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INTRODUCTION 

The problems of wave propagation of fluid i n  a pipe have at t racted the 
attention of many investigators.  
hydro-power plant, blood circulation i n  a human body, pressure  t ransmis  - 
sion in a pneumatic system-all depend on the dynamics of wave propagation 
of fluid in  the conduit. 
propagation of propellant feed systems becomes more  interesting than ever .  

Water flowing through the penstock of a 

)' 

Since the introduction of liquid rockets ,  the wave 

The purpose of this study is to investigate the theoretical aspect  of the 
problem of longitudinal wave propagation in an  elast ic  pipe filled with an 
incompressible and viscous fluid. 
influence of iner t ia  of pipe wall on wave propagation and its correlation with 
fluid viscosity. The investigation is divided into two par ts .  The first part ,  
wl5TcX-is documented i n  this  volume, is devoted to the analysis of p re s su re  
waves being propagated through a system a t  rest. The second part; which 
e-xtends-the investigation to  a more  general  situation when the p re s su re  waves 
t r ave l  through a system filled with s t reaming fluid, is published in a separate  
volume a s  P a r t  111 of the report .  

Special attention is directed toward the 

The reflection of pressure  waves in  blood circulation has  been studied 
by Kar reman  (Reference l ) ,  following Witzig's approach. His resu l t s  indi- 
cated that the influence of the viscosity on the velocity propagation is  very 
slight and were  considered by Morgan and Kiely (Reference 2 )  to be incor-  
rec t .  Uchida (Reference 3 )  investigated the viscous flow i n  a c i rcu lar  pipe 
by superposing a pulsating flow on the steady motion. He l inearized the 
fundamental equations of motion by introducing the assumption of axially 
paral le l  flow. 
the pipe was ignored i n  the analysis. 

In addition to the res t ra in t  of paral le l  flow, the elasticity of 

An attempt to take account of the steady s t r eam in the investigation of 
wave propagation of viscous fluid has a l so  been made by Jacobs (Reference 4). 
In h i s  work, the average s t r eam velocity was used instead of the actual non- 
uniform velocity profile and the tube wall was assumed to move in  the radial  
direct ion only. 
sat isfy the condition of no s l ip  at the wall no mat te r  how small  the viscosity. 
The longitudinal iner t ia  force ,  as it will be seen la te r  in the discussion, has  
g r e a t e r  influence on the wave propagation than the radial  iner t ia  force.  

However, the fluid velocity cannot be uniform a s  it has  to 

The present  investigation follows the classical  approach in  formulating 
the problem with specific importance being accredited to the work of 
G. W. Morgan and J .  P. Kiely (Reference 2) .  The-classical Navier-Stokes 

- 1 -  
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equations of two dimensional flow with axial  symmetr ic  motion a r e  f i r s t  
introduced. The elast ic  equilibrium equations of the pipe a r e  established on 
the bas i s  of a thin shell. 
amplitude oscillation and large wave length. Fur ther  simplification i s  made 
by omitting t e r m s  of small  o rde r  of magnitude. The t e r m s  contributed by 
the pipe wall inertia forces ,  which were neglected by Morgan and Kiely, a r e  
retained in the analysis.  F r o m  the fluid and elast ic  equations with appro- 
pr ia te  boundary conditions, a character is t ic  equation is obtained. After a 
lengthy mathematical  manipulation, the character is t ic  equation is reduced 
to a quadratic form of the complex propagation constants. This charac te r -  
i s t ic  equation is  being solved with the aid of a digital computer f rom which 
two se ts  of phase velocities and attenuation fac tors  a r e  obtained for various 
viscosit-y and inertia parameters .  This phenomenon, the existence of two 
phase velocities, w a s  not recognized by previous investigators.  The phase 
velocities and attenuation fac tors  a r e  obtained in t e r m s  of three dimension- 
l e s s  parameters ,  longitudinal and radial  iner t ia  parameters  which represent  
the effect of pipe wall iner t ia ,  and viscosity parameter  which exhibits the 
influence of viscosity. These relations a r e  delineated in the form of graphs.  

These equations a r e  lig-earized by assuming small  

- 2 -  
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ASSUMPTIONS 

In formulating the mathematical model, the following assumptions a r e  
made. 

(1) Materials  of pipe follow Hooke's Law. 

(2 )  Thickness of pipe, h, is  smal l  in  comparison with radius R, 
thus h /R<<l .  

( 3 )  Slope of pipe wall disturbances,  - dR, is small;  therefore ,  shear  

and bending s t r e s ses  in pipe a r e  neglected. 

Forced  disturbances a r e  harmonic in t ime. 

dx 

(4)  

(5)  Damping is small .  

(6) Wave length is large compared with radius ,  m o r e  specifically 

(.)" (+)<<l 
UPRo 

( 7 )  The disturbance of pipe is small .  
pipe wall may be linearized. 

The boundary conditions a t  the 

(8) The fluid is incompressible. 

- 3 -  
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BASIC EQUATIONS 

EQUATIONS OF MOTION OF FLUID 

In the problem considered here ,  a l l  motions a r e  assumed to be axially 
symmetr ic ;  therefore ,  the circumferential  velocity component and its 
derivatives a r e  ignored. 
the distance along the pipe axis  and r the coordinate in the radial  d i rec-  
tion. 
t e r m s  a r e  negligible, the Navier -Stokes' equations a r e  simplified in  the 
following form: 

Cylindrical coordinates a r e  adopted with x being 

By restr ic t ing the problem to small disturbances so that the nonlinear 

t -- 
ar2 r a r  

where v r  and vx a r e  the velocity components in the radial  and axial  direc-  
t ions,  p is the pressure ,  p is the mass  density, p. is the viscosity and t is 
the t ime.  

The equation of conservation of m a s s  is 

a vr vr a vx 
ar r ax - t - + - = o  

EQUATIONS O F  EQUILIBRIUM OF ELASTIC PIPE 

When the thickness h of an elastic pipe is smal l  compared with the 
radius ,  then the hoop tension and the tensile force in the axial direction 
are respectively given by 

T x = - ( & t  Eh u g )  
1 - ,2 ax 

- 5 -  
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where w and u a r e  components of displacement of the pipe wall in radial  and 
axial  directions, E i s  Young's modulus, u is Poisson 's  ratio,  h is the thick- 
ness  of pipe wall and Ro is  the unstressed radius of the pipe. 

The normal force  of fluid acting on a n  elementary a r e a  normal  to the 
radius i s  

and the shear force  of fluid acting on an elementary a r e a  normal  to the 
radius i s  

F r o m  assumption ( 3 ) ,  it is stipulated that shear  and bending s t r e s s e s  
in  the pipe a re  neglected. 
writ ten as 

The equations of equilibrium of the pipe may be 

a w  2 T0 

a t 2  RO 
Po h - = Fr (R ,  X,  t )  - - 

where po = mass  density of the pipe wall mater ia l .  

Substituting the s t r e s s e s  and fluid fo rces  a s  given in Eq. ( A ) ,  ( 5 ) ,  (61, 
and ( 7 )  and linearizing the boundary conditions by evaluating the forces  at  R o  
instead of a t  variable radius R, the equations of equilibrium become 

a u  2 a vx a v r  

r = R o  

6 -  
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SOLUTION O F  EQUATIONS 

l -  A s  we limit  ourselves to the investigation of p re s su re  waves which a r e  
harmonic in  t ime, we may assume V i ,  v,, w, u and p all vary a s  e i k - w t )  
where 

o = circular  frequency of the forced disturbance 

k = k l  t ik2 = complex propagation constant 

k l  = a phase factor which represents  a phase shift 

k2 = an  attenuation factor ,  which represents  a measure of decay of 
the disturbance a s  the wave t ravels  along the pipe. 

Therefore we se t  

vr = Vr ( r )  e i(kx-ut)  

vx = Vx ( r )  e i(kx-at) 

i ( k x - w t )  u = U e  

where Vr and V, a r e  functions of r ,  and W and U a r e  constants. By intro- 
ducing the expressions in  Equation (12)  into the continuity Equation ( 3 ) ,  we 
have the order  of magnitude of Vr/Vx 

1 
A 

2 indicates the order  of magnitude. 

2rrA is the wave length. 

waves as stipulated in assurnption(h), 2 
VX 

der ivat ives  a r e  expected to be very small ,  neglecting those t e r m s  in  
Equation (1)  implies that the pressure is constant ac ross  the cross-sect ion 

F o r  smal l  damping, k = kl =-where - 
If we res t r ic t  ourselves  to the problem of long 

R Rk g-, <<1. 
V 

Since vr and its 

- 7 -  
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of the conduit and becomes a function of x and t only. Thus, we may wri te  

(13) i(kx- w t )  p =  P e  

where P is a constant. 

Substituting the expressions in (12) and (13) into Equation ( 2 )  

- i w p V x  + - - -  
dr2 r d r  

Compare the relative magnitude of the coefficients of 
taining Vx in  the above equation 

the two t e r m s  con- 

2 2  
k2 Ro 

This is a very small  value, in  accordance with assumption (6).  The t e r m  
k 2 V, may be neglected. Equation (14) becomes 

i k P  v, =- 
d2 v x  1 d v x  i w p  t--t- 
d r d r  P P 

This is  a Bessel equation. I ts  solution i s  found to be 

(16) 
k 

U P  

, Jo  i s  the Bessel  function of ze ro  o rde r  and A i s  an  

Vx ( r )  = A Jo (a r )  t - p 

i u p  112 where a = (?) 
a rb i t r a ry  constant; and 

- 
d r  

= - a  A J 1  (ar)  vx 

J1 i s  the Bessel function of f irst  order .  
Equation ( 3 ) ,  we have 

By substituting Equation (12) into 

- 8 -  
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Because of the condition of symmetry,  the radial  velocity vanishes at the 
axis of the pipe. 
equation: 

Therefore ,  Vr (r)  may be obtained by integrating the above 

i k A  i k Z r p  ik 
Vr (r)  = - - 5 V, ( r )  dr = - - J 1  (ctr) -- 

2 U P  CY 

Substituting the forms  of (12) and ( 1 3 )  into elast ic  pipe Equations (10) and 
(11) 

1 - -  Eh [ - t - i k U  w c r  
1 - 0-2 Rg Ro 

- p o h u 2 W = P -  
r=Ro 

Eh [- k 2 U t -  "kW] (21) 1 2 RO 
t i k V ,  

r=Ro 
[ 'd? 2 - p o h ~  U = - p -  

Introducing the values in  Equations (17),  (18) and (19), and evaluating at  the 
boundary r = Ro, Equations (20)  and (21)  become 

Eh i c r k U  - p o h u 2 t - -  
1 - ~ r  2 2  Ro Ro 

Eh i c r k  
W - PO h u2 t '5 k2] U - - - Eh 

1 - ,2 Ro 

- 9 -  
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Now, comparing the o rde r  of magnitude of the t e r m s  containing P in  
Equation ( 2 2 ) ,  

A l s o ,  comparing the t e r m s  containing A in Equation ( 2 3 )  

F r o m  assumption (6 ) ,  - ' (:r - is a very smal l  number;  therefore ,  we 
* P  Ro 

may neglect the las t  t e r m  in Equation ( 2 2 )  and the t e r m  p- kL A J1 (ORo) in  

Equation ( 2 3 ) .  Rearranging, Equations ( 2 2 )  and (23) become 
ff 

2 Eh 1 
1 - 0 -  

--Ut - p o h w  t - - ] W - P  2 2  

RO 

Eh i r k  
1 - u 2  Ro 

J1  (QR,) ] A = O  

Ro 

P 2 Eh i u k  k3 Ro 
1 - 0 -  E h 2 k 2 1  1 - u z  Ro 2 o p  w t p  - -- - p h ~  t 

Let  us now examine the coefficients of W in Equation (24 ) .  

u2 2 2 
2 -k Ro 

0 k2 Po h w 

Eh 1 - E -- 
(1 - 2 2  

RO PO 
1 - u  

- 10 - 
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w w  
F o r  small  damping, - = - and represents  the velocity of a wave which is of 

k k l  
112 

the o rde r  ( Eh ) i f  the viscosity is neglected. Thus the above ratio 
2 P R O  

becomes 

Examine also the coefficients of U in Equation (25). 

2 The t e r m s  po h w2 W and po h w U in Equations (24) and (25)  a r e  the inertia 
forces  of the pipe wall. 

with light fluid such a s  liquid hydrogen, the ratio - = - 500 > 100. The pipe 

wall iner t ia  t e r m s  a r e  no longer small  forces  and will be retained in  the 
analysis .  

Fo r  propellant l ines made of metall ic tubes filled 

P 4.4 

BOUNDARY CONDITIONS 

Assuming no s l ip  of the fluid at the pipe wall, we have 

and 

- 1 1  - 
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r 

Substituting values of Equations (16) and (18), we get 

i w U t -P-t k Jo  (OR,) A = 0 (26 )  
UP 

i k  2 Ro i k  J1 (aRo) 
- i w W t  P t  A = O  

2 UP CY 

Equations (24), (25), (26)  and (27) form a se t  of homogeneous equations of 
U ,  W,  P and A. The character is t ic  equation is  obtained by setting the de te r -  
minant of the coefficients of the above equations equal to zero.  Thus 

U w P A 

After a lengthy and laborious determinant manipulation, and observing that 

(Fr (5- < < 1 ,  Equation (28) reduces to  the following form 
W P  Ro 

] = o  J1 (QR,) 
“RO 

c Jo (cYR,) t 

- 12 - 
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where 

7 and 6 a r e  two dimensionless parameters  derived f rom the radial  and 
longitudinal inertia force t e r m s  of the pipe wall and a r e  named radial  and 
longitudinal iner t ia  parameters  respectively. 
equation f rom which two se ts  of complex solutions can be found, and then 

Equation (29) is a quadratic 

w 
can be computed. The phase velocity, c =- and the damping 

k kl  + ik2 -=  
k l  ’ 0 0 

fac tor ,  k2, may be determined by the rea l  and imaginary par ts  of the solu- 
tion of y. 
given by Morgan and Kiely. 

When q and 6 both a r e  zero, Equation (29)  reduces to the form 

VELOCITY DISTRIBUTION 

The longitudinal velocity a t  any c ros s  section of the pipe i s  given by 
Equation (16) as 

k 
UP 

V, ( r )  = A Jo (ar) + - P 

If we define Q a s  the ra te  of mean volume flow in  the pipe, then 

RO RO k R: 
2 ~ r  r V, d r  = 2 ~ r  A- J 1  (aRO) t .rrP - 

CY *P 
Q =  

0 

Denote the mean average velocity over a c ros s  section by Vx, 

- 13 - 
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Eliminating U and W f rom Equations (24), (26) and (27), we find the relations 
between A and P a s  follows 

A k k 

where k depends on q,  6 ,  u and aRo; therefore ,  B i s  a function of q,  6 ,  u 
and aR0. 

Using the relation (32) ,  we get the rat io  of the longitudinal velocity and 
the mean average velocity to be 

and 
2 

2 (1 - ) T l  t (1 - u 2 )  T l  - (1 - 2 u )  k 2 R- 2 3  

However, in  some respects  it is more  interesting and meaningful to express  
the velocity profile i n  t e r m s  of ra t io  of the fluid velocity and pipe wall 
velocity. F rom Equations (12) and (26), the longitudinal pipe wall velocity is 

V, (R,) = - i w U = A Jo (OR,) t - k P 
UP 

Using again the relation (32),  the longitudinal velocity ra t io  between fluid 
and pipe wall becomes 

B 
1 t - Jo (ar)  v, ( r )  2 

B 
2 

1 t - Jo (aRo) 
v, (Ro) - 

- 14 - 
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Similarly, the radial  velocity ra t io  between fluid and pipe wall i s  
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DISCUSSION OF RESULTS 

112 1 / 2  
Introducing the notation z = Ro (y) , thus aRo = Ro (9) = f i z ,  

it is recognized that the solution of Equation (29) is  character ized by the 
dimensionless quantity, z ,  which for the convenience of discussion is named 
viscosity parameter .  
functions with complex arguments.  A general  solution of the closed form is 
difficult to achieve. 
IBM 7094 digital computer. Fo r  simplicity, Poisson’s  ra t io  u i s  
assumed to be 0. 3 throughout the calculations. 
of the quadratic form.  F o r  each set of parameter  values q, E, and z, we 
get  two se ts  of complex solutions, namely 

The character is t ic  equation is composed of Bessel  

Therefore ,  a numerical  method is used with the 

Equation (29) is an equation 

Y 2  = * k l  0 i k 2  (2zo)”2 T3 -k i T4 

which lead to two se t s  of phase velocity, c, and damping factor k2. 

Equation ( 3 6 )  gives 

and Equation (37) gives 

( 3 7 )  

- 17 - 
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The relations between phase velocities and viscosity parameters  a re  
shown in Figures 1 and 2.  
relationship when the radial  iner t ia  parameter  is very small o r  q = 0, and 
Figure 2 gives the relationship when the longitudinal iner t ia  parameter  is 
very small  o r  = 0. Figures  3a through 3e,  4a,  and 4b a r e  the longitudinal 
velocity profiles.  In each of these figures,  there are  two sets of curves  
corresponding to  the two se ts  of resul ts  given by Equations (38) and (39). 
One se t  of the resu l t s ,  where the pipe wall velocity i s  relatively small  as 
compared with the fluid velocity, is here  named wave propagation of the f i rs t  
kind. 
longitudinal velocity, is identified as wave propagation of the second kind. 

Figure 1 gives the velocity-viscosity-parameter 

The other set of resu l t s ,  where the pipe wall has  relatively large 

F o r  wave propagation of the first  kind the motion of the pipe wall is 
very small  (see Figures  3a through 3e, 4a and 4b); therefore ,  the phase 
velocities a r e  more  o r  less independent f r o m  the pipe iner t ia  parameters  
but a r e  greatly influenced by the viscosity parameter  of the fluid, a s  shown 
in Figures  1 and 2. When the viscosity parameter  is small ,  corresponding 
to  large viscosity and smal l  disturbing frequency, the velocity profile, a s  
shown in  Figures 3a through 3e,  4a and 4b, is nearly independent f rom the 
iner t ia  parameters  and follows the well-known pattern of parabolic distribu- 
tion. When the viscosity parameter  increases ,  the influence of iner t ia  
parameters  on velocity profiles increases  a l so .  When the viscosity param-  
e t e r  is very large,  very sha rp  velocity gradients a r e  developed near  the pipe 
wall and the velocity profiles exhibit the boundary layer  flow. 

F o r  wave propagation of the second kind, the phase velocity of the fluid 
7 

is  nearly equal t o  E ,  the elast ic  wave velocity of the pipe wall, and is  

nearly independent from the viscosity pa rame te r s  as  shown i n  Figure 1. The 
pipe wall has  large motion in the longitudinal direction for the wave propaga- 
tion of the second kind, hence the velocity profiles a r e  greatly influenced by 
the longitudinal iner t ia .  When the longitudinal iner t ia  parameter  is  smal l  
( s ee  Figures  3a and 3b), the velocity profiles follow the s imi la r  pattern of 
the first  kind and the wall velocity is generally out of phase with the fluid 
velocity except for  fluid of large viscosity (corresponding to  smal l  z-value). 
A s  the longitudinal iner t ia  parameter  increases ,  the wall velocity surges  
forward and finally the velocity distributions r eve r se  the pattern of those of 
the f i r s t  kind, a s  depicted in  Figures  3d and 3e. 

- 18 - 
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CONCLUSIONS 

F r o m  the resu l t s ,  it may be concluded that the longitudinal iner t ia  
parameters  have much grea te r  influence on the wave propagations than the 
radial  iner t ia  parameters .  The radial iner t ia  pa rame te r s ,  which may be 
expressed  as 

2 2  2 
Po w Ro - --=(2) u2R$ <<1 

E - E q =  

PO 

(where 2rXP is the wave length of the wave traveling in the elast ic  mater ia l  
of the pipe) a r e  very smal l  values. The phase velocities and velocity pro-  
fi les shown in  Figures  2 ,  4a, and 4b a r e  practically identical with those 
shown in  F igures  1 and 3a for  = 0. Thus, the effects of radial  iner t ia  
parameters  on wave propagation a r e  negligible. In the case where the wave 
length of the elast ic  mater ia l  of the pipe i s  very small  and approaching the 
o rde r  of the radius of the pipe, the influence of radial  inertia parameters  on 
wave propagation may become prominent. 

The radial  velocity patterns of the fluid for  various parameters  a r e  
shown in  Figures  7a through 7c and 8a through 8c in the form of ra t io  to wall 
radial  velocity. 

The decay of the disturbing waves depends on the Poisson's ra t io  and 
A s  we fixed the Poisson's ra t io  in our investigation, the 

When the viscosity 

the viscosity. 
damping factor var ies  with the viscosity parameter  only, and it is a lmost  
independent f rom the pipe wall inertia parameters .  
parameter  is small ,  which corresponds to la rge  viscosity and smal l  d i s -  
turbing frequency, the wave propagation of the first kind possesses  large 
values of attenuation factor while the waves of the second kind have very 
sma l l  damping effects. When the viscosity parameter  i s  small ,  waves of 
the second kind move as a rigid body ( r e fe r  to Figures  3a through 3e with 
z = 1) ;  the viscosity of the fluid plays a very sma l l  role in creating the shear  
fo rces  which a r e  the source of damping. When the viscosity parameter  is 
l a rge ,  the attenuation factors  become very small  in both cases .  Figure 9 
gives the plots of attenuation factor vs .  viscosity parameter  of wave propa- 
gation of both kinds. 
of pipe wall iner t ia  parameters .  

These curves a r e  practically the same for a l l  values 

The work reported here  deals with wave propagation in an elast ic  pipe 
fi l led with incompressible viscous fluid at res t .  
investigation t o  a more  general  situation where the p re s su re  waves t rave l  
through a sys t em filled with streaming fluid is discussed in Part 111 of this  
repor t .  

The extension of this  

- 19 - 
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Figure 3a. Longitudinal Velocity Prof i le  for  r\ = 0,  = 0 
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Figure  3b. Longitudinal Velocity Prof i le  for  11 = 0, 5 = 1 
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Figure 3d. Longitudinal Velocity Prof i le  for  7 = O, s = 6 
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F i g u r e  5a. Longitudinal Velocity Ratio-Fluid Velocity to Wall Velocity fo r  
11 = 0,  2 = 1 
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Figure 5b. Longitudinal Velocity Ratio-Fluid 
' 1 = 0 ,  2 = 5  
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Figure 5d. Longitudinal Velocity Ratio- Fluid 
q =  0, Z =  15 
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Figure 6b. Longitudinal Velocity Ratio-Fluid Velocity to W a l l  Velocity for 
E = o ,  2 = 5  
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Figure  6c. Longitudindl Velocity Ratio- Fluid Velocity to Wall Velocity f o r  
E =  0, z =  10 
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Figure  8c. Radial Velocity Ratio-Fluid Velocity to W a l l  Velocity f o r  
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