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This report surmarizes the work performed in the areas of analytical
formulation, literature research, and digital simulation through the third quarter
of Contract NAS 5-9195., The first two items are complete; the formulation is
presented in the accompanying APPENDIX, which is intended for use also in the
final report.

The digital program defined in the Second Quarterly Progress Report,
appropriately modified and extended, has successfully been tested on the GSFC
Moonlight system. Run trials have thus far been restricted to simplified cases;
general system simulation and data evaluation will constitute the major task

for the final quarter.



APPENDIX

This section contains the entire mathematical background for all
dynamic, geometric, and statistical analyses and transformations employed in
this study. Much of the theory is well established by a long history of
documentation; some was taken from recent contributions to the opeﬁ literature;
and certain portions (specifically, the closed form rotational state
transition matrix) have not, to the best of the writer's knowledge, appeared
previously.

The first three appendices contain straightforward means of describing
general angular motion, and Appendix D gives a well known special case solution
to the rotational equations of motion. Appendix E illustrates the precession of
angular momentum due to solar and gravity gradient torques, as described
separately in two recent articles in the applicable literature. Appendix F
discusses some recent literature regarding gravity gradient libration, and
provides a restrictive closed form solution for vertically oriented satellites.
The next two appendices adapt the state variable formulation to rotational
systems, in preparation for the Kalman filtering operations described in
Appéndix I. The last two appendices illustrate the types of measurements

under consideration and their allowable ranges of variation.

List of Major Notatiom*

Symbol Definition

/‘v Effective vehicle area

é; Matrix of coefficients in differential equation for @
.. ij t of A

‘ZEJ ij element o A

*Units for angles and their derivatives are radians and seconds.
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Definition
Transformation from vehicle to fixed inertial coordinates.
nth column of B

Transformation from vehicle to local vertical co-
ordinates.

ij element of C

Transformation from local vertical to fixed inertial
coordinates

Transformation from vehicle to temporary inertial co-
ordinates,

nth colum of G

ij element of G

1 x 6 row vector of partial derivatives 3Y7‘32£

1 x 3 row vector (Hl H2 H3
Angular momentum vector

n x n identity matrix

Unit vector along fixed inertial x-axis
Unit vector along temporary inertial x-axis
Unit vector along vehicle roll axis

Moment of inertia (Kg - meterz)

Orbital inclination angle

Unit vector along fixed inertial y-axis
Unit vector along temporary inertial y-axis
Unit vector along orbit pole

Unit vector along vehicle pitch axis

Unit vector along fixed inertial z-~axis

Unit vector along temporary inertial z-axis
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Definition
Unit vector along upward local vertical
Unit vector along vehicle yaw axis

Unit vector pointing to north magnetic pole of
earth (fixed inertial coordinates)

Unit vector normal to face of sun sensor in
vehicle (vehicle coordinates)

Ux L (vehicle coordinates)

2
Earth dipole moment (amp-meter ; fixed inertial
coordinates)

Sensitivity vector in the plane of L and U
(vehicle coordinates)

Orbital rate

m x n null matrix (subscripts omitted for m=n = 1)
Solar pressure (newt. per meterz)

Uncertainty covariance matrix

Vector from center cof pressure to center of gravity
in vehicle (meters; vehicle coordinates)

Magnitude of Q
nth component of Q

Vehicle position vector w.r.t. central force field
(meters; fixed inertial coordinates)

Magnitude of R
Coupled yaw-roll libration frequencies
Unit vector toward sunline (fixed inertial coordinates)

Unit vector toward sunline (temporazy inertial coord-
inates)

Unit vector toward sunline (vehicle coordinates)

time



e

Unit vector along sun sensor slit (vehicle

coordinates)
! Unit vector along (S" x U) (Vehicle coordinates)
y—‘- Recursive optimum linear estimator
x| ,Xz }Xg Position state variables (Buler angles)
Xq,Xs ,)Q Velocity state variables (roll, pitch, yaw rates)
X 6 x 1 state vector
% Variation of X from reference value
Y Observable
% Variation of Y from reference value
Z : 2’ Coupled yaw-roll libration amplitudes
}n Initial value of (nth) angular displacement from
local reference.
K’dh\r 5 & kv Angles between reference vectors for rotation analysis
of symmetrical satellite
ﬁ Earth dipole magnetic flux density (webers/meter? ;
fixed inertial coordinates)
é/ Earth dipole magnetic flux density (temporary
» inertial coordinates)
= Earth dipole magnetic flux density (vehicle

coordinates)
nth component of é

Transformation from local vertical to temporary
inertial coordinates

nth column of _C

Variation

82,8 3 Roll, pitch, and yaw libration angles
Angle between S" and U

Time—varying orientation matrix for torque-free
symmetrical satellite

4
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Subscripts
1,2,3
XQY’Z

m

True anomaly
Vehicular elevation angle

Gravit tionfl constant of central force field
(meter”/sec”)

Lwx 1077 henry/meter

Dynamic coefficient ( /secz)

Dynamic coefficient (dimensionless)
Force due to solar pressure (newtons)
Standard deviation (general)

State transition matrix

ij element of g

Coupled yaw-roll libration phase angles
Vehicular azimuth angle

Longitude of ascending node

Spin and precession rates for torque free symmetrical
satellite

nth component of wvehicle angular rate vector
(n=1,2,3)

Argument of perigee of vehicle orbit
Precession rate

Sidereal rate

Pertaining to x,y, and z axes, respectively
Pertaining to x,y, and z axes, respectively
At time of mth observation

Orbital, initial

pertaining to sun

vector

matrix



Superscripts Definition

n Observed or apparent value
(~ ) Error in observed or apparent value
(+) Immediately after an observation
(<) Immediately before an observation
( )T Transpose
() Pertaining to temporary inertial coordinates
(@L Pertaining to vehicle coordinates
—'r T Vernal Equinox T
[-,] u Orthogonal transformation matrix corresponding to a

positive rotation of (¥)radians about the u-axis.



APPENDIX A
CO-ORDINATE REFERENCES

As explained in the INTRODUCTION, the need for an inertial attitude
reference has prompted the use of the familiar celestial sphere. For earth
satellites the earth is considered as the center of the celestial sphere, but
it is permissible to have the sun at the center for solar orbiters.[}’i]
In either case the reference radii have fixed directions in inertial space,
since (as previously discussed) the entire analysis can be conducted on the
basis of a somewhat idealized astronomical geometry. OSpecific analytical
interpretations of the celestial sphere for earth satellites and solar orbiter$

are described separately as follows:

Earth satellites. TFigure illustrates a co-ordinate frame having an

inertially fixed orientation (right hand set defined in terms of the vernal
equinox and the north geodetic pole as shown) and a local vertical frame (right
hand set defined in terms of the orbit pole and the instantaneous upward
local vertical), with the orthogonal transformation.g:between these frames
defined by the commonly designated amgles.[A'"z_‘.l Since the solar "orbit"
is characterized by zero nodal longitude and an ecliptic inclination angle
(is), the unit sunline vector in fixed inertial coordinates is

cos B¢ (a-1)

S = Jcos is sm Og
sin Ly s O

where (es) is determined by the time of the year past March 21.

Solar orbiters. With the sun at the center of the celestial sphere, Fig.

is re-interpreted to account for the following modifications:

(1) The sunline in vehicle co-ordinates is along the downward local vertical.
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(2) The reference line for the true anocmaly (®) is the perihelion.

(3) The fixed inegtial z-axis is the pole of the ecliptic. The orbital
inclination (1,) is reinterpreted accordingly.

With the above definitions it is now possible to present the remaining
attitude formulations, which are uniformly applicable to earth and sun orbiters.
If the transformations from vehicle axes to fixed inertial and to local vertical

coordinates may be designated as B and C, respectively, it follows that

E:Qg (A-2)

Since the attitude determination procedure involves a formulation in
terms of nonredundant parameters (i.e., state variables), we are interested
ultimately in a set of Euler angles’ rather than the direction cosines them~
selves, Theoretically there is great flexibility in the choice of Euler angle
arrangements and sequences, but the overall transformation must be defined such
that the well-known singularity problem will be avoided. A convenient non-
singular definition of the transformation is derived as follows:

During the "present" interval (i.e., bt

attitude relative to its true previous (tm_l) orientation is given by

G =B' B (A-3)

= =m- =

<t < tm) the true vehicle

Combined with equation (A-2) and the definition of the known, independently time-
varying matrix D (Fig. ), it follows that
G=IC (A-4)

where l; is the time-varying matrix defined in figure . It can thus be seen
that Euler's equations of motion (which, to look ahead for a moment, contain
torques that vary as a function of g-and g) can be written in terms Qféé

and other transformations which depend only upon the current translational
*Although there are other three-parameter sets of attitude variables!-A-'B-‘I there
are no all-attitude three-parameter sets without singularities or discontinuities.

It follows that Euler angles represent as suitable a parameter set as any other
known formulation,




SHIFTING INERTIAL REFERENCE

AT TIME tgm.; ,

8
AT TIME t » B =D C

¢ & 8T B:=TIC

=m-| = o
010 0
A T T : ¢ 100
r 2 b 2L _ 1001 {i6m-1-8
= =m-| =m-| m||00 m 010

EQUATIONS OF MOTION

EULER'S EQUATIONS:
T
Lnwy + (Iyo-T o ow 3B/ '3’°3,n+2°3.n+|(1n+2'1n+|HP[Q xB' 8],

EQUIVALENCES:

T . T ' T '
[0‘8 s] %Up & i42S "9y 844, 8

€8 (Inpo-Ionn )71,

STATE VARIABLE FORM:

.
n*€n (~wpy “’n+z+3i‘r3 Snt2 1‘3 Gnt1 /1) 4+ y Yoti,n Snt2 S'

T '
- : L2,3
n+2.n n+| 8 n* .-
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motion and the rotational motion which occurred prior to the interval under

I') are

consideration. Since these other transformations (gm-l’ erl’ 1

obviously known during the present interval, the torques in Euler's equations
can be considered as known functions of 8. This matrix, in turn, can be

written as a sequence of roll, pitch, and yaw turns;

-], [5] [= ],

For non-spinning satellites these angles cannot grow to large values (in
particular, Xé cannot grow nearqgéi) during any reasonable measurement interval.
For spinning satellites, the arbitrary nomenclature of the three vehicle axes

can easily be chosen w.r.t. the initial.é;- matrix such that, for a given initial
vehicle angular rate and a given dynamical environment, the angle (Xé) could

not grow near 19@ during a specified measurement interval. This convention
therefore maintains a well-defined set of Euler angles.

A nonsingular three-parameter set of attitude variables can therefore
be obtained by using a temporary inertial reference, which is repeatedly shifted
to the orientation corresponding to the time of the most recent measurement.
With this formulation, the rotational equations of motion can be written with
forcing functions (torques) which vary as known functions of well-defined
Euler angles (Xl, X,, and X3)' Attention will now be drawn to the form of

these forcing functions and the resulting form of the dynamical equations.



APPENDIX B

EULER'S DYNAMIC EQUATIONG

The present investigation is aimed primarily at establishing the
feasibility of minimum variance attitude determination, rather than a rigor-
ously precise simulation involving complete characterization of all higher order
errors and anomalies, In the interest of obtaining a computer program with
a minimum of time-consuming numerical integration routines, the analytical model
idealized to some extent wherever the simplifications do not affect the
magnitude of the torques to be encountered.

An orbiting satellite with a non-spherical inertia ellipsoid
experiences a well known torque due to gravity gradient. It can be shown that,
for an ideal inverse square law gravitational field, this torque is¥*

L33 £32 (I3-1,)] (B-1)
I% = (3/4//13) L3, €33 (T,-I3)
Laz €31 (I,-1,)

As a simple illustration of this expression consider a satellite with

z-axis symmetry (so that I2 = Il) and with 13 < Il' When the vehicle is nearly

aligned with local axes the small angle transformation matrix C has nearly skew-
symmetric off-diagonal elements. If k has a positive projection on the gv axis,
then (‘23) is positive; (532) is therefore negative, and Tﬂl is positive,
essentially proportional to (523). This tends to align k with the local
vertical axis K .

—v
*Actually it is shown in reference B-1 that small gravity gradient torques can
be present even when the three principal moments of inertia are equal. Another
complication arising from non-ideal geometry is the change in torque due to a

non-uniform gravity field. Gravity gradient torques «ith an oblate earth are
analyzed in reference B-2.




In addition to the above torque due to gravity gradient, there is a
torque due_to solar pressure when the vehicle cg does not coincide with its
center of pressure. Assuming specular reflection from a homogeneous spherical
surface, the appropriate force (£ ) is the product of the effective vehicle
area (Av) multiplied by the solar pressure (0.9 newton per square meter at 1.0

the square of
AU, and inversely proportional toh§olar distance). D&éﬂ The lever arm is the
cross product of the sunline vector §f with the vector Q extending from the
pressure center to the cg; it follows that the sclar torque is
T, =r,(228") =p,(QAxR'S) (8-2)

Fig. demonstrates the substitution of these torques into Euler's
equations of motion.[B~h] Combined with various vector identities 2nd
simplifications in notation, these rotational equations are then rewritten (as
suggested in Appendix A) in terms of the vehicle rates and known functions of
the Euler angles. The specific relation between these angles and the vectors

is given at the beginning of the next appendix.

13



APPENDIX C

EULER'G GEOMETRIC LQUATICOHD

Figure shows the transformation from vehicle axes to the temporary
inertial coordinates which correspond to time tm—l' In accordance with
equation (A-5), the sequence of rotations has the order (x,y,z); the expanded

version of equation (A-5) is

-coSX3COle sinX;coSXl %asxasinxzsinxl 3‘"«353 “x'_ stssi "XLCQS x' \
G = |-sinfzosX,  easXycos) -sinkgsinlzsin), aosx3sinx‘+sh¥95i|kmsx. (c-1)

sin X, ~cosX, sinX, eos Xy casX) |

The first expression for the angular rate vector @ in figure , follows
immediately from the diagram and the conventions adopted; from the diagram and

equation (C-1) it also follows that

i' = i cos X *+ J& sin X (C-2)
and
. \
- - : — 4 <) + A& LCs ]
ko k= isinX, + cos X (CdambirkesX) o
Collecting the coefficients of i,J, and k,
) - - - -
XH i ‘4);'I -X, - X3 sin XZ i (C-4)

X5 g W, = -5(lcos><. + 5(3 sin X, ‘—Osxz_

Xe W3 -).(3 cosX'cosXZ-k?_ SinX,
and it can be verified by direct substitution that the position state variable
derivatives are given by the expressions at the bottom of figure . In these
expressions the appearance of the tangent and secant of (X2) clearly illustrates

the singularity which would arise if (X2) were allowed to approach a right angle.



T

EULER'S GEOMETRIC EQUATIONS

: AXES AT (t)

K .: AXES AT (tm-)

w= =X, i X, j; X3 kg,

W=X i-X,(j COS X, +k SIN x.)—k,[j SIN X,+COS Xz ] SIN X, +k COS Xu)]

STATE VARIABLE FORM:
X)=-X4+ TAN X3 (XgCOS X -X 5SIN X;)

XZ'-XS Ccos X.-X‘ SIN X,
X3 = -SEC X, (Xg COS X, -Xg SIN X, )

15




APPENDIX D

RESTRICTIVE SOLUTION TO EULER'S EQUATIONS

For a torque-free satellite with dynamical symmetry about its x-axis
(i.e., I, = I = I), Kuler's equations of motion reduce to
‘:)I"" O3 I‘:"a =-(I-DwW; ; I‘:)3= (I!-I) W, &, (5-2)
The solution to these equations can readily be expressed in terms of a spin rate
(G)A ), a retrograde’* precession rate ( MB)’~ the angle (&) between the spin
axis (i) and the angular momentum vector (h); and a spin phase angle (UJA tA ).

These constants are defined by the initial angular rate vector @ o 25 follows:

Wp= - Ty, (D-2)
WR = I' w, sec O(/(I,—I) = - (L /I)wo. sec o (D-3)
X = Arctan {I(‘)’!}/Ilwln} 9 O X &N (D=4)
Wty = arctan(w,, 3“’03) (D-5)

where

£2(1-D/1 e

A 2 2
wﬁ} -t \/Ooz t Q. (p-7)

and the double argument inverse tangent of (D-5) is defined as the inverse

tangent of the ratio ( W, , / (4)03 ) with the quadrant dictated by the
algebraic signs of the numerator and the denominator. In terms of these

constants, the solution to (D-1) may be written as

W, =W, = -w,/¥ (D-8)
Wy = —A W (g+1)tan o /¥ (0-9)
Wy = ~A_ W, (Sr)tan o/ § (D-10)

in which (As) and (Ac) are defined as the sine and cosine, respectively, of the

¥ThHe ¢ase (I, S 1), corresponding to spin stabilization about the major principal
axis, is typical of most space applications.

16



composite angle Q)A (‘t"'tA) . It is also noted that

W, = W,, cos(swt)- g sin(sat) (D-11)
6_)3 = wOZ S;Yl (?U,t> "" ")03 cos (g&)‘t) (D—12)

This formulation corresponds to the XYX Euler angle sequence,

Z 2 [“)Bt]x [‘ ‘f] y [’ wy (£ + tA)]/x_ (D-13)

and it can easily be verified that the derivative of this matrix is equal to the

product,
% %As “sAc 1l o ocgh - Sughs
Z = -8 AB+LABs -AB A ABs| |-« WA, 0 -atolg| (p-14)
-8B, -AB+AB.  AB LA 1| %s @ A @-qly O

where the subscripts ($,¢) again denote the sine and cosine, respectively, of

the angles contained in (D-13). The correspondence between the off-diagonal

terms of the above skew-symmetric matrix and the angular rates of (D-8) to (D-10)
is easily established from the defining relationships given earlier. It follows
that the premultiplying factor on the right of (D-14) is a closed form solution for
vehicle attitude, complete to within a premultiplicative*® constant matrix.
Obviously, to satisfy the initial conditions, the complete transformation from

vehicle to inertial co-ordinates must be

B-= ER[QAtA] [“] y [‘4);(] [' «1} [—wA (t+t, ] (B-15)

*Postmultiplication of by a constant matrix would destroy the differential
equation relationship for a transformation from vehicle to stabilized co-
ordinates.

17



where gk is the value of _B_ at the reference time.
The following comments will facilitate a rigorous interpretation of the
preceding analysis:

(1) The angular momentum vector in vehicle co-ordinates,
£=.‘:I,@,+I(iwz_+)i“’3) (D-16)
has a magnitude of ( I, @, S€C & ) The conventions adopted here ensure
that, since ( @,, ) and (S€CX) always have the same sign, this expression
cannot of course be negative. It is easily verified that (Z& ) has only an
X - component. -

(2) The phase angle wAtA is equal to the angle between h and the
initial k axis. By including this in the transformation, it is insured that the
intermediate y-axis is indeed perpendicular to the plane of h and the initial
vehicle x-axis. This paves the way for the middle transformation in (D-13).

(3) By definition, the algebraic signs of (wo. ) and (€os &) must
agree. From (D-2) it follows that, when (¥ ) is positive, (QA) is positive
for obtuse ( & ) and negative for actue (&). From (D-3) it can be seen that
(‘)B always turns out negative with the conventions adopted here.®* OSince the
spin and precession rates are of opposite sense in (D-13), it follows that
positive values of ( ¥ ) produce retrograde precession.

(4) TForce-free precession is described in various other references.
[D-l’ D—2] The solution given here for vehicle rates, attitude matrices,
pertinent constants, and all angles, must be regarded as well known. It has

been included here under a unified notation in order to provide a complete

background for the next section (Appendix E).

#This could have been changed by redefining (&), restricting its value to acute
angles, or by one of several alternate formulations. The matrix solution,
however, would have to remain unchanges.

18



APPENDIX E

PRECESSION OF ANGULAR MOMENTUM BY SMALL TORQUES

For certain symmetrical spinning satellites under consideration in
this study, a solar pressure model described in recent literature [E~l] is
applicable. When gravity gradient is absent (as is essentially true of solar
orbiters or satellites at ten earth radii), a substantially* regular precession

rate of

@p

(cos® oz)B, A, ‘Ir/(I, @,) (E-1)

acts upon the angular momentum vector. In this case, the transformation matrix
B generalizes to

B =B it [, e outl [, Fogt] - o I e

where ( R \r) is the angle between the 1n1t1a1 yaw axis orlentation and the

reference line V ;

= sgn(B,"Y)Arccos (B5°V) (E-3)

and (0(h ) is the angle between V and the initial angular momentum vector,
i /i (E-LF)
0[ Arccos{[L ol I(“’oz‘rz + T )]/(I Q)O'Sec 0[)} O(°(h £

In this case ! represents the sunline in inertial co-ordinates and \_/,/ is the

same vector transformed through =B__°. Equation (E-2) of course reduces to (D-15)

when (‘)P vanishes. Also, when @p is not zero but (o ) vanishes, (E-2)

reduces to a form quite similar to (D-15); the analogy is nearly self-explanatory.
When no solar torque is present (e.g., if q = 0), the last three

equations are applicable with V redefined as the orbit pole vector and [EQJ

W, = -(¥2)nZ cos ochvcosocﬁ- %sin"oc] f/[(l’rf)wo.] (E-5)

#This formulation is incomplete for simulations of flight duration exceeding one
million seconds; the sunline must remain reasonably fixed in inertial space.

19



APPENDIX F

LIBRATION OF VERTICALLY ORIENTED SATELLITES

The immediate discussion will be limited to rigid satellites with no
active or passive control torques and, for reasons which will be clear shortly,
only circular orbits will be considered.

A non-spinning satellite can be locally stabilized by a gravity
gradient torque which tends to align its yaw axis with the vertical* (see
Appendix B). Stable motion of this type is characterized by an inertial angular
velocity which is nearly equal to the orbital rate, having a direction which
nearly coincides with the pitch axis. By linearizing Fuler's equations for these
conditions, approximate solutions describing the satellite angular motion can
be obtained in closed form.F'_]'J However, while this is valid for sufficiently
small displacements from the reference orientation, the technique is subject
to some unexpectedly severe restrictions.[F_zj In the general case of three
unequal principal moments of inertia, stability is unexpectedly sensitive, even
for circular orbits.’* Since orbit ellipticity would further inhibit the stability,
elliptical orbits are not treated analytically. In general, no effort is made
to use linearization techniques except in conjunction with those conditions

for which the stability restrictiqns are known.

*This is not the only stabilizing mode for gravity gradient torque, but it is
of primary interest here,

##It is of interest to note that bounded (and therefore, stable) mfﬁigf can be
demonstrated by true nonlinear analysis in the symmetrical case,''™ In
following the derivation given in Ref. (F-3) it is important to note that the
energy integral is the Hamiltonian function, which is not equal to the total

energar This latter point is explained in an extended analysis along similar
“lines.t ~41

20




For small angular displacements from reference local co-ordinates,

the following approximations are introduced:

) | 83 = Jz
C= -85 | $) (F-1)
- Sz "8' l

g ] r-c«)' - 4,30, ]
| = -wa vt Ny (F-2)

] |[-wstdN

Substituting these into Euler's equations of motion, retaining only

first order terms,

I, :f. +(I3+I,-I;_)ﬂ 3.3 "*(Is-l-)_)n: 8' =0 (F-3)
Iz5z + 3(1,-Lg)n2s, =0 (F-4)
I, %, - (LG -L) M8, + (T~ I)n28s = O (F-5)

These expressions are equivalent to Egs. (I) of Ref. (F-1), permuted and
modified by appropriate notation changes. A restrictive closed form solution for
small oscillations can be applied under the conditions summarized below:

(1) Only earth satellites are considered.

(2) No solar torque can be present.

(3) The orbit must be circular.

(4) Only small lnl‘téal ﬁgular displacements are alloved;
(zl + 2, < 0.1.

(5) For stability of vertical orientation, I, > I;.

(6) The stability conditions in Ref. (F-1) must be satisfied*:

£5<0; F=0-35-55)0; E=F2+15z,50 O

* ¢ are defined in Fig.

21



(7) Only small initial values are allowed for the derivative (4,):

lo_-n,] < 0.l V3¢, M, (F-7)
and the initial rates ( 3‘ P .83 ) muist be negligible*;

|@o + N6 33 < 0.01(N,2,+/122,,) (F-8)

lwos—“o }l' < 0.0' (n' z|3 +Rzzz3) (F-9)

where
N, = n01/5+ \]T.;_‘\ ; /ZZ: 7, F;—‘E (F-10)

and

2 iz N i I/2
Z) ?{(Rn %D "’(Rg. }35-] 3 Za; = RRZ' 3:) +(R'-ﬂ ?3)1] (F-11)
Yo

Z)3=|(R,, 3,)2f (s Zaﬂ " ; Z23 :[(Kl;s}:)z* (R %3)1] (F-12)

with the R-parameters defined as

R ] nF-ng (s, - 5,33)
Ra) | nE-nZ(1ts, - 5 £5)
R = —— (F-13)
31 S S NG PR P73
R | L0+5) 8513 /72,
—R|3 ] -/Z,Z“ 7)02' (l"fg -5 f, 1’?, §3>T
Rz , 7% -0% (1-£3-55,+5,%3)
= — F-14
Ras| = RZ-2Z | #0-5)5 13/7, —
a3 | 4 (1-5)5, 15 /N,

# This is not an essential restriction. It was adopted to simplify the analytical
form without unduly limiting its scope.
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(8) A1 amplitudes (Z) are restricted to values below one-tenth
radian. This limitation was chosen because of the plurality of unstable points
in Figs. 8 and 9 of Ref. (F-2).

When the above eight conditions are satisfied, the angular displacement

from the local reference can be closely approximated by uncoupled pitch

oscillations,

s, =\__52_l +(é.oz)7-/3§2 nﬂvz COS{@ nt + E} (F-15)

and coupled yaw-roll oscillations,

8' = Z" cos (/1,".' + IE") - ZZ’ cos (th + Tgan) (F_lé)
S3=2Z,cos(nt +¥,) - Z,. cos(nt+ B2) (F-17)
where (see Appendix D for a definition of the double argument inverse tangent)
Y, = arctany doz 3 V35, T, 32} (F-18)
Y, = arctan{-ksl ¥3 5 Kn %) § (F-19)
Y,, =arctan{- Ku %3 ; Rz % ¢ (F-20)
Y3 =arctan {- K3z ;5 Kis %3} (F-21)
Y,y =arctan {'“ Ryz 35 Kos 5’3} (F-22)

These closed form expressions are programmed as an independent check

for the numerical integration of Fuler's equations.
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APPLNDIL G
OTATE VARIABLE EQUATIOND
The state variable forms of Luler's dynamic and geometric equations
are given in Figs. and , respectively. In addition to integrating
these true equations of motion, the similation determines the apparent ctate

from the following relations:

_?" + t"‘"/x\'- (/X: cos f(\l "?s Si“lx\u) |

-)( cos? szmx

-sech&\ cos? Xs sm? )

f['xsx:, +aplE)) 6, B 6, f2)+0.. (6,78 v, 6T
Y e)’ 3,68 (o
SRk + 3n (T )é £V /A4, (6 &, (@)TS

A A\
where X;, X, denote the instantaneous observed state variable and its first

| DD 2D 2 X >

[

time derivative, as determined by the simulated attitude tracking data processor;

IQE is the (ith) columm of the orthogonal matrix,
A A
= [X3l[il-."[xl1( (G-2)
A
-,:i. is the (ith)column of the orthogonal matrix,
A \Tle ' o o o !
= (C o0 1|/l —6 1 @ O o3
E -.-_-m-n) [' ) o][m" ]Z[Q ] O] ( )
and
A \T
A
§./ = -E‘-m-v) S (G-4)

La
Note that E and 3' both are independent time varying functipons, since they

involve only (1) the known observed attitudes in the past and (2) translational
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navigation and ephemeris data which can be assumed known from independent
sources., It follows that equation (G-1) represents the state variable
relationship which can be used in the physical system to obtain the transition

properties derived below.
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APPENDIX H
OTATE TRAIFCITION MATRIZ

The state variable equations are of the form,
[
Partial differentiation with respect to the state variables which correspond
to time to can be written symbolically as

3_)1 /axo = [a_)l/a‘&] [b_x./a_)sojl (5-=2)

Interchanging the order of differentiation on the left side,

A §. (1-3)

IlHH

where

[[+e4
1>

XX /3 o (H-4)

A L ]
= 35/ax (1-5)

The state transition matrix is the solution of (H-3) subject to the

and

>

initial conditions,

0 H-6
(0) = _bb (H-6)

Observed quantities are used throughout because the physical system will

always use the updated estimate as the reference.

As a step in determining the A-matrix, it is convenient to write the

last three state equations as

s\ AN A ATA ATA
Xiva fiEQlﬂuin*s}‘(E )giw.t ) -G-i+|/asj+

A \Tas A \Ta/ .
\)""")"(gl-&z) -g- —viﬂ'i(g.;_ﬂ) S ;  L1=Le3
from which it follows that A

a,. = (34F /”'z)(fJEm(-a)T bﬁt-n u\-z([' ) ] (1-8)

+E 35»1) " ‘@%ﬂ)] §

4

(H-7)
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A
where the vectors ( 9G n / axj ) follow from equatiocn (C-1);

A AN PN
[32/353,] = [93, > ~Gg, 92] (E-9)
A A A AA A A A A\ N
[ag/a)(z] = [§’3 COSXI-‘§25|nX, ) _G_ISW)X' J -9‘ CDSX' (Il—l())
A A A PAY
[ag/a@]:[g,xlwgax;“ G x1 ] (H-11)

In equation (H-11), 1 is the column vector consisting of the

3
components (0,0,1).
Aside from this lower left submatrix, the other elements follow from inspection

of the state equations. The complete matrix is

- . A A Al
ﬁzm/xl —fssocﬁz 0 - <t sinx| hnxzaosX.

Rs cosk, 0 0 0 -wsk  -sinf
A -/X\z sccx_ ?,tanlx\z 0 0 scc/*zsin?, —sc:/x;w‘/x\ﬁ (H-12)
= 24) d4s %43 O -f.?‘ -5,5(}

A N
dg) as; 453 84 0 5%
A
| YT PRy A A 0

In the special case of zero torque and one axis of dynamic symmetry,

-l

the transition matrix can be obtained in closed form. The lower half is
especially straightforward, following from inspection of equations (D-8), (D-11),
and (D-12). The upper half is approached by generalizing equation (A-5) to

allow finite (nonzero) values of the initial Euler angles;
[Xal_ [Xz]y [X']x = [XML[)(OZ“L[XN G (1-13)
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Defining the partial derivative matrices for 1 < j < 3,
[0 o 0 (H-14)

[V;xl ] = |0 -Xs Xic ‘f;jo
O -Xe ‘Xls_j

Ky O Ko
[V, ] =|0" 06 o ] /
Xee 0 ~Xas

Xas  Xac
[Vi X3] = |Xse Xss O 793 ; (H-16)
o O o]

with (s) and (¢) denoting sine and cosine, respectively, (H-I2) can be

differentiated thus¥*:

[ ] (), ) o] + b 6] [l = 7
(o} 531. _ 32‘1.
-5 2y 0 s, §
élj - Slj 0

¥

where ( Si J. ) is the Kronecker delta function. This can be rewritten as

232 G2z =23 [ Xis Frz2 =Xie %13 ~Xrs I Xie Ju
Fn Gz Fs ﬁgj t | XisJ22 X Gz -Xs Fa Xie Jz 1)24 *
o o0 o) Xis@sz-XcFsz  -Xsda X 22

0 &3 -9n 0 -8z & (H-18)

0 da3 —9:2{,: 83 O —Su‘ QG
0 d33 "332 -SZJ' éu's 0

*Equation (H-17) contains the special case conditions X01=X02=X03=O,
substituted into the matrix equations after differentiation.
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It can easily be verified that this matrix relation is satisfied

(under conditions of equations C-1 and H-6) by

r‘fn %o B3| [eosXgsecK, smizseck 0]
%2, $Z: ’PZS - sin X3 cCos X3 0 (H"’)
6&[ CpSZ ﬁi3 -C05x3 tar XZ 5!71)(3 -tanZ ‘.J

A1l that remains is the submatrix ( 3X; /3 o4 ) for 1< i< 3,
which can be determined from a combination of equations (C-1) and the

identification of G per Appendix D:
& =) (<] [opt] 4] [ayter,)] 320
- P A | %

From the elements 8110 815 8315 B3 and 833 of (C-1) it follows that

X, /3‘003' = - (#33 V%32 - 33V 933) sec?X, (H21)

3X2/aa)~ = (V; 33) sec Xp (H~22)

23’

3X3/aa) = - (?uV %,- TV 29,)5ec?X, (5-23)
whers (2n)= 3 mm /3 Wo;  with elements taken from (H-20),

g = & (1-B.) + B, (H-24)

du = A % )es(l- Bc) - o(skch (25
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gg' = XgX kc(\-Bc)+°<; ’ksBs (H-26)
Is2 = Ay(os kot o kB~ & ko B)-A (kB +4kBs)  (=27)
B33 = A (K2R *AZREB, - % ks B )+A (k B, togke B;) (1-28)

in which, finally, (KRg) and (kc) are defined as the sine and cosine,
respectively, of the phase angle (k%ﬁip and the remaining subscripted guantities
above are defined as in Appendix D,

It should be noted that, in the simulation, all transition matrix
elements are computed from observed parameters. (The usual circumflex notation

was omitted sbove, merely to facilitate the presentation.)
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APPENDIX T
KATMAN FILTER EQUATIONG#*
The minimum variance data processing equations are based upon a
linearized representation of the transition from the state at the time of the

last (m-1) measurement to the current (m) measurement time,

2 =% x (I-1)
m =m —m-|
and the relations between observable and state are linearized thus:
N = H 2% (I-2)
—wm — v —wm

For a state uncertainty covariance g and a measurement variance <§:z
it has been showtti_ll that the minimum variance estimator can be computed
recursively as

X® = x© +rwiy (1-3)
where the superscripts (-) and (+) stand for immediately before and after the

measurement, respectively, and

T
W =PH [HpH "] -1
The current measurement produces a step reduction in uncertainty
(1‘) _ _w (-) I-
P = | L, _ﬁ]i (1-5)

and, between measurements, the uncertainty covariance matrix is extrapolated

by the relation

PO =3 PUYT (1-6)

=E=Em=m- =w

Initial conditions for P are provided by assuming a diagonal matrix with

typical values of initial estimation error for angles and their rates. It has

been shown that the diagonal matrix assumption is conservative.[lqz’ 1-3]

*The expressions in this section are specialized to the case of independent
scalar measurements,

.
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APPENDIX J

SUNLINE MEAGUREMENTS AND SENSITIVITIES

Fig. illustrates a sun sensor instrument face (normal to Lg)

with a slit (along the direction of U) having a field of view such that, if

(J-1)
_S.”‘ L,, > cos 640

then the angle (Y) will be directly measureable. The last expression of

Fig. can be written as

cosY=(V6 L /- [Tau]*}" 02y

Taking variations in the observable and state,

—einY 8Y = (1/sin®5){leins| ()7 [ROG/0)8K] L +

&'Tg‘:‘smfr'wsf ) [%()Q/AX;\)SX{_\ _l!} (J-3)

or

8 =(-fsints snY ) (&) B8/ 8Xi N (J-4)
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SUN SENSOR

[ ¢ )
/} >U
Li
ADDITIONAL VECTORS
«A B's-g's’
vh _SXU  SxgU
RN
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where

NE |sing]L + cosYosS U (J-%)
It follows that, for i =1, 2, 3 5
34; = (-1/sin*¢smY )(&')7 (3& /aX;) N 16

T
. A ‘h /
and Y is of course insensitive to X, X5, and X, The row vectors(_s_))g/axi

are determined from equations (H-¥) to (-0 using the conditions

(-,) G = __T_;. J-7
and | :
(L) ()xa; =(K)"sxB, L 1-9)

in which each vector on the right was obtained by the transformation of its
counterpart through the orthogbnal matrix gm_| . With these relations

substituted into the appropriate equations,

(sVag /X, = [0, ~8'B3 5 §'B,] '3-9)
(s g_/‘xl [C"le SB -Smx'§_TBz’ sinX| S’ S'B l’-tDSX.ST '] '3-19)
()798/%:= ['TsxB, , (¢)'s%B, ,(K)sxB]] )
and

24, = (-1 /sin*7 sinY) (-85, + SB,N,) J-12)

o, = (-1/sin* §'sinY)[leosX, §T-B-3-Si"XI§T.B.z)nI +

sin X, §_T_B_' n, - cos¥, §_"§_|n3] (J-13)
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Iy = (-1/sin- § sinY) \7_5'°.5..*5_,)n, +
(K-8 xB)n, +(K'*sxB )]

(J-i4)

The preceding analysis was needed to determine accurate figures for
measurement sensitivities. Instead of blindly applying these expressions
in a complete simulation with an arbitrary measurement plan, however, it is
highly desirable to further the investigation of these coefficients for whatever
insight they will afford at the outset. It has already been demonstrated[g-ﬂ
that the magnitude and the direction of QiTB can be used to precondition the
incoming data, allowing predictions in regard to 1) the usefulness of various
measurements, 2) the approximate "steady state" error for a given observation
accuracy, and 3) the regions where nonlinearity problems can be anticipated.

For this purpose the analysis is continued, with approximations introduced
wherever necessary, in order to provide a final expression of such simplicityl
that the measurement geometry vector can be closely characterized immediately
upon inspection.

First, it is noted that, for non-spinning satellites, the angular
displacement traversed between measurements will be small. Therefore, the Euler
angles will be small. For spinning satellites, the first two Euler angles
(Xl, Xz) will be small if the spin axis is chosen along the vehicle z~axis.*

Therefore K/ = B _ , and

#This does not in any way restrict the allowable direction of the spin axis relative
to the orbit; in the simulation, any space orientation of the vehicle z-axis can be
selected through specification of the initial C-matrix. Use of the z-axis does fix the
spin along a principal inertia axis, but this is not a severe restriction. It

should be noted that this procedure tends to minimize pitch rates, thus avoiding
singularity. Finally, if the x-axis were used instead of the z-axis, this analysis

is still qualitatively correct, as explained later in this section.
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K*sxB, = -37B, o
(T-16

K~sxB, = & )

2727 22 = s'E, o

/ . (J-17)

.’S. 3x Eg- 0

sinX, =0 ; cosX 4| (7-18)

and the approximate sensitivities are given by

3}_7= (1/sints siaY) N x 57 | (J-19)

It is immediately evident that the sun sensor provides information
primarily concerning the angular displacement about an axis normal to the plane
defined by the sunline and the instrument vector N. Recognition of this fact
will be useful for the initial selection of measurement plans and for anticipating
troublesome geometric configurations.®

As an aid in assessment of overall measurement sensitivity, the

approximate magnitude of yT is (|/s°mzfsinY)ﬁle§_”) °(ﬂx§_'/)] va =

B
[in-n)s™s")-(8-5")]"  {oimts+ cotYeody-fisinslics’+ asYeoss u-sF ¥
sin* ¢ sinY - sin*$ sinY

*Consider a spin stabilized satellite with spin axis normal to the orbital plane
which, in turn, is normal to the ecliptic, With one year, the situation will
eventually arise in which all sun sensor measurements will be largely insensitive
to the largest Euler angle of all.
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_ [sin® 5+ cos™Y os?S - (sin® g cosy +os? S cos Y )7 ] e _ |
- sin® ¢ sinY " IsinT]

This leads to two important impliciations in regard to desired measurement

geometry:

1) For a given value of ( § ), the sensitivity is essentially inde-
pendent of (Y ). Since values of Y near 0° or 180° are undesirable (because
the plane of the angle and the algebraic sign of the deviation from nominal are
i11 defined) it follows that angles near 90° form the best measurements.

2) Angles formed with low values of (f ) can be used to some ad-

vantage, but excessively high sensitivities could give rise to nonlinearity.

It remains to demonstrate that these two conclusions are valid when
the vehicle spins about its roll axis (as in formulations in earlier Appendices),
instead of the yaw axis. Briefly, the entire small angle analysis holds for
spin angles of 2Kw(X=1,2,3,°""); the sensitivities M, and 343 are interchanged
for spin angles of (2KaT + T /2); at intermediate spin angles a mere redistribution

of sensitivity results.
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APPENDIX K
MAGNETOMETER MEASUREMENTS AND SENSITIVITIES

A first approximation to the earth's magnetic 1ieid (which is adequate
in this feasibility study) is a dipole with a magnetic moment m, located at the
earth center with a line of action at latitude 78.9° N and the earth longitude
70.1° W. The eastward celestial longitude at the equatorial intersection of the
70.1° W meridian is given in terms of an initial value (¥, ) and the sidereal
rate ( @Wg ) as illustrated in Fig. . This is used to determine the direction
of m by the relation,
ke | [c0578.9%cos ¥y
cos 78.9% sinYe (K- 1)

k.
&3 sS\n 78»70

d - - -

The flux density é given in Fig. 1is easily reduced to

& =(4l/am)K, V)R 2°) (k-2

which, in fixed inertial co-ordinates, has the components (n = 1,2,3):

4, = (ol fam) s - 318 RO %] s

” “
The measured quantities are the components (,65' ) of the vector in

K,

body co-ordinates,

A = B A= QT.B.;_' A= _T-, (k=)
Al =G, & (k-5)
the sensitivities are
" T
8, - 3%!. 87 i=12,3 (K-6)
aX; X: !
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MAGNETOMETER MEASUREMENT

CELESTIAL LONGITUDE OF MAG. POLE .
MAGNETIC POLE VECTOR :

-K-ﬁ ( 78.9°, \Pp)
EARTH DIPOLE FIELD

BV X {4}1‘/47)'&' Kg X V(I/r)}
VEHICLE CO-ORDINATES:

- T = cl A/

Bﬂ .B.n e. E-n E

SENSITIVITY : 0Bj /0X; = ( 3G,/0%;) T8’

APPROXIMATE SENSITIVITY : CROSS PRODUCT OF
B WITH (nTH) VEHICLE AXIS
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where the vector partial derivatives (ﬁﬁﬂ/))(a) are again taken directly from
equations (“Q)ﬁm“and the vector é_ ’ is an independently known quantity.

Again using the small angle approximations in the partial derivatives

()y axi\ it is seen that
n=1:3=[0,G#,-6 47]=[0 A -A"] (k-7)

n=2:¥=[-8" o 4B K5,

n=3: 3= [/z” —,8|” O] | K3

Equation K-b provides accurate values for measurement sensitivities s
whereas (K-7)fok{) can be used for data conditioning criteria. Since _.1_ : is
near the cross product of &  with the (T th ) vehicle axis, three consid~
erations are immediately apparent:

1) A magnetometer with its sensitive axis instantaneously parallel
to # will provide no attitude information.

2) The sensitivities experience their greatest changes at lower values
of the angle between zT and é_ . Readings of magnetometers in these
positions should be avoided to prevent nonlinearity errors.

3) A magnetometer will be most effective when its sensitive axis is
situated such that d T is close to the principal eigenvector of the attitude

f<-1]

uncertainty covariance matrix.

As in the preceding section, the use of a roll spin axis formulation

will not invalidate the conclusions regarding data conditioning.
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