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DURATION OF CYCLOTRON HARMONIC RESONANCES

OBSERVED BY SATELLITES

I.P. Shkarof sky

RCA Victor Company, Ltd.
Research Lab oratories

Montreal, Canada

- ABSTRACT -

Cyclotron harmonic waves which travel at a group velocit}j equal

to the satellite velocity are investigated. The long duration of the

resonances observed by satellites is associated with these matched con-

ditions. Such a match can be accomplished for electrostatic waves

when these waves are backward (frequency much less than the upper hybrid)

but only for harmonics less than the fourth when these waves are forward

(frequency above the upper hybrid). The relevant wavelengths are slight-

ly greater than the free space wavelength parallel to magnetic field but

much less than hhe free space wavelength perpendicular to magnetic field.

Wave matching can also be obtained near the Appleton-Hartree

values when such waves can propagate. In this region we require a full

electromagnetic plus relativistic analysis. The relevant wavelengths

here are very large (of the order of an earth radius) parallel to magnetic

field and slightly greater than the free space wavelength perpendicular to

magnetic field.

The time response of these waves depends, of course, on the extent

to which they are excited. Assuming that the Appletcn-Hsrtree waves are

excited with most of the input power (a plausible assumption) one finds

the correct order of magnitude for the time response for these matching

points. To obtain the correct dependence on harmonic number as well,

(ii)



the above assumption is modified to include non-linear sheath effeots

and a model of the sheath field is deduced. With _he same assure _tion

(here probably incorrect, because of stronger sheath effects) for _e

electrostatic wave%a much longer time response is obtained. In _eneral,

where both _matching points exist, one can expect both to be important.

(iii)



I INTRODUCTION

We find that the asymptotic time behaviour of the local

plasma and magnetic-field-resonance phenomena observed by satellite

topside sounders can be explained as follows. We consider the be-

haviour of the Vlsov plasma waves whose group velocities are equal

or nearly equal to the satellite velocity. The physical concept

is simply that only these waves stay with the satellite and account

for the electric field long after excitation. The signal-amplitude

decay is essentially due to wave-packet dispersion and varies typically

as t-_exp(-i_ot), where a is a positive fraction, t is the time, and

wo the frequency for which the group-satellite velocity match is

achieved.

Although the satellite velocity is much less than the electron

thermal velocity, it is not correct to take the group velocity equal

to zero because of important changes in the behaviour of the plasma

dispersion equation. Also, while the ratio of the satellite velocity

component perpendicular to the magnetic-field lines (VA) tO the elec-

tron thermal velocity (vt) is small (~ 1/50), it is still much larger

than the ratio of the electron thermal velocity to the velocity of

light (c). However, the velocity of light may not be taken always to

be infinite as electrostatic treatments of the same _oblem do, since

the relevant wave numbers in many cases are comparable to the free-

space values, and the full electromagnetic equations must be used. This

is in contrast to the resonances (e.g. cyclotron harmonics) actually

observed in the laboratory which are associated with shorter wavelengths
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and longitudinal wave s.

In the satellite frame of reference (using a @alilean trans-

formation), the matching of velocities emerges naturally from t_.•

"pinches" in the inversion of the Laplace-Fourier transformed Green's

function. We shell discuss the application to electron-cyclotron

harmonic resonances.

Matching points near free-space wavelengths, based on non-

relativistic calculations, yield a resonant frequency so near

KCw-nwb)/n_ b ( _t/c'S to the rest-mass cyclotron harmonic valuf_,

that the nonrelativistic theory is invalid. Relativistic theory

must be used, which gives relative deviations up to 100 v2Jc 2 . The

various _tching points are investigated and values for _-_b'

k,, and t£me duration are calculated. The _, values turn out to

be so small that further work should be done to include magnetic

field nonuniformities along field lines. The time duration agrees

as far as order of _gnitude with observations. We hypothesi_e that

the excitation mechanism is due to sheath effects. With certain

sheath models, we provide the necessary decrease of excitation level

and the relative independence of signal duration as a function of

harmonic number.

Matching posits for electrostatic waves are obtaine_. The

signal duration is deduced and compared with the results of other

author's. The saddle point method is shown to be equivalent to the

pinch method. Such matching points exist when the electrostatic waves

are backward, but only for n_ A when the electrostatic waves are forward.



-3-

The time duration of these waves is much longer than observed.

This is attributed to the fact that the excitation level of these

waves is not strong and that the sheath, larger than the wave packet,

may inhibit these waves.



II SIMPLE CALCbU_ATION OF THE SINGULAR TIME BEHAVIOUR FROM PINCHES

Let J(k,s) be the Fourier-Laplace transform of the source

current and let E(k,_) be the corresponding electric field where,

for example

E(k,_) = fdJr fdt ei(_t-k'r)E(r,t) (I)

]{ere k is wave-number, _ is angular frequency, r is distance froz

source and t is the time. Suppose t_hat the plasma medium has a

dispersion relation given by the zeros of a dimensionless deter_i-

ns_t D and let Rij be the dimensionless minorsof D. Then using

the summation convention on j

i_ R..

(2)

and

where

Ei(r,t) =,,/dr' fd3r ' Gij(r-r' ) Jj(r',t') (3)

I__e -i_t Id_k e:L_'r_ RiD_Gij_,t) = (2_4se ,

is the Green's function.

moment IL,

(&)

For an infinitessimal current dipole with

J(r' t') : IL 8(£') P(t') (5)

where I is the current vector in the direction of the dipole whose

half-length is L. We then find,
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Ei( ,t) j= " ' , e D I.L
(6)

In the above P(t') represents a pulse of frequency O, duration r, so

that

[-ei((o - Q )T_I-- i

= _} (7)

The above integrals will be calculated in the neighbourhood

of pinch points I . For a stationary observer, a pinch is a point

satisfying D = 0 and 8s/Sk = 0, i.e. a zero velocity point on the dis-

persion curve. However, for an observer moving at a nom-elativistic

velocity V, such as a satellite, pinches occur when the satellite velo-

city matches _he 6roup velocity, satisfying D= 0 and 0_/Sk = V. We

let s and k be the angular frequency and wavenumber in the plasma frame

of reference and s' and k' be the corresponding values in the moving

satellite frame of reference. For nonrelativistic velocities

w'=s-k.V, k'=k-_V/c 2 so that w=w'+k''V and k=k'+wV/c 2

(8)

In the plasma frame of reference D(_,k) = 0. Assuming 8D/Ow_ 0, we

have

8D 8s 0D 8D 8D

8s Ok + _ = 0 or V _ + _ 0

if 0w/0k=V. In the satellite frame of reference, use of the above

result _ows that

8D OD _ OD 8Da_,-- o-; + _ = (v-z)

vanishes, v e, therefore, ex_and D(_' + It'.V k' + _V/c _) to secoF_ order
,_, -
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in k' near a ninch Doint, although for _' we exoand D only to first

order. Thus in Cartesian coordinates

' - xo) xx kzo) Dzz

2 ! 2 h

where D = [SO/3s']_,=_o, and D..11= [8 D/O(ki) ]ki'=k.'1@ (�b.

assumin_ Dw __andDii to be non zero. Here we' and kio , are the values

of _' and k.' at the pinch point. We calculate only the response from
l

_'=wo' 0f course, a similar calculation can be done for w'=-_o'

which will essentially change the e-iw_t expression in the final equa-

tion to a sine or cosine with a phase factor.

It is convenient to evaluate the integrals in the movi_ frame

of reference with the satellite detecting the response. That is, we

let r = ~Vt. In Eq.(6), we can change d_d_k to d_'d3k '• The factor

in the exponential -i(_t-k.r) becomes -it(s-k'V) = -ire't, since any

additional factor such as ik"r' is zero at r'= 0 where r' is distance

from the _oving satellite. Near the pinch point, the most important

variation in the relation for E occurs due to the zeros of D, assuming

that R. is normalized to have no zeros. In fact, we then replace

Rij(kx,ky,kz) by R (k ,k ,k ) and take it outside of the integrals _.ij xo yo zo

Similarly,_(_)/_canbereplacedby P(_o)/_o.TherelationforZ in

Zq.(6) with the substitution from (9a) then becomes

i R''I'LP I 't fdk_Ei(t ) : zOO -i_ tl_'So (2_)'_o e

x i
,. i

! 2

(_'-_o')D+ _(k_-k.o)D + ½(kl-k' )'DJ# XO _CX
÷ _,(k;,-k')'O" ZO ZZ

(io)

* A case when this is only approximate is given in Sec. IX(a).
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where c • 0 is the usual constant in the inversion of the Laplace

transform. The k' integral can be evaluated using rdx/(x 2 + a2) = _/a
Z j

to give with _=(k_-k_o) "_

ic+_ _ oo

a ..... e-i_

Ei(t ) = 8_e_VDzzDx x 'td_' ds

I
× , (11)

Now only the singular part of the integral around _ = 0 is of interest

so that we can replace the limits by -8 to 8 and obtain the result
1 I

2 sinh'1[ ] or 2 cosh'Ir ], where [ ]=8(D_2)2K(w'-_S)D +½(k_'-k'o)2Ds_]-Y

depending on whether [ ]/8 is greater or less than zero. In the

' we can use thevicinity of the oinch point (w' = _o' and k' = k ),
y yo

logarithmic approximation for 2 sinh-1[ ] or 2 cosh-1[ ] of large

argument, viz. 2 in[ ], and keeping only the singular part, v:e write

this slimly as -In[ (k_ yo +

again to x = (ky -kbo ) we find

ic+ _

ff E
Ei(t) 8ff'8°e°_rDzzD= . e-i_'td_ '._ ix In z +

1C-oo

Changing variables

No,.', "/ln(x2+a_')dx = x.ln(xZ+a 2) - 2x+ 2a tan-' (x/a). The most sin_llar

contribution arises from the region x = 0 but x/a large, i.e. from the

2a tan "I (x/a) term ;vhich gives 2wa. Thus we are left to evaluate
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ic÷@o i

-_' (_3_)
i RijIjLP [ e t(_, - _o,)_,

simply2 -i_o' t q_
The value of -the integral is -e _ = e

so that

Ri jl jLP e'i_°' t '__ "2iD_
El(t) = _eot_o DzzDD_ _/

C_)

The same result can be obtained more directly by pel_forming

the _ integration before the k' and k_ integrations in Eq.(ll). Thatx

is we write

iR .I .LPe"i_°'t _ _ ic+_ -i(_' - _o')t
iQ J .... [ak' _dk' I e

Ei(t) = 16_3_ooJo __ __ l_-_

x

' - + 2D_

iV_'i K" "! "LPe'i_°' t i F_(k' - kY°)2 t_: _ . _.__,_ _. e_ L2D_ y
8_2So_o_._

R I LPe -i_°'t 2iD ½

='-- D D ..J
4_eo_o ty_ _Dzz xx yy

which is identical to Eq.(iSb).

2

In the above we have used the rel_tions
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. ic_ -i_t iat

/ dx exp[i_(x_xe)2]=_ and ] e d_ e

It is convenient to express Dxx and D in terms of D A m

L jI asD/_ (k;)'Ik_= k;o • (We also denote D.- Dzs •) TO obtain this

relationship, we n_v specify the direction of _A to be along the

x-axis, and magnetic field to be along the z-axis. In general, if

one changes from a Cartesian (kx,ky) to a cylindrical (kA,_) system,

one has

a2D cos2_ aZD 2cos_ sir_ aZD

and

k_ a-_, (15a)

8_D sin2$ 82D 2cos_ sin_ 8ZD + _ 82D 2co_ s_ a__D

aD
+ k_ ak--_ (15b)

We also find from 8D/Sk' = aD/Sk' = 0 that 8D/Sk.'o= aD/_o= 0. Sincexo yo

aD/a_is propotionalto a(_'+~k"V)/_~(seebel_), wef_ thataD/_o=O

when k_o is par._llel to V_ Thus since we take V along the x-axis ,_o =O and k'_o

is also along the x-axis at a pinch point. We also note _hat 8D/Sk_= 0

at the pinch point. Thus we obtain

Dxx = DA and
1 8'D

D

The angle $ occurs only in the _'+k"V=_'+k'_/.+kV -_'+ k;VAcos_+ k.V.
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argument of D since everywhere else D is a function of k,, and k_

rather than k or k separately.x y
This meansthat we can write

- a,, ÷ "D aD k;V, sir_

and

a2D = _a2D (k;V_ sir&) 2- _aD k_V_' cos¢

Thus at t/_ pinch point where ¢ = O, we obtain

02D k_oV . so that D = DA and D = -D V.
= -Dc_ xx yy _ k;---°

(16)

Substituting this in :_q.(15%) finally yields

R..I .LP e-i_°'t

Ei(t ) =- mj S
b_V_ot_o

_2i kA _ ½ V_ R..I .LP e-i_°'t

L ,,DV j -- &_wot _ _oT

I

where T- [=D,,D_Vx/2k_'o]2 (18)

R.. can also be written in terms _o, k. and k,,, with ¢Ij

dependences such as I, cos_9, szn_5, and cos_, sir_t_. Thus at th,:

pinch point(see previous footnote)

. ,Ttk2 c2/_2
P_ij _ Ni_l 4-F..!2)cos2¢o+ Ni_3)sin2¢o + Ni_g)co_ ° s"_P°l' .o /,o)L "a

: N(1)+ij Nti_)k_oc'/m:'- (19)

The crucial :_,arai_teris T which is proportional to the pro-

duct o# the squal-e roots of the c_rvaturcs of D with resi_ct to kA

._ndh,,. As the dispersion curve becomes flatter, T becomes smaller

and the o c res'-onse for a given excitation level becomes longer.
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The approach given above is, relatively speaking, simple-

minded. A generalized and somewhat more rigorous approach is as

follows. Let us include an expIik'.r' ] factor in Eq.(10) where r'

is distance measured from the satellite. Also as indicated in "_he

previous footnote, Rij should, in general, be kept inside the i_te-

gral. Similar to Eq.(19) we write

_ij ij LiJ _ _ y ij xys

Also we define new variables (this notation will be used only in the rest

of this section)

Ki _ (kl- k_o)(Dii/2)_ , Ri _r_(2/Dii )_, O_= (_' -we')D and T-= t/D

Then

k''r'- _'t = ko"r' - wo't + K'R - OT

a_=(r_>'C2/D=)+ (r_)'(2/_)+ Cr:>'C2/_
and

1

d'k'_'-D;'(D=_D /8)-_ a'Km.

The modified Eq.(10) becomes

El(R, t) -

iLP exp[i(k@'-_' - wo't)]
-- l

J J O+ K2

where we have written Rij = [Oij]R , to be explained. Any factor in-

side t_ inteo_ral such as

k!k[lj " k!1ok'jo+ kioKj(2/Djj)2+ kjoKi(2/Dii )_+ KiKj(_/DiiDjj)_
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can be changed into the following operator outside of the integrals

I 1

k:_ok:jo-_[o(2/Dj j)%/a_ .-j _o(2/Dii)a/a_ i (_/DiiDj j)%'/a_ia_ j

Thus [0ij] R is the differential operator with respect to R given by

1

  (3102 . 1ij _ (k_o)2_o _ D
Y YY

+

1 1

c_(k,k'-ik_of_V__ ik_oISXJ a

_D_+ _ a_

We now apply the well-known exact result for hhe three-dim_nsional

Fourier transform:

_0__ _.._
D+K 2 R

which shows immediately that the Laplace-transformed Green's function in

__F_ R/Rspace G(R,Q) varies as e • As a result, the electric field is

iLP exp[ i (ko"r' - so't) ] io+ _ -_ R

i -co
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It is easy to see by expanding the exponential exp(-_ R) and taking

the first singular term in Q == (w'- wo')Dw, that the above relation

reauces to Eq.(13a) upon applying the previous simplication that

[°ij]=_lj"

The final integral can also be evaluated exactly by using

the Laplace transform identity2:

• • d.O= T

With T=t/D W, we obtain

E(_,t)=LP i_ -_o_)]I-2__o_ot% ex_[ -_, _DxxDrJ

1

D,_y[oij]_ e_(-_'/_)

which is identical to Eq.(13b) upon taking r' =R=0 and simplifying

[Oij ]R to Rij. More generally, using the operator expression for

[0ij ]R' we find

N(3>c' , .

• +
N(_Oc= , ,R= v

oo
If we now take r' =_=0, correspond_g to satellite reception, and

k' = O, corresponding to letting VAbe along the x-axis, and using
yo

Eq.(16)yie1_s



= ij + ij \ wo _klo D.t ij \ Wo / kloV.t

If we select only N_ )(' and the first term in N"2'I("ij ' our equation for

N(2)andN(3)
E is identical with those obtained previously. The terms ij ij

are only important in one case, to be considered in Sec. IX(a). In

fact, these terms are rederived there, starting from the simpler

relation given in Eq.(1_a).

The analysis given up till now is general and can be applied

to the response due to any pinch point in a moving frame of reference.

The following sections are concerned with the deduction of T near

cyclotron harmonics. But first we give the formulas for the determi-

nant and the minors in Sec. III.
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III DETERMINANTS AND MINORS FOR CYCLOTRON KARMONICS

The determinant giving the dispersion equations in the plasma

frame of reference can be written in the foll_ing form in terms of

the "warm" dielectric elements (_'')W' (¢I_)W an_ (_53)W and with

kt2,c2 k_c a

k_cz
-i[_-(_,,)w]+V -s_ cos_

C 2

kAk . _ cos_+ (¢'J)W

I

k'_o' '" " _' (_")wi[_-(_,,)w]+_ _i_ cos_,_.7 oo_ +
!

!

k• C 1 k 2 C 1 t

K,-7÷ .-_--.in_+(_,,)w,i(.,.)_+k.k,,_si,_

0 2

= o (20)

where

_)2 (j)2

KA = 1-w _-T_B, K. =I-'_,
(21)

is the plasma frequency, wb is hhe electron cyclotron frequencyP

and c is the velocity of light. We have considered only first order

terms in i - (kiVV_b) 2 so that i(s,Z)W = (s'')W = (¢2')W" Near the
th

n cyclotron harmonic (n _ 2) and to first order in k,,, we have
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I(_,,)w/(_,,)wloforeeri _d I(_,,)W/(_,,)wl<<I. _o calculate

the determinant, one can for simplicity set 4--0 since the answer is

independent of 4.

We first look for solutions having (s11)W of order (_I,) c orofor-

d_. K which will yield the extraordinary and plasma waves. In this

case, one can neglect all (e13)W terms. Denoting by D the determi-

nant after dividing by the (33) element, one finds

El k2"c2V _c_\D= - -_r-AK r- -_;

k 2 o 2

(k c2'2r- KA - m'_'- + (_t I )W "_

K.-7--

To first order in k,,/k., one only has to keep the k,, dependence in

(sl I )W' so that

D m _K r - x KA + (_,I),,.. [2_-x] (22a)

where
_2

- i- P (22b)
x _ klc2/w 2 and K1, r- m(w+ mb)

In order to evaluate the integrals in the previous section, one

needs to ,r_now the min:rs of the determinant including the _ angular

dependence. After division by the (33) element, one finds for these

ex t;raordi_c ry-pla sma wave s

k,,_c_ k_c _cos_,
RI, =K A- _ - "_'_

_lk,2,C4 Sin 2_

+ (_,I)w-_
[K,,-k_c'/w 2 ]

= K,- x cos2¢..(_,,)W

(23a)
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R
12

k_.c* k_k_,c" si,_ co_

=-R,, --ir_-(¢, ,)W]- 7- si_ oo_+ 7- [K.-Ic*/_*]

Similarly,

-i[Kx-(_,,)w] - x si_ cos_ (2.3'0)

Rs_= K.-x sinS,+(e,,)W (23c)

We next look for solutions h_ving (cj_)W ~ (eSS)c ~ K which

will g_ve the ordinary wave. After division by the product of ele-

1 k,,c /_ - kS, c2/2oJ 2] andments [(11)(22)-(12)(21)] 2(E:, )W [KI" 2 2 2

thereby normalizing Rj_ to one, we find that

and even including the _ dependence we see that R_j = I.

7_Tefinally seek solutions having (s22)W _ X'2(¢22)e ~ X-SK

to yield an extra wave which can exist. In this case, we have to

include the small differences between (c22)W , (s_I)W and (¢_2)W =

-(s21)W. Here (s1_)W and (s3s)W are both negligible and one ob-

tains to first order in k. after division by the (33) element multi-

plied by (s11)W, that

klc' 2k,2,c_ (_, ,)w(e,, )w (e _ )w

(25a)

The warm elements cancel up to second order in X. Since the warm

elements are much larger than the cold elements, the minors after

division by (¢_)W times the (33) element are

R_,= R_: 1 and R,_= -Rs_= i so that R_ +iR_= 0, R_- iR_=2. (25b)
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In the following section, we investigate more fully the

disrersion equations upon inserting the warm dielectric elements.

IV DI SPERSION E_UATIONS

In this analys_s, we assume _ to be complex and k to be real,

sluice we are interested in a decaying signal after a pulse trans-

mitter is shut off. We also assumed already that A E (kAVJ_b)2 .'i,

that the frequency (s) of concern is very close to a cyclotron

harmonic (r_ b) and that only first order terms in k,, are necessary

to consider.

The dispersion equation for the extraordinary-plasma waw:,s

then has the form (see Eq.(22a) or Appendix II, Eq.(i_) and

Appendix I, Eq.(4)),

x i (2K I - x)x
(26a)

- = ,> " r

where

_2 /vt 2(n-2 ) na

and _ is a f_mction of k,,c/_ and of ZX_b/(J.

small that a relativistic analysis is necessary (see &ppendix I)

If k,, is exceedingly

then

2 4 2 2

_n+_ = Fn+3/2 + (k,,c /2vt_ )(Fn+_2- 2Fn+_+ Fn+I/2) =- Fn+_2 + k,2, _ (27a)

where the argument of the F O_nctions is _8 with 8 = (_-n_b)/_ ,

_ 2

= c /vt, v t = _ is the thermal velocity and Eq.(27a) defines _.
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If k. is somewhat larger that nonrelativistic analysis applies,

then

_= -(vt_/_ k,,o2 )Z(_) (2_b)

where _ = (w-n_b)/_f2 k.v t and Z is the plasma dispersion function

of Fried studConte 3.

The ordinary wave (for n> I) shows appreciable disper-

sion effects only for very small k. when relativistic analysis is

necessary in which case its dispersion equation is (see Eq.(2_) or

Appendix If, Eq.(9) and Appendix I, Eq.(32))"

: +

0 2 [ k,_04 F-

= k_A"_ P" LFn+s_ + 2--_L_Fn+_-2Fn+ _ +Fn+ _ )

2(Fn+%-Fn+_)'

where

c I 1" k_A"_ P" Fn+_+ _ _0R (28_)

i:)/ t\W2 vt 2(n-i) 1

P. = _-_bL_b"9 _ (2813)

and _0R is defined from _' (28b)_q.

Finally, the dispersion equation for the extra wave is

(see Eq.(25a), or Appen_n, Sec. n(d)).
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2K1-"-= =(c,,,)_-,- (_:,,,)_
(29a)

where terms on the right hand side cancel up to the second order

in A. To first c_der in k. (see Eq.(27a)), the relativistic

analysis in Appendix II (Sec. II (d)) and Appendix I (Eq.(33)) yields,

x_2 ____Ln*l

_-_-_ Pex Ln+1 Fn+_ - n+/2

c'k_" [%.2 2Fn+'/,* )- 2F+E
* 2'_t_2 L_n+t (Fn+_/2- Fn+_4 Fn+_/z (F+5/a-2Fn*_/z +Fn+_/z )

* _ (Fm.l._-2Fn,3/2*Fn, y2)-_l
-" n+.,I/2

+ k,2,Pe_ _ (291",)
,.j

where

Pe=" _b/ n"--'2r (2£c)

and where _ex is defined by the _ove relations.

In the followi_ section, we use the relations deduced

here _ calculate the wave number for which retching be_een satelli_

_d group velocity occ_s in the direction par_lel to the _g_tic

fie ld.
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V VALUES OF k_ AT T_E PINCH POINT

Let us first match satellite velocity to group velocity

in the direction parallel to the magnetic field. An examination

of the dispersion equations reveals that the most rapid variations

of _r(the real part of w) and k. arise from changes in the

functions, rather than from the K functions.

,When k. is minute, Eq.(27a) applies. The ka. second

term is assumed to be smaller than the dominant first term. We

note that all functions except _ are mc_e or less real with _=w
r

since _'i<< _r" Hence , it is r_cessary to make _ real as well in

order to satisfy the dispersion.equations. This can be accomplished

to first order by making real the first term, e.g. Fn+_, in Eq.(27a).

In fact, we ss_ that the imaginary contributions in the _ factor

are cancelled by the small imaginary terms elsewhere in the dis-

persion equation. As a result, we are dealing with a function,

such as

Re_n+_= Fn+_+ (k2.c_2_2r) Re [Fn+1 _- 2Fn+3/z+Fn+_] (30)

where Fn+ _ is taken, with complex argument, along its real track

and where Re[ ] is the real part of the indicated combination of

functions along this same track.

In _der to match satellite to group velocity, we differ-

entiate Eq.(30) and set a@J_k. = V.. Defining 8r = (_r- nWb)/_b'

we find to first order that we can match the extra_dinary-plasma

waves with
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n_bV,, 8Fn+_/8(_8 r)

k. = -- C--F-- Re[Fn+M_2Fn+_/2+ Fn+g]

"v"aFn÷_/a(_Sr) (3_>

2rm b Re_

where _ is given by Eq.(27c).

For the ordinary wave, we have a different factor

(see Eq.(28a)) multiplying kZ, in the dispersion relation wit_

Fn+ _ as the doH._nant part. Using similar arguments to the above,

a match is obtained for

-_bV,, aFn..//a(._r)

., I._, ,_ .-_ n+½ n+_
mS 19r ,71--_ Sl*_ :3/'_-

*_ 12 n+/2 n+/2 Fn+_/7=
(32)

where Fn+ _ is taken along its real track and Re_. is the real

part of the indicated combination of functions in Eq.(28a) _ong

this same path.

For the extra wave, we note that we require very large

values of F to satisfy the dispersion Eq. (29b). Usir_ the rela-

tions in Appendix I, Eq.(28), f_ large F_we note that

n+2 _ _ , Fn+_

n+--_Fn+_ Fn+J/2 = (n+l) (2n+3)
(33)

Similar considerations to the above show that a match occurs for

pV. 8Fn.7/2/8 (._r)

k,, = - (n+1) (2n+3)2n_bRePe x
(3_)

where Fn+7/2 is taken along its real track and Re_e x is the real

part of the indicated combination of functions in Eq.(29b) along

this same path.
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Plots of the functions Fn+ _ and Fn+3/2/_SFn+_/a(_Sr)]

s F/F' for n=i to 7 are shown in Figs. I and 2 in the region _:here

F is large and negative. One notes that the ratio F/F' is alvayS

of erder one in this region.

Let us now investigate whether one can match with s]ightly

larger k. values where the Z-function is valid and where one can

use nonrelativistic theory. We still assume A < I. Note that

for A << i, we use large values of Z, hhereby requiring the ana-

lytic continuation of Z (see Appendix II, Sec. IV). To satisz_-

the dispersion relation (Eq.(26a) with (2]%)) for the extraardz'nary-

plasma wave, the Z-function has to be real. The most rapid w_ria-

tions result from the s and k. dependences of Z/k,,. Whether or

not we need the analytic continuation of Z, provided it is real,

Theit can be written as a function of _r = Cur- r_b)/#_ k.v t.

matching condition then gives the following result.

a(z/k.) a(z/k.) V. z
• =0 or

8k,, + V. 8_r _t _r = aZ/8_r
(35)

When k << I or mare accua-ately (n2A"'I/2"n')<(wV_pC)'K_,

the analytic continuation is used to provide large values of Z, given

by (see Appendix I, Eq.(29))Z = -+2_ exp[(_/_r)_ ] and Z increases

as_r_ 0. _h_ z/(az/a_r) : _/_" whichis s=ml co.red to _.

As a result we have from Eq.(35):

% :v./vt_ (36a)

This fixes the value of Z as well. However, in the A << i region,

l
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we want Z to attain huge values which vary as _r varies, even

though assigning a value to k,,. The value in Eq.(36a) is use-

less since Z cannot become too large once the argument of the

exponential is fixed.

_en A is larger (nZAn'I/2nn'> (wVJ_pC)2KA), we do

not need the analytic continuation of Z. As a result, for _>> I,

Z = -_'I[I+(2_2)'11. We can also neglect the imaginary part of

and take _ to be real. Thus Z/Z' = -_(I-_'=) and Eq.(35) becones

Eqs.(26a,b) and (27b) for A< I, x>> I and _ith

(I, :  8(I, vim.

= V_ v/V. or _8 --2k,,c2/wV. (36b)

which is consistent with the preassumption that _, I. In order

for the asymptotic expansion of Z to be valid, we also require

_8 >> I, which is obeyed provided k,,c/_ >> V,/2c. (See the dis-

cussion in A_pendix I, end of Sec. III_ The largest value that

mvtZ/_ cZk. can attain is (_8) "I of order one. The electro-

static dispersion equation for this case can be obtained from

_=(vtw/_ k,,cz )

w-r_ b _2 nZA"'1 I k,_ v_ 1 (37)

Near the mmtching point, the term in the parenthesis is of order

[I + (V./2vt)2 ] = I. Because of the limitation that _8 > I, we can

allow the rest of the right-hand side to be as small as v_e z before

the large inverse argument approxin_tion for Z becomes invalid.

This means that (n=An'l/2nn')> (wVJmpC)2KA which is the inequality
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we stated at the start.

We conclude that we can match k. for _<< I (that is

near electromagnetic modes) when relativistic F function applies

but not when the Z function applies. For larger A when the waves

become electrostatic, we can match with a larger k. value using

the nonrelativistic Z-function.

In the following section, we perform the analysis for

matching perpendicular to magnetic field.

VI VALUES OF kA AT PINCH POINTS FOR LARGE REFRACTIVE INDEX

The next task is to match satellite and group velocities

perpendicular to the magnetic field direction. Since the k, term

is very small, we shall neglect it in the following discussion.

First, we show that for n> _ and w> _T where

2 m 2 W2
_T -b + p, we require unrealistically small values of VA to ob-

tain a match using the Bernstein electrostatic mode. For _>> _T

(or KA _ I), the matching points (if they exist) would not be far

th th
displaced in frequency from the n harmonic. Hence only the n

term in the well-known In expansion is necessary and then the electro-

static mode is given by

-_b = W2 nIne-;t/°_

This equation is the extension for larger k of Eq.(37). Note that

here, (w-rd_b)/_ is sufficiently large that the (-_'') limit applies

for Z and one does not need the analytic continuation of Z.
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For matching, we differentiate Eq.(38) with respect

to k and k (in the two directions perpendicular to _2gnetic field)
x y

and v:e equate a_/Sk x = V x and 8w/Sky = Vy. The derivative of K l

gives a negligible contribution. Combining the x and y- expressions

gives

Vx/Vy.k_/_y _.nd hence VA/kA -V_/_x=V/k or kA'V A - kAV A (39a_!

Using this, we find that the matching condition is

2 w e- _I In+1_ n-1_ (39b)VI IvT_ l_bb KA = _2 In _" - In j +

Since VJv t car be as large as 1/16 and _p/_ varies between I/4

and 100 for satellite altitudes between 500 and 30,000kin (see Fig.3),

we note that the _aximum value of the left-hand side is 4/16 = 0.25.

Even assu_:ing VA/V _- 1/10, we require, for K A _- I, the right-hand

side to attain a value of 0.025. In Fig. 4, we present plots of

the right-hand side for n= 2 to 5, and we find large enough valugs

for n_ & only and not for larger n. The maximum group velocity

points are also tabulated in Table I. Thus using the Bernstein

electrostatic mode, we cannot match perpendicular to the magnetic

field for n>4 and _> _T"

The lack of this retching capability is equivalent to the

lack of a stationary point in the integration over kA to obtain the

time response. The stationary phase method Ires been used by Deering

and Fejer . In order to evaluate the k A integration, they look for

2n-2_+points where ak A kAr A is stationary where _n our notation ak_A(n'4 )
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is simply the

point is mc_e accurately obtained by solving

f__a nI e'At

@b_K'A +_kAr = 0 (rather than eJ_( n"

The stationary

')± 0)

which yields exactly Eq.(39) with rA/t replacing V.. Thus by adopt-

Lug properly the I n function rather than its expansion when A~ 1,

we do not fin_ any stationary points for satellite reception (rA=VAt)

when n> 4 and K A - I. Deering and Fejer remark that the

Shkarofsky and Johnston's requirement that a matching point exist,

is not necessary for electrostatic waves. This argument is self-

defeating since they require an identical condition to calculate

their time response in the satellite by the stationary phase method.

._- Z,n2.S ,When w << _T or (rmb)2<<_ p" or K A = _/wb_ ) the

electrostatic waves are backward and matching in the perpendicular

direction is much easier to accomplish. In this limit, we have

an extra (nm-1) factor coming from K A which helps the matching to

such a degree as to m_ke it far more often possible. Equation(39)

can be written as

_VA 2(nZ-1)n Ine-A__ (Ivq = A_ A -In+tin + n- I (40)

In Table 2, the maximum of the right-hand side is given. These

values are only an indication since they are based on the approxima-

tion using a single In, which is especially bad for backward waves.

Nonetheless, we conjure from the values (8_/vtak values greater than
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TABLE I

Maximum Group Velocity for the Bernstein Electrostatic Mode When

_= << (_b)=
P

n

2

3

5

A

0.2

1

2

3

o.1_75

o.o55

0.0269

0.0151

wb
('_ - "%)7 q

P

0.0_I

O.02_5

0.0137

0.00757

Approximate

TABLE 2

_Vaximum Group Velocity Values for the Bernstein Electro-

static Mode when u_ >> (r_)
P

n

2 0.2

3 I

2

5 3

o._25

O.Z_+O

0.@01

0.378

0.061

0.0653

0.0513

0.0363
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0.25) given in the Table, that a match is possible up to quite

large n values.

Whenmatching occurs for backward or forward electro-

static waves with A < I, we use the small argument approximation

In in Eq.(39) and find

A = vt2n(n-1)(n'-l) 1 - wz (/+1)
P

(We note that the small A approximation breaks down for large n

since Eq.(A1 ) indicates that A . I for large n.) Equation(37)

rlelas

"-n_ b VA EVA 2nn' ("_(n'-l) )_ 1/_2n-3]
r_b = 2n(n-I )v t vt2n(n-1 ) (n z-1 ) 1 - WpZ

= vAkJ[ 2(n-1)_b]

In order to satisfy the requirement that [(_b-w)/._b[ > (vt/c)' ,

we need

1

n2"I I _" WZ
P

I
2 2

For example whenn=2 we reecl Iv._/etl > [6/11- _b/_pl ]_ and
1

when n= 3 we need I_Ac'/v_l> 2A [6/1",- _/,,,;I 1_whioh_e

easily satisfied for satellite parameters. Far larger n, the

inequality in Eq.(k.3) becomes even easier to realize.

Substituting Eq.(_2) into Eq.(36B) yields the magnitude
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of k. c/_, namely: k./kA = V.V./ [_vt2(n-1)] and.

k.c V,,VAc _ V A 2"n'. ( _(n'-l))_ 1/[2n-3]= _A_n(n-1) vt2n(n_1)(n,_1 ) I- w_ (/+)+)

For typical values k,,c/w is somewhat less than one. (The condi-

tion that k.c/_ be gre_ter than V./2c is the same as requiring

_l >I). _'_eseefromEq.(_) _t t_ pinchpointfor elec_o-

static waves parallel to magnetic field occurs for wavelengths

somewhat greater than the free space value. Perpendicular to mag-

netic field, the wavelength given by Eq.(41) is very much less than

the free space value.

The frequency measured by the satellite is _'= m - k.V=_-_ _ .

The Doppler shift A_ associated with the electrostatic matching

point is

so that

k_v_ ¢_ v_
u m -- m --

n_b r_ b nv t

- r_Jb
- 2(n- "1) (a5)

The Doppler shift is larger than the deviation from the k_rmonic

due to matching.

It remains to be shown that in spite of uhe relatively

large value of k,, in Eq.(_d,), no other terms in the electrostatic

dispersion equation are as important as those used. In general,

the electrostatic dispersion equation for all k. has the form 5
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kA2 [(S,,) c+ (¢,l)w]+k:[(¢,3)c+ (S_,3)W] +2kAk.(¢l:3)W=O

Substituting the cold and warm dielectric elements in terms of the

Z function given in Appenaix I, Eq. (31),yields

u,,._,_ z = + (2_=) -t ] and. F__. = _,..,i gives

KA+--_A -a,,2,,n:(w_raLb) + (__mOb)Z+ (a,,_ralb)+ (w_n_b)_._.] 0

The latter two terms in the brackets are small near the pinch values

of k, and w-n_ b. Use of Eqs.(_J+), (_2) and (/4.1)shows that the

second term in the brackets is larger than the third and fourth

by order (_/k.V.) z and _/k.V. respectively, and is also larger

than the k2.K,,/kA2 term by order (vt/VA) 2 • Hence the dispersion

equation we have used previously in Eq.(37) is correct in the neigh-

bourhood of pinch values having A < I.

Deering Feje useEq.(37) thout thek,: ditional

term. To obtain the time response, instead of integrating over

k,2, as one should, they estimate the value of this integral based on

Landau damping considerations. This approximation inherently intro-

duces an error which indeed leads to the wrong time dependence.

They obtain a t-' decrease, whereas we find in Sec.V_ at t-_ decrease.

The correct approach should be based on the k. pinch value using

Eq.(37) which, as proven above, contains the most important terms.
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We conclude that one can match satellite to group

velocity for n_ 4 with electrostatic Bernstein waves both in the

perpendicular direction with a wavelength much less than the free

space wavelength and in the parallel direction with a wavelength

somewhat larger than the free space value. For n> 4, one can

only match when _2P >> (r_b)Z p i.e. where the Bernstein waves are

backward. Figure 3 shows that this can occur below 800km or

above 15,000km. Since Alouette I travels at 1,000km, these back-

ward waves are infrequently observed. Alouette 2 should satisfy

the conditions for backward waves at lower altitudes. _qaen

(n_b)2>> _2 which very often occurs for Alouette I, it is veryP

difficult to obtain a match for harmonics greater than the fourth.

The reason for this is that the dispersion relation for the electro-

static mode is very "flat" i.e. varies over a very large range of k.

for a slight change in s, so that the group velocity is small and

the satellite travels faster than the wave. (Parenthetically#the

extra wave mentioned in Sec. IV is even "flatter" when x >> I by

about v2/c 2 and hence no matching point can be expected for this

additional wave for large reflective index values.)

There is, however, the distinct possibility that the mstch-

ing condition in the perpendicular direction may not be required for

electrostatic waves because of finite antenna length. The reason

for this has been recently implied by Calvert and Van Zandt 6.

Suppose we are dealing with excited wave packets having very small

group velocities, but soread out throughout the original region of



- 33 -

excitation_ which is about an antenna length. Since in the time

that the cyclotron resonances last, the satellite travels about

an antenna length, the satellite, in this picture, is essentially

moving through and sampling in distance the more _ less station-

ary blobs or wave packets in the excited region. However, an

analysis including finite antenna size is too complex and will

not be done here.

VII VALUES OF kA AT PINCH POINTS FOR REFRACTIVE I_rDEX NEAR OR LESS

THAN ONE

Let us now attempt to obtain a match for lower kA values

near or less than the free-space values. As ahown in Sec. V, k,,

can only be matched in this region if the relativistic analysis is

used. We therefore restrict the following analysis for matching

k A also to the relativistic analysis.

Case(i): Consider first the extraordinary wave given in Eqs.(26a)

to (27a) with k,, = O, vim.

(2K1 - x)x
I

p_A(., z)Fn+ _ = KIKr - KAx (_.6)

Denote F' - 8Fn+_/8(_Sr) with the derivative taken along the track

of real Fn+ _. Differentiate respectively with respect to kx and

ky and equateSw#Sk x = Vx and 8_JSky : Vy. The terms involving

derivatives of the K- and x- functions with respect to wr are negli-

gible since _r >> kAVA" Omitting. for simplicity, the n+_ subscript
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on F and F' one has

F'_ --kxVx - 2(n-2)k x ~_ 2xkxZ
pk_ (._.)FZ m_b pk_l(n.z )Fk_ k_(KIKr- KAx) (_-x)

Subtracting the x- and y- derivative expressions gives

v/v. Hence V A/k±= V/k= V/ky or kA" V.= k.V.

Adding the x- and y- expressions then yields

_ F'. k.v._ 2(n-2) 2 _2(KI_)+ (2K1-x)K.xP_I("'')Fz rmb P_("-')F = (KIKr-KIX) KIKr-KIx

Substitute _q. (46) into (47a) for F or Fz and obtain

(47a)

(2KI- x)K.x /Kl_-K.x /_ F'. _)
(n-4)2_ I- nx + KIKr - K_x = K _x "Pk_l(n-Z)F _ (_Tb)

V(y__K_qx)X_ _. )F'.-7- ) (_7o,_)

There are three regions where one can satisfy the

above equations, namely near (i) the Appleton-IIartree solution,

x = _K_A (ii) near x = 2K 1 and (iii) for x << I. Let us

consider these separately.

CASE (i): 7,%en x = KIKr/K_ > 0 we find from Eqs.(_6) and (&7c)
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= - K--"I" - = K--""ZF'.k n

where KI = (_+ Kr)/2° Also from Eq.(_2d), we note that

X- = d K A F'_V A

which shows that (VAkAF'/_) < 0. Hence from Eq. (48a), we can have

<

> _K_/_ depending on whether F > O. This is consistent withX < A

the signs of F used in Appendix II, Figs. 3(a) and 3(b), near the

electromagnetic solution. Since _+kA= _/C, Eq.(48a) gives a

very small deviation c_ x from _Kr/_A, of the order of vadcV A.

Equation (485) cannot be satisfied for n: I since the

right-hand side is much larger than the left-hand side. This is

again consistent with the results in Appendix II. For n=2,

Eqs.(_8a-c) can be satisfied for values of F of arder one. In

fact for x < KIKr_A, we can use the region where F > 0 and both

an_ k A are real. As is shown in Appendix II, Section III(a),

8_/8k A is of or_er vaJc at _ : r_ b and increases to about c as

tends towards the Appleton-Hartree solution. At some intermediate

point, the slope must equal V A. Thus a match is readily obtained

for n = 2 and w > r_b on the F > 0 branch with real _ and real k A.

Of course, one can also match for x > KIKr/_ A and n= 2 on the F< 0

branch with complex w, using the analytic continuation of F where
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both F and F' are very large (see Figs. I and 2). Since two

matching points exist differing relativistically in s and by devia-

tions from KIKr/_ A of v_cVA, beating between these pinch points occurs, but

after a time duration much longer than the interference times on

the second harmonic resonance observea 6 by Nxplorer XX. (We shall

show later that multiple pinch points also exist for all harmonics

near x= 2_ when _ • 0, but again this cannot explain the inter-

ference effects observed 6 even for high harmonics.) In References

4 and 6, hhe interference is associated with beating between electro-

static wave packets.

For n _ 3, we can only match both k. and k A near

x = I_Kr/K A using hhe F < 0 branch, with the values in Figs. I

and 2. If we attempt to use the F > 0 branch, we have to recall

the behaviour of F shc_n in Appendix I, Figs. 3 ana 4. Since

n _ 3, 8_/8k A at _ = n_b is Qf c_der c and lower group velocities

only occur in the region Sr < n_b (not shown in Fig. _ of Appendix

I) where the F curve tu_rns around. In fact, F is not large _mre

but F' goes to _ at the turn around point. In arder to satisfy

Eq.(A_Sb), we have to go quite close to F'= _. This,h_wever,

upsets the k,, matching point in Eq.(31), since upon substituting

Eq.(48b) into Eq.(31) we find that k. becomes too large. As a

result for n _ 3, we can only use the x • _Kr/K A matching points

and the calculations given below were actually done only for F < 0.

We note that the above matching points are present only

when there exists an Appleton-Hartree solution, i.e. when _K/KL>0.

When K1, Kr and K A are all greater than zero, the Appleton-Hartree

wave is called the X-wave, and when Kl> 0 but Kr < 0 and K A < 0, it
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is known as the Z-wave. Equation (_8c) shows that x (the square

of the refractive index perpendicular to magnetic field where the

wave group velocity equals the satellite velocity) is composed of

the Apple ton-Har tree part plus a correction term. These two

p/W' for n:1 to 7parts are plotted separately in Fig. 5 versus m b

and for the x > _K_/_ A matching point. The X and Z-wave values

are both illustrated, the Z-wave curves being the more vertical

ones. In Fig. 6, the corresponding values of cZ(m r- n_b)/r_b_ t

are given which provide an indication of the deviation from the

exact cyclotron harmonic value in the plasma medium. The devia-

tion recorded by the satellite is the above value with the Doppler

shift kAV A subtracted. The calculations were performed by solving

toy IdF t=ing÷/oVA:0.03Eq.(_Sb) as a function of _ b

and ca/_t=3x106. ThenFigs. I and 2 for F(O were used to give

F and (mr- nwb)/n_b. With these values_one can also calculate

from Eq.(31) the magnitude of k.c2/mV,, the normalized wave number

in the medium where the group velocity matches the satellite velo-

city in the parallel direction. Plots are shown in Fig. 7.

The results in Figs. 5 to 7 indicate the following:

_: The theory is only valid if _he deviation from _J_A

is small. Figure 5 shows _hat KIKr/_ A varies from about 5

to 0.02 in which range the deviation is between 5% and 30%.

For the lower values where K1 or Kr approaches zero, or less

than I% near a cut-off, the approximations begin to fail.

Vo,Over most of the range of m b' one can conclude that the
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wavelength perpendicular to magnetic field is several times

larger than the free-space wavelength. The analysis may

have to include both finite antenna length and possibly sheath

effects for the Z-wave values giving smaller wavelengths or

> 1.

_b)_: In all cases to within 0.6% of a resonance ar

a cut-off, t2_is parameter is less than 100. Usually it is

greater than I0 for the X-wave and n > 3. The Doppler shift

correction, kAVA/w = _Kr/_ A VA/c is also of the same order of

magnitude. This theory therefore indicates very small devia-

tions from the harmonic.

k.cZ/_V.: This parameter is generally about 0.25 for the third

harmonic decreasing to 0.15 for the seventh. Since c2/wV,,

is of the order of 0.25 earth radii, such small values of the

k. indicate characteristic lengths (~I/k,) of one earth radius

This length is larger than the nonuniformities in the magnetic

field which one can ex_oect to be present over distances greater

than 0.1 earth radius. However, the energy, travelling at the

light velocity, has not arrived yet in the times of concern to

these large distances given by I/k,,. All that the analysis

is attempting to say is that the satellite travels in a uniform

static excitation field spread over huge distances in the paral-

]aldirection. Nonunifcrmities in magnetic field may produce

some effect on the signal amplitude. The question of whether

one can have k,,* 0 in magnetic field systems with nonuniformities
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at the ends depends on boundary conditions, and will not be

theorized upon here. 0r_ can suggest looking for possible

correlations of variations in signal strength with non-

uniformities along magnetic field lines.

CA= (ii): _en : _ 2KI

(47), two matching points on each side

respectively. To see this, expanding

Eq.(_)

• 0, we can also get, from Eqs.(46) and

around x _ _I' we find from

C2V A

so hhat F'kAVA/w< 0 and from Eq.(47a,c) we obtain

(_9)

_K.j. F ¢d
m m

x-2K 1 - 2P_A(n'2)F = P F' kAV A or
-

F' cVA

(50)

Our basic Eq.(50) is still valid very close to x _ _I

although in this region, the F • 0 and F < 0 branches couple (see

Appendix II). To prove this, we note that the coupling occurs

2 2foravalueofFPk_("'2)~_" ~ c/Tt _hereasEq.(50)onlyrequ_es

value of FPk 2 (,-2)_ cVA/_t which is much smaller. Supposedly

there are two other retching points_even closer to x = 2K I in the

coupling region of the F• 0 and F< 0 branches_near the point of

zero group velocity for this particular dispersion curve. Simi-

larly, the extra wave (to be investigated later on) has four match-

a

ing points near x=2K1, two sufficiently far away from the coupling

region and two within the coupling region (see Figs. 3(a),(c),(d),(e)



in Appendix II). The points within the coupling region will not

be considered due to the complexity of the analysis. We only

calculated the two points for the above extraordinary wave an_ the

two for the extra wave where matching can occur near but outside

of the coupling regions. The interference effects due to these ma_ch-

ing points would only be observable after a time of the order of

_t( r_b ,) which is of the order of 0.I-2 sec.
_t _-- (d 2

In Figures 8a, b, we show values of the two parts in Fq.(50)

versus wVs _ based on the x = 2_ matching points for positive a_id

negative F respectively. Corresponding values of (_r- r_b)/r_b and

of k.c2/wV, are given in Figures 9a, b and 10a, b.

CASE (ili): We now consider the matching point for x << I. Thds

point is a direct consequence of the relativistic analysis which shows

that _ rises rapidly above _b as k A tends to zero. Because of the

rapid use, the slope 8w/Sk. becomes large enough to effect a match with

V.. For x << I, Eqs.(46) and (47) reduce to

For n= I, we obtain no matching point.

(b) 0RDIN,_RY WAVE

A similar analysis can be performed using the ordinary wave

dispersion relation given in Eq.(28b) with k.= 0, viz.



I x

Equating 8w/Sk A = V A and letting _ >> kAV A we find

(.52)

(K.- x) 2 _ _kAV A

n(K.- x)+ x 2xP.k_A(.. ,) Fn+% 2Fn+%

(53)

As x _ 0, we. obtain a matching point when

kA- (5_)

(Compare with Eq.51). The values for matching on each side of x = K.

are given by

and

F'n+ _ = -2 VtZ/[cVA K_ " p.k_l(.-,)] (55b)

In particular, for n= I and x _< K,, there is a matching point for real

kA, s and F_ (see discussion in Append/x II after Eq.(17)).

In Fig. 11, we provide plots of K. and the additional correc-

>
tion term in Eq.(55a) for the ordinary wave matching point giving x ~ K_,.

(The x < K matching point suffers when n • I from the same difficulty

as the extraordinary point x j KIKr/kA. Namely, one requires huge

values of F' and this jeopardizes the k. matching point in Eq.(32).)

In Figs. 12 and 13, the values of (er" r_b)/r_b and k,,c'/_V, are also



given. The conclusions to be drawn here are similar to those for

the X-wave given above.

The advantages of the matching points near these coupling

points are the negligible difference (_r- n_b)/n_b' the negligible

imaginary part of w, the negligible Doppler shift, that it may be

easier to excite a wavelength of the order of the free space wave-

length and that the n z I case can be included for the ordinary wave.

(c) EXTRA WAVE

As pointed out above, two matching points occur for the

extra wave given in Eq.(29b) near x = 2K 1 but sufficiently outside of

the F > 0 and F < 0 coupling region. When k.= O, Eq.(29b) combined

with Eq.(33) is

(n+l)(2n+3) x

Pe [°Fn. Z%-x

Equating 8w/Sk. = VA and letting _ >> kAVA, we find

(56)

(25- =)(n+l)+x =
(2_-_z (n+1) (2n+3)

2XPex_A" _ .k.V_
"n÷_ --7----

The matching point as x * O, is

,,kAVA
2Fn+ _

(57)

kA= -2(n.,-',)_,,, Fn+,/,/o'VAF_+_ (58)

We are mainly concerned with the points near x = _p which are given by
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and

orI,- "i (59a)

F:_÷_= -2(n.1)(2n+3)_'V'[cV,=re"-_P_.]

In Fig,S_a, b, we give plots of the two parts in Eq.(59a)

for negative and positive F respectively. Figures 15a, b and 16a, b

give the corresponding values of (wr- nWb)/rh% and k,,c2/wV,.

Having investigated quite carefully the pinch values, we

now proceed to use the analys_ in Section II to determine the time

response for the various waves.

VIII TIME DECAY OF CYCLOTRON HARM01_CS FOR ELECTROSTATIC WAVES

All calculations are done in the satellite frame of

reference (_', k') where from Eq.(8)

w=_'+k'_ and k =k'+_'V/c 2

From Eqs.(22a), (23a, b) and (37), we can redefine D, R,,

and RI2 by dividing through by -x to give

(60)

2 2

D=KA+ 8,,= KA-q 2"n'(w'+ k.''_A+ k'V.- r_b) (w'+ k_'.VA+ k,',V.-r_b)"

and

(61)

R (_o) _- oos'_o - 1,
11

R (_o) --'-Rz,(qbo)"Z-slZ_o combo - 0 and
12

R2 2(_o) = sin'_o = 0
(62)
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We take VA ana kAo along the x axis, since near the pinch point we

l IVA. We also neglect, if we wish, the smallhave from Eq. (39a), kAo I can

aifferences of _ in the KA and A quantities.

According to the analysis in Sec. II, we have to calculate

DA= 82D/8(k_) z and D,= 82D/8(k,') 2 at the pinch points.

One can readily show from Eq.(61) that 8D/Sk.' = 0 when

!

(k.o-_o'V./c_)"-(v./2v_;)(_,,o,-_o,.V-_b) (63)

which is identical to Eq.(36b) using Eq.(60).

vative, one obtains

Taking the second deri-

D,, =- p _ (6A)

_b2nn'.(_o'+ko'"V-_b )' (_o'+~ok'-_-_b )_

Similarly 8D/Sk; = 0 at

( k'.. +_0' VA/C2)VA = 2(n-I)(_0' + ko' "V- rmb)
r_

which agrees again with Eq.(_2). Note that the correction _o' VA/c 2

to klo is negligible. In fact, solving Eqs.(65a) and (61) obtains

(65a)

(kl,ovJ_b)2,-3 = _A_bz..z^, n.' VA/_Vt_p2n(n-1 )]

which is identical to Eq.(_1). The second derivative of D yields

(65b)

DA _--- 2(n-I )(2n-3)KA/(klo )2

I

Evaluating the quantity T in Eq.(18), namely T - [_D,,DAVA/2k_o]_, and

using Eq.(65a, b), give the following result:
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T
2KAvt(n- I)_/2 f2/r(2n- 3)_ ½

(klo)_ \ v. /

I)_/,2_.(2n__,V.L 3_1½ _ V.L_2n:Kj.Vtwz2n(n-1).] s/r4.-6] (66)

The expression for the electric field response as a function of time

follows from Eq.(17) :

-d_ I_P(nw b )
s(t) : ,

_o (_bt)½ ezp[-it_nw b - 2_k.toV_.]]

W" f VAn I 1 V,_ 2nn'lKA ,_4.-6]

x [ _ L,(2n_3)vt }" [2(n-1)]_ ]_ Vt'p2n(n-1 )] (67)

where from Eqs.(/_) and (_5), we have applied

k,oV,+% = 1-2-g j + _b = r_b-_ kz°VA

(68)

It is instructive to prove that we obtain the identical result

by using the stationary phase method of Deering and Fejer _ and working

in the plasma rather than satellite frame of reference. We shall redo

their analysis _ith the proper k2. dependence given in Eq.(37). Vie

start with their Eqs.(8A-86) fo_ the potential _ which in our notation

reads

,/ iIxLPC°s_ \£- (_-r_)exp[-i(_t-k-r)]

D _bz n._ \ kw-zwb)/
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where we consider only the _ = r_b resonance and as before we take

rA parallel to the x-axis (_o = 0). (The _ =-r_ b resonance can

similarly be calculated.) Also E(r,t) = -Vr_ (r,t).

Using 2_i J,(kArA) = /2_8_elMArACOS_cos_, we can immediately

perform the _ integration to yield

- dkneik.r.

"" kl+L "_t - "IZ _11--1

Using the Fourier transform identity f eiXYdx/(x_

m_

where the approximation applies near a= 0, we find

[ [- IxLP .... "_i[ (r_,t) - _AJ,(kAr _) LS_=oK_vtr_tj[-
0

io+ oo

/._ _e'i_t(_ _ n_b )'

i (_. r_b) _ _b I"n'KA

% 2"n'.K=_ ½
w'z'A n'' /
p --

The w Laplace transform can be evaluated next, using

_e -i_t, e-iata2 e,r_Rg-

Usln_ this value, we obtain E = -_/ar A =-kA_/8(kArA):



K.vt_v¢ o r_ b t2

a k,a,bj Wb2 n:KA

o

To evaluate the kA integral, we note that for electrostatic wa_es and

for reception near the satellite during the time of interest, kAr A ~

kAV, t >> I, so that we can apply the large argument expansion of J,'(kArA):

1 I

I

= - -c. c 2_kArA/ eik'rA

where c.c. means "complex conjugate", which we shall omit in the follow-

ing for simplicity. (Including it changes the final exponentials

into sines or cosines.) Thus

-in%t

E(r ,t)= " I LPa

XAvt 2_r A _;_'_o nwbt2

@@

o

Similar to the analysis in Deering and FeJer, we look for stationary

points for the exponential (see Section VI above). That is, denoting

the stationary point occurs at 8f/SkAo = 0 and the value 7 of _he integral

is approximately

3n-_

= klo

2W" \_

- J _ exp[if(kA_]
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Weobtain immediately

,/[zn-3]

, f(kAo) : kAo(rA- akin" _)-_Aor

_(.-.)
and 8'f/Sk_o : 2a(n-1)(2n-3)kAo

Thus

E(rA,t ) : -

1

IxLPa[ 2(n-1 )(2n-3)%r;] -_

_SOr_bKAVtt2

(r.)(.÷,)/(_.-_)

_(. "_ n X)½ 1 --K-V._._2" n'KA ./[.n-. ]
x A't'A--_5/('n'')__(2n-3)v_ [2(n-1)]_Ivt.;2n(n-1)'_

This expression reduces immediately to Eq.(6T) when rA-VAt and is the

proper result that Deering and Fejer would obtalnha_ they started with

the correct k. dependence.

The above more complex calculation essentially substantiates

the simpler analysis in Section II and indeed emphasizes the importance

of the pinch points as discussed in Section VI.
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IX TI_E DECAY OF CYCLOTRONHARMONICS FOX THE OTHER WAVES

(a) EXTRAGRDINARY WAVE

From Eqs.(27a) and (26a) we obtain the following formula

for D.

D = KIK r- xK A- Pk_("" )x(2K I- X)Fn+ _

<k" . _V.\" C4 .Fn._¢-T-_ Pk A' ("'')x(2 5- X) _(r_b), vtZ Re_Fn+S-2Fn+,/2

where the argument of F is [(_'-z_ b+ k l.VA+ k'.V.)/n_b] .

denote the derivative of F with respect to this argument.

8D/8(k') = 0 yields the same relation as in Eq.(31), viz.

Let F'

Se tting

wV. n_bV .

k,',+-_a = - o--_-
Re[ Fn+M -2Fn+_ +Fn+ _ ]

We next calctulate the seconR derivative

D W ---_("-")=(_%-x) _"(_bvt)_Re[Fn÷Y'-2Fn÷Y'÷Fn÷½]

¢4 Re[ Fn+ _ -2Fn+ _ +Fn+ _ ]

_- -(KIK r- XKx)(_bvt)Z Fn+_

since the kZ. term in Eq.(69) is small.

Since k I _- kI with a negligible correction, one finds

8A c2

O4 2n C4 VAO 2 i

+ 2n Pkg. n's _ Fn+:5/+ Pk A _ _ Fn+,/2

(69)

(70)

(7_)

,) _, _ , 2K1

(72)
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and solving 8A/Sk; = 0 with Eq.(69) yields exactly the same result as

in Eq.(ATb-d). Differentiate again Eq.(72) and substitute into the

answer the value of 2KAc2/w 2 obtainedby equating Eq.(72) to zero.

The result is

Fn+_/,

7 : 8

Let us first consider the x << 1 matching point (for n ) 2)

g_ven in Eq.(51), viz.

v_;n_b Fn+k (74)
k.to _ kl'o = -2(n-1) c-.rV. Fn+_/2

(Note that even here, k_'o >> w'V,,/c a by c_der v_/_.V,,.) In this limit,

all three parts in the braces in Eq.(73) are equally important and using

Eq.(7_), we find

2_Kr r F" j F ,
D.t=-rm'-'-- (n_1)(2n_1)_2(n_1)a n+_ n+_'_

k,o L %+%)" J (75)

From Eqs. (71), (74) and (75), one obtains for T in Eq.(18):

T cSV 2,_/:T ' '

(r_b)$ = KIKr v4c(r,_b)a2(n_ 1 )"A k,Fn+_4//

_Re(Fn÷_/2-2Fn+J4+Fn+y)E(. F" F --_1½x L 2Fn+' 4 n-1 ) (2n-1) - 2(n-1 )' n+% n+_/z
(P_+%)'

(76)
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The minors

Eqs. (23a-c) :

R.. when x << I and $0 =0 are obtainable from
Ij

R,, =Rz= u KA+(£,,)W= KA- I_A(n'2)X Fn+_= KA- _KJ2KI: KI/2

R, 2 =-Rz, = -iCKx-C_,,)w)=-i(Kx + K/2) = -_/2

since K1, x = (_± Kr)/2. Defining

El, r + iE , Ii,r = I + il= Ex- y x- y
(77)

and since Ex_(R,,I x- R,,Iy) and Eye(R, =Ix+ R=21y), one

Eq. (I7) that Er=0 and

__* !

I1 LP(wo')e :_o t

El= --_---
r _o (rmbt) _

finds from

3

lr) W _:)v 4.

_k b/_.__t 2(n-I) _

L c'_ VE n+_ /

(78)

where ,
i

! is the quantity within the braces in Eq.(76).
J

Next we consider the matching point near the Appleton-

Hartree extraordinary wave, given in Eq.(_Sc):

1
2

KIK r W Fn+_2 v t

= , --
X- K--_- Fn+ N cV=

(79)

This time, the last term in Eq.(73) is the largest since c2VA_/_t_ b

is much greater than one. Using x-2K 1 = -_/KA here, we obtain

D_ =-(_K r- xKA) v,t(r_b)= Fn._ 2

Combining the various expressions with Eqo(79) readily yields T:

(80)

L
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CT = "n

I

(ElKr_ _ Fn+_ _ f_ -2Fn+3_+Fn+i/2

The minors in Eq.(23) are more complex in this case since

the sin2_ and cosa_ parts have to be included in the integrals. We

can most readily do this in Eq.(14) where neglecting the contribution

at _ from the integrals, we can write

assuming (p+1)/q is an odd integer. If (n+1)/q is an even integer,

the integral is equal to zero.

For the sin2_ or cos2_ terms we find

00

where ko = 0 for the sin2$ term since we take 4o = 0 and kyo= ka_ir_o = 0.

The _ has already been included in T; the additional factor shown

needs to be inserted. Also i since s11 = (KIK r- xKA)/_@ x) is much

less than KA or K_we find

El i DWRI, = K A- x + _xoDxxt_ =

using D = -(Ell[r- xK.)C2Fn+34/v2 t _Fn.34 and Eq.(80). The additional

term in Ril is usually small. We can also obtain Ra2 using Eq.(16):

ic2Dw ic (KIKr_½
Rza =KA- W--W_---_ = KA+
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R,,--R,, -- -i(K1- K)/2

One finds as a result of combining all the above parts that

e'i _°'t _c__ _½vt

c" _Kr/ Fn+_Re[Fn+_ -2Fn+_ +Fn+I/2]J

or

.I_(KI-Kr )2 i fv_t_ F_+_ _ L+i(_- Kr) iyLl for E

I_K i'---'2"--c /K1K_-_ L_ i(KI-Kr) 1• A + r_btVA _--_--AJ _ ly 2 IxL f°r Ey (82)

Actually, one should investigate fully the applicability of

the above results when _a such as k_A@DAt/D W is of order one, since

the expansion method in Section II may only be valid for k_ a >> I.

In any case, the additional k_ _ terms, being of order one, do not

introduce a major error.

Comparison of the results on the response in Eq.(82) with

that in Eq.(78) shows that the pinch point for small x << I gives a

I

smaller contribution by order (V_C_A)(VA/o) _. Hence we can neglect

this contribution. Because of the complox nature of Eq.(82), we do

not plot any response results for this particular matching point.

We finally calculate for the extraordinary wave the con-

tribution from the pinches at x _ 2_. Although the above values for

DA and D, can be used, it is more rigorous to redo the calculation, by

defining a new D and new Rij quantities equal to the previous ones,

divided by -6,, =PkA("'2)x Fn+ _ . In this manner, the magnitudes of Rij
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do not become large. From Eq.(69)

D=x- ZK.,j.+ (KS If..r- xKl)/[l_i(n'')(eZ/_;2)Fn+3/2]

C" Re [Fn+_-2Fn+_ +Fn+y2 ] (83)(k:,
- + c /, (2/{1- x) 2_rmbVt)2 Fn+_/2

Since in this case, ¢11 is much larger than KA, Kx or x, we find from

Eq.(23) (after renormalizing by dividing by -e,,) that

}{11 =R22 --I, R12 =-R21 =-i.

From Eq.(83), one can readily show that

D,, = (r_bVt)ZFn+_ Re[

where Re[ ] is the quantity in Eq.(83). Also using

&/_ Fn+ _ w

X- _ _ ---.i-- )Fn+--

one finds near x= 2K 1

Thus

pk2_" -, ) c2F
n +_/12

I

T i(2KI) c'
T --

('_b)_ _ vt

Fn+_ \Fn+_ / _J

1

_---_/ _ f_ -F_+_2_ ae(Fn+_'2Fn+J/2 Fn+y2_ (84)
\, Fn+'/2 Fn+'/2 / Fn+'/2 ,

Finally El= 0 and
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I LP(_o')e "_°'t 2(r_b)3V t c/ _½
E = r

_ _n+__h Re[Fn+_-. , Fn+
x

J
(85)

The time response r_bt can be seen to be proportional to

FF_+3/__ __+-_F"÷JI"_erFn+Z-_n+3/+Fn+½ ]7-V_ I (86)

p/W 2 > 2_This quantity is plotted versus (w b) in Figures 17 and 18 for x ~

(positiveF) am x < z_ (negativeF). note_at

2IrL__vt fo _½
r_bt =n'A[ IEr_eOc" \2.VA/ I] (87)

We n_ proceed to consider the pinches for the ordinary wave.

(b) 0RDINARY WAVE

The dispersion relationship for the ordinary wave is given

in Eq.(28b) and can be written as follows in the satellite frame of ref-

erence

D =K.-x-P.k_/_ Fn+_- :'+7)P._° _e(_0_) (88)

Using the same procedure as for Eq.(69), we find

_2

D,,=-2P,,k_." _Re(_0R)=-(K .- x) 2---L-Re(%R)
Fn+_/_

(89)
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8D/Sk_ = 0 gives 3q.(53). and DA .. 82D/8(k_o) 2 becomes

X 1
t" F_+_

D, 1_(1-_) +
(kloY _ F_÷%

<, >_lqo  lu m

Fn+ _

(90)

We recall that there exist matching points for x<< I

and for x = K.. First consider the x<< 1 pinch point. We obtain

D. -2K,,Re
n+

m

k;o~ -2n c _L Fn+_/2

DA = _T _2n+I)_ :Fn+_/2 Fn+ Z
__ 2n (Fn+ _ )z ].

(Eq.(S4)) and all three terms in D are important.

We therefore find that

T £D"DAV*_ ½ K,,,,"_ f,__h½fF_+y,_/,¢_errSoR/<o'/2_,,,:')]
v"_ ''^ k_)kr ,,/ _t t b ) zn , / n+72, - n+_2

× __ 2_,, Fn+y,q' -,½( 2n+1 ) - n+_/2 )"_ (Fn+Y, _1J

and using R,j = 1 (see Eq.(23+))

E,, = - _f_ I"LP(_°')-e-i_°'t F ,(r_b)=v_2n ½ F , J/2_

;+lT_:o(_bt)_/_ h cS_ K,, (2_//_n+_/2',/\,,F_÷5/2/,, j' _2n+1 ) -

. 1

2n Fn+%Fn+_ q -7

13 (Fn+ 7/z- 2Fn+ % + Fn+ _ )
x Rei

L Fn+'/_ Fn+_/2 Fn+_/2 _J
(91)

We next consider the x = K,, pinch point which gives a larger
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response.
Here the last term in DA is most important.

x-K. = 2K,, _

Also since

we obtain

l
!

D"= Fn+y' _k'_°VA
DA = _j_T _ _kA°vA-

(92a,b)

Henoe

i

vtkn_b/ ..

X n+ _ ..Re L3(Fn+,/z 2Fn+_z+ Fn+'/2}- 2(Fn+_- Fn+_ )zt ':

The time response is proportional to

A,, f ]-S _ (9_)=

so that
1

It____
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where _ is the quantity in the braces in Eq.(93). Th_ normalized

time parameter A. is plotted in Fig. 19 versus _Vs_ for n) 2. (The

case n = I requires not too large F values, and is slightly more

difficult to calculate. Two pinch points exist. Values have not been

calculated. )

We next provide similar results for the extra wave.

(c) EXTRA WAVE

The formulae for this wave are obtainable from Eqs.(29b),

(33) and (25b), namely R,I :R22:1, R,2 :-R2, :-i and

_2(n+I ) c2 Fn+_ ( wV"_IP k_'("+1 ) czD = 2_- X-Pex "'A _--T(n+1)(2n+3) - k" + _ / ex " _-TRe(_ex)

(95)

oneread_y fi_s (see also Eqs.(57), (58) _d (59a))

DA=

yields

D,, = (x- 2K1)2Re_3ex(n+l)(2n+3)/Fn+7_ (96)

+ n+/_ (97)(kio)Z _(_1) + (_+3) _ ._io F. ,,
Fn+TA (a Fn+7,

Matching s.t x << I, i.e. at kAo = -2(n+I )_t(aFn+_/2/c2VAF;+TA ,

D. =-4_CiRe_ex(n+1 )(2n+3)/Fn+_/2

_Cl(n+l ) F Fn+7 A Fn+7 A

DA= !(2n+3) - 2(n+1) )' -]_
(klo)_ (F_÷7,



- 59 -

T

[_.÷3)-_(o÷,)';'+'/""÷Y'('t_.)']t_J

El= 0 and

1 I

Er- Kl_O(_ bt) % k c'_ \_(2n+3)/ kFn+,/z/ J(
(99)

(98)

C
where

_ is the quantity within the braces in Eq. (98) and the real part of

_e/(C4/2_t m2) is given in Eq.(29b).

at

Finally, the two pinch points for positive and negative F

_IFn+_ m
x = 2_ + --------

Fn+_ "kloV.

give

_e_ex

D. =--------- Kl(n+l)(2n+3) ....

F' ,, pkloV,n+/2

DA -

(klo)' Fn+54 m

I

(_b) _ vt(_b)' _+y, 1' Re hF c,,/2_tt _,_j_Sex q ]½[ (n+,) (2n+3)] ½ (100)

ana.
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E " --

r

I

2(n_b)JVt

o,

(n÷_)(2_÷3)Fn+7,a°E n÷2('Fn+_ )' _ (Fn+_-2Fn+T/2+Fn+M )

- Fn+_ (Fn+_-2Fn+s/2+ Fn+_/2)+ (Fn+_-2Fn+J/2+ Fn+'/2)

(101)

The time response can be normalized with respect to

1
(2_)¼

so that

12IrLP_ vt c ½

n_bt = n2AexE IEr_Veoc4 (2_A) I _ (102b)

where I I is the quantity within the braces in Eq.(101 ). The para-

2 2
meter Aex is plotted versus _p/_b in Fig. 20 for x _> 2_ (negative F)

and in Fig. 21 for x < 2_ (positive F).

The above completes the analysis on the time response, The time

results near x = _I or K, have been plotted in Figm. 17 to 21. In

the following, we discuss these results and show h_v the experimental

harmonic dependence when compared with theory can provide a gross picture

of the sheath around the satellite.
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X DISCUSSION ON TIME DECAY a EXCITATION OF HARMONICS AND SHEATH EFFECTS

The time response given by theory for the electrostatic

pinch points is much longer than observed experimentally. As an ex&mple

let us consider Eq.(68) for n=2, Sp=2_b=2_Mc , so that IKAI =I/3 and

n_bt = IE_¢o 24 _ . Let us assume the experimental values

applicable to Alouette I data. The receiver sensitivity is 102 above

_TB, which at I07°K (galactic noise temperature) and 2x 104cps band-

width is 2.76x 10"1°watts. With a matched load of _000, the antenna

voltage at the terminals is 3.32 x 10"4volts, and an antenna length of

_7m gives a minimum field sensitivity of 7× _0"6V/m. The trans-

mitter dipole moment, using the output of 100 W into 400N,is 23A-re.

We also take (see Eq_7)), P(_) ~ r ~ 10"4sec, corresponding to the

centre of the pulse train. Other representative values are as follows:

vt : 1.7 x 105m/s and VA : 3.3 x 103m/s.

2mbt = 1.2 x 106 or

We thus obtain

t= 0.19 see.

which is about two orders of magnitude too large. Higher order har-

monics have even a much longer response because of the extra factors

of v_/V A that appear in Eq.(68)o To explain the observed smaller time

response when pinch points exist for electrostatic waves, we say that

it is difficult to excite, with the dipole antenna and its associated

surrounding sheaths, wavelengths in the perpendicular direction which

are much smaller than the free-space or antenna length. Thus the

electromagnetic pinch points are much easier to excite and are not

affected as much by sheaths since their wavelengths are of the order

of that in freespace. The minute electrostatic wavelengths probably
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cannot be sustained in the sheath for the length of time that the above

theory based on homogeneity predicts. This does not say that they are

not important. In general, when electromagnetic and electrostatic

matching points exist, one can expect bothto be important.

Wenow.discuss the time decay of the electromagnetic pinch

points. Becauseof the complexity of Eq.(87a) for the extraordinary

wave near x = _Kr/_A, we calculate only results for the x = 2K1 and

x = K. matching points. In all these cases, we have a formula such

as

1

mibt: niA ,_soc+t2--_V_i ) I (103)

where I denotes either I,, or 21r. Let us assume again the experimental

date for Alouette I given above. We also adopt a typical value for

ab= 1.2_Mc/s (or frequency = 0.6 Mc/s), and obtain from Eq.(S03)

nwbt _ n2Ax 5.5x 10Jcycles (104)

The parameter A varies between 0.6 and 1.5 and is given for various

pinch points in Figs. 17 to 21.

The experimental data on n_bt as given by Fe_sr and Calvert 8

is given in Fig. 22. We see that the cyclotron harmonic ringing

lasts typically for 10J to 10a cycles which agrees as far as order of

magnitude with Eq.(10_). There do not seem to be any pronounced

effects for n _ 2 on sp/_b which again agrees withthe relative

insensitivity (within a factor of 3) of the parameter A, even very close

to cut-offs, in Figs. 17 to 21. The experimental deviations 9 from

k
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cyclotron harmonic values are within I% as _edicted by this theory

in Figs. 6, 9, 12 and 15. (Note that the theoretical deviations

measured by a moving body are the values plotted in the Figures with

the Doppler shift subtracted. ) Lockwoc_ I0 states that the favoured

orientation for cyclotron harmonic resonance is when the antenna is

oriented along the magnetic field. Theoretically, this indicates

the importance of the ordinary wave contribution, given in Fig. 19.

Calvert and Van Zandt 6 also find increases in signal exactly perpen-

dicular to magnetic field which can be attributed to the other waves•

The only apparent disagreement of this theory and experi-

ment seems to arise from the n2 factor in Eq. (I0_). (We note that

the electrostatic theory in Section VIII suffers as well from such a

serious discrepancy.) The n2 factor says that higher harmonics last

for a longer time. Physically this is a result of Eqs.(17) and (18)

where it is shown that the response is larger when the curvature of

the dispersion curve is less, and this theory predicts "shallower"

dispersion curves for higher harmonics. If higher harmonics last

longer, why do the experimental r_nging durations decrease slightly

with harmonic number as shown in Fig. 22? This contradiction is

only an apparent one, since we have assumed in Eq.(104) that all

harmonics are excited to the same degree with the same field amplitude.

Obviously, the excitation mechanism favours the laver harmonics.

That is we hypothesize that the higher harmonics are excited to a lesser

intensity than the lower ones but, once excited, last for a longer time.

In effect, we want the two effects to balance out in order to reproduce
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the more-or-less independence or slight decrease with harmonic

number shorn in Fig. 22. The slight changes in the A factor with

harmonic number are sufficient to account for the nst decrease in re-

sponse.

In order to include the excitation effect, we have to

adapt a physical mBthod for higher cyclotron harmonic excitation.

The picture adopted belmv is identimal to that postulated by Johnston

and Nuttal111, and essentially rests on the non-linear variation of

the electric field within the sheath. We assume that the very strong

antenna fleld acts on the electrons in the antenna sheath whose

motions are influenced by the steady nonuniform electric field of the

s_math and the ambient magnetic field. Johnston and r_'uttall (Eq.(5))

show that the perturbed exciting electric current density varies with

harmonic number n as bnn , where b n is defined below. Thus in order

for all the k_rmonics to last the same time, we require, according to

Eq.(103) with I_ bnn,that bnm n"4. In the model of Johnston and

Nuttall, the magnetic field is along the z-axis, the electric field in

the sheath is along the x-axis and varies with x. An electron in the

sheath oscillates according to the solution of the equation:

"_ + _x+ (e/m)[E(x)-V] = 0 (105)

where V is constant and a dot signifies 8/at. The coefficients b
n

are defined by the solution of Eq.(105), viz.

x(t)/xo- c = Lbn(cOsn_bt+ _n ) (I06)

I
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where xo and c are constants. Let us work backwards to calculate

n"4 With for simplicity, we assumeE(_), assuming that bn= • _n--_

a solution of the form

@D

x(t )/xo - c = -_(cosr_ bt)/n 4 (I 07)

I

Let eos(r_bt)= cosO where 0 .< 0 < 21r, 0 - _0t-2_r with m an integer.

Then we can use the following identities12:

@@

"¢ + C = > "=----- _+'-----"- " "_+xo _ 90 12 12

1

= 7"T'--*

(1o8)

(1o9)

since 8/St=SbS/Se. For X=Xo at t=O, we let c ='rr4/90.

solve _q.(I09) for 8 in terms of "_, we obtain

If we

i

e = _ _* . (11o)

Substitution of Eqs.(110) and (109) into (108) yields with c = _'/90

2

X ,#2 _ + + +

_//_b = 0

Solving for "_ yields

I

=T -_/
(111)

!
m



Finally, substituting this into Eq.(105) and choosing the constant

V-Eo +xo_2m/6e, where E=Eo at x = xo, results in

I

e x
- _ (E-Eo) -+

(112)

We have succeeded in deriving two possible gross varia-

tions of the electric field in the sheath which can provide the proper

apparent independence of the resonance duration on harmonic number.

Figure 23 illustrates these two variations. For sufficiently large

X/Xo, E has to tend to zero, but this is not accounted for in the

simple-minded theory presented above.

We have also shown that the excitation mechanism favours

lower harmonics whereas the resonance relaxation after the pulse is

shut-off favours the higher harmonics. The long relaxation times

have been associated with points on the dispersion curve where the

wave group velocity matches satellite velocity.

For electrostatic waves, such matching perpendicular to mag-

netic field can be accomplished when the waves are backward, but only

for the l_ler harmonics when the waves are forward. ,_tching with

electrostatic waves may, however, not be necessary due to finite antenna

size where the whole volume surrounding the antenna is excited with the

satellite moving faster an_ thereby sampling the wave packets. This

analysis including finite antenna size has not been done here and should

be considered in any future work. Furthermore, sheath effects have

to be included since the sheaths are larger than the electrostatic per-

pendicular wavelengths. Sheath effects may explain why the electrostatic
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resonances _o not last as long as theory predicts.

For electromagnetic waves, _tching points of importance

are those near x _ KIKr/_A, x = K,, and x = _I' the first two having

one such point and the latter having at least four such points. The

resonance duration predicted by these points, modified by the excitation

effect on harmonic number, is in agreement with observations. The

theory requires further analysis on the effect of _gnetic field inhomo-

geneity in the parallel direction. Also one should check the applic-

ability of the analysis in Section II for k2.DAt/2D= kAVAt of order one

rather than much greater than one. We do not expect a more exten-

sive developmsnt to produce significant changes. Finally, for all this

theory based on pinch points, one should investigate the time that one

has to wait before the asymptotic time behaviour becomes valid. Here

again we believe that, even though kAVAt may be small, the theory is

correct to first order, as is indicative from the generalized approach

also given in Section II.

Appendix III provides a list of publications and a discussion

on previous work 13 and the modifications that have been found necessary.

In Appendix _ and II, we give the material corrected and condensed from

Parts I and IT respectively in a previous report 13. The nonrelativistic

analysis has been elaborated upon and its regime of applicability is

illustrated. Both of these reports are scheduled to be published in

the February 1966 issue of Physics of Fluids.
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CAPTIONS FOR FIGURES

Fisure I

Figure 2

Figure 3

Figure

Figure 5

Figure 6

Calculated plots of the Fn+3/2functions for n= I,2 ... 7

in the region where the function are large and negative.

The real part of _ is denoted as wr.

Calculated plots of Fn+_/Fn+_, the derivative taken
I

with respect to the abscissa c2(_r- n_b)/n_b_t, for

n=1,2 ... 7 in the region where Fn+ _ is large and

ne gative.

Ratio of plasma to cyclotron frequency (or Larmor radius

to Debye length) versus altitude with an assumed model

of electron density and magnetic field at the equator

for daytime and sunspot minimum conditions.

Plot of the normalized group velocity versus A- _Av2J_

for the Bernstein electrostatic mode, when w2 >> _2+ 2
p sb '

for n=2, 3, 4 and 5.

of --SKJK versus for

extraordinary X or Z-wave and the additive deviation

A(kAc/w) 2 where the matching occurs for n= 2 to 7. The

more vertical curves correspond to the Z-wave and the

flatter ones to the X-_ave.

The values of (_r" r_b)O2/n_b_% where matohing occurs

for the X and Z-waves near (kAc/_)z= KIK_/k A.
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Figure 7

Figure 8(a,b,c)

Figure 9(a,b)

The values of k,,c2/n_bV,,where matching occurs for the X

and Z-waves near (k,c/_)2 = KIK_/_ A.

The values of (k.c/_)2= _I versus (Sp/Sb)2 for the extra-

ordinary wave (Fig. 8a) and the deviation A(k.c/w) 2 either

additive (Fig. 8b, curve .... (klc/s)2 > 2K1) or subtractive

(Fig. 8c, curve (k.c/s) 2 < 2KI) where matching occurs.

Differences in Figs. 8b, c are negligible for n _ 6.

The values of (_r- nwb)C2/rd_b_t for the cases in Figs. 8b, c.

For curve .... (kAc/w)2 > 2KI and for curve _ (klc/w)2< 2KI.

Differences are negligible for n _ 6.

Figure 10(a,b) The values of k,,c2/r_bV,,for the cases in Figs. 8b, c.

Separate plots are not shown since the differences between

values for (kAc/_) 2 greater and less than 2KI are negligible

when n > 2. For n= 2, some values are shown for (kAc/w)2>2K I.

Figure 11 The values of (kAc/w) 2 =K. versus (w /_) 2 for the ordinary
p

wave and the additive deviation A(kAc/_) 2 where matching occurs.

Figure 12 The values of (_r- nwb)C2/m_bVt for the case in Fig. 11.

Figure 13 The values of k,c2/n_bV,, for the cases in Fig. 11.

Figure 1_(a,b,c) The values of (k cls) 2 = 2K_ versus (_ /w_) z for the extra
A ± p o

wave (Fig. 1_a) and the deviation A(kAC/S) 2, either additive

(Fig. 1_b, curve .... (kAC/W)2 > 2KI) or subtractive (Fig. I@c,

curve- (kAc/w)2 < 2KI) where matching occurs. Single

curves are shown when the differences in the magnitudes of the

deviations are negligible.

Figure 15(a,b) The values of (Sr- rmb)C2/m_bV_ for the cases in Figs. 1_b,c.

For curve .... (kAc/w)2 > 2K1 and for curve -- (kAC/S)2 < 2KI.

Differences are negligible for larger n.

Figure 16(a,b) The values of k,,c2/m_bV,,for the cases in Figs. 1_b,c.

Single curves are shown for larger n.

Figure 17 Plot of the normalized duration response parameter given in

Eq.(86), corresponding to the cases in Figs. 8b, 9a and 10a
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Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Same as Fig. 17 corresponding to the cases in

Figs. 8c, 9b and 10b.

Plot of the normalized duration response parameter

given in Eq.(_+a) corresponding to the cases in

Figs. 11, 12 and 13.

Plot of the normalized duration response parameter

given in Eq.(102a) corresponding to the cases in

Figs. 145, 15a and 16a.

Same as Fig. 20 corresponding to the cases in Figs.

14c, 15b and 16b.

These cyclotron harmonic observational results are

from Fejer and Calvert (196_) Fig. _. Their theo-

retical curves have been removed and relevant fre-

quency conditions - m_b equals sR, ST, Wp, sL -

have been indicated by R, T, P and L respectively.

(sR, ST, s and sL are the values of s for whichP

Kr, KA, K, and _ go to zero respectively.) In

their notation fH and fN are the cyclotron and plasma

frequencies Sb/2_ and slY. According to Fejer and

Calvert the data points re;resent the results of

averaging one to three dozen observations.

1_Ddels of the electric field variation in the sheath

near the antemnas which can explain the independence

of the time duration on harmonic number.
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DIELECTRIC TENSOR IN VLASOV PLASNAS

NEAR CYCLOTRON HARMONICS

I.P. Skk_rof sky

RCA Victor Company, Ltd.

_lesearch Laboratories

_iontreal, Canada

-!_J_STR'_CT -

The relativistic expression for the dielectric tensor obtained

by Trubnikov is simplified in the very weakly relativistic limit at

and near electron cyclotron harmonics. Wave numbers parallel to magnetic

field are included, leading to relativistic damping when this wave

number _s mi_ and to cyclotron damping when it is sufficiently large.

The transition to the nonrel_tivistic Z-function is shown and the

regions of validity of the various functions are indicated. Collisional

damping is neglected. The dielectric elements given here are olso

applicable to cases of complex _ and real k. An example of such a

situation arises in Alouette cyclotron" harmonic reception when one is

concerned with an initial time value problem. For this application,

we provide _e analytic continuation of a complicated function and

investigate the tracks _here it is re_l for complex m.



• •

I. INTRODUCTION

In this paper, we discuss and simplify the dielectric tensor of a

plasma near electron cyclotron harmonics. A relativistic approach has to be

used since the difference _ -n_ b (between angular frequency and cyclotron

harmonic frequency) is of order _v_c 2 in many wave number regions of interest•

We restrict ourselves to small transverse wave numbers i.e. we take

_ k 2v 2/_ 2 less than one. At first we consider general values for k,
A tl b

(wave number parallel to magnetic field) but later we consider only the region

k,,c2/vtw ( t.

A relativistic expression for the dielectric tensor s of a plasma was

obtained by Trubnikov I which will not be rederived here. This expression is

exceedingly complicated and simplification is necessary for further analysis

of dispersion equations. For k,,=0, Dnestrovskii et al2 have obtained such a

simplification. Original contributions in this report are the inclusion of k,

in the analysis and the derivation of the dielectric tensor elements for

complex _ and real k rather than vice versa. The latter extension requires

the analytic continuation of a complicated function.

Application 3 of the analysis is aimed towards explanation of cyclotron

harmonic resonances in the local ionosphere observed by the Alouette I satellite•

The Alouette emits a pulse of energy and observes long lasting time returns

exactly at the cyclotron resonances. Since we are dealing with a time decaying

signal or an initial value problem, we have to consider complex _ rather than

real _. The uniformity in space is sufficient that we can consider very small

values for k,. In the laboratory, this would require unrealistically large

I. B.A. Trubnikov - Collection - Plasma Physics and the Problem of Controlled

Thermonuclear Reactions, Editor, M.A. Leontovich, Pergamon Press, N.Y. (1959),

Vol. III, p.122. See also the derivation in W.E. Drummond & M.N. Rosenbluth

Phys. Fluids 6, 276 (1961), eqs. (19-21).

2. Yu.N. Dnestrovskii, D.P. Kostomarov, & N.V. Skrydlov, Sov.Ph_ys.- Tech.Ph_ys.

3. I.P. Shkarofsky and T.W. Johnston, Phys.Rev. Letters 15, 51 (1965).



plasma containers so that the very long wavelength disturbances considered

here maybe difficult to simulate in the laboratory. This in in contrast

to the cyclotron resonances actually observed in the laboratory 4, which are

associated with shorter wavelengths and are somewhatshifted from the exact

cyclotron harmonic values.

In the analysis, we neglect collisional damping since it is negligible

for the times of interest during which harmonics effects are measuredon the

Alouette.

II. DIELECTRIC CONSTANT FOR GENERAL VALUES OF k,

Trubnikov's equation I for the elements s _ of the tensor s for a

(relativistic) Maxwellian velocity distribution function is

....a.

2\vt / o

(1)

where \

I cos _ - sin _ 0 \

Ta_(1) = sin _ cos _ 0

0 0 I

c_L
T_ 2) = rob2

kA 2sin2_

k_2si_ (I - oos_)

kAk,,_ sir_

- kl2sir_(1 - cos_) kAk,,_ sir_ 1

- kz2(1 - cos_) 2 kAk,,_(1 - cos_j) I
J

i
- kzk,,_(1 - cos_) k,,2_2 i

K is a MacDonald function of order v.

Clv_ _bb)2 _k_Ac_2 ( ) k''2c2_2R = -i_ + 2 \_b / 1-cos_ + _b _

4. F.W. Crawford, G.S. Kino, H.H. Weiss, Phys.Rev.Letters .13, 229 (1964).
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• Z

= V nee /som is the plasma frequency, Sb = eB/m is the angular
P

cyclotron frequency, vt = _ is the thermal velocity and i, ne, e, _o,

m, B, c, K, T and _ have their usual significance. The wave numbers

perpendicular and parallel to the magnetic field are denoted as k. and k.

and taken along the x and z directions respectively. In the following, we

denote by _ = C2/Vt2 , the square of the ratio of light to thermal velocity

and let this be very large.

In the very weakly relativistic case (_ >> I), the asymptotic

expression, Kv(x) = e-XV_-/_ for large argument, applies.

We also simplify the expression for R by assuming (kAVTmb)2 < I,

so that

k,,2vt2_2]½+ _ +A(I-COS_)
_b

where

k 2v 2 _½

A" _b2t E(1 - :i_w_ 2 + k"ivt2_2 1
_bJ _b 2 -J

The above expression for _R has to be used in the exponent. However, in

the Ta_ matrices and in the R factors, we can omit the A(I - cos _) part of

_R. Thus we see that kA2c2/mb2(R _ A. At this stage we can introduce_ the

familiar modified Bessel function (In) expansion, exp(Acos _) = _ In(A)exp(-ir_).
___J

Using this expansion, we can express all the sin _ and cos _ -_

combinations in series form• For example, denoting In' = dln/dA we note that

'e-ir_. Further observation shows that
cos _ exp(Acos _) = L_n

_2k,,2c2/mb_rR _ k.Se-_R/sk,, and changing variables to t = _s/_Sb' we find that



Sb Sb
t = i8 exp(-ir_ _- t)/8(r_ -_). Hence the form for s _ becomes

2

s _-Sa_ = i _-_

I

_ dte-_(3)exp -_ (I - it) 2 + _2 -ir_ -_ t....
_' (I - it) 2 + "_2n=-= o

with

_ (3)= [(_.it)_+

I

k'2c2tZsz_ w in(In - In)

0

(2)

k

-_(in - Tn) 0
n2In + 2A(I n- In) 0
A

I
t

+

kAkt! C 2

_"b

0

0

nI
n

I

A

0

0

_-q
A

i_I n - In1

i

/

/

8

an_

A =_[(1-1t) 2 + k"2czt2st_-_ , A " "kA2vtz
COb2

Let us now restrict ourselves to A << I rather than A _ I, so that

In = An/2nnl
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It is also proper to change the sum over n to start from 0. Note

that I = I • Define furthermore a function
-n n

less parameters Pmbn/_ and k,c/_ besides q.

Jqdependent on two dimension-

q
1

_ j i_ vt]

F(4 _+_2 . k,,acZta q/2
L"-*_' " _2 ]

(3)

As a result writing
q m ' _ -

have for A << 1:

s,,-1 = s22-I (combination a)

is, 2 = - is2, (combination b)

j_ __
q s ' w/

2

_:3j-1 = --P'-_
Ok.

= - _'_ P _ n+Y2

_Z2 m "I 2nn '
I

we

(_)

(_b)

¢IJ = s3, (combination a)

-is2j = isj2(combination b)

o@

w s kAk .c2 _n_n-1 8

o

(_o)

III. APPROXINATIONS FOR THE _- FUNCTION

(a) The case of k.= 0 and the F-function

Exactly perpendicular to the magnetic field, the

to the F
q

function

Fq(.3) m- i I (i dt ei_St• - it)q
o

_-n%

function reduces
q

(5)



first given by Dnestrovskii et al2'Swho also plot the real and imaginary parts

of the function for real _ and n = I,2,3 (see their Figs. 1,2).

Starting from Eq. (5) with q a half integer and assuming Im(z) > 0 for

complex z = _8, we can integrate by parts a sufficient number of times until

the power q is reduced to ½. We obtain

1- _) i -I) q-% ' ei=tdt
Fq(Z) = rr(q) + r q) V_ zq-_ .__(l-it)2

_0"-! I 0

(6)

This reduces to the following expression for real _ and s _ r_b , given5 by

Dnestrovakii et al.

Fq(.8<o) -- ___/_1.81p r(q-l-_)r(q)
p=0

1_81q-_ / e"1"81tr(q) (__it>_dt
o

q-1 e-l.81

The imaginary contribution in (7) arises from the region around it = I as

shown by Dnestrovskii et al who rotate the contour through 90°. Note also

that for real z, F has an imaginary contribution only for z < 0 since q is
q

a half-integer. Note that

eiZtdt =

f (I- it)_
o

Thus the more general expression in (6) valid for complex _ can also be

6
expressed in terms of the error function _ or in terms of the Z function

which is already tabulated and usually defined by

ix

z(x)- 2ie e-Y_ (8)

--@o

5. There is an error in Dnestrovskii et al2. The sign of the last term is

negative as given here and not positive as given in their Eq. VIII and Fig.2.
6. B.D. Fried & S.D. Conte, The PlasmaDispersion Function, Academic Press,N.Y.(1961_



Thus

-_/2(_z)p r(q- 1- p) + VE (_z)q-3/2 Z(iV_) (9)
Fq = r(q)

p=O

To be of greater use, the F (z) function defined above only for Imz > 0
q

has to be analytically continued for Imz < 0. Fortunately, we have succeeded

in expressing F in terms of Z, a function whose analytic continuation has

been considerably investigated (see Fried and Conte_ Thus we can 81low

Eq.(9) to be valid everywhere in the complex z plane using the proper

continuation for Z.

The following expansions of Z(_) are valid throughout the complex

plane 6.

co

Z(_) = i_/n e%2-_ _(-_2)14"_/F(I+%)

l=O

(10)

For >> 1,
2 @o

Z(_) _ i@'_a e-_ - _-(21+I) r(l+½)/_r_

(11)

where a = 0,1,2 for Im _ > 0,

Let us now substitute Eq.(10) into (9).

F(½+n)F(½-n) = _/cos_n :

r(n+J_)Fn+_(z ) = (-z)P F(n-p+½) - _(-z)nVFe

For large arguments, lzl>>1, it is convenient to substitute Eq.(11) into

(9). Using again q = n+72 , we find

Im _ = O, Im _ < 0 respectively•

We obtain, using the formula

(12)

r(n+ _)Fn +3/2(z) = - _(-Z) n _ ez - _ r(P+n+J/_)
_. p+l
p=O

(13)



where _ = 0,S ,2 for Im i_rzgreater, equal or less than zero respectively.

(b) The case of small k.

We investigate first order k. values satisf_jing

ly21 << _-_ andI_y(28-y_)l <<t (v+)

where y u k,,c/_. Subject to these conditions, Eq.(3) reduces to

¢@

,q(_8) = - i f (lltit) q exp E:i/aSt- _v22

0

We can further expand to first order the t2 exponential part, and

using -t2 = (l-it) 2 - 2(I-it) + I, we relate _q to the Fq function in

Eq.(5).

_q(#r_b/W, y) = Fq + (ya_/2) (Fq_1 - 2Fq +Fq+1 )
(_6)

The same relation holds for

for the argument of F @

q

sub stitutions.

._q(-_r_b/S , y) if we substitute #(s + r_b)/_

We note that Eqs.(4) now apply with the following

8k--_ q 2 _ q-1 q q+1 "
and 8 .ff = F(_) Fq(_ Ba(_%_) q-1-

where

F_{_} = Fcl[_(.-r_b)/_]+ Fq___('+r_b)/_ _

(17a,b)

(17c)

For larger k. values limited by ly=l < I sl, we can still use

Eq.(15), but expanded to higher order. We write



-#t2y2/2(1-it) : - it_y2/2 + .y2/2(1-it) - _y2/2 and expand in a power

series the resulting exp (_y2/2(I-it)) term in Eq.(15) to yield

'_" = e-/Jy2/2 _(2_J_IPq

P

Ir(p+1 Fq+p[ 2(28-

We now show that the exponential part of F (see Eq.12) can be summed. Denote

this part of _q by _q(1). Then, sines z = _(28 -y2)/2 here, we obtain

q _ (-11p+q-½ q_1 (2_221P._.(I) = _ exp _p(8-y2)_ P(p+q) F(p+1) (pS- 2_'_)p+

= (-I)q-1 e:zPl-/_(8 Y2)_ (28/Y2I)(q-I)/2_ - - Jq-1 _/JY(28-Y 2I-)2j
(18a)

= -i_ exp Lp(3- y2)_ (1_ 28/y,)(q-1)/2 -_y(y2 _ 28) 1- (18b)lq_1 zj

where J and I are Bessel functions. Since q is a half-integer, we note that

for real y and 8, _ (I)
q and the total _q are real only for 28 _>y2. (In

particular for y = 0 and real w, we have seen that F is complex only for
q

8 < 0.) An indication of the y2 = 28 boundary, equivalent to k,,2c2= m2 -n2sb2

has already been given by Rukhadze and Silin 7.

The small argument expansion of (18) yields (16) in conjunction with

(12), justifying the second restriction in (1_). These approximations and

limits are illustrated in Fig. 1. We also indicate in the figure an

1

"intermediate" region where 1281 >> ly21 and l_y(28-y2)_ I >> 1 from which

7. A.A. Rukhad_e and V.P. Silin, Sov.Phys. - Tech.Phys. 7, 307 (1962), Eq.V.
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it follows that lusl >> 1. Hereweo_ use _= [2/#(2S_y2)] + _ j.q(l)

where --_q(1)is given by Eq.(18a) and a = 0,1,2 depending on whether

Im [i_l = Im[-_Y _-26] is greater, equal or less than zero.

(c) Large values of k. where nonrelativistic analysis is applicable

We can obtain the nonrelativistic expression under the conditions

(see Fig. I)

I

lyl2 >>12al, lyl >> .-_ and ly_(y_-28)l >> u-_

In this case the main contribution from the integral in (3) arises from

I

t << I, so that [(I-it)2+ y2t2S_ _ I -it + y2t2/2. The integral we

are left to evaluate is

_q = - i exp - ) - = - ie -_2 e

0 --@O

(19)

v¢
z._-r_ z(_) (2o)

where Z is the plasma dispersion function 6 defined in Eq.(8) and

= (w - r_b)/Vtk._r2 = 8_r_/y_2 (21)

Substituting these results into (2) we obtain in terms of the Z- function,

the well known expressions 6 for s_, which need not be rewritten here. In

particular for large arguments 12]I >> I

Z(_) = iq-_ ee -_z -4_-' and -_q = - i_-_ evt_e- _2/k.c2_r2 + (.8)-' (22)

where a = 0,1,2 depending on whether Im _ = - Im y is greater, equal or

less than zero. Note that in using the relativistic analysis for small k.

values, we are not faced with the "problem" of which _s _maller k.vt_2 or
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-r_ b in the _ argument of the less exact Z-function.

together with (19), we see that (22) is valid provided

1#=8=1>> I_y=l >> 1_81 >> I

cc_in_ I_1 >> I

(23)

To prove the assertions in (I9) on how large k. has to be before

nonrelativistic analysis becomes applicable, we will show the transition from

(18b) to (20) for the exponential part of

in (3) and. make the transformation

it-

o_q. We use the original definition

(y +8-28)_ / + :_¢

The motivation for the above transformation is that first order s terms

cancel in the expansion of the exponential factor in _ and only terms of

order s2 or higher survive. We find

(Z_+8_.28)o/2
_q(1)= -i yq

• _-_ (y_+8__28)q/2--- -- 1 1

yq-_

I

ex'9 _(8-Y2) +/Jy(Y2+S2-2(_)_._1- yZ
(a+)

1

This relation applies for I_y(y 2- 28)_1 >> 1 _slnce then Eq.(18b) yields the

same result as Eq.(24) for lyl << 1 and 18_1<< 181<<1, namely

In the limiting situation of ly21 >> Isl, we find from (24) that

i_ e-_2

2

Since i_ e-_ is one of the parts of the Z function (see Eq.(10)) and

recalling Eq.(20), we see that the transition of the _q function to the

(25)

(26)
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Z function has been demonstrated at least for part of these functions. That

is as k. ranges from 0 to above w/vt, the exponential part of ._q changes fromEq_12)

_.e. (-I) q-½ _(PS) q'1 ePS/_(q) to - i_ e-_2(vt_/k,,c2_2), the latter corres-

ponding to part of the Z(q) function. From (26) we note that the Z function

becomes valid only for k. large enough that ly21 >> 181, which is the first

condition in (I9) •

We have shown that different functions are required for cyclotron

harmonic effects in various ranges of y and 8. For sufficiently large IYl

given in (19), one can use the nonrelativistic Z(_) function whereas for

sufficiently small IYl, given in (14), one requires the F(pS) function derived

from relativistic theory. In the intermediate region, one can use one of

the forms in (18), (24) and (25) for the non-principal part.

Of particular interest in the large argument expansions are the

situations for validity of just the inverse argument part (e.g. __-I part in

the Z function), and of the exponential part alone. When IpSl >> I, the first

part of _q seems to be equal to (pS) -I for all y except y = 28, since in

the intermediate region we obtained 2/p[2_-y2B = KpsB "I , with similar results

in the region of validity of the F and Z functions (see Eqs. 13 and 22). The

(-_'_ expansion can thus be used even outside of the region of validity of

the Z-function itself, provided we do not need the analytic continuation

(or exponential part) of Z. The only restrictions are I_I >> I and IpSl >> I.

However Z has an additional exponential contribution either for situations

where w and k. are both real, with k. taken to be complex (and then _ =I) or

if Im_ < 0 with real k. and k. as for time-decaying waves (and then _ = 2).

The exponential part is small compared to _-' only if Re _ >> Im _ in which

case IZl < I. Since by (23), V_Iyl >> I, we see hhat IsvtZ/c2k,,l< 1. When

Im _ >> Re _, the exponential part gives the main contribution to Z and then

IZI >> I. Thus we must be cautious of analyses on cyclotron harmonics which
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use Z = __-i rather than its exponential part in the region where large

values of IwvtZ/c2k,, I are required. Actually, large values are needed to

counteract the small I _) function in all regions of _ << I for n > 2 except
n

for the Bernstein electrostatic modes and very close to the Appleton-Hartree

modes. The coupling region between the two and the region of k_ values much

less than the Appleton-Hartree values, need a very large l_vtZ/c2k,, I magnitude.

These regions exist only for Im_ < 0 since only then can the exponential

part of the functions attain huge real values as demonstrated in the next

section.

IV. THE TRACKS OF REAL F and ReZ

We are interested in the frequency track of real F i.e. in f_nding
q

the values of real and imaginary s for real F . Strictly speaking, we
q

._q . Howevershould actually be concerned with the function rather than Fq

the previous section indicated the great difficulty in a complete analysis

or expansion of _q. We restrict the analysis to small k. values for which

we get a substantial component of group velocity propagation perpendicular

..(1)
to the magnetic field lines, and then the damping of the wave (viz _q

in S.c. III) is small. We are mainly concerned at first with k.2< vt2s2/c4

in which case Eq.(16) applies to a first approximation and Jq _ Fq to zero

approximation. Hence the track of real F very nearly follows the track of
q

real _q for very small k..

In a nonrelativistic treatment, _/[p(s-r_b) ] is the real function

that replaces F in the analysis. Thus nonrelativistically, the function
q

goes to + _ as w * r_b. Relativistically, we note that F remains real for real
q

_n_ b. For real _ < r_b, F is complex and bounded 2. The track of real
q

Fq to be found below is identical for s _b and w is also real here.
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Beyond this s =n_ b point on the track, we can expect the track for complex

to yield larger and larger values of F as Ip_l increases and eventually
q

F goes to +_. There is also a distinctly separate track for negative F
q q

for which F goes to -_. These tracks in some sense imitate the non-
q

relativistic behaviour.

The mathematical statement of the above is simple. ";e recall Eq.(1 3)

valid for large IpSl . The positive F track which follows the curve of
q

Dnestrovskii et _l2 up to s = n_b is obtained by taking Im ipV_ > 0 which is

satisfied since p8 is real and positive here. Hence o =0 and for p8 >> I,

Fq is a decreasing function behaving as (pS)-I . However, beyon_ the s = r_b

point, we change to the lower sheet for which Im s < 0 or Im ipV_ < 0.

Although the real part of s initial dips below r_b , it soon rises again above

r_b, so that the real part of p8 is positive and steadily increasing. Since

o 2 in this case, F goes to infinity as 2wlp81 q-1 IpSl= e /_(q). Of course we
q

cannot believe our analysis if 8 is not small, but even for 8 = 0.1, ep8 is

an enormous number.

The negative F track is also readily understood. The track always
q

lies in the lower half plane. The initial part of the track follows at first

(pS) -I. Although for this track Im i_< 0 always, and u =2, we note that

the real part of z mp8 is negative and consequently, the exponential part in

Eq. (13) decays as e-Iz] and F decreases as z"I for large negative z.

However, as _real increases, the real part of z becomes positive. Keeping

Wimag negative (_= 2), Fq goes to minus infinity as -2_Ipslq-lelPSl/r(q).

Note that the singularity of Fq(Z) is located at Im i_z _ -_ or z = _ on the

lower sheet. The tracks one must take in either the z or i_z planes to make

F real are sho_m in Fig. 2. (If one follows the indicated w points, one gets
q

the tracks for real w and complex F corresponding to the results of
q
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Dnestrovskii et a12.)

A schematic plot of the real fLmction F versus the real part of
q

is shown in Fig. 3. The enclosed region refers to 8 < I and is the region

where our analysis applies. Figure 4 provides accurate plots of the F

functions in those parts of the enclosed regions where they are large in

magnitude. Also shown are the corresponding values of s. versus s .
I r

It can easily be shown how F is made real for large Iz] values. In

this case we use Eq.(13) with _=2: Fn+_2(z) = I/z - 2w(-z)nV_z eZ/r(n+_).

Writing z = [zlei0 we see that

I

-isir_) 2_[z| n+g e|ZlCOS0 -i_(n+1)ei(n+½)0eilZlsin0
Fn+_(zl = (c°SOlz I + r(n+_%) e

When 2_ > 0 > .T_'/2 for which cos0 > 0, we require the argument of the sine

function part of the exponential to be very near zero for large real positive

F and very near -_ for large real negative F.

Izlsine + (n+ ½)8 - It(n+ 1) = 0 or = -_r (27)

In this case and provided Iz| < _, we have respectively

Fn+3/2(z ) = + 2_[z I n+½e]z[ cose
- r(n+ 3%) (28)

Also (c2/vt2)(_ r -n_b)/r_ b = z cose and c2si/vt=r_ b = IzIsin_.

A similar analysis can b e performed in the region of applicability

of the Z-function. Here the variation is simpler, since the exponential part

goes to +J at _ = n_b similar to the _-I part. To find the track of real Z

for large Izl>>I =n_ >>I,we write _ - x +iy, y < 0, so that

2 2

Z = 2i_e -_2 = 2_ ey -x (sin 2x_-i cos 2xy_ Thus the positive and

negative tracks of interest are given respectively by



Z = + 2_e y2 and 2xy = + _/2 (29)

We note that in this region where Z is large, the imaginary part of _ or

can be considerable indicating that the wave is d_uped in time. Note also that"

Eqs.(27) and (29) are the least damped solutions of mar_y other tracks and are

the only ones whic_ connect up with opposite limits having more or less real

arguments.

V. THE DIELTCT!_IC 2E_SOR _LEI_NTS

Near the nth cyclotron harmonic (n fi I - see end of this section),

+ w -- n_b. Besides the n = 0 and n = I terms, we need to keep only the nth

harmonic term. Then we can write cold (c) and warm (w) elements for s =s + s

where the (#8)-' approximations apply for Sc, vim. _2 :vt2/c2 for n:0

and .75/2=vt2(W+Sb)/Wc2 for n = +I. Thus (4) becomes

(_c),,,_= 1 - _py (_ -%_) ; (_c),,= I - _ _/_ (30a,b)P

%/_(_ ) (3co)and -i(Sc),2= i(Sc)Z,= Sp -_b2

For the warm terms, it is convenient to consider positive s near r_b

independently from negative _ near r_ b • When s = nWb, the contribution

from -_ is negligible of course and vice versa. For this reason we restrict

ourselves in the following to positive w, bea1_ing in mind that negative

can be treated in a similar manner. Thus in the Z-function we consider only

the argument _ = (w-r_b)/k.vt_r2 and in the F function we consider the

argument #8 = # (w - r_b)/W •

For the nonrelativistic case subject to (19), the apprQximation

= -vtwZ/k.c2_2 yields the following warm elements when _ << I.
2

@# I

P n2A"- Z(_) (31a)
(.w),,,,,= i(.w),,=-i(_w)..= _k.vtV2

2

(%),, = - P z'
_k.vtV 2 _ _ (_) (31b)
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2 I

(Sw),j,j = -i(Sw)23 = i(_w)3 - _ _P _
I 2 - _k,,vt 2n+In ,.

z,(_) (31c)

where Z' (_)

certain regions, see Sec.lll.)

From relativistic analysis subject to (14), we find using the

equations if: (4) and (17)

(sw),,,22 : i(Sw)lZ =-i(Sw)2,

2

n2An-I _ k 204 -_; __. _ n÷Z÷ _ (Fn+y_- =n÷_/_+ Fn+y>

= 8Z/8_. (The approximation Z = __-I for large _ is invalid in

(32a)

2

W _,n [_F(Sw)'3 = - + " Tn'. n+_z + 2vt- W- (Fn+T_ - 2Fn+5/2 + Fn+ _ )
(3Zb)

(%),,,,, = -i(%)_,

2

klk,,c2 r_tn - 1
(32c)

8
In _certain cases we require higher order ;t terms to the dielectric

tensor elements. These terms will now be derived for k,,= 0 using Eq. (2) and

expanding e-_n(A ) to two higher order terms. In the manipulations yielding

Eq.(4) from (2), we note that every extra power of A raises the order of q

in ,_q(or Fq

of e-_n(A) :

for k, = 0) by one. Thus we obtain, using the series expansion

2
2

(_,,} =-.-_ _ _"-'FF_,-
2 n: L n+/2

(33a)

2

(_")w _ -2- (33b)= w _ n+y, - A2n+7/2 + AaFn+9/2 +

8. I.P. Shkarofsky, "Dispersion of Waves in Cyclotron Harmonic Resonance Regions

in Plasmas", submitted for publication.
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2

(-is2,)w = (is'Z)w = -_ w_T _ n+_ - Fn+5_

+ n + I + _ (33c)

2

(33d)

When the Z-function applies, the above equations can be used with all F's

replaced by -vt_Z/k.c2_2. The additional terms provide correction terms in

the dispersion relations and give rise to a completely new wave as is shown

in Ref. 8.

For the fundamental frequency, the "cold terms" in Eq.(30) are

incoITect except for sj_. For the "cold terms", we allow only n=-i in s11

and s12 keeping n = I for the "warm terms". Thus

I - (%),, = I - (%),, = -i(%),, = i(% ),, = _,p'/[_(,_+,,_]

To order _2, the warm terms are given by Eqs. (33a-d) far k. = 0.

to include k. to first crier we can use Eqs.(32a,b,c) with n =I.

(_)

If we wish

IV. RELATION TO OTHER WORK

Trubnikov 9, Drummond and Rosenbluth I0, Beard 11 Beard and Baker 12

0ster 13 and Bekefi et a114 have all considere_ cyclotron radiation from a

9. B.A. Trubnikov, Phys. Fluids,_ 195 (1961) ....
Drummond & M.N. Rosenbluth, Phys. Fluids 3, 45 (1960); 3, 491 (1960);

_o. W.E. _, 276 (1961) _" _"
11. D.B. Beard, Phys. Fluids _ 379 (1959)

12. D.B. Beard& J.C. Baker, Phys Fluids _, 278, 611 (1961); 5J II13 (1962)

i3. L. 0ster, Phys.Rev. ii6, 474 (i959); _9, iZ_ (1960); 12_, 96i (i96i)
• _ _

i4. G. Bekefi, J.L. H1rshf_eld & S.0. Brown, Phys.Rev. i22, i037 (i961)



hot plasma. Their basis is either the individual particle approach with

perhaps some account for the distribution function or otherwise the full

relativistic approach (_q.1) without applying the expansion in terms of

Bessel functions. The values far the dielectric matrix elements are integrated

either using a computer or applying a saddle point method as first indicated

by Trubnikov. They also provide results as k. varies away from zero or for

sufficiently large k.. However, one basic assumption of these workers is

that kZc2/_z = I and _ >> _ which simplifies the analysis exceedingly.
P

Essentially, they consider only the electromagnetic extraordinary and ordinary

waves near the light line rather than investigating wave dispersion for the

whole range of k values with _ _ I as we do in Ref.8. The saddle point method

is useful when vt/c is not too small and cyclotron harmonic lines can overlap.

In the very slightly relativistic limit when the lines are distinct, the

Bessel function expansion is more appropriate. Some work when w = _ for the
P

strongly relativistic case is given by Beard 15, who also provides an excellent

summary of the above papers.

Demidov and Frank-Kamenetskii 16 have treated less rigorously the

same problem as Dnestrovskii et al2. Their results disagree and it seems that

Demidov's final function, equivalent to our F function, is in error. On the

other hand, the works of Rukhadze and Silin 7 and Gershman 17 conform in

principle with our and Dnestrovskii et al's results.

Many authors have treated the line shape and absorption effects near

cyclotron harmonics using nonrelativistic theory. (See for example, Silin and

Rukhadze 18, Gershman19.) If k,, is sufficiently large that the conditions in

15. D.B. Beard, Radiation and Waves in Plasmas, Editor - M. Nitchncr, Stanford

Un. Press, Stanford (1961) p.66; Phys.Fluids _ 324 (1960)
16. V.P. Demidov & D.A. Fra_-Kamenetskii, Soy.Phys. - Tech.Phys. 8, 686 (1964)

17. B.N. Gershman, Soy.Phys. Doklady 6_ 314 (1961)

18. V.P. Silin & A.A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-
Like Media , Glavatomizdat, Moscow (1961), pp. I_J+-7 (in Russian)

19. B.N. _rsh_n I 'Soy.Phys. JETP lj, 657 (1960)
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(19) are satisfied, these analyses are valid and the concept of "cyclotron"

absorption" is meaningful. Our development here and in Ref.8 covers the

range of lower k. values, after the transition from "cyclotron absorption" to

"relativistic absorption" has occurred.

We complete this report having shown that the relativistic analysis

is necessary in certain regions. The transition to the nonrelativistic

case has been clearly illustrated and its region of applicability has been

indicated. The necessary dielectric tensor elements have been derived with

which we can investigate the dispersion of waves near cyclotron harmonics.
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CAPTIONS FOR FIGURES

Figure I Regions of applicability of cyclotron harmonic dispersion functions

when _ =106 shown here for real y and 8. In this case, the

functions are real below y2 = 28 and complex above. The F-function

is valid in the lower region and p8 = I separates the r egions

where the small and large argument expansions apply. The

Z-function is valid in the upper region and has a similar
L

division at _=I or p82 = 27 z.

Figure 2a The two tracks of real F in the complex z plane. The positive

Y track runs from s =-0 through s = r_b and then turns to the

lower sheet. The negative F track runs from w = 0 on the lower

sheet. Both tend towards the singularity of the F function.

2b The same tracks in the complex i_z plane.

Figure 3 Schematic plot of the values of F versus real part of w for

complex w and real F. The rectangular cut indicates the region

where the analysis is valid.

Figure 4 Calculated plots of the Fn+_z functions for n=1,2...7 in hhose

parts of the r ectangular cut where the functions are large. Also

shown are the values of the imaginary part versus the real part

of _. The equations used for the calculations are (27) and (28).

Also z =VS. In (a) is plotted the tracks of lnF for positive

real F and of ln(-F) for negative real F. In (b) and (c) are

shown the values of -_ic2/rmbvt 2 for the respective positive

and negative real F curves.
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DISPERSION OF WAVES IN CYCLOTRON

HARMONIC RESONANCE REGIONS IN PLASMAS

I.P. Shkarof sky

RCA Victor Company, Ltd.
Research Laboratories

_ontreal, Canada

- ABSTRACT -

The dispersion of waves near electron cyclotron harmonics is

investigated including to first order, wave numbers parallel to the

magnetic field. The proper relativistic form for the dielectric tensor

elements is applied. The relativistic formulation is compared with the

nonrelativistic one applicable for larger wavenumbers parallel to

magnetic field and the differences are noted. In either analysis,

different behaviours result depending on whether the wave number or

frequency is taken to be complex. In the former case, the waves near

the Appleton-Hartree values are localized and a gap exists between them

and the higher order cyclotron harmonic plasma waves. In the latter case,

this gap does not occur but the relativistic analysis shows a rapid rise

in freq_ency above the harmonic as one tends to zero wave number perpen-

dicular to magnetic field. We also show that the large argument expansion

in terms of inverse argument of the non-relativistic Z function produces

incorrect dispersion results in certain regions.



I. INTRODUCTION

In this paper, we investigate the dispersion of plasma waves near

I
cyclotron harmonics when _ _ k.2vt2/Sb2 < I, applying relativistic analysis

and comparing the results with those found fro_ nonrelativistic analysis.

The former approach is valid for very small and zero k. whereas the latter has

to be used for sufficiently large k. given in Ref.l. In either analysis, we

have to take either s or kz to be complex in certain regions and we find

totally different dispersion curves very near n_b depending on these two

situations. For complex k. and real s, the case of a steady r-f signal

decaying in space, it will be shown that we get the extraordinary, ordinary

and plasma waves but with gaps in the k. spectrum except possibly for the

second harmonic. That is, regions exist where one cannot obtain a real

for a given complex k. and these gaps effectively separate the Appleton-Hartree

and Bernstein electrostatic plasma waves. On the other hand, for complex

and real k., the case of a time-decaying r-f pulse, we can cover the complete

< I spectrum except for a tiny region near k. = O, where relativistic analysis

indicates a rapid rise in frequency above the harmonic, but in nonrelativistic

analysis _ approaches the harmonic with very strong damping. The existence of

an extra wave in addition to the ordinary and coupled extraordinary-plasma wave

is also indicated. These results are in essence, the original contributions

here on the subject of dispersion of cyclotron harmonics.

2
Dnestrovskii and Kostomarov and other authors have, for k, = O, used

the inverse argument approxinmtion of the nonrelativistic Z-dispersion function.

As shown in Ref.1, the applicability of this for _ << I is limited to the

Bernstein modes and very close to the Appleton-Hartree modes. This incorrect

I. I.P. Shkarofsk_ - "Dielectric Tensor in Vlasov Plasmas Near Cyclotron

Harmonics", submitted for publication.
2. Yu.N. Dnestrovakii and D.A. Kostomarov - Soy.Phys. JETP 13, 986 (1961);

i4, i089 (i962). '_'"
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use of nonrelativistic theory predicts for minute k,,, three waves with both

real _ and real k. near each cyclotron harmonic, and no gaps exist in the k_

spectrum. In Ref.2, dispersion curves are computed based on this analysis.

Some of the analytical results will be presented here with remarks on their

limited regions of applicability.

2 2

DISPERSION EQUATION FOR _ m kA2v$ /_ < I AND k,,2c4/vsSs2 < III. THE

(a) Basic Relations

We shall derive the dispersion relation for the above values of very

small k. and moderately small k± where kA, k,, are wave numbers perpendicular

and parallel to magnetic field lines, wb = leB/ml , vt2 =KT/m, and e, m, B, c,

s, K and T have their usual significance. The analysis will use the relativistic

dielectric tensor elements expanded to first order in _ and k, 2 . We shall point

cut in Secs. III and IV the corresponding nonrelativistic results and the

substitutions required to obtain them.

The dispersion relation for waves in a plasma is

D ..

k2c 2 C2

-_ S_ +Tkk_ + _o_
=0 (I)

We write s _ = (sa_)c+ (s _)w, which are respectively the"cold"Appleton-Hartree

dielectric tensor elements and the "warm" elements associated with a 9articular

cyclotron harmonic.

We now insert the dielectric tensor elements given by Eqs.(30) and (32)

o£ Shkarofsky I. With kL along the x axis and k. and B along the s axis, the

elements of determinent D to be evaluated are given by

2 2

D11 +k,, 2 cs-_ K. = D22 + k2 c- _='- K_ = iDI2+K×

_k.2( n-1 ) c2= 7 P(P+

= -iD21 +K
X



• -- 3 -

D,3 - k_k,,c2/w2 = Dj, -k_k,,c2/s2 : -iD2_ = iD, z = -k_k.(c4/_4)Qk.2(n-S)_

k. 2 c 2 2

D.. = K,, - kJ n (2)

2 2

where Kz = I - (= fWbZ ) ; K,,=1--_- ; Kx % ,,-K, = _(w[%=)
(3a,b,c)

, 2(n-I)
w (vt_ z

n'2"

p = Sn+_/2(/_8);

zs /-hvt2(n-1)

Q = _ \_b/(,__..;)_n ; P,, _pZ vtL_bb)n 4..!--
n,2 n = v--_ n,2 n

4
C

('n*l/,- n. _/2+ Fn+s_ ); = Fn+ _ - Fn+ _

(3a,eW)

(3g,h,i)

p. = Fr,+s/= ; 13,,= (Fn*_/2- 2Fn* s/2+ Fn*_/2) (3j,k)

Also Up = _neeZ/som is the plasma frequency, kz =k_ z +k. z, ne is electron

density and n is the order of the cyclotron harmonic (n # I). The function

Fq is defined by Fq(,8) - -i L dtei_3t/(1-it)q where .=c2/vt2 a_ 8 =(_-rm b)/_

and was investigated at length in Ref.1.

(b) The Extraordinary, and Plasma Modes

Let us restrict ourselves at present to the extraordinary and plasma

waves; later we consider the ordinary wave. Since the ordinary wave is

associated with the 33 element of the determinant, for the other waves the

warm part of this element is of higher order in k and can be neglected. That

is we approximate the 33 element by (K,,-kAZcZ/_m). Now one can expand the

determinant by using the subdeterminants of the 33, 32 and 31 elements and

dividing the result by the 33 element.

An order of magnitude comparison of the terms involving Q with the

product term P_k,,2 shows that all the Q terms are negligible for the ranges of
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k,, and k. of interest.

expression:

K k 202 /

-x , _ _.m_- 1

Thus the determinant simplifies to the following

k2 c2 /

K_---_
k. zCz

K. -

k 2c2\

+ KKI - -w-_-_ pk.2(n-2)(p +_k,, 2 ) ;

2[ Pk-2(n-2) (p ]
+ x + _k.')

k 2C2.-(,- -0 (4)

where

= KA + K× = 1 -

2

P

_(_+%) ; Kr= Ks- K× = I-

2

_(P_%) (Sa,b)

K, = (_+_r)/2 = 1-
OJ 2

kA 2 C 2

P and x = --7- (Sc,d)

The quadratic equation (4) in x can be solved whenlPks2(n-2)(p +_k,,2)l << 1.

The smaller x solution is

X

k 2c2\ /F
k 2c 2 K± - _ (6a)

- _ I k._c_

K.-
/

which is the extraordinary electromagnetic mode. The larger x solution is

k 2 0 2

k 'C' (I K'- w"_z- [k.2(n-2)p(pX = [K s -'_-_r_..- klZc z )]/ +_k,, 2) ] (6b)

K. -7--

which is the mode for large wave numbers. If we consider real _ and complex

ks or x, thenlpI lies within bounds of order one hear the harmonics. Since

Ipks2(n-2)l is always less than one for _ < I, we see that the above condition

2(n-2)ponIPk_ I<<I is satisfied. As a result the solution of Eq.(4) can never

deviate much from the cold em mode or large wave number mode. One cannot
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propagate a wave for k. values between these two modes. These argu_lents do

not apply to n = 2_ _hich is reconsidered in Sec.III.

The situation for real k. or x and complex w is different. As shown

in Ref.1, the F function orp can be continued into the lower half plane and

can attain huge real values. In fact the product pk.2(n-2)p can easily become

of order one. Under these conditions one can obtain solutions of Eq.(4) for

anE non-zero value of x.

We note that for n ) 2, K1, K and K. are given in Eq°(5) whereas for

n=1, we use Eq.(34) of Ref.1 to fina equivalently that K.=K +I = S-w z/2s(W+_b)x p

so that

= +%), Kr = 1 andK. = (Kl+ 1)/2 (7)

Dispersion effects based on this will be discussed in Sec.lll.

(c) The 0r_inar 2 Wave

Besides the extraordinary-plasma wave mode, there is another wave

assaciated with the Eq.(2), namely the ordinary wave. To obtain the dispersion

relation for this ordinary wave including first order k. terms, we expand D

and divide this time by X, where X denotes the following combination of

elements [(11)(22) - (12)(21)], viz,

LK 1 k ZcZ kz2cz-] E K k Zc _' kj.2e2 cz _ kj'¢"Z = - _ -- _j r-_w-a_-- 2--_-- - 2k. 2(n-1) _ p(p+_k.=) __.__

To obtain any noticeable deviation for n > I from the "cold ordinary wave"

K.-kAZez/s z = 0, we require k.2ncZp,,p,,/w2 to be of order one. In this case

we note that the k. 2(n-I)"
C 2

_-z _ terms are much greater than one by order

_-I k2c2/_ 2, etc with respect to the warm, so that in X, we can neglect Kr,

term.
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k. 2 02-_

X _ -2k. 2(n-I ) c2 [K _w-_ PP 1 - _ - (8)

Similarlj zn _a_u_ting D, we keep only products of war_ tones, viz. PQ, Q2

and pQ2. The pQ2 and PQ terms concel. The determinant thus becomes the

following, aCher division by X and then inserting Eq.(8).

k'2 c2 2n c2

K,, - _ - k. 7 P"(P"+ _0_k''") : 0 (9)

where from Eqs.(3d-g,i,k) we have

P,,_o_ - r,,O -" pp_"

c 4

and _0R = _t---_I3Fn+_2- 2Fn+_2 + Fn+3/2-2Fn+yz?n+_2]

(d) The Extra '.Tare

By restricting ourselves to k,,= 0, we can investigate more fully the

higher powers of _ neglected previously. Using the proper relativistic

approach, we find the additional terms negligible for the two waves given

above, except when _l=X. An extra wave exists if one investigates the

dispersion relations using two higher orders in the _ expansion. This wave

is decoupled from the otner two in this limit of k,, = 0. For larger k,, where

the nonrelativistic Z-function is applicable i , a third wave also results,

coupled to the extraordinary wave. A coupled third wave h_s also appeared

in calculations of cyclotron harmonics upon the ad hoc incorrect application

of the __-I expansion of the Z-function in nonrelativistic analysis

(e.g. Dnestrovskii and Kostomarov 2 -- see Sec.IV for a full discussion).

For k,, = 0, the dispersion equation (i) for the extraordinary and

plasma waves reduces to E;1I(_22--X)--SI2S21 -- 0 with X =k2c2/s 2, k =kz

Inserting the cold elements given in Eq.(36) and the warm elements given

in Eq.(33) of Ref.i, we find
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+ _ n,_/2 Fn+_'2 \n+l)- Fn+_/= = 0
(1o)

where El, Kr, KA and P ared_finedin_qs.(3)_nd(5)_n__. k_o'/%_.

If higher powers in A are neglected in (10), we simply obtain

1

Fn+_2

2. ,-,_n_!

_b = "" ' -x)x

" FnW, N_- K,.x
P

(11)

Since k2(n-2)P is extremely small, Fn+_2 has to be large for x to deviate

away from the electromagnetic mode (_K r = KAx) or the electrostatic mode

_x >> I). For large F,all x values are possible except when x * 2_ for which

we might seem to require F _ =. This, however, is not necessary since we then

include the higher powers of A given in Eq.(10). In fact, when x = _I '

Eq.(10) shows that a higher order of magnitude of F is required of order

(Ak2(n-2)P) -I instead of (k2(n-2)P) -I . Equation (10) also shows that the only

case we need these higher A values for A < I is near x = _I"

A new wave appears if one looks for solutions having even larger value s of

F of order (A_Qn-2)p)-1. One can readily deduce the dispersion equation in this

case to be

f _Obz2nnl.qf.(n+ 2)Fn+ _/2__ ] -I
;'_.n-2__jL n.1 F %p n÷

_,2

= • (12)
": [z_,: x]

This wave is decoupled from the coupled extraordinary-plasma wave. Near

x = _ each of the two combine with extra terms of order (Ak2(n-2)p)-I ,-, F
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and smoothly pass through this transition. This wave exists only if _ is complex

and k real in which case F can become very large I, When _ is real and k complex

we would not expect this wave to exist.

III. DISP_RSION CT_VES BASED ON RELATIVISTIC ANALYSIS

(a) Real _ Complex k Curves

We can now plot s-k dispersion curves for zero k. based on the above

analysis. First we consider the case of real s, complex Fq and hence complex k.

Then we investigate the case of greater interest to us, namely real Fq, real k

and complex _.

When s is real, the complex function F is plotted in Figs.l and 2 of
q

Dnestrovskii et al 3. We note that both the real and imaginary parts of F lie
q

within bounds of order one near the harmonic. As a result k2(n-2)P F is an
q

extremely small number for n > 2. Noting that KA= (_ Kr)/2, we can readily

solve the quadratic equation (11) to yield under these conditions:

and

KlZ

x- _K_Kr (1-k2(n-2)PFn+_z _) (13a)

K. _K r K.

+ 2_ K. =
x = k2(n_2)_ p Fn+_= k2(n_2)p Fn+_2

(13b)

These represent respectively, the electromagnetic and electrostatic solutions.

When n > 2, a schematic drawing is given in Fig.la to Id for the four possible

situations, namely

3. Yu.N. Dnestrovskii, D.P. Kostomarov and N.V. Skrydlov, Soy.Phys. Tech.Phys. _8

691 (1964). The sign of the imeginary part of F is incorrectly given as

positive. It should be negative as discussed in Ref.1.
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(i) _r,_ > 0 (ii) Kl,r,_<O (iii) _, > O, Kr < 0 (iv) _>0, Kr,l<O (14)

or

(i) WL< _T < WR< n_b (ii) rmb< _L < WT< _R (iii) _L < _T < r_b< wR

(iv) WL< r_b< WT< _R '

respectively:

where SL,R,T are the s values for which Kl, r," = 0

I 1

= = )Z(7%/2)+ ( p2 2

The first solution in Eq.(13a) oitlw exists if _K_/_ A is positive and

then it represents the Appleton-Hsrtree equation (extraordinary mode)

k2c2/w 2 = x = _K_/k A with a small correction term (for n > 2). One notes

from Eq.(S3a) that for w) n_b, x < _K_ since F > 0 whereas for s << rmb,

F is more or less real and negative so that x > _K_/k (see Fig.S of Ref.3).

Hence the dispersion curves ha_s a very small "wiggle" around n_b for n > 2

as illustrated in the left-hand parts of Figs. la and Id. The slope 8s/Sk

at _ =n_ b is altered negligibly by the warm terms for n > 3.

When n= 2, the change in dispersion is significant. The "warm" term

gives the dominant contribution to the slope at _ = rmb since it is larger than

the "cold" part by c2/v t . Using dF_/_(pS)=- 4/15, we have

(8_/Sk)/(_/k) = 15(KlVtWb_C_p)2 at _=2m b. Hence the slope is very minute

at this point, changing greatly as w recedes from 2mb towards the Appleton-Hartree

values. The behaviour as the real part (kr) of k goes to zero is more difficult

to sort out and more investigation is required. When K is negative, we
r

conjure that _ _ 2_b as kr _ 0 an_ the imaginary (ki) of k remains finite and

is given by the solution of Eq.(11) with FT/z= 2/5 and x= -k'2"i

Upon substituting Eq.(7) into Eq.(11), we obtain the dispersion equation

for n= I, namely

_I -x _-(KI + I)x_ _2v'2/_'P2c2F5//2 (15)

Since IF_I is of order one in the region of _ =_b' x is localized around 2KI,

Vim. x= Z_ +K1 -_2_2vt_/%2cZF_. The warm term provides a negligible correction

of the opposite sign to that in Eq.(13a). This solution exists only if _ > 0.
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We now investigate the other branch of G_e dispersion curve associated

with the solution in Eq.(13b). This solution occurs for large values of

_hen n > 2. When n=1, Eq•(15) _ho_,'sfloat no extra solutions exist for

x >> I >> _ so that this electrostatic mode does not exist.

P, Ec_.(13b) can be v_itten as

b_v_) n-1 b_ _ 2-_
k_(n_1 ) = _ ____.__z _b 2nn '. (16)

\rmb# _= - _b Fn+3/_

Te hhus see that k = F -I_2(n-I )] Using the plot 3 of complex F versus _8
• D

we present here in Figs. 2a and 2b, polar plots of F -I and F -I/[2(n-I)]. The

lattel can be used to give the variation of k vers,ls _8 when K > 0 or
r

s > sT . In the opposite situation when K. < 0 or s < _T' we present in these

figures, plots involving (-F) "I and (-F) -1/_2(n-I)], taking the root in the

sector which gives positive k. and negligible dampling for large -k . The
l r

dispersion c1_rves _re shown on the right-hand sides of Figs• la-d. The

dashed portions of the curve are the regions where k is quite complex.

Figs. la-d show a minimum value for the real part of k or _ below _ " 'w;_mcn the

dispersion relation cannot be satisfied for n _ 3. This minimum value is

much larger than the k values associated with the extraordinary em mode.
r

Note that for n= 2, the angle _/2(n-I) = _/2, and Fig.2b indicate that no

such minimum exists. If K A < 0 one can obtain very low values of kr with

non-infinite damping. A detailed analysis is necessary to s_ if the em

and es waves can join, but this will not be done here.

Let us now evaluate the group velocity of the es mode when K. > 0

at the point _= rm b. Write k equal to F -I_2(n-I)] times a factor which is

more or less constant with respect to _. That is, we assume that the crucial

variation in _ is due to F. We find using 8k/8_ =I/(8_/8k) that

Using Eq.(3d) for
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(Ss/Sk)/(s/k) = 2(n-l)(n-½) vt2/c2 at _= rm_b. Also since 82k/8_2=.

-(a'_/a_/(am/ak)" and d_Fn+_/_/d(.8)_ = 2(n _- i)-'(n-_/2)-' at m=_ b, we

4

#

evaluate the ne t derivative to obtain :

4(n-l)(n-i)Jvt2/(n-3/2)c 2. These relations indicate that the slope and curvature

of the es mode are very small. The slope only becozzes large in the immediate

vicinity of the turn around point where k is quite complex.

We also look at the nonrelativistic limit for F of the form (WS) -I , i.e.

F = wvt2/_c2(s-r_b)] = 2w2vj/ [c2(m 2- n2_b2)] • The latter expression includes

-s values as well, and applies outside of the relativistic range at both ends

of the em solution, but only when #-I << jSl << I for the

e s-solution. In the latter case, one can write us_Lug Eq.(16)

-,= 1 _Sb2 -7

\%) - %</

which is the usual relation quoted for the Bernstein 4 es mode when _ << I.

Besides the extraordinary wave, we have the ordinary wave. When k,,= 0,

its dispersion relation is simply

2

Sb 2nn' x

sjj = 0 or _ _n_l F - _ 2 (17)

P n+72 (I --_)- x

where _ : k2vt2/mb2 and x = k2c2/s2• Because of the bound character of IFI

for real _ near r_b, a solution exists for n > I (including n = 2) only when

_2 ) m 2 i.e when the denominator on the right-hand side is near zero• One
P

can readily show that a wiggle occurs in the dispersion curve similar to that

for the extraordinarywave and that the deviation of k from the x= 1 - _ 2/_a
P

curve is very small.

The obvious conclusion from Fig.l is that no direct coupling when _<< 1

4. I.B. Bernstein, Phys.Rev. 109, I0 (1958).
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exists between em and es waves at cyclotron harmonics for real s. The only

coupling point occurs at ST, which we have not considered. Here no gap exists

and the emwave converts to an es wave as k increases.

_Wnenn= I, the Appleton-Hartree solution experiences a large "wiggle"

around sb. Neglecting higher order _ terms (viz. _F9/2<< I), Eq.(17) is

valid for n= I also and we obtain x =[I -_ 2/_b21 / [I +_ 2 F_/2_b2].P P

At _ = sb, F_= _5. This equation has previously been derived by Dnestrovskii

et al3 and Gershman 5.

(b) Real k, C9mplex _ Dispersion Curves

In contrast to the real s situation, a slightly complex frequency

permits dispersion for all k values except a tiny region near k = 0. The

reason for this is that F becomes very large for complex s (see Fig.4

of Eel.l) and the k variation in Eqs.(11), (16) and (17) can become lar_.

We neglect the imaginary part (si) of s in K., _, Kr etc. The importance

of si arises only in the argument of the F function where it may become

comparable to Sr- n_b, whereas in the K functions it need only be negligible

compared to Sr, the real part of s. Thus, provided F is made real, k will

_Dso be practically real.

Let u_ consider the four possible situations given in Eq.(14) for

the dispersion curves. These are illustrated in Figs. 3a to 3d.

and K are positive
For the high-frequency case in Fig. 3a, Kl, Kr

and _ > Kr or _b > sI_ > ST > WL" The solution for t_he combined

extraordinary-plasma wave is that given in Eq. (11) with the correction

from Eq.(10) when x = _. We also require the plot of F versus sr

given in Figs. 3 and 4 of Ref.1. We can follow the Bernstein

5. B.N. Gershman, Soy.Phys. - Doklady 6, 314 (1961)



es modefrom large to small _ up to s =r_ b using real s, real k and the real

positive branch of F. _s k further decreases, we continue using Eq.(16) along

this positive branch, passing through a minimums < r_b value whenr

8k/Ss = = or 8F/Ss = _ in Fig.3 of Ref.1. Then the curve passes again
r r

through Sr =r_b" The frequency rises steadily above r_b as k decreases and

x _ 2K1 since F appears to be infinite at this point according to Eq.(11).

However, Eq.(1 0) limits the maximum values that F and s attain. Essentially

around x= Z_, coupling occurs between the F > 0 and F ( 0 branches which

accounts for the awkward behaviour. For values of x < _I' we therefore shift

to the F ( 0 track and the dispersion curve connects with the em wave when

s (( n_b. On the opposite side of the Appleton-Hartree solution, we again use

the F > 0 track. We follow the same behaviour as for the es mode, with s

decreasing slightly below n_b and rising again. A remarkable result is that

near k = 0, F becomes larger and larger resulting in s increasing more and

more above n_b rather than tending to r_b. As s increases above r_b by an

appreciable fraction of n_ b, our analysis which restricts s to be near r_b

fails. A full investigation of what actually happens then, is beyond the scope

of this work and is actually not necessary for further analysis.

The low-frequency case, shown in Fig.3b, is for K1 ( 0, Kr ( 0, K. < 0

and IKrl > IKII or n_b < sL < _T < sR" For large k values, we must choose

the F < 0 track and, since no Appleton-Hartree solution exists, we follow

this track for all lower k values as shown in Fig.3b.

The high-intermediate-frequency situation in Fig.3c is for

K1 > 0, Kr < O, K. > 0 with _ > IKrl or wL < sT < n_b < sR. For large k,

we must use the F • 0 track which can be followed for lower k values up to

x = 2K1. At x=2K 1 , we apply the correction in Eq.(10). For x < _l' we

change to the F < O track and continue for all lower k values.
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WhenE_ > 0, K < 0, KA < 0 with IKrl > K1 or sL < r_b < sT < sR
r

(the low-intermediate-frequency situation), the Appleton-Hartree solution

x=KIKr/_l occurs at a higher x value than x=2_. This case is illustrated

in Fig.3d. For large k values we require the F < 0 track which connects to

the Appleton-Hartree solution as shown in Fig.3d. Between x=_K_/_, and

x=_l, we use the F > 0 track and for x < _l we use the F < 0 track.

In all four cases, the large-k portions of the curve make a smooth

transition to the appropriate well known electrostatic cyclotron harmonic

mode (sometimes called a Bernstein mode4).

Ths above formulation applies to n= 2 as well except that the excursion

from t_ Appleton-Hartree solution occurs for larger values of s-_b and it

connects up sooner with the es mode.

For n= I, sb has a negligible effect. Equation (15) shows that for a

large excursion from the Appleton-Hartree solution, F_z must become exceedingly

small (rather than large as for n > I). Since F cannot go to zero before

going to _ (see Fig.3 of Ref.1), the dispersion curve for complex s is about

the same as for real s, viz. x= AK1 and only exists if _ > 0 _See Fig.n).

In Figs.3e and 3f, we show the addi_±onal wave given by Eq.(12) which

has different behaviours depending on _ greater or less than zero. When

KI < 0, one requires negative F values, and when K 1 _ O, a transition occurs

from F < 0 for x > _ to F > 0 values for x < 2K1. These waves are not

included in the combined plots in Figs. 4-7.

In Figs.4-6, we provide schematic plots of s versus k including several

harmonics on each plot for ratios of Sp2/W_ ranging from 0 to 2 (Fig.4),

n(n+S) to n(n+2) (Fig.5) and n(n+2) to (n+1)(n+2) (Fig.6). These include all

possible combinations and can be readily adopted to topside ionospheric conditions.

_hese plots are obtained by making use of our previous results in Fig_3.
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Figure 7 shows corresponding curves for the ordinary wave, and the

>

inserts show sample conditions around n_b when _ < w respectively. Equation (17)
P

(valid for n=1 also)shows that if _ > _ one needs F < 0 for large x values,
P

x > (1-Wp2/W2), and F < 0 for x < (1-_p2/W2). If _ < _p, one can follow the

F < 0 track for all k values.

IV. NONRELATIVlSTIC ANALYSIS

To obtain I the nonrelativistic formulation, we replace everywhere above

the function p + _k. 2 or F by -vt_Z/k.c2_2. If we then apply the Z-plasma

dispersion function, we get a completely different picture. This formulation

can be done improperly by assuming that the a_-hoc approximation Z _ - _" where

= (_-r_b)/k,,vt_2 , applies even for very small k, values. In Ref.1, Eq.(23),

we have shoe that this approximation is limited to Ip2_21 >> 12_k,,2c2/_21 >>

I$81 >> I and to values of l_vtZ/c2k.l < I. However, the nonrelativistie

results show that we need for n > 2, values of IpSl << I and l_vtZ/c2k,,I > I

in the transition region between the Appleton-Hartree solution and the electro-

static solution as well as for very small values of k. less than the

&Dpleton-Hartree values. This formulation is therefore incorrect in these

regions. At the end of this section, we present the proper nonrelativistic

formulation. At first, we look at the results obtained by adopting the

above ad-hoc nonrelativistic limit, which in Eq.(18) includes -_ values as well:

Fq vt_ {k.vt_2 _,,vt¢2 2vt_ _"" + ) -- 7 ,,,'- 08)

In Eq.(10) we again neglect higher order X terms except for the last

2
product (kl 4(n-2)) - term. The equation for w2- n2_ b becomes



(_'- n2wb')_'(I_lK r- x_l) - (_'- n2_ 2)(21_j..- x)2= 2b p

4)t2nnZ
_.-, n2 _p ,, ,

(n:)
=0

where we used the expression for P in Eq.(3_). Solving the above equation

for 2_ nz_b2 yields with the definitions of _, Kr and KA in Eq. (5):

- ---- (19a)
_' -n2_b _ KnL2_' _II - _ K1Kr

and

• °"°"IE

These two solutions are decoupled provided kA2e2/_ 2 is not near 2KI.

We note that Eq.(19a) is the equivalent of Eq.(11) as is evident upon

substituting Eqs.(18) and (3_). In addition we have succeeded in deriving a

third wave given by (19b). Since for this wave _2 - n2_b 2 _ _n+1 , the w- kI

dispersion curve is very much localized around w _ _b and never deviates

appreciably from r_b except near coupling points between it and the other

waves. This is the localized third wave which appears in the calculation of

2
Dnestrovskii and Kostomarov using nonrelativistic analysis. We note, however,

from Eqa.(19a,b) that i_2- n2_b 21 < vt2/c2 for (kA2ct/_2) "-I < (c2/vt2) I;-2

so that the above derivation from nonrelativistic analysis is incorrect.

Furthermore, we know from Ref.1 that for F or Z to be large, we require its

analytic continuation with I,_ < 0, and t21en its form differs from hhe large

values derived from Eq.(18) as s * rmb. Actually as F becomes large,

increases above rmb for k. = 0 (see Fig.3) rather than approaches n_b-

As kA _ 0, Eqs.(19a,b) yield _z_ nz_b_ = _P' ZnZ.,- _̂/n.2nKr an_

,_- naabz = _ 2 An_/(n+1)2nn'K I. When k.Zca/_ _ >> I the equations givep
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the Bernstein longitudinal wave 2_ n2sbZ = 2_ Zn2An'I/n'2"KA plus theP

2_2An +I/(n+1 )n '2nk2c2additional wave n2_b2 __2 = 2Wp

n 20)b - 1 + 1 )= OC ,Near x2 Z_, the n- I and n+ I waves (viz _- 2 An xn

couple. Also the n-I wave couples to the em wave near xl = _K_/_I. For

the four cases given in Eq.(I$). the dispersion curves including the wave

coupling are drawn schematically in Figs. 8a to 8d up to values of x

beyond xl and x2. The solid curves represent the n- I or n+ I waves and hhe

checked parts refer to coupling regions. The above illustrates the major

differences in Fig. 8 as compared to the relativistic equivalents in Fig.3.

The above nonrelativistic approach agrees with the relativistic analysis for the

Bernstein wave in the region l(s-r_b)/S j > vtZ/c2. (Compare with Eq.(16).)

The form of this Bernstein es mode for A of order one is essentially

nonrelativistic. As it should, the nonrelativistic theory also provides

the correct variation of the Appleton-Hartree waves outside of the IpSl < I

region, which is according to (19a): x-KIK/K A =

- (_z_ n2 b2)-,(K1/K.)22_ 2An-,n2/2n n, (Compare this with Eq.(11) with (18)P

inserted in it.)

We can similarly investigate, using the above theory, the ordinary

wave dispersion when A << 1. Substituting Eq.(18) into (17) gives

_2 _ n2_b2 = 2Sp2 An/n,2n(K, _x) where K,, = I-Sp2/_)2

In Figs.9 to 11, schematic dispersion curves with several harmonic

frequencies together are drawn for Sp_Sb z values of 0 to 2 (Fig.9),

n(n+1) to n(n+2) (Fig.10) and n(n+2) to (n+1)(n+2) (Fig.t1). These curves

include the extraordinary, Bernstein and the additions/extra mode. Both

and k are real in this theory. In Fig.12, similar curves are shown for the

ordinary wave and the inserts provide sample plots near a harmonic for

K,, > 0 . Figures 9 to 12 show the behaviour for large A values as well
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2
and include the three cases actually computed by Dnestrovskii and Kostomarov

both for the ordinary and extraordinary waves. These incorrectly derived curves

for _ << I differ in many ways from the relativistic versions shown in Fig.4 to

7 and the latter must be applied for k, values near zero. Fortunately, the noi_-

relativistic schematics in Figs.8-12 are still usable in a different region as

shown below, although the formulation is completely different.

A ro_ nonrelativistic analysis, valid for larger k,, values (see Ref.1,
I

Eq.(19)) such that ]y21 >> 1281, IYl >> #-_ and ly2(y2- 28)I >> _-2 where

y a k,c/_, can be formulated as follows. As before, we replace everywhere F

by -vt_Z/k,,c2_2 but we have to differentiate between cases of _eal w, complex

k. and real kA , complex s.

For real s, the plots of (_ Z)-I will be similar 6 to those of (+_F)-I

shown in Fig.2a, except that the polar plot is symmetric about the origin with

the _8 = 0 point on the imaginary axis and with both sides asymptotic at +

to the real axis. The curves are also asymptotic to all sector lines in Fig.2b.

As a result, the equivalent curves to Figs.1 for the extraordinary wave show

a "wiggle" symmetric about w =r_b(n > 2) with noticeable damping at and on each

s_de of nwb and negligible damping away from the resonance. A minimum real k.

value with noticeable damping even for s>nw b occurs for the es mode when n > 2

and the n= 2 case needs special consideration, as we discussed above for the

relativistic analysis.

For real k. and complex s =_ +i_. values, we use the tracks of real
r i

2

le_'ge values of Z for complex argument, given i_ Ref.1, Eq.(29), viz. Z = +2_ey

and 2xy= +_/2 where x= (Sr-r_b)/k"vt_2 and y=_i/k,,vt_2. Thus, instead of

weuse F -. ; b) . Note

the larger the value of Z required, the closer wr approaches n_b, which is

opposite to the behaviour of the relativistic F-functlon. The fact that -Z_ +

i

6. B.D. Fried and S.D. Conte, The Plasma Dispersion Function, Academic Press,
N.Y. (1961),F s.1 and 2.
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as +(_ - r_b) _ 0 makes its behaviour like that of (_8)-' in Eq.(18). As a

result, the schematic dispersion curves will be similar to the incorrect

nonrelativistic ones in Figs. 9 to 11 except that cyclotron damping occurs

near n_b and the predicted (_- r_b)/_ values are of order vj/c 2 rather than
2

some higher p_er of vt /c_. In Fig. 8a-d, the labelling is simplified, using

the sign of Z, as shown in brackets. Although the extraordinary and additional

waves are coupled, we can easily connect the various coupled regions by follow-

ing the tracks of Z < 0 if w > r_b, or Z > 0 if _ < n_b. It is reasonable to

suppose that even if we include the _. part in hhe K functions, we will find
I

very large damping (_i _ _) at the _r = n_b' kA - 0 point, in contrast to the

real solution obtained from the incorrect nonrelativistic analysis.

Figure 12 for the ordinary wave is, however, changed drastically.

The substitution for F given in the previous paragraph does not apply here.

The analysis im Section ll(c) can be generalized to yield the ordinary wave dis-

persion equation: K.-k2.c2/_ 2 + (eJS)w- (e_3)w/(e.) w. Applying the nonrelativ-

istic warm elements (Ref. I, Eq.31) for n> I results in a cancellation involving

_Z' + (Z')a/2Z = -E'/Z = 2_ for large Z values. Thus, (s_,)w/(e,,)w - (e'')w =

2_p An_/wk,,vtV_ 2"n'., which is always small for (s-n_b)<<n_ b. As a result,

the solution never deviates much from kIc2/_ 2 = K,, an_ in fact, no resonances

occur for n > I and k << I.

In a nutshell, this paper shows that nonrelativistic dispersion theory

in the vicinity of cyclotron resonances is incorrect for k << I and for near

zero k. values. For larger k. values, but _ << I, nonrelativistic theory

giving undamped solutions near cyclotron harmonics is not valid. A dis-

tinction between complex _ and complex k. values is necessary. We have also

pointed out the differences in dispersion effects near k _ 0 and in regions

where em modes and coupled em and es modes exist, based on relativistic and

nonrelativistic approaches.
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C TTIOUS FOR F!GU_ES

Figure 1

Figure 2a

Schematic dispersion ct_ve_] for the extraordinary electromagnetic

and plasma electrostatic waves for real _ and complex k based on

relativistic s_lalysis. Dashed [,arts indicate verst complex k vaJ ues.

kr is the real part of k.. Here x, -_ _K_/K A is positive in (a)

and (d) and negative im (b) and (c). Figures 1(a) to 1(d) correspond

to the c-tses in Eq.(14).

lOvt2/J . We illustrate
Sb

: ; V +

W
and

with

_T = (_ 2 + Ojb2 )=
P

The interval A_/r_ b is typically of order

cases when n > 2. Also

C+°;I+ orX=1 +Y

or K(1) = 0

or X = 1-Y2 or K. = 0

X = Wb/ p ' Y= ,

:
P

2

E-I_,r = 1 - _b /_ (_ + _b ) and

A schematic polar plot of the complex function F-I and (-F)-' using

the analysis in Ref.2 with the correct sign for linE. The numbers

0 and + o_ are values of _8, the argument of F, marked on the polar

plot.

SchemaLic polar plot of F -[2(n-I)]-' °
which is required when _" > _T :_

and of (-F) -[2(n-I)]-I required when _2 < _T 2. The root is taken

in the sector where its i:;:agim_y part is sm_ll at i:8 = _+

resFectivelj, and is positive, giving a d_mped wave.

Figure 3 Schem:_tic dispersion cu_'ves QFigs. 3(a) to 3(d)) for the coupled

extraordinary and electrostatic waves, for n_2_complex s and real wave

numbers (A << I) based on relativistic analysis. The four fig1_es

correspond to those in 1(a) and 1(d). In Fig.3(e) and 3(f) we show

schematic dispersion curwos for the extra wave (Eq.12) when K I >< 0.
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The dashed parts indicate the coupling regions b etween F > 0 and

F < 0 branches. _ refers to the real part of s, xl m KiKr/_ andr

Fi_e$ Schematic complex s-real k dispersion curves from relativistic theory

including several harmonics for the couple_ extraordinary and plasma

2 2

waves when 2sb > sP
. The two dashed lines indicate approximately

the locations of the light and thermal velocity lines.

Figure 5 Same as Figure 4 when n(n+2)SbZ > s 2P
> n(n+1)Sb2 with n _ I. For

n= I,omit dispersion effects shown below sL. Also for n =I, the

hump near sT occurs :nuch nearer to the light line and this wave

based on es theory appears as backward instead of starting as the

forward wave shown here.

Figuro 6 Same as Figure 4 when (n+1)(n+2)Sb2 > s 2P > n(n+2)_b2 with n _ I. For

n= 4,omit dispersion effects shown below sL.

Figure 7 Schematic complex _-real k dispersion curves from relativistic

theory including several harmonics for the ordii_ary wave with n _ 4.

For n =4, omit dispersion curves below Sp. For a given n > 4, omit

dispersion curves below sb. The inserts show sample dispersion effects

>

near cyclotron harmonics when s < s .
P

Figure 8 Nonrelativistic version of the dispersion curves for the coupled

extraordinary and plasma waves. The four cases (Figs.8a to 8d)

correspond to (a) to (d) in Figs. 4 or 3. The checked portions on

the curves indicate coupling regions between the waves. In incorrectly

applied nonrelativistic theory, the waves vary as s-r_b_ A"-I or

A TM and the designations n-I and n + 4 refer to these. The
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>
designations Z < 0 refer to properly applied nonrelativistic theory

as discussed towards ti_e end of the text. In properly applied

nonre!ativistic theory, replace here and in Figs. 9-12, w by Sr and

remember that very strong damping occurs at the cyclotron harmonic

cutoffs. The curves shown are for n _ 2.

Figure 9 Nonrelativistic schematic version of the dispersion curves including

several harmonics for the coupled extraordinary and plasma waves

when 2_b2 > s 2
P

• The dashed line is the approximate location

of the light line.

Figure 10 Same as Figure 9 when n(n+2)_bZ > s 2P
2 wi_h n _ I> n(n+1 )Sb For &

given n _ I, omit all dispersion curves below the one localized

just below Sb" For n= I, the hump near _T occurs much nearer to

the light line and this wave based on es theory appears as backward

instead of starting as the forward wave shown here.

Figure 11 Same as Figure 9 when (n+1)(n+2)_b 2 > _ z.
P

> n(n+2)sb 2 with n_ I. For a

given n _ I, omit all dispersion curves below the one localized

just below Sb"

Figure 12 Nonrelativistic dispersion curves for the ordinary wave with n _ I.

For n = I, omit dispersion curves below _ . For a given n > I,
P

omit dispersion curves below wb. The inserts show sample dispersion

>
effects near cyclotron harmonics when _ <

P
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- APPENDIX III -

I. LIST OF PUBLICATIONS

Related Work Prior to Contract

T.W. Johnston and J. Nuttall, "Cyclotron Harmonic Signals Received by

the Alouette .Top-side Sounder", J. Geophys. Res. 69, 2305-231_,
June I (196A), RCA Victor Res. Report 7-801-28 (Revised)Jan.

J. Nuttall, "Theory of Collective Spikes Observed by the Alouette Top-

side Sounder", J. Geophys. Res. 70, 1119-1125 t March I, (1965);
RCA Victor Res. Report 7-801-29c, April (196A).

J. Nuttall, "Singularities of the @teen's Function for a Collisionless

_netop1asma", Physics of Fluids 8, 286-296, February (1965);
RCA Vicar Res. Report 7-801-29a, February (196_).

J. Nuttall, "Plasma Frequency Singularity of the @reen's J_Anction for

a Ma_etoplasma", RCA Victor Res. Report 7-801-29b, _y (196A).

Publications U_er Contract

I.P. Shkarofsky a_i T.W. Johnston, "Cyclotron Harmonic Resonances 0b-

served by Sa_ellites", Phys. Rev. Letters 15, 51-3, July 12
(1965).

T.W. Johnston and I.P. Shkarofs_, "Resonances in Ionospheric _%o-

plasma", RCA Engineer 11 , No._, December (1965)/January (1966_52-55;
also Proc. of Second AAS Syrup. on the Interactions of Space

Vehicles with an Ionised Atmosphere (to be published).

I.P. Shkarofsky, "Dieleotrio Tensor in Vlasov Plasmas Near Cyclotron

Harmonics", Physics of Fluids 9, No.2, February (1966).

I.P. Shkarofsky, "Dispersion of Waves in Cyclotron Harmonic Resonance

Regions in Plasmas", Physics of Fluids 9, No.2, February (1966).

T.W. Johnston and I.P. Shkarofaky, "Excitation of Cyclotron Harmonics in

a Warm Plasma", (Abstract only), Bull. Am. Phys. Soc. Serie s If,

10, o.2,p.231(1965).

T.W. Johnston and I.P. Shkarofsky, "Time Decay of Cyclotron Harmonics",
Abstract only), Bull. Am. Phys. Soc., Series II, 10, No.5, p.611
1%5).

I.P. Shkarofsky, "Dispersion of Waves in Cyclotron Harmonic Regions"

(Abstract only), Bull Am. Phys. Soc., Series II, 10, No.5, p.597
(1965).
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I.P. Shkarofsky and T.W. Johnston, "Applicability of Cyclotron Harmonic

Dispersion Functions", (Abstract only), Bull. Am. Phys. Soc.

(1966). be pubZish .)

Reports Umler Contract

I.P. Shkarofaky arid T.W. Johnston, "Satellite Cyclo_on Harmonic Resonances",

RCA Victor Res. Report 7-801-35, March (1965).

I.P. Shkarofsk_, "Duration of Cyclotron Harmonic Resonances Observed by

Satellites", RCA Victor Res. Report 7-801-_, January (1966).

Talks Under Contrac t Given b_

T.W. Johnston, "Applicability of Cyclotron Harmonic Dispersion Functions"

Plasma Phys. Div., Am. Phys. Soc., San Francisco Meeting, Nov. 11
(1965).

I.P. Shkarofsky, "Cyclotron Harmonic Waves and Dispersion Functions",

given at MAssachusetts Inst. of Technology, Research Lab. of Elec-

tronics, Cambridge, Mass. November 2 (1965).

T.W. Johnston, "Resonances in the Ionosphere Magnetoplasma", Second AAS

Syrup. on the Interactions of Space Vehicles with an Ionized Atmo-
sphere, Miami, Florida, November 27 (1965); also Can. Syrup. on

Plama Physics, NRC (Ottawa), October 13 (1965).

T.W. Johnston, "Time Decay of Cyclotron Harmonics", Am. Phys. Soc., New

York M.et , June 25 (1965).

I.P. Shkarofsky, "Dispersion of Waves in Cyclotron Harmonic Regions" Am.

Phys. Soc., New York Meeting, June 25 (1965).

T.W. Johnston, "Excitation of Cyclotron Harmonics in a Warm Plasma",

Plasma R_Ts. Div., Am. Phys. Soo., New York Meeting, November 7
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II. CORRECTIONS TO PREVIOUS WORK

Re_ort 7-801-35 (Part 1)

Page 8, Eq.(10a)

Original Corrected

P_ 8, sq.(1_)

P_e lo, zq.(16b)

P_ 21, zq.(31_)

Page 25, 2n4[Eq.

n
z =p

Figure Ib

Re_ort 7-801-35 (Part 2)

Page 1

Pages 10-11

Omit "Furthermore, ....... three", since a more careful
analysis shows the existence of a third wave. See

Apper_ix II of this report.

The _ integration is incorrect since D is a function of
k.V or of $ as well.
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Repot 7-8oi-35(P_t 2) cont'a.

should be

7z _i-_¾+_,/= . . 3z +,/-_n+V+zn+,/=

Page 1.5 See Appendix II of this report.

Pa_e 17, Eq.(22e) u = =b should be _ = 2_b

Page 19, 2ncl line,

2_ par.

After "value" insert "for n > 2M; (see also correc-

tions below for Figs. 3a and b).

Pa_e 28, Eq.(29b) Same oerreotions as for p.1 3.

Pa_e 33, Table 3 The word "Exaot" refers to e >> uT sinoe only then is
the wave sufficiently localised that one In term in

the e_sion is sufficient.

Figs. 2a-f These figures are incorreot since they are base_ on

Y_bei_ positive whereas it is aetually negative.

For oorreoted versions, see AppenEix If.

_ig. tan _'_ _ou]_ be t_n _=_

Xe_t _-801-35 (part 3) (lee main I_ ot this repce.t)

2,_,z _ _,_....io_.,..o_t_n___sj!,_.,..si-,l£_26:i)_

Pa_e 51, Ist par. "equal to one" should be "usually equal to _"



Page 51, end of

last par.

After "small" insert "that is usually less than

100 v2Jc2" .

Page 53, beginning
of 2n_

psro

After "n _ 3" insert "for forward waves, but it can

nearly always be accomplished for backward waves

Figure i The word "spurious" refers only to the A<<I part

of the curves, since for larger A_i, relativistic

theory also shows that the same extra wave exists
below the harmonic. (See Appendix II here. )

Page 52, 2nd last

par.

Pages 52-53

Change "less than 3 by a factor fJoVA" to "about
the same order of magnitude as 3" (see thip/report).

A_sochange "(_j'cv,.)'" to "(_t/ov'_)(v_./o)'"

The equations for E_rl and E. have to be modified as
given in this report. As an order of magnitude

correction, the right hand sides can be divided by

)½~ _t/

which for the times cf interest is of order one.

Hence the results in the calculation given in the com-

parison with experiment are numerically unchanged.

The changes on pages 52 and 53 are due to the incorrect

integration used previously in the satellite frame
of reference. Although the dispersion (D) relation at

a pinch point does not depend on _'V or $, nonetheless,
its expanded form around the pinch point depends on $.

This is the same as saying in Section II, that

2 ! Z

a'D/a(k_,)" an_ a _/a(k_:)

involve net only

a'D/a(k;)'butalsoo'D/_'

As mentioned above, the corrections do not affect the
results for the time decay.


