN

couple. Also the n-1 wave couples to the em wave near x1= K1K1/KJ.’ For
the four cases given in Eq.(1)+). the dispersion curves including the wave
coupling are drawn schematically in Figs. 8a to 8d up to values of x
beyond xy and x». The solid curves represent the n-1 or n+ 1 waves and the
checked parts refer to coupling regions. The above illustrates the major
differences in Fig. 8 as compared to the relativistic equivalents in Fig.3.
The above nonrelativistic approach sgrees with the relativistic analysis for the
Bernstein wave in the region '(w-—rwb)/wl > vtz/c2 . (Compare with Eq.(16).)
The form of this Bernstein es mode for A of order one is essentially
nonrelativistiec. As it should, the nonrelativistic theory also provides
the carrect variation of the Appleton-Hartree waves outside of the |u8| <1
region, which is according to (19a): x—KlKr/K,_ = _
- (w®- nzwbz)-1(Kl/K_L)22wP2A""n2/2"n! (Compare this with Eq.(11) with (18)
inserted in it.)

We can similarly investigate, using the above theory, the ordinary
wave dispersion when A << 1. Substituting Eq.(18) into (17) gives
w? --n’zmb2 = 2(«)1:’2 A" /ni2" (K, -x) where K, = 1-wp2/w2.

In Figs.9 to 11, schematic dispersion curves with several harmonic
frequencies together are drawn for wp7wb2 values of 0 to 2 (Fig.9),
n(n+1) to n(n+2) (Fig.10) and n(n+2) to (n+1)(n+2) (Fig.11). These curves
include the extraordinary, Bernstein and the additional extra mode. Both w
and k are real in this theory. In Fig.12, similar curves are shown for the
ordinary wave and the inserts provide sample plots near a harmonic for

K, 2 0. Figures 9 to 12 show the behaviour for large A values as well
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and include the three cases actually computed by Dnestrovskii and Kostoma.rov2
both for the ordinary and extraordinary waves. These incorrectly derived curves
for A << 1 differ in many ways from the relativistic versions shown in Fig.k to
7 and the latter must be applied for k, values near gero. Fortunately, the non-
relativistic schematics in Figs.8-12 are still usable in a different region as
shown below, although the formulation is completely different.

A proper nonrelativistic analysis, valid for larger k, values (see Ref.1,
Eq.(19)) such that |y*] >> [28], |yl >> u'% and |y?(y*=-28)| >> u™2 where
y=s k,,c/w, can be formulated as follows. As before, we replace ever,where F
by -vth/k,,czwf2 but we have to differentiate between cases of real w, complex
k, and real k, , complex w.

For real w, the plots of (+ Z)™' will be similar6 to those of (*F)”'
shown in Fig.2a, except that the polar plot is symmetric about the origin with
the ud =0 point on the imaginary axis and with both sides asymptotic at %
to the real axis. The curves are also asymptotic to all sector lines in Fig.2b.
As a result, the equivalent curves to Figs.1 for the extraordinary wave show
a "wiggle" symmetric about w =nwb(n > 2) with noticeable damping at and on each
sjde of nw, and negligible damping away from the resonance. A minimum real k,
value with noticeable damping éven for w>nw,  occurs for the es mode when n > 2
and the n=2 case needs special consideration, as we discussed above for the
relativistic analysis.

For real k, and complex w =0 +iwi values, we use thao tracks of real
2

laxrge values of Z for complex argument, given iu Ref.1, Eq.(29), viz. Z= +ome’

and 2xy = *1/2 where x = (wr—wb)/k,,v V2 and y=w /an V2. Thus, instead of
Eq.(18), we use F » + (Zﬂvtw/k,. cV2) exp {[ﬂk vt/Zv/?(w - b):] } . Note that

the larger the value of Z required, the closer w, approaches ., which is

opposite to the behaviour of the relativistic F-function. The fact that -Z+ %

6, B,D. Fried and S.D. Conte, The Plasma Dispersion Function, Academic Press,
N.Y. (1961), Figs.1 and 2.
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as (o - nwb) -+ 0 makes its behaviour like that of (u8)~' in #q.(18). As a
result, the schematic dispersion curves will be similar to the incorrect
nonrelativistic ones in Figs. 9 to 11 except that cyclotron damping occurs

near nw, and the predicted (w-nwb)/b values are of order vtz/c2 rather than
some higher power of vtz/cz. In Fig. 8a-d, the labelling is simplified, using
the sign of Z, as shown in brackets. Although the extraordinary and additional
waves are coupled, we can easily connect the various coupled regions by follow-
ing the tracks of Z < 0 if w > nwy, or Z>01if w < nw, . It is reasonable to
suppose that even if we include the Wy part in the K functions, we will find
very large damping (wi > ») at the Wy, = W, k, = 0 point, in contrast to the

real solution obtained from the incorrect nonrelativistic analysis.

Figure 12 for the ordinary wave is, however, changed drastically.
The substitution for F given in the previous paragraph does not apply here.
The analysis in Section II(c) can be generalized to yield the ordinary wave dis-
persion equation: Kg=-kic?/w®+ (€33)y- (€33);/(€n)ye Applying the nonrelativ-
istic warm elements (Ref. 1, Eq.31) for n> 1 results in a cancellation involving
22'+ (2')*/22 = -2'/2 = 2 for large Z values. Thus, (e3),/(e11), - (e33) =

Zw; )\"é/wk"vt\@- 2"n!, which is always small for (w-nwb)«m As a result,

b.
the solution never deviates much from kic’/w® =K, and in fact, no resonances

occur for n > 1 and A << 1,

In a nutshell, this paper shows that nonrelativistic disperusion theory
in the vicinity of cyclotron resonances is incorrect for A << 1 and for near
zero k, values. For larger k, values, but A << 1, nonrelativistic theory
giving undamped solutions near cyclotron harmonics is not valid. 4 dis-
tinction between complex w and complex k, values is necessary. "We have also
rointed out the differences in dispersion effects near k - 0 and in regions
where em modes and coupled em and es modes exist, based on relativistic and

nonrelativistic approaches.,
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C'F7TI01S FOR FIGURES

Figure 1

Schematic dispersion curves for the extraordinary electromagne tic

and plasma electrostatic waves for real w and complex k based on
relativistic analysis. Dashed parts indicate very complex k values.
kr is the real part of k,. Here xy = 17(,].!{1_/?{‘L is positive in (a)

and (d) ard negative in (b) and (¢). Figures 1(a) to 1(d) correspond
to the cases in Eq.(14). The interval Aw/nwb is typically of order
1Ovt2/c2_ We illustrate cgses when n > 2. Also
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Figure 2a A schematic polar plot of the complex function F~' and (—F)"1 using

Figure 3

the analysis in Ref.2 with the correct sign for ImF. The numbers
0 and * » are values of u8, the argument of F, marked on the polar

plot.
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a . —Lg(n‘l‘)]-‘ . . . 2 2
Schematic polar plot of F which is required when w™ > W

- _a\1-
and of (-F) [2(n-1)] required when w? < sz.

in the sector where its imaginary part is small at ;8 =%

The root is taken

respectively, and is positive, giving a damped wave.

Schematic dispersion curves (Figs. 3(a) to 3(d)) for the coupled
extraordinary and electrostatic waves, for rBZ,complex w and real wave
numbers (A << 1) based on relativistic analysis. The four figures
correspond to those in 1(a) and 1(d). 1In Fig.3(e) and 3(f) we show

>
<

schematic dispersion curves for the extra wave (Eq.12) when K, 0.




The dashed parts indicate the coupling regionsbetween F > 0 and

F < O branches. w, refers to the real part of w, x4 = K_lKr/K-l and
Xz = 2%. )

Figure 4 Schematic complex w-real k dispersion curves from relativistic theory
including several harmonics for the coupled extraordinary and plasma
waves when Zwba > wpz + The two dashed lines indicate approximately

the locations of the 1light and thermal velocity lines.

Figure 5 Same as Figure 4 when n(n+2)a)b2 > wpz > n(n+1 )w.b2 with n 2 1. For

n=1 omit dispersion effects shown below w Also for n=1, the

L'
hump near wq oceurs much nearer to the light line and this wave
| based on es theory appears as backward instead of starting as the

\ forward wave shown here.
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Figurc 6 Same as Figure 4 when (n+1)(n+2)wb‘°‘ >0 ® > n(n+2)mb2 with n > 1. For

n=1,omit dispersion effects shown below Wy

Figure 7 Schem~tic complex w-real k dispersion curves from relativistic
theory including several harmonics for the ordiiary wave with n > 1,
For n=1, omit dispersion curves below wp. For a given n > 1, omit

dispersion curves below w. « The inserts show sample dispersion effects

b

. >
near cyclotron harmonics when w < wp.

Figure 8 Nonrelativistic version of thé dispersion curves for the coupled
extraordinary and plasma waves. The four cases (Figs.Ba to 8d)
corresnond to (a) to (d) in Figs. 1 or 3. The checked portions on
the curves indicate coupling regions between the waves. In incorrectly
applied nonrelativistic theory, the waves vary as w- m, o A" or

AM*' and the designations n-1 and n+1 refer to these. The
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designations Z 2 0 refer to properly applied nonrelativistic theory.
as discussed towards the end of the text. In properly applied
nonrelativistic theory, replace here and in Figs. 9-12, w by @, and
remember that very strong damping occurs at the cyclotron harmonic

cutoffs. The curves shown are for n 2> 2.

Figure 9 Nomrelativistic schematic version of the dispersion curves including
several harmonics for the coupled extraordinary and plasma waves
2

when 2wb2 > wp . The dashed line is the approximate location

of the light line.

z n(n+1)wb25with nz1. For a

Figure 10 Same as Figure 9 when n(n+2)wb2 >0,
given n > 1, omit all dispersion curves below the one localized

just below w.« For n=1, the hump near Wy occurs much nearer to

b
the light line and this wave based on es theory appears as backward

instead of starting as the forward wave shown here.

Figure 11 Same as Figure 9 when (n+1)(n+2)wb2 > wp2'> n(n+2)aub2 with n3 1. For a
given n > 1, omit all dispersion curves below the one localized

just below Wy e

Figure 12 Nomrelativistic dispersion curves for the ordinary wave with n 2 1.
For n =1, omit dispersion curves below wp. For a givenn > 1,
omit dispersion curves below wy . The inserts show sample dispersion

effects near cyclotron harmonics when w 2 wp.
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I. LIST OF PUBLICATIONS

Related Work Prior to Contract

T.W. Johnston and J. Nuttall, "Cyclotron Harmonic Signals Received by
the Alouette Top-side Sounder", J. Geophys. Res, §2, 2305=2314,
June ; (1964); RCA Victor Res. Report 7-801-28 (Revised)Jan.

J. Nuttall, "Theory of Collective Spikes Observed by the Alouette Top-
side Sounder", J. Geophys. Res. 70, 1119-1125, March 1, (1965);
RCA Victor Res. Report 7-801-29¢, April (19645.

J. Nuttall, "Singularities of the Green's Function for a Collisionless
Magne toplasma®, Physics of Fluids 8, 286-296, February (1965);
RCA Victor Res. Report 7-801-29a, February (1964).

J. Nuttall, "Plasma Frequency Singularity of the Green's Punction for
& Magnetoplasma", RCA Victor Res. Report 7-801-29b, May (1964).

Publications Under Contract

I.P. Shkarofsky and T.W. Johnston, "Cyclotron Harmonic Resonances 0Ob-
zemg. by Satellites", Phys. Rev, Letters 15, 51-3, July 12
1965). '

T.W. Johnston and I.P, Shkarofsky, "Resonances in Ionospherie to-

plasma", RCA Engineer 11, No.l, December (1965)/January 1966)852-55

also Proc. of Second AAS Symp. on the Interactions of Space
Vehicles with an Ioniszed Atmosphere (to be published).

I.P. Shkarof'sky, "Dielectric Tensor in Vlasov Plasmas Near Cyclotron
Harmonics", Physics of Fluids 9, No.2, February (1966).

I.P. Shkarofsky, "Dispersion of Waves in Cyclotron Harmonic Resonance
Regions in Plasmas", Physics of Fluids 9, No.2, Pebruary (1966).

T.W. Johnston and I.P. Shkarofsky, "Excitation of Cyclotron Harmonics in
a Warm Plasma", éAbstract only), Bull. Am. Phys. Soc. Series II,
10, No.2, p.231 (1965).

T.W. Johnston and I.P. Shkarofsky, "Time Decay of Cyclotron Harmonics",

&A'gztr)'act only), Bull. Am. Phys. Soc., Series II, 10, No.5, p.611
1

I.F. Shkarofsky, "Dispersion of Waves in Cyclotron Harmonic Regions"
EAbat:)'act only), Bull Am. Phys. Soc., Series II, 10, No.5, p.597
1965) .



I.P. Shkarofsky and T.W. Johnston, "Applicability of Cyclotron Harmonic
Dispersion Functions", (Abstract only), Bull,Am. Phys. Soc.
(1966)¢  (To be published.)

Reports Under Contract

I.P. Shkarofsky and T.W. Johnston, "Satellite Cyclotron Harmonic Resonances",
RCA Victor Res. Report 7-801-35, March (1965).

I.P. Shkarofsky, "Duration of Cyclotron Harmonic Resonances Observed by
Satellites", RCA Victor Res. Report 7-801-il., January (1966).

Talks Under Contract Given by

T.W. Johnston, "Applicability of Cyclotron Harmonic Dispersion Functions"
Plasma Phys. Div., Am. Phys. Soc., San Francisco Meeting, Nov.11

(1965).

I.P. Shkarofsky, "Cyclotron Harmonic Waves and Dispersion Functions",
given at Massachusetts Inst. of Technology, Research Lab. of Elec~
tronics, Cambridge, Mass. November 2 (1965).

T.W. Johnston, "Resonances in the Ionosphere Magnetoplasma", Second AAS
Symp. on the Interactions of Space Vehicles with an Ionized Atmo-
sphere, Miami, Florida, November 27 (1965); also Can. Symp. on
Plasma Physics, NRC (Ottawa), October 13 (1965),

T.W. Johnston, "Time Decay of Cyclotron Harmonics", Am. Phys. Soc., New
York Meeting, June 25 (1965).

I.P. Shkarofsky, "Dispersion of Waves in Cyclotron Harmonic Regions" Am.
Phys. Soc., New York Meeting, June 25 (1965).

T.W. Johnston, "Excitation of Cyclotron Harmonics in a Warm Plasma",
1(’1392)13. Phys. Div., Am. Phys. Soc., New York Meeting, November 7
1 .




II. CORRECTIONS TO PREVIOUS WORK

Report 7-801-35 (Part 1)

original Corrected
@ o
b b
Page 8, Eq.(10a) (1 -7) (1 - )
) 2,2 2
Page 8, Eq_.(10b) l_c“_c_t_ _knc_t_
V2 v V2 v
t t
304 c4
Page 10, Eq.(16b) 707-“: o
t t
Page 21, Eq.(31d) Z 2P
nd iw - i
Page 25, 27 Eq. sV B5 T Y% pVT T
Pigure 1b Iqu(pS) -Iqu(pS)
Report 7-801-35 (Part 2)
Page 1 Omit "Furthermore, .e..... three", ainée a more careful

analysis shows the existence of a third wave. Ses
Appendix II of this repert.

Pages 10-11 The ¢ integration is incorrect since D is a function of
s.g or of ¢ as well,
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Repart 7-801-35 (Part 2) cont'd.

Page 13

Page 15

Page 17, Eq.(22e)

Page 19, 2nd line,
2115. par.

Page 28, Eq.(29b)

Page 33, Table 3

Pigs. 2a-f

Pig. b

BF!H-’/; -6Fn+:/2 +3F n+5/. should be ﬂn"% -Grms/’ +3F n+7 /:
7Fn+% -Brm’/g +3F o+Y 3Fn-o-'/, 'zrn-.-’/, +Fn+’/z

See Appendix II of this report.

should be w

3

@=U.b

After "value" insert "for n > 2"; (see also correc-
tions below for Figs. 3a and b).

Same cerrections as for p.13.

The word "Exact" refers to &>> wp since only then is
the wave sufficiently localiszed that ome I, term in
the expamsion is sufficient.

These figures are incorrect since they are based on
InF being positive whereas it is actuslly negative.
For corrected versions, see Appendix II.

should be tln'z—(:'m

4
tan T—M

Report 7-801-35 (Part 3) (see main part of this repart)

Eeper in Physigs of Fluids 15, 51-3 (1965)_

Page 51, 1st par.

"equal to one" should be "usually equal to 34"




Page 51, end of
last par.

Page 53, beginning
of 2nd
pare.

Figure 1

Page 52, 2nd last
pare.

Pages 52-53

After "small" insert "that is usually less than
100 vi/c®".

After "n € 3" insert "for forward waves, but it can
nearly alwagrs be accomplished for backward waves
(w? << w.: + wp)".

The word "spurious" refers only to the A<<i part
of the curves, since for larger A~1, relativistic
theory also shows that the same extra wave exists
below the harmonic. (See Appendix IT here.)

Change "less than 3 by a factor v3/cV," to "about
the same order of mgnitude as 3""(see thif/ report).
2

Also change "(v‘JcV& 2n 4o "(v’t/csv.‘l (v, /c)72n

The equations for E ;1 and E, have to be modified as
given in this repori. As an arder of magnitude
correction, the right hand sides can be divided by

(21rva;t)% P (2vvlwt/c)%

which for the times of interest is of arder one.
Hence the results in the calculation given in the com-
parison with experiment are numerically unchanged.

The changes on pages 52 and 53 are due to the incorrect
¢ integration used previously in the satellite frame
of reference. Although the dispersion (D) relation at
a pinch point does not depend on X°V or ¢, nonetheless,
its expanded form around the pinch point depends on ¢.
This is the same as saying in Seection IT, that

a’n/a(k}',)z and a’n/a(k;c)a
involve not only
3*D/a(k})* but also 3*D/a¢ 2

As mentioned above, the corrections do not affect the
results for the time decay.



