NASN-116

Effects of Different Field Expansions
on
Omnidirectional Proton Counting Rate Data

Investigations have been made at the Space Sciences Laboratory at the University of California, San Diego (UCSD) to determine the effects of improved expansions of the earth's magnetic field on data that have already peen reduced using the previous 49 -term expansion. Two new expansions have been used, the Jensen and Cain, (1964) expansion of 64 terms and the more recent 100 term one. (Nain, et al, 1965 , Henaricks and Cain, 1966). The dieferences in the magnitude of B using the different expansions are small for the most part. Some direct comparisons are seen in Table 1.

Table 1
Effects of Different Field Expansions
Long. Lat. $\quad B_{49}^{*} \quad B_{64} \quad B_{100} \quad 100\left(B_{49}-B_{64}\right) / B_{49} \quad 100\left(B_{49}-B_{100}\right) / B_{49}$

0	-30.	.58222	.52500	.52614	0.4008	0.1836
0	-10.	.57397	.57077	.57182	0.5598	0.3756
0	0.	.56139	.55809	.55875	0.5900	0.4726
0	+10.	.53778	.53548	.53598	0.4303	0.3370
0	+30.	.49308	.49352	.49327	-0.0894	-0.0377

${ }^{*} B_{V}=B$ calculated from N - term expansion.

At some locations, the percent difference is $2-3 \%$. However, this does not give an indication of the effect of the field changes on the counting rate distribution in B-I space (McIlwain, 1961) for charged particles. Three methods can be used to demonstrate the effects:

1. An effective change in B can be defined which reflects the changes in counting rates to be expected at a given location in $\bar{B}-\overline{1}$ space.
2. New counting rates can be computed at given points in space at which rates based on the old expansion are known. These two rates can then be compared directly.
3. Actual data points can be used to re-calculate B and L. These points can then be analyzed in the same marner as the original data.

The first two approaches have the advantage of producing curves which show the expected changes as functions of position, but they do not give any idea of the effect on the scatter of data from fitted curves. Therefore, an analysis of type (3) must also be conducted since this last result is an important direct measure of the value of using a particular field expansion.

Certain constants are needed for use with the first two techniques. To compute these, omnidirectional counting rates from Relay II were fitted to a least squares curve for several values of the magnetic parameter L. From these curves, the partial derivatives of the logarithm of the counting rate with respect to both B and I were found.

1. For a given set of geographic points, B and L were calculated using first the old expansion and then the newest (100-terms) one. Counting rates were found for these B, L coordinates from the least squares curves, and an effective ΔB was defined as

$$
\Delta B_{\text {eff }}=\log \left(\frac{J_{49}}{J_{100}}\right) /\left(\frac{\partial \log }{\left.\frac{\partial J_{49}}{\partial B}[1 \text { per second }]\right)}\right)
$$

and this was plotted against longitude for varicus ratios of $B / B_{0} \quad\left(B_{0}\right.$ is the minimum value of B on a giver line of force). The results for $L=1.6$ appears in Figure 1. The effective ΔB was, on the average, 2-4 times greater than the actual change in B.
2. For the next comparison, a new counting rate was defined
as

$$
J_{n}=J_{49} \exp \left[\left(B_{49}-B_{N}\right) \frac{\partial \log (J)}{\partial B}+\left(I_{49}-I_{N}\right) \frac{\partial \log J}{\partial L}\right]
$$

where $J_{n}=$ counting rates N N-Term expansion

This represents the predicted counting rate for the same position using the new expansion. Then the quantity

$$
\phi_{0} \Delta J=\left(J_{49}-J_{n}\right) \times 100 / J_{n}
$$

was plotted against longitude for several values of B / B_{o} and $L=1.6$. The results are shown in Figure 2 for the cases where N is 64 and 100 .

For the ratios of B / B_{0} much greater than 2 , the $\% \Delta J$ increases rapidly, but the actual values of the counting rates also decreases rapidly, and the least squares fit upon which the analysis is based, becomes less accurate.
3. As can be seen from Figure 2, the fractional changes are approximately $\pm(1-2) \%$ for both cases. If these changes are in fact due to errors in the old 49 term field then a significant reduction in the scatter of data should result from the use of the newer field representations. A great deal of computer time would be required to recalculate B and L for all points in a given region from the satellite. Instead, the points that have been interpolated to standard values of L are used as these form a much smaller set. The new values of B are kept with the interpolated values of L and a new counting rate defined as

$$
I_{n}=J_{49} \exp \left[\begin{array}{cc}
\Delta I & \partial \log (J) \\
& \frac{\partial L}{}
\end{array}\right]
$$

This type of correction for the changes in L should be sufficient for the small changes expected from Figure 2. These corrections were made on Relay II omnidirectional data for both the 64 and 100-term expansions. The corrected points were then fitted to least square curves as before. The R.M.S. deviation from these curves are given in Table 2. Two values of L and two ranges of B were analyzed. As might have been predicted from Figure 2, the difference between the results due to the two improved expansions is much less than the difference between either one and the uncorrected data. It is also seen that the correction lowers the scatter considerably as long as the ratio of B / B_{0} considered is not much greater than about 3.5. For the case where this was violated $\left(I=2.0, B / B_{0}=3.60-5.14\right)$, the scatter actually increased. This is probably due to two causes. The partial derivative with respect to L is
not known accurately in this region. And the fractional change due to the change in the field is probaily too large to justify the simple correction that was used. In that region it may be necessary to recalculate $B-I$ from the orisinal data before interpolation.

Table 2
Analysis of Corrected Relay II Data

Expansion	L	$\mathrm{B}_{\mathrm{MIN}}^{*}$	$B_{\text {MAX }}$	$\mathrm{B}_{\mathrm{MIN}} / \mathrm{B}_{\mathrm{O}}$	$\mathrm{B}_{\text {MAX }} / \mathrm{B}_{0}$	No. of points	R.M.S. Error	Aver. Error
49	1.6	. 076	. 15	1.0	1.97	184	4.07	3.09
64	1.6	. 076	. 15	1.0	1.97	186	3.01	2.25
100	1.6	. 076	. 15	1.0	1.97	186	2.97	2.22
49	2.0	. 039	. 15	1.0	3.85	262	4.55	3.44
64	2.0	. 039	. 15	1.0	3.85	263	3.94	2.95
106	2.0	. 039	. 15	1.0	3.85	263	3.93	2.94
49	1.6	. 14	. 20	1. 84	2.52	29	3.71	2.80
64	1.6	. 14	. 20	1.84	2.52	28	2.71	2.10
100	1.6	. 14	. 20	1.84	2.52	28	2.68	2.09
49	2.0	. 14	. 20	3.60	5.14	88	5.45	4.46
64	2.0	. 14	. 20	3.60	5.14	86	6.48	5.10
100	2.0	. 14	. 20	3.60	5.14	86	6.30	5.01

*B in gauss

The decrease in scatter is actually more than it seems. If σ_{T} is the total scatter, and σ_{F} is the scatter due to errors in the field, and σ_{O} is the scatter due to all other effects, then

$$
\sigma_{T}^{2} \cong \sigma_{F}^{2}+\sigma_{O}^{2}
$$

If it is assumed that the 100 -term expansion completely removes of then for the first case ($L=1.6$, Low B)

$$
\sigma_{0}^{2} \approx 9
$$

and

$$
\sigma_{T}^{2} \approx \sigma_{F}^{2}+9 \approx 16
$$

This gives

$$
\sigma_{F} \approx 2.2 \%
$$

as the total error that has been removed.
It can be seen from Figure 2 that this is indeed the approximate decrease in scatter that would be expected if the differences in the fields were in fact primarily due to errors in the 49 term field. The scatter using the 64 and 100 term fields is not inconsistent with that expected from causes other than magnetic field errors. It is therefore not possible to estimate the scatter which can be attributed to the errors in the 64 and 100 term fields.

Figure 3 shows how the counting rate varies with magnetic field for the first two ranges considered in Table 2. These curves were plotted using the 49-term expansion.

Abstract

Figure 4 shows an enlarged view of the segment of the curve for $L=1.6$ that is enclosed in the rectangle. Also shown are the points as obtained using the 49-term expansion and the 100 -term expansion.

In conclusion, it can be seen that a significant reduction in the scatter of trapped particle data can be obtained by the use of the newer field representations.

Acknowledgments

I thank Professor C. E. McIlwain for helpful discussion and advice during the course of this work. The work was supported in part by the National Aeronautics and Space Administration Contract NASr-116.

Figure Captions

Figure 1. Effective change in magnetic field versus longitude.
Figure 2. Predicted change in counting rate versus longitude.
Figure 3. Counting rate versus magnetic field.
Figure 4. Counting rate versus magnetic field with scatter of data shown.

References

Cain, J. C., W. E. Daniels, Shirley J. Hendricks, and Duane C. Jensen, An evaluation of the main geomagnetic field, 1940-1962, J. Geophys. Res., 70, 3647-3674, 1965.

Hendricks, S. J., and J. C. Cain, Magnetic field data for trapped-particle evaluation, J. Geophys. Res., 77, 346-347, 1966.

McIlwain, C. E., Coordinates for mapping the distribution of magnetically trapped particles, J. Geophys. Res., 66, 3681-3691, 1961.

