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SECTION 1 

INTRODUCTION
 

The first phase of the work consisted in the design, construction and
 

assembly of a novel ion source for solids, whereby the sample it bombarded
 

with an intense beamof fast noble gas ions, which results in sputtering of
 

the sample material. A fraction of the sputtered material was expected to
 

be ionized. These ions can be accelerated and analyzed in a mass spectrometer.
 

A final report covering the first phase was submitted to JPL on 28 January 1962.
 

The buuunu nUase of the work involved the testing of the ion source wxua 

particular emphasis on operational performance and applicability to the
 

qualitative analysis of different types of solids. A final reportcovering
 

the second phase was submitted to JPL on 15 December 1962.
 

The third phase of the work, which is now completed, dealt mainly with
 

improvements of the source and power supply and the applicability of the ion
 

source for the cuantitativa analysis of solids.
 



SECTION 2 

MODIFICATION OF THE APPARATUS 

2.1 GENERAL 

The first task was the modification and improvement of the ion source
 

built under JL Contract No.' 950118, including the associated power supply,
 

with the aim to permit' operation at higher energies of the primary beam, to
 

increase the density of the bombarding ion beam and to reduce its cross section.
 

Operation of the ion source constructed in the first phase of the investigatio
 

was limited to a beam energy below 15 kv because of flashovers which occured
 

between the duoplasmatron anode and the ion acceleration electrode, or at the
 

einzel lens. As a consequence of those flashovers, high voltage transients
 

reached the duoplasmatron power supply, causing frequent component breakdownas
 

Therefore, the purpose of the redesign was not only to allow operation at higher
 

voltages, but also to prevent component breakdown in case of flashover, With
 

this aim in mindq a new duoplasmatrom and power supply was built.
 

2.2 DUOPLASMATRON
 

A The following considerations led to the new design: The plasma density on 

the axis of the duoplasmatron near the anode increases rapidly with magnetic field 

strength until, after passing a flat maximum it decreases slightly Zn prauuice, 



therefore, the duoplasmatron must lie operated above a minimum magnetic field 

strength to provide maximum plasma density'along the axis. In conventional
 

duoplasmatrons-, the magnetic field is produced by a solenoid of 2,000 to 7,000
 

ampere turns, providing a magnetic field bf the order of 2,000 Oerstedt between
 

the pole pieces. Therefore, replacement of the solenoid by a permanent magnet
 

of equivalent strength appeared to be feasible and oflered the following
 

advantages:
 

(1)- No power supply for the magnetic field is needed. This is especially
 

advantageous because the duoplasmatron operates at a high potential above ground
 

and the power for the solenoid has to be supplied by a high voltage isolation
 

transformer.
 

(2) The heat generated in the solenoid is of the same oAar as the heat 

generated by the 'arc; for a given cooling rate, a higher arc current can be 

drawn if the solenoid is replaced by a permanent magnet.
 

(3) Since the baffle electrode, which forms one pole of the magnetic field,
 

operates at an electrical potential different from that of the anode, which 

forms the other magnetic pole, it is necessary in the case of a solenoid to 

have an additional air gap in the path of the magnetic flux through the iron 

enclosure to provide electrical insulation. For a given magnetic field strength
 

the presence of the air gap requires additional magnetic induction This is
 

avoided if one chooses ceramic permanent magnetic material, which is electrically
 

insulating,
 

(4) There are ceramic magnete on the market which have an exceptionally
 

high coercive force, typically around 2$000 Oarstedt. 'Thus the required magnetic
 

length is relatively small; therefore, less iron is needed, and since the ceramic
 



material itself is much lighter than copper, the whole assembly becomes
 

considerally shorter and lighter than an equivalent design employing a
 

magnet coil.
 

The replacement of the solenoid by a permanent magnet is considered to be 

an important step towards the development of a flyable modal. 

Figure 1 shows the new duoplasmatron in detail. The magnetic field is 

produced by three rings (1), consisting of Indox V, which were magnetized 

axially. The magnetic flux passes through the cover plate (2)into the baffle 

electrode (3), across the gap and through the anode holder (4)and the base 

plate (5)back to the magnet. All these parts are made of Armco iron and are
 

nickel plated. The axial field generated in the gap amounts to about 7,000 gauss.
 

The anode (6)is of copper and carries a .008 inch center hole through which th.
 

ions are extracted. The anode is pressed against the cooling plate (7), also
 

of copper, by the-magnaetic force which the field exerts on the anode holder.
 

The baffle electrode is centered and kept at the correct distance from the anode
 

by a short tubular insulator (8), made of alumina. A copper ring (9)is brazed
 

to the baffle electrode, and six insulated screws (10)'hold the inner assembly
 

together. The cooling plate, the insulator, the baffle electrode with the
 

copper ring, aid a teflon ring (11) carrying two gaskets enclose a circular 

channel (12) for the coolant. A stainless steel flange (13) carries the two
 

fila~ feeithroughs (14) and the gas inlet tuba (15). The filament (16) 

consists of platinum wire mash. This is coated with barium carbonate prior to 

installation; it is subsequently reduced to barium oxide by an activation process.
 



The performance of the new duoplasmatron exceeded expectations.
 

2.3 POWER SUPPLY
 

Figure 2 represents a schematic of the new power supply for the duoplasmatron.
 

The components are mounted within a cabinet with rounded corners in order to
 

avoid corona discharges. The cabinet is insulated from ground and connected
 

to the high voltage terminal. Therefore it has to be placed inside a grounded
 

screen to protect the operator and to shield the other equipment against
 

A distance of four inches between cabinet And acreen eliminates
trnsients, 


the possibility of flashover to ground. Due to the reduced power consumption
 

of the new duoplasmatron, the rating of the 30 kv isolation transformer was
 

reduced below that required previously. As a consequence of the more compact
 

design of the power supply, the total capacitance to ground is also reduced
 

considerably, less electrostatic energy is stored, and any internal flashoverf
 

are less energetic. No breakdown of rectifier diodes, which was the main
 

trouble before has occured with the new power supply.
 

2.4 PRIMARY ION BEAM OPTICS
 

;One of the main objectives of the new design was the increase of the
 

operating volkage. For this purpose the distance between the;ion acceleration
 

electrode and the ion extraction hole in the duoplasmatron anode was increased
 

to an optimum value where the ion beam just missed striking the inner wall of
 

the opening in the apex of the acceleration electrode. This change in addition
 



to a careful polish of all the edges of the einzel lens components permitted
 

the acceleration of the ion beam up to at least 25 kv.
 

Another ob3actLve was the reduction of the diameter of the bombarding beam,
 

With the previous arrangement, the diameter of the primary ion beam at the
 

target could not be reduced t6 lass than 3 mm, mainly because of distortion
 

by the deflection condensers Two alternatives were available to correct this,
 

either to rebuild the deflection condenser in a more sophisticated form, or
 

simpler, to eliminate it completely and let the beam travel down straight to
 

the target.' In this case the target had to be tilted, so that the secondary 

ion optics was'no longer axially symmetric4 Although it was'expected that
 

this latter modification might significantly decrease the secondary ion
 

collection efficiency, this was not the case and this design was adopted
 

accordinlv.
 

'Itwas also considered desirable to operate the center electrode of
 

the ainzel lens at the, same voltage as the anode of the duoplasmatron. Thus,
 

the high voltage feedthrough, a likely source of flashovers, could be eliminated
 

by connecting the center electrode internally with the duoplasmatton anode,
 

This also resulted in the elimination of the voltage divider required in the
 

previous desing; the corresponding decreasein power consumption reduced the
 

rating of the h;gh-voltage power supply4
 



However, the correct image adjustment of the einzel lens had now to be
 

determined by experimenting with several inserts in the center electrode
 

with different inner diameters. With..the'final setting, a beam diameter at
 

the target of about one half of a millimeter has been achieved. However,
 

this intense core of the beam is surrounded by a weak halo of scattered
 

ions. A mask with a one millimeter hole has been mounted above .the sample
 

to prevent the halo of the beam hitting the sample.
 

2.5 SECONDARY ION OPTICS
 

Since in the new arrangement the surface of the target has to be inclined'
 

at an angle of 30 degrees to the previous vertical position,rthesample holder 

had to be redesignad. Again, six samples can be mounted simultaneously, which 

are brought into the primary beam by rotation of the shaft. 

A series of experiments was carried out in order to determine the optimum 

length of the first bubularrelactrode of the secondary ion optics for best 

ion collection efficiency. Zt turned out to be the same as tne one uses in 

the previous arrangement6 



SECTION 3
 

RESULTS
 

3.1 ION SPUTTERED FROM PURE ELEMENTS 

Complete secondary ion spectra up to mass number 350 were taken from
 

the following elements: Al, Ye, Co, Ni, Cu, Zn, Zr, Nb, AS, Cd, Sn, Ta, Pb.
 

Figure 3 is an example of a typical spectrum obtained from a pure iron
 

sample.
 

The samples were made up from the purest elements available. 'All elements
 

were bombarded with 10 kv argon ions.
 

In the following table only those ions are listed which are deduced from
 

the major peaks; the ions known as instrumental background and the ions trom
 

elements present as impuritiea are omitted.
 

Table 1
 

Aluminum:
 

3+ 2+ + +
 
Al , Al & A1 2 0 A120R+, Al3Th A10T Al5 AlJ6. Al A18, A19r, All 0.. 

Iron.
 

, a+ Feo e0 r0 , p#FaG04Fe+FO + ,PO+ VR+ Fe -PF acoa VF 4" '.Fe FeC, Y'eO2, Ye 2 , Ye2Ou, Fe2 0 , Ye 3 , 030. Ye 3 , 32', 



Cobalt:
 

C oo+Ccoo+ , Cooe+ , + +, +O' + co!o+ . CO On+ C0+ 
Co~~~oC~i ~~,Co012 C02 * 0C1 02 20 2oO 0204P0 

00311, 0030) 00301*, 004) co04o+, o *.00500

C O3H+ , C 3 + O3 H + ' C 0+C4 + n 5+ * C5 +*
 

Nickel:
 

,
Ni+ iN.o.H+ +I1 q+, I+, Ni 4 +, Ni5+N i0+.2+ NiO N±20+, Ni+ 3 Ni3O+, Ni40+ 

Copper:
 

2+ + + + + 3-+ + 
, +0u0 u2 , 01+, Cu201+ , Cu3 3OCu , "CuO 2Cu *Cu 0u302 

Zinc:
 

+
+
" , Zn2 02 , Zn23' 3 30+ ZnT302
Zn+,ZnH, nO+, ZnOH + ,Zn2 , Z 2 

Zirconium:
 

Zr+ ZV0+
Z2tfZ +,r + Zr+' +0V + 

Zr*Zr Zr rOZr%"Zr 3 * 2 , 20
 

2+ + + + ~j+ +io4~+ +2*
Nb, Nb , Nb, NbC ,NbO,2 2 21' 2 3+.3
 

Silver:
 

2+,

Ag A92,' 63 A 

Cadmiuia: .
 

. .
cad2 ..Cd+ . ad -d Cd-O+ Cd-+




Tin: 

2+ + +
 

+, Sn, Sn2+
Sn2
 

Tantalum:
 

Ta2 + , TaO +TaO 2 

Lead:
 

P3+P b2+ P + 9 b+
 

Generally, the parent peak of the singly charged ion is by far the largest
 

peak. The intensities of the doubly charged ions and of the diatomic ions are
 

lower by about one order of magnitude than the intensities of the singly charged
 

ions, and the intensities of the triply charged ions and the triatomic ions are
 

lower by two orders of magnitude. Quadruply charged ions were not detected,
 

however higher pblymeric ions have been found, in the 6ase of aluminum as high.
 

as Al10 .
 

A surprisingly large number of oxide and hydroxide ions have been found,
 

It seems to be rather unlikely that these are actual constituents of the sample,
 

since the surface layer, which might contain those components, is rapidly removed
 

by the bombarding beam. Contamination of the bombarding argon beam by small
 

amounts of water vapor and air might cause the production of these ions. A
 

thorough investigation is planned with the new equipment designed especially
 

to reduce the background.
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The following table contains preliminary figures for the sensitivity of 

pure elements relative to iron if the samples are bombarded by 10 kv argon 

ions.
 

Table 2 

Fe 1 (by definition) Zr 0.18
 

Al 65' Nb 2.35
 

Co 0.72 As 0.25
 

Ni 0.56 Cd 1,52
 

Cu 0.18 Sn 0.28
 

Zn 0.61 Ta 0.05
 

Ph 0.45
 

This comparison has been performed with the parent peaks only, which are due
 

to singly charged ,ions. The samples were tested by keeping the primary ion
 

beam as constant as possible and adjusting the secondary ion beam for maximum
 

output of the mass spectrometer. Corrections were applied to compensate for
 

the effect of different voltages used to accelerate the secondary ions. Naturally,
 

the accuracy of this method is rather limited and the measurements will be
 

repeated with the new source, now under development, which will permit a more
 

direct comparison. Nevertheless, it can be seen already that the sensitivities
 

for the majority of elements lie within one order of magnitude.
 

It might be expected that the relative secondary ion yields of the constituents.
 

of an alloy will differ significantly from the relative secondary ion yields
 

obtained from pure elements0 It can be, argued that the probability of producing
 

a sputtered-ion rather than a sputtered neutral particle depends not only on
 

11
 



certain physical properties of the particle, in particular, its ionization
 

potential, but also on certain physical or chemical properties of bulk material
 

as a whole from which the particle-originates, in particular, its work function.
 

Fortunately, it has been found experimentally (See SECTION 3.2.6) that the
 

composition of the supporting bulk material has only little influence on the
 

sputtering yield and ionization of one particular component.
 

3.2 IONS SPUTTERED 	FROM ALLOYS
 

3.2.1 General
 

In order to investigate the quantitative behavior of secondary ion
 

released from the surface of_ alloys, a number of certified samples were obtained
 
- / 

from the National Bureau of Standards.TbThesewere:
 

Iron -Alloys:
 

1TBS Standard #444,' 	62.9% Fe, 0.019% Ti, 0.12% V, 20.5% Cr, 4.62% Mn, 10.17. Ni,
 

0.22% Go,
 

Nbs btandard V40L, 	96.5% Fe, (0.01% Ti), 0,024% V, 0.13% Cr,. 0.36% Mm, 1.73% Nit 

0.267 Co.
 

NES Standard #465, 	99.4% Fe, 0.20% Ti. 0.002% V. 0.004% Cr, 0.032% Mn, 0.026% Ni,
 

0.008% Co.
 

The sample material was supplied in the form of 7/32-inch diameter rods;
 

frbm these, discs of 1/16-inch thickness were cutb The flat surfaces Af the
 

discs to be exposed to the bombarding beam of argon ions were polished.
 

Figure 4 is an example of a spectrum from a steel sample.
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Tin Alloys:
 

NBS Standard #54d, 88.57% Sn. 7.047 Sb, 0.627. Pb, 3.62% Cu, 0.088% As.
 

Sn, 0.79% Sb, 69.0% Pb, 0.004% Cu, 0.129.'As.
NBS Standard #127A, 30.03 


IBS Standard #53d,- 494% Sn, 9.92% Sb, 84.67. Pbp 0.268% Cu, 0.0457.As.
 

These samplezmaterials are supplied in powder .formfrom which Lt.U
 

)elleots were pressed.
 

3.2.2, Effect of sample preparation on relative spectral peak heights
 

The effect of sample preparation prior to mounting in the ion
 

source was investigated with three samples of stainless steel Standard #444.
 

After polishing with emery cloth, the first sample was wiped only with tissue
 

paper, the second was rinsed in acetone and the third was dipped in a 507 

solution of hydrochloric acid, rinsed with distilled water and dried with
 

tank nitrogen.
 

The relative peak heights of iron; chromium and manganese showed 

It appears that any contaminatingno significant variation from sample to sample, 


surface layer was removed in a period appreciably shorter than that required to
 

record the spectrum,
 

3.2.3 Effect of bombarding period on relative spectral peak heights
 

mple of #444 Stainless steel was mounted and the primary
 

seam of 5kv argon ions was switched on. After apperiod of several minutes, 

13
 



which is required for adjustments, the first secondary ion spectrum was
 

recorded; the recording wag-repeated.Vgdy45ifut fot-eriodcdf oe'dhour. 

The relative peak amplitudes remained unc'hanged within the experimental limits
 

of reproducibility. This result indicates that an equilibrium is reached within 

the period required for initial adjustmentsi 

.3.2;4 Effect of primary beam energy on absolute spectral peak heights
 

The spectrum or a sampLe of #444 Stainless Steel was recorded with
 

primary boam energies varying In steps from 5 1w to 25 ki (Figure 5, curve 1),
 

and then a second time, starting from 5 kv again (curve 2). The intensity
 

seems to level off for Fe above 20 kv, while for Cr it dontinues to increase.
 

The higher intensity at the second run maybe the result of surface cleanup
 

Luring the first run.,
 

3.2.5 'Effect of primary beam energy on relative sensitivities
 

From the run described above the sensitivities of Ni, Mn, Cr and V
 

celative to iron were evaluated by dividing the peak height~ratios by the actual
 

Itwas expected that the discriminrelative atomic concentrations (Figure 6) 


ation between different elements would decrease with increasing bombarding
 

energy (See Final Report - Second Phase ; Section 4). For the elements Vanadium
 

and Chromium, wncn nave a muca nigner sensitivity than iron, the curves show
 

indeed a slightly decreasing tendency up to about 20 kv. From there on, however
 

With manganese and nickel this effect is not noticeable.
they increase again. 
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One possible explanation for this behavior might be that up to about
 

20 kv the argon ions loose their energy'close enough to the surface, so that
 

the "apparent temperature" of the surface increases. At energies above 20 kv,
 

they penetrate deeper into the lattice and less energy.is absorbed in the surface
 

layers, so that the "apparent temperature" decreases again.
 

This'result indicates that one does not gain anything by using bombarding
 

energis -higher than 20 kv as far as discrimination between'different elements
 

is concerned.
 

3.2.6 Effect of concentration on relative sensitivities
 

The relative sensitivities ot the main constituents in the three
 

iron alloys were obtained from the mass spectra in the same manner as described
 

in 3.2.5 and compared with 'the actual certified concentrations. The relative
 

sensitivities thus deduced for three different concentrations are plotted in
 

Figure 7 for 10 kv and 15 kv primary beam energy.
 

Generally, it seems that the relative sensitivities of each element
 

tested so far (Ni, Cr, Co, Ti, V) deviate from the mean value byiless than ±50%
 

over the wide range of doncentrations covered. The only exception is manganese,
 

mass number 55, where on one sample a larger deviation has been found. Further
 

experiments will be needed to explain this abnormal behavior. The-isolated
 

points, which are not connected with the'curves are shifted by the instrumental
 

background, which becomes significant at these'low concentrations and tends to
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increase the apparent sensitivity for minor constituents. Extension of
 

quantitative measurements to lower concentrations will be possible with the
 

improved design of the ion source, now under development.
 

Figure 8 shows a similar plot obtained from the three tin alloys. Here,
 

the maximum deviation of the relative sensitivities of the constituents (Cu, As,
 

Sb, Pb) lie within ±281., with the only exception of copper at the lowest concen

tration of 0.00004, which again can be explained by instrumental background.
 

The fact that the relative sensitivities are essentially independent of
 

:he relative concentrations is of extreme importance for the performance of a' 

iuantitative analysis. The beat way to perform such an analysis is to compare
 

the mass spectra.,of the unknown sample with two or more calibration samples
 

of known composition. These calibration samples should consist of the same
 

constituents as the sample to be analysed. The concentration of the components
 

of the calibration samples whould cover a wide range which covers the concentra

tions to be expected in the sample to be analysed. Naturally, before this
 

quantitative analysis can be done, it is necessary to know approximately the
 

composition of the-sample. A qualitative mass spectrum with an evaluation of
 

the peak heights is the first step in this-direction. After the relative 

sensitivities of all components have been measured with the calibration samples,
 

these figures,can be applied to the unknown sample and relative concentrations
 

of its components can be computed. Judging from the results obtained so.far,<

it is expected that in this way the error-in the measured composition can be
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reduced to less than ±50%. The use of a single calibration sample is possible,
 

if a slightly higher error is tolerable. A fair accuracy can be achieved even
 

without any sp2ciaalibration, if the relative sensitivity values of the
 

pure elements are used for the evaluation of. the mass spectra. For instance,
 

the sensitivity ratio Ni/Fe and Co/Fe agreed perfectly, and Pb/Sn within the
 

50% error limit; only the sensitivity ratio' of Cu/Sn as.derived from pure elements
 

was slightly below the value obtained from alloys.
 

3.3 IONS SPUTTERED FROM COMPOUNDS
 

Some preliminary runs were made in order to compare the secondary ion
 

spectrum ofa-,metal with that of soma of 2xs compounas. The element chosen was
 

zirconium, and the compounds were zirconium oxide ZrO2; zirconium oxychloride
 

ZrOCI2.H20, zirconium nitrate Zr(N03)4, zirconium sulphate Zr(S04)2 because
 

this region 6f the mass spectrum is relatively free of instrumental background.
 

The pure zirconium metal was supplied in the form of a rod, 3mm in diameter,
 

from which a short piece was cut and mounted on the samnle holder, The compounds
 

were supplied in the powder form which was'pressed into pellets of 1/4 inch
 

diameter and 1/16 inch thickness, mounted on the sample holder simultaneously
 

with the metal.
 

The spectrum-of the pure zirconium metal showed the peaks listed in Table 1. 

The*Zr+ and ZrO+ peaks were about equally high, and about ten times as intense 

as the Zr0 2+ and Zr2 peaks, the Zr20+ peaks were 'bout ond third as high as 



the Zr2+ peaks. The other peaks were extremely small. Strong outgassing from
 

the compound samples must have occurred, since the chlorine peaks appeared also
 

in the spectrum of the pure element.
 

With the zirconium oxide sample the ibns Zr+, ZrO+ and ZrO2+appeared in 

about the same relative ratio as with the pure metal, however the intensity 

was reduced to about 1/10.- The Zr + peak did not appear-at all, whereas, the 

Zr2 02+ peaks appeared with about the same intensity as the ZrO + peaks. There 

was also a weak 0+ peak, but no 02+ peak. 

'
 The spectrum of zirconium oxychloride showed the peaks Zr , ZrO , ZrCl , 

Zr20 and Zr2Cl in about equal intensities.. Besides these 0+, HO , 07 and 

Cl peaks appeared. 

When zirconium nitrate was bombarded, it comenced to outgas so vehemently
 

that the pressure rose considerably. Intense peaks appeared representing Zr F 

ZrOt and Zr0 2 The ZrO' peaks were about twice as high as the Zr+ peaks. No+ + 
N 'peaks was found, only a weak N peak. 

With zirconium subbhate, only very weak4 peaks of Zr: and ZtO* were found.
 

None of the other constituents appeared.
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"SECTION 4
 

CONCLUSION,
 

The sputtering ion source for the analysis DfE solids, which was built
 

and tested under Contract No. 950118, has been modified and improved during
 

this phase of the contract, in order to allow operation at higher bombarding
 

ion energies (up.to 25 kv) and to reduce the diameter of the bombarded spot
 

on the sample to about one-half millimeter.
 

Extensive runs have been performed to investigate whether the new ion
 

source can be used for a onantitative analysis. The conclusion so far is
 

that the sputtering ion source showed superior performance compared with the
 

standard spark source in regard to precision of the analysis, and it is
 

expected that the -sputtering source will become an extremely valuable tool
 

for solids analysi.s. However, the complexity of the problems and the large
 

number of parameters involved demand still much more calibration work withh
 

awider variety of tesot samples, in order to fully understand the behavior
 

oz tne sputtering ion source ana to evaluate the overall accuracy of this
 

analytical method. So far, the choice of samples was seriously limited because
 

of interference with instrumental background# The reduction of this background
 

is the main objective of the proposed future work
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