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PREFACE

This Memorandum stems from RAND's continuing interest in the
assessment of reliability. It reports the results of research on the
mathematical theory of tolerance and confidence limits.

The body of the Memorandum is addressed primarily to mathematical
statisticians. The Summary is longer and more detailed than usual in
RAND Memoranda. In addition to summarizing the contents of this
Memorandum, an effort is made to relate the results to relevant earlier

(31,041

studies The Summary is written for the user of statistical
procedures who may not be a mathematician.

The authors, who have been consultants to The RAND Corporation,
performed some of the research for this Memorandum during the course
of the reliability assessment study that RAND is conducting for the
Apollo Reliability and Quality Office, Hq NASA, under Contract NASr-
21(11). Another part was done under the auspices of the Boeing
Scientific Research Laboratories. Therefore, the results described
herein are also being disseminated in essentially the same form, save
for this Preface and for the Summary, as Mathematical Note No. 446

(DI-82-0503) by the Boeing Scientific Research Laboratories, Seattle,

Washington.
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SUMMARY

This Memorandum extends the validity of exponential tolerance
and confidence limits, under certain restrictions, to classes of
distributions based on failure rate. 1In particular, the usual
exponential lower tolerance limit is shown to be conservative for
the increasing failure rate class of distributions in the range of
population coverages and confidence coefficients of practical interest.
Conservative confidence limits are also obtained on the mean.

The rest of this Summary will be devoted to putting the results
of this Memorandum in perspective for the user of statistical pro-
cedures who may not be a mathematician. This involves separating the
material (definitions, theorems, corollaries) that pertains directly
to tolerance and confidence limits from the techniques used in
obtaining these results. Also, comparisons with "standard" procedures
will be made. Certain preliminaries are needed.

let X = (X ceey Xn) denote an ordered (i.e., 0 X <€£X_ <

1’ x2’ 1 2
.. < Xn) sample of times to failure of an item with distribution F,

If L is a function such that
PF{l- FIL(X)] 2 1-q} = 1-q,

we say that [L(X),») is a lower tolerance interval (or that L(X) is

a lower tolerance limit) for the population, with coverage l-q and
confidence coefficient 1-a. That is, the probability equals l-a that
the interval [L(X),®) covers at least a fraction 1-q of the population

of lifetimes. Similarly, if U is a function such that
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PF{F[U(&)] 2 q} = l-a,

we say that [0,U(X)] is an upper tolerance interval (or that u(Xx) is
an upper tolerance limit) for the population, with coverage q and

confidence coefficient l-c.

The qth percentile, §q, of a continuous distribution F is defined

by

F(Eq) = q.

I1f a function S1 satisfies

PF{gq 2 SI(E} = l-a,

we say that [Sl(x),w) is a 100(1-a) percent lower confidence interval
(or that sl(g) is a lower confidence limit) for §q. Similarly, if a

function S2 satisfies

PF{gq < SZ(E} = l-a,

we say that [o,sz(g)] is a 100(l-a) percent upper confidence interval
(or that Sz(x) is an upper confidence limit) for §q.

If, in the above definitions for tolerance and confidence limits,
the probabilities on the left-hand side are greater than or equal to
(2) instead of equal to (=) l-o, then the adjective "conservative' is
added to the term being defined. Thus one speaks of a conservative
lower tolerance interval with coverage l-q and confidence coefficient

l-o, of a conservative 100(l-a) percent lower confidence limit for the

qth percentile, etc.
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A lower tolerance limit with coverage l-q and confidence coef-
ficient 1-o is a 100(1l-o) percent lower confidence limit for the
percentile §q. Similarly, an upper tolerance limit with coverage q
and confidence coefficient l-o is a 100(1l-a) percent upper confidence
limit for the percentile §q.

A censored sampling plan is one in which a fixed number of items,
say n, are placed on life test and the testing is terminated when a
fixed number of them, r (1 £ r < n), have failed. If the life distri-
bution is exponential with mean 86, then the maximum likelihood estimate

of 0 based on the censored sample is

T

A 1
6, ® =% E X, + (n-0)X_|.
1

This can also be written, as on p. 6 of this Memorandum, with X = 0,

0

as
r
2 n-i+l _
er,n(l—() _z : r (Xi Xi-l)'
1

For the exponential distribution with mean €, based on a sampling plan
*
censored at r out of n observations, the following facts hold:
(i) A lower tolerance limit with coverage 1-q and

confidence coefficient 1-a is given by

-2r log (1-9q) ér 0.9)

40

2
X1-o{20)

*
In what follows, z(mo denotes the Bth percentile of the
chi-square distributionxgith m degrees of freedom.
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This is also a 100(1-o) percent lower confidence
limit for §q, the qth percentile.
(ii) An upper tolerance limit with coverage q and

confidence coefficient l-¢ is given by

0.9

-2r log (l-q) er’n

xczy( 2r)

This is also a 100(l-a) percent upper confidence
s . th .
limit for Eq, the q  percentile.
(iii) A lower 100(l-a) percent confidence limit for the

mean, ©, is given by

D>

2r B (®

2
X1 -q(2T)

r.n

(iv) An upper 100(l-a) percent confidence limit for
the mean, 6, is given by

3

2r 8.

r,n

xi( 2r)

Definitions of increasing failure rate (IFR) distributions,
decreasing failure rate (DFR) distributions, distributions whose
failure rate increases on the average (IFRA), and distributions
whose failure rate decreases on the average (DFRA), are given on
pages 3 and 4. If a distribution is IFR (DFR), it is also IFRA (DFRA),
but the converse is not, in general, true. An example is given on

P- & showing an IFRA distribution that is not an IFR distribution.
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The exponential distribution belongs to each of the four classes of
distributions -- its failure rate being constant.

The remainder of this Summary is devoted to relating the results
of this Memorandum to the “standard" results listed in (i) through (iv),
above.

Section 2 gives lower tolerance limits, and lower confidence
limits for percentiles and for the mean for IFR or IFRA distributions.
Theorem 2.3, p. 7, states that if, for IFR distributions, xi_a(Zr) 2
-2n log (1-q), the exponential lower tolerance limit in (i) above is
a conservative lower tolerance limit; if xi_a(Zr) < -2n log (1-q), then
r A

o Br n(g) provides the conservative lower tolerance limit. Similarly
b

for the lower confidence limit for a percentile. Corollary 2.4, p. 9,

r/n

states that if, for an IFR distribution, l-o 2 l-e“1 and 1-q 2 e
then the results in (i) provide conservative lower tolerance and
confidence limits. Corollary 2.7, p. 10, states that the results of
Theorem 2.4 hold even for IFRA distributions, provided r = 1; that
is, only the earliest failure time is used. Theorem 2.8, p. 10,
provides a conservative lower confidence limit for the mean of an
IFR distribution. It differs from the result stated in (iii) by a

factor

2
-Xl_a(Zr)

1 - exp 7n .

This factor being less than unity, the lower limit of Theorem 2.8
is less than that of (iii).
Section 3 gives upper tolerance limits, and upper confidence

limits for percentiles and for the mean of IFR or IFRA distributions.




- -

Theorem 3.3, p. 14, states that if for IFRA distributions, x§(2r) <
-2(n-r+l) log (l-q), then the exponential upper tolerance limit of

.. . . . . 2
(ii) above is a conservative upper tolerance limit; if xa(Zr) 2

-2(n-r+l1) log (1-q), then 8 n(}_g) provides the conservative

n-r+l “r,

upper tolerance limit. Similarly for the upper confidence limit

for a percentile. Corollary 3.4, p. 16, states that if for an IFRA

r
n-r+l

distribution, l-o 2 l-e“1 and q 2 1 - exp{- }, then the results
in (ii) provide conservative upper tolerance and confidence limits.
Theorem 3.3 and Corollary 3.4, holding for IFRA distributions, hold,
a fortiori, for IFR distributions. Theorem 3.5, p. 16, states that

for IFR distributions, the upper confidence limit for the mean given

in (iv) 1is conservative if xi(Zr) < 2(n-r+l); if xi(Zr) 2 2(n-r+l),

then 8 n(zj provides the upper confidence limit. Corollary 3.6,

n-r+l r,
n+l

p- 19, states that for IFR distributions, if l-o > 1-e-1 and r < R

then the upper confidence limit for the mean given in (iv) is
conservative.

Section 4 gives upper and lower tolerance limits, and a lower
confidence limit for the mean for DFR or DFRA distributions.
Theorem 4.1, p. 20, states that if, for DFRA distributions, xi_a(Zr)S
-2(n-r+l) log (1-q), the exponential lower tolerance limit in (i)

above is conservative; if xi_a(Zr) 2 -2(n-r+l) log (l-q), then

r 2 . . P

Sy——) er’n(g) provides the conservative lower tolerance limit.

Theorem 4.2, p. 21, states that if, for DFR distributions, xi(Zr) 2

-2n log (1-q), then the exponential upper tolerance limit in (ii)

is conservative; if xi(Zr) < -2n log (1-q), then % 5r n(&) provides
2

the conservative upper tolerance limit. Finally, Theorem 4.3, p. 21,
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states for DFR distributions, if xi’_a(Zr) < 2(n-r+l), then the

exponential lower confidence limit for the mean given in (iii) is
2

conservative; if xl_a(Zr) 2 2(n-r+l), then a conservative lower

confidence limit for the mean is given by

Xo_(27)
2(n-~r+l) er, n()-o :

3 exp|l -
n-r+1 P
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1. INTRODUCTION

A fundamental problem in statistical reliability theory and life
testing is to obtain lower tolerance limits as a function of sample
data, say X = (Xl’ X2, vy Xn). That is, if X denotes the time to
failure of an item with distribution F, then we seek a function L(X)

such that

PF{I- FILX)]21-q} 21-a.

We call 1-q the population coverage for the interval [L(X),®), and
1- o the confidence coefficient. Also, we want U(X) such that
PF{F[U(K)] 2 q} 2 1-o. Related problems are those of obtaining
confidence limits on moments and percentiles.

Parametric tolerance limits based on the normal and exponential

[1102](3] (4]

distributions are well known. Goodman and Madansky examine
various criteria for goodness of tolerance intervals and certain
optimum properties of the usual exponential tolerance limits are
demonstrated. Recently, a great deal of effort has been devoted to
obtaining various confidence limits for the Weibull distribution.

(5]

Dubey obtains asymptotic confidence limits on 1- F(T) and the
failure rate for the class of Weibull distributions with non-decreasing
failure rate. He also studies the properties of various estimators

(6] [7]

for Weibull parameters: Johns and Lieberman present a method
for obtaining exact lower confidence limits for 1-F(T) when F is
the Weibull distribution with both scale and shape parameters unknown.

Unlike Dubey, they do not require that the Weibull distribution in

question have a non-decreasing failure rate. These confidence limits




are obtained both for the censored and non-censored cases and are
asymptotically efficient.
o [8]
There exist distribution-free tolerance limits based on say,
th s .
the k~ order statistic Xk for certain values of q, o, k and sample

size N. They have one unfortunate disadvantage, however. For given

®, q, k there is a minimum sample size N(w, q, k) such that

PF{l- F(X) 2 1- q} 2 1-«o

[9]

is true only if N 2 N(o, q, k). Hanson and Koopmans obtain upper
tolerance limits for the class of distributions with increasing hazard
rate, and lower tolerance limits for the class of distributions with
PF2 density, £ (i.e., log £(X) is concave where finite). They do not
assume non-negative random variables as we do. In Ref. 10, sharper
results for distributions with monotone failure rate are obtained.
This Memorandum extends and generalizes the results of Ref. 10 and

in the process provides more elegant proofs.

Assuming that the sample data arise from a distribution with
monotone failure rate (either non-decreasing or non-increasing and
F(0™) = 0) or with monotone failure rate average, we obtain conserva-
tive confidence limits for most reliability parameters of incerest.*
These confidence limité are, in part, derived as in the case of the

exponential distribution. In many instances these are optimum

confidence limits when the failure distribution is actually exponential

*
See Chapter 2 and Appendix 2 of Ref. 11 for a discussion of such
distributions and a test for monotone failure rate.
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(Goodman and Madansky ~). They also have the advantage of being

convenient to compute and are not based on a strong, non-verifiable,

parametric assumption.

PRELIMINARIES

Throughout this Memorandum we use the following notation and

assumptions. Let 0 < x1 < Xz < ... % xn 0 =< Yl

denote an ordered sample from a distribution F (G), and define

<Y, < ... sYn)

Xo = Yo = 0. We assume that F is continuous, F(0) = G(0) = 0, and
let G(x) = 1~ e ™ for x 2 0. We say that a distribution F with
density £ is an increasing failure rate (IFR) distribution if its
failure rate r(t) = £(t)/[1- F(t)] is increasing. It is easy to
verify that if F is IFR, G-IF(t) = - log [1-F(t)] is convex where
finite. This motivates the more general definition: We say that

F is IFR if - log [1- F(t)] is convex where finite. Similarly, F

is a decreasing failure rate (DFR) distribution if G-lF(t) is concave

[12]

on [0,®). Barlow and Proschan obtain inequalities for expected
values of statistics based on the exponential assumption when, in
fact, the true distribution has a monotone failure rate.
We will also be interested in a considerably weaker restriction
on F. If F has a density f and failure rate r(x) such that
t

%Jr(x) dx

0

is increasing (decreasing) in t, we say that F has an increasing

(decreasing) failure rate average. We write F is IFRA (DFRA).
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More generally, F is IFRA (DFRA) if and only if

G'lF(X) - log [1-F(x)]
X x

is increasing where finite (decreasing on [0,®)). See Ref. 13 for
additional properties of this class. If F is IFR (DFR) and F(0) =0,
then it follows that F is IFRA (DFRA).

Perhaps a simple example will motivate the IFRA class of distri-

butions. Let

0 , x<0
F(x) = {

(1-e (-5, x20

where k > 1. Then it is easy to check that F is IFRA but not IFR.
This is the life distribution of a structure composed of two substruc-
tures in parallel, the first having k components in series, the
second consisting of a single component, with component life lengths
independently distributed according to the unit exponential distri-
bution. Any ''reasonable" structure built from components having
exponential or IFR failure distributions will have an IFRA failure
distribution (cf. Ref. 13).*

st st

We use the symbol < for stochastic inequality and = for stochas-

tic equivalence.

*
The preceding example also shows that a structure built from
DFR components will not, in general, be DFRA.




2. LOWER CONFIDENCE LIMITS

To obtain lower confidence limits we need the following lemma

which is proved in Ref. 15.

Lemma 2.1:

n n
<
o E a; X, E a; ¢(Xi)
1 1
for all convex ¢ such that ¢(0) < 0, and for all 0 < Xy < ... < x
if and only if
n
0 < E a, <1
]
j=1

for i =1, 2, ..., n. Furthermore, if

whenever 0 < Xy ... < L and

for i =1, 2, ..., n, then ¢ is convex and ¢(0) < O.
The following theorem, an immediate consequence of Lemma 2.1,

is the key tool used in obtaining lower confidence limits.



THEOREM 2.2: If G-lF is convex on the support of F, F(0) = 0 =

G(0) and
n
0 < a <1
s r J
J=1
for i =1, 2, ..., n, then
2 st
F E a,X,| G E a, Y,
i1 i®i
1 1
Proof: By the previous lemma
n n n
-1 -1 - '
G F a. X, ] < a,G FX,) = a,Y!,
i%i i i
1 1 1
where Yi, ceey Yé are jointly distributed as the order statistics

(16, p. 73]

from G. By applying a lemma. in Lehman we have the result.”

Let

r
2 - (n-i+1) _
er’n(&) Z r (xi Xi_l)’
1

and let xi_a(Zr) denote the (1-a)1l00 percent point of the chi-square

distribution with 2r degrees of freedom. If

_= - ~
LX) = 2r2 log (1-q) er n()g’
X1 -of2T)

then

Pol{l-clL(®] = 1-q} = 1-0.




Also define

-2r log (1-9)
2
X1-o{25)

if xi_a(Zr) 2 -2n log (1-q)

l-o,q

o iR

if Axi_a(Zr) < -2n log (1-q) .

THEOREM 2.3: If F is IFR, F(0) = O, F(Eq) q, then

(2.1) PF{I-F[Cl_a’q(r)er,n] 21-q}21-a,

or equivalently,

(2.2) PF{g 2 cl_a’q(r)er’n} 21-a.

q

Proof: Since (2.1) and (2.2) are equiﬁalent, we need only

show (2.1). Note that

r T
Za X, = ZAi (X,-X )
1 1

where

By Theorem 2.2,



when 0 < Ai <1 fori=12, ..., r. Choosing

_ -2 log (1-@) (n-i+l)
B 2
X1-o(21)

A,
i

we have

r r st L

F -2 log (1-9) @-i+1) (X.-X. )| =<¢ ;&_lgg_il:sl.z (n-i+1)(Y.-Y, )
2 (or) b 2 20 P
Xl-o; 1 X].'Q’ 1

when

-2n log (l-q)
2
X1-q(21)

<1.

It follows that, in this case,

p_d1- |2 lor (1-9) & 21-q}21-a.
F 2 (2r) r,n
X1-o

If

-2n 102 (1-9) > 1
2
X1 -o(27)

then let A, = iﬂiﬁill, so that
r

r
;2: . st 12: .
Flg (n-1+1)(Xi xi-l) < 6l3 (n-1+1)(Yi-Yi_1)
1 1

Also,




r
PG{I—G[% Z(n-iﬂ) (Yi-Yi_l)] 2 1- q} > PG{I- G[L(D] 21- q} =1-q
1

so that (2.1) follows.“

Corollary 2.4: If F is IFR, 1—-a 2 1- e.1 and 1-q 2 e-r/n’

then

P {1-F[’2r log (1-) 3 ] 2 l-q} > 1-a.
F 2 r,n
Xy - (20)

Proof: By Theorem 2.3 we need only show

2
Xl-a(zr) n
> % -1 log (1-9).

Let H denote the chi-square distribution with 2r degrees of freedom.
Since H is IFR, H(2r) <1- e-l. This implies xi_a(Zr) 2 2r, i.e.,
xi_a(Zr)/Zr 2 1lwhen l-a>1- e_l. Since 1-q 2 e-r/n’ then

- % log (1-q) S 1. The result follows.||

Theorem 2.3 can be partially extended to IFRA distributions by

using the following lemma proved in Ref. 15.

Lemma 2.5;

) Zn:ai X, < Zn:ai ¢(xi)
1 1

for all 0 < X, < X, ... X and for all ¢ such that ¢(x)/x is

increasing in x if and only if for some k (1 Sk <n), 0 < A1 <

A2 < ... < Ak < 1 and Ak+1 = ... = An = 0, with Ai defined on p. 7.
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The following theorem and its corollary are an immediate conse-

quence of Lemma 2.5.

THEOREM 2.6: If [G-lF(x)]/x is increasing on the support of F,

< € ... £ <1; = ,,, = =
and 0 s A1 A2 A.k 1; Ak+1 An 0 for some k
(1L £k £n), then
n n
st
F aiXi <G aiYi
1 1

Corollary 2.7: If F is IFRA, F(0) = 0 and F(Eq) = q, then

PF{I-F[Cl_d’q(l)Xl] 2 1- q} 2 1-a,

or equivalently,

PF{§q > Cl-a,q(l)xl} 21-a.

THEOREM 2.8: If F is IFR and 6 = Jx dF(x), then
0

2
-Xq _(21) .
P{GZI:I-exp< 1o )] 2r ] }Zl-a.
F 2n 2 r,n
X1-o(20)

Proof: We use the bound

0 , £t <86
F(t;0) 2 b(t;0) ={

-wt
l1-e , £t 280

t

where w depends on t and satisfies fe-w dx = 8; see Ref. 11, p. 28.

0
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By Theorem 2.2,
T

st d st d
G E A (XY, )| 2F E A, (XX, )36| =D E A, (XX, )38
1 1 1

if 0 < Ai <1 fori=1, 2, ..., r. Choose kl-a so that

r
(2.3) PG{G[EAi (Yi-Yi_l)] < kl_a} = 1-a.
1

Then

r
PF{b[E A, (xi-xi_l);e] < kl_a} 2 1-a.

1

Thus, since for t < 6, b(t;8) = l-e-Wt (where w(8) satisfies

Wt

=9),

w

- log (1-k,_
P {w(8) <% 1-0) > 1-a.

Ay KXy p)
1

Since w(@) is decreasing in 8, using the condition just above govern-

ing w(0), we find
r

kl-aZAi XX

> 1
F - log (1-k;_)

Now choose Ai = ¢(n-i+l) where 0 €c < 1/n. Hence (2.3) becomes

r
PG{I' exp['CZ(n~i+1) (Yi-Yi_l)] < kl_a} = 1-a,
1
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implying

- 2 log (1-k1-d) 2
< = X1-¢(21) >

or

Therefore,

2
- CXq. (2r) R
PF{G 2 [l.' eXP< lza )] 22r er n 2 1-0’.
X1-o(20) 7

To maximize the bound subject to ¢ < 1/n, set ¢ =
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3. UPPER CONFIDENCE LIMITS

To obtain upper confidence limits, we need the following lemma

which is proved in Ref. 15.

Lemma 3.1: Assume @(x)/x is increasing in x € [0,b]. Then

n n
@ Eai Xi 2 Zai ¢1(xi) ’
1 1

for all 0 =x_. < x, € ... €£x <b and
0 1 n

n
0 < E a,x, <b,
i7i
1
if and only if for some k (0 <k <n), a; 20, a,20, ..., a,._, 20,

2 = = ,,. = = .
A ® Lo T 4 =0
The following theorem is the key tool used in obtaining upper

confidence limits:

THEOREM 3.2: 1If G-IF(x)/x is increasing on the support of F and

a 21, a, 20, for i =1, 2, ., n, then

n n

st
F E a.X.]26G E a.Y.|-
ii i"i

1 1

Proof: By the previous lemma
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where Yi, ceey

from G. By applying a lemma in Lehma

Y; are jointly distributed as the order statistics
n[16’ p- 73] we have the result.||

Note that F is IFRA if and only if G-lF(x)/x is increasing on

the support of F when F(0) = 0 and

1- e-x, x20
G(x) = {

0 , x < 0.
It will be convenient to let

- 2r log (1-q)
x2(2)

if x2(2r) < - 2(n-r+l) log (1-9)
o

(@]
~~
la)
~
"

. 2
Py if Xa(Zr) 2 - 2(n-r+l) log (1l-q).

THEOREM 3.3: If F is IFRA, F(0) = 0 and F(§q) = q, then

(3.1) PF{F[C:,q(r)‘ér’“] 2 q} 2 1-a,

or equivalently,

%* Py
(3.2) PF{gq < Ca,q(r)er,n} 2 1l-a.

Proof: Since (3.1) and (3.2) are equivalent, we need only show

(3.1). Let

as before. By Theorem 3.2,
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r st r
F ZAi XX )| 26 ZAi (Y=Y, p)
1 1

when a; 2 0 and Ai 21 fori=1, 2, ..., r. Hence

r r
) st |_ -
s|=21ea 1 q)z:(n-iu) %, )| =e[2sl “)E(n-iﬂ) (¥,-Y, )
X5 (21) T X (2 1

when

- 2 log (1-q)(n-r+l)
x(21)

1.

It follows that in this case,

- 2r log (1-q) a )
PF{F[ 6. |29 210

xczx( 2r)
If
- 2(n-r+1) log (1l-q) <1
2 ’
%, (21)
then

r
PG{G [(n_-llur_l)'z(“'iﬂ) (Yi-Yi-l)ZI = q}
1

T
> PG{G[‘ 2 log LI'QIZ(n_i_*_I) (Yi-Yi-l)] P q} = l-o,

HEON
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and (3.1) follows.||

Corollary 3.4: If F is IFRA, l-o 2 1-e-1 and q 2 1- exp{f

P {F = 2r log (1-9) é 2q\ 2 1l-co.
F 2 r,n
X {21)

Proof: By Theorem 3.3 we need only show

then

2
X (2r)
o ~(n-r+l) _
or = - log (1-q).

Let H denote the chi-square distribution with 2r degrees of freedom.
Since log H(x) is concave, H(2r) 2 e_1 by Jensen's inequality, which
implies xi(Zr) < 2r, or xi(Zr)/Zr < 1, when l-a > 1—e—1. Since

1< :Lﬂlfill log (1-q) by hypothesis, the result follows.”

It will be convenient to let

r . 2
et if xa(Zr) 2 2(n-r+l)

—zzr—, if x2(2r) € 2(n-r+1).
X, (25) *

«©
THEOREM 3.5: If F is IFR and 8§ = fxdF(x), then
0

< 8 -
PF{G c ] } 2 l-a.

o,r r,n

n-r+1

2
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Proof: We use the bound

1- e-t/e, t<®9

F(t;8) < B(t;8) ={
1 , t 2 8.
(See Ref. 11, p. 27.) By Theorem 3.2,
r r r
st st
G EAi (Y=Y, P SF EAi (XX, i8] =B ZAi (XX, ps8

1 1 1

if a; 2 0 and Ai 21 fori=1, 2, ..., r, where

r

A = E a, .

1 3
i=1

Choose ka so that

r
PG{G[EAi (Yi-Yi_l)] > ka} = 1-a.

1

Now let Ai = ¢c(n-i+l) for i =1, 2, ..., r, where c 2 Hence

n-r+1 °

as in the proof of Theorem 2.8,

cxczr(Zr)
- log (l-ko) =
and
cxi(Zr)
l-ka = expl- — o —
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2
cxa(Zr)
2

r
PF{B[CZ(n-i-i-l) (Xi-Xi_l) ;9] 2 ka} 2 l-o ,
1

Case 1. kar< l-e or < 1. Now

implying

r
C . -
PF{e = Tlog <1-k0)2<n-1+1> (xi'xi-l)} 2 l-a,
1

or

2 A
PF 6 =< 2 er’n 2 l-o.
X (21)

We now choose ¢ as small as possible subject to ¢ 2

n-r+l’ i.e.,

choose ¢ = We do this so the exponential upper confidence

n-r+l °

bound will be valid for as many combinations of o and r as possible.

Case 2. ka > 1- e-l or Xé(Zr) 2 2(n-r+l) . Now

r -~
. > 1-
PF{B[n-r+1 BF’H,G] 2 ka} l-a,

which implies

r -~
PF{% = n-r+l er,n} = 1-a.”

Confidence bounds on € assuming F IFRA can be similarly derived

using the probability bounds in Ref. 14.
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@

Corollary 3.6: If F is IFR, 8 = deF(x) s l-a > 1- e-l, and

0

r < %1‘, then

2r a )
PF 6 < =3 er n 2 l-o.
Xg(28)

Proof: By Theorem 3.5 we need only show Xi(Zr) < 2(n-r+l) . As

in the proof of Corollary 3.4, xi(Zr) /2r <1 when l-a > 1- e-l. Since

___n-:+1 21 vwhenr < %, the result follows.”
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4. CONFIDENCE LIMITS FOR DFR DISTRIBUTIONS

Confidence limits for DFR and DFRA distributions can also be

obtained using the techniques of the previous sections.

Let
2r210 L , 1f xi_a(Zr) < - 2(n-r+l)log (1l-q)
X1 - 21)
(o) =
1-o,q
X . 2
n-r+l °’ if xl_a(Zr) > - 2(n-r+l) log (1-9q).

THEOREM 4.1: If F is DFRA, then
F 3.3 ~
PF{]'-F[Cl-a,q(r)er,n] 2 1-q} = 1-a.

Proof: The proof is similar to the proof of Theorem 3.3 where

now F_IG(x)/x is increasing in x 2 0. Hence

r . r
s
¢ ZAi Y=Yy P 2 F E :Ai &)
1 1
when Ai 21 fori=1, 2, ..., r, by Theorem 3.2. Letting

Ai - -2én-1+12 log (1-q),
X1 - 2T)

we see that

r
PF{I_F[-z ;.og (1-q)Z(n_i+1) (xi-xi_l)] > 1-q} 2 1-a,

Xl_a(zr) 1




when

- 2(n-r+1) log (1-q)
2
X1 - (2%)

2 1.

The remainder of the proof is obvious.”
The upper tolerance limits for DFR distributions are not as

useful. Let

-2r log (1-q)
2
sk X (27)

, 1f xZ(Zr) > - 2n log (1-9)

=R [y

s if x§(2r) < - 2n log (1-q).

THEOREM 4.2: If F .s DFR, then

PF{F[C::(]:) gI',n] 2 q} 2 l-a.

We omit the proof since it is similar to previous proofs.

Let

2r if xi_a(Zr) < 2(n-r+1)

2 b
X1-o(%P)

2
r O Gl
norsl °XP 1 - m , 1f xl_a(Zr) 2 2(n-r+l) .

THEOREM 4.3: If F is DFR and 8 = fxdF(x) < ®, then
0

* A
PF{B 2 ca’rer’n} 2 l-o.
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Proof: We use the boundtll’ p-31]

F(t;0) 2 b(t;8) =

By Theorem 3.2 with G and F interchanged,

r

1 1
when Ai 21 fori=1, 2, ..., r.
Choose k so that
l-o
T
PG{G[E A (Y Y1 1)] 1_0} = l-o.
1
Let Ai = c(n-i+l) for i =1, 2, ..., r so that ¢ 2 el

follows that
-2 log (1l-k I (21)
& l-a) Cxl-a )

as in the proof of Theorem 2.8.

-1 2 2
Case 1. kl-a <1l-e " or xl_d(Zr) < <. Now

r
PF{I— exp[— 8 (n-i+1) (X —X 1)] < kl-a} 2 1-a,
1

implying

2r9
PF 2] ZTrJL} > l-a.
Xl-a(zr)

T
st
GZAi(Yi-Yi_l) ZFZA (XX, )38 2bZA (X;-X, )38

Then it
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We want to choose c as small as possible subject to ¢ 2

n-r+l°
1
Hence, let c = nortl
Case 2. k z21- e-l or xz (2r) 2 2(n-r+l) In this case
== 1-o 1-o :
4(n-r+1)e-16
P <k 2 1-a,

3 l-a
E m-i+l) (X 1"‘1 - 1)
1

implying

er 2 -
PF{e 2 (k) P er,n} = 1-a.

The bound is obtained by substituting for l-kl_a."
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