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V' - velocity
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functions defined by equations in the text
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nondimensional constant

nondimensional mass flow rate per unit area
number of particles

Nusselt number

Nusselt number for diffusion

nondimensional pressure
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Y - heat transfer rate per unit length of flow
S - specific gas constant

Rad

- nondimensional particle radius of group

nondimensional reference radius of group

Cm » v -

Reynolds number
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S . surface
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-S'Q - cross-sectien surfaces of particles at the ends
ot the control volumes

S< - Schmidt number

T - temperature

'%; - temperature of pure species B

\/ - volume region; nondimensional velocity
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Y - dummy variable in a constructed function
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Script Symbols

- nondimensional drag force per unit volume
- molecular weight

mean molecular weight for a film

- nondimensional heat rate per unit volume
-~ gas constant ratio

- molar flux of species B
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Greek Symbols

s+ - group loading factor: mass per unit volume of
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volume
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ratio of specific heats
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parameter in the vapor pressure equation

nondimensional temperature
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thermal conductivity

nondimensional conductivity

second viscosity coefficient

viscosity coefficient

nondimensional viscosity group

nondimensional viscosity-radius parameter

dummy integration variable

"continuum" pressure
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nondimensional particle density

stress tensor

"continuum" density

shear stress tensor

portion of the time interval qﬁ that gas occupies
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time interval required to form average flow
properties

mass transfer rate per unit length

nondimensional mass transfer rate per unit volume
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SUMMARY
2495 X

The problem of a two-phase nonequilibrium flow of par-
ticle suspensions in a gaseous medium is formulated, in-
cluding the effects brought about by the change of phase
that takes place in the case of a liquid-gas mixture, On
this basis the relaxation zone behind a shock wave passing
through a system of liquid droplets dispersed in a gaseous
carrier are analyzed, Allowance is made for the presence
of two sizes of particles, but specific effects of drop
shattering are neglected. The solution is programmed in
Fortran and its application to a particular system is

illustrated by the case of n-dodecane droplets in oxygen.
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INTRODUCTION

Presented here is a study of the nonequilibrium flow of
a gas-particle mixture, Firstly, basic equations for a two-
phase system are derived by a rational transition from locally
valid relations of continuum mechanics to the overall descrip-
tion of the flow field. This is accomplished by integrating
the conservation equations over a control volume and then de-
fining average flow properties of the gas and particle phase,
Limiting the control volume to zero size produces differential
equations relating these average properties. In order to treat
unsteady flow, the equations are also time-averaged, giving
rise to certain terms due to fluctuations of particle velocities
which are analogous to Reynolds stresses in turbulent flow.

The final two-phase equations may be viewed as describ-
ing two coexistent interacting continua, particles and gas. The
averaging processes allow one to neglect many aspects of the
detailed flow field., However, sev-ral additional variables
have been introduced. These are the Reynolds stresses and an-
other group arising from the area-averaging. Sometimes a quan-
tity is simply averaged across an area, while in other instances
the density of mass flux is used as a weighting factor. One
must assume or deduce additional relations for the new varia-
bles. The appropriate assumption depends upon the particular
problem,

Similar equations have been developed by several authors

for various special problems and under various assumptions.
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Among these, especially noteworthy are the contributions of
Carrier [1], Kliegel [2], Williams [3], Soo (4], Marble [5],
Tien [6], Rannie [7], Zuber [8], and van Deemter and van der
Laan [9]. Most of the derivations are based essentially on
the application of conservation concepts to a control volume,
They presuppose the knowledge of velocities, pressures, and
temperatures for each phase., The derivation presented here
differs essentially from the others by being strictly deduc-
tive in nature,

The second half of the repert describes a typical two-
phase flow problem: the relaxation zone behind a shock wave.
The equilibrium mixture flows into a stationary shock wave
which affects only the gas phase., The particles and the gas
are then at different states and interact in a relaxation
zone behind the shock,

The artificial separation of the problem into a gas-pnase
shock wave followed by a relaxation zone is produced formally
by considering the more general question of the structure of
steady-state waves in a two-phase flow., An asymptotic solution,
using the density ratio (particle material to gas) as the per-
turbation parameter, is proposed. The problem is singular in
nature and it turns out that the gas shock structure and the
relaxation zone structure constitute the first terms in two
matched asymptotic expansions as the density ratio approaches
infinity. It is also noted that this procedure may be applied

to two-phase combustion waves,




The shock wave relaxation zone has been studied previously
by Carrier [1], Rudinger [10], and Kriebel [11l] for the case
of solid particles. In this work liquid droplets which can
vanorize or receive condensation are considered, The mass
transfer is controlled by diffusion and was investigated in
a narametric computer study, The parameters which have uost
influence on the mass transfer are X , the initial mole
fraction of vapor, and.ﬁ?;, the heat of vaporization, Other
parameters included in the study were the particle size and
the loading factor (mass ratio of liquid to gas). The results
are given by graphs of the flow variables as functions of the
distance through the relaxation zone, When‘)%ois low the mass
transfer process may be neglected., This conclusion was also
confirmed by a special calculation using n-dodecane at NPT as
the liquid., The greatest mass transfer occurs when.#ﬁg is low
and )gb is high, This combination results in the condensation
of a major portion of the gas phase., Several additional com-
putations were made also for the case where two particle sizes
were present, If most of the liquid mass is in the larger
narticles it is possible to vaporize the small particles while

the large droplets are growing.
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CHAPTER 1

DERIVATION OF CONTINUITY AND MOMENTUM EQUATIONS

A. Introduction

This chapter will be concerned with deriving the equations
describing the flow of a two-phase system, The condensed phase
is assumed to be small dispersed droplets which are imbedded in
a gas, Allowance must be made for disequilibrium between the
velocity and temperature of the particles and those of the gas
phase, Hence it is necessary to account for mass, momentum, and
energy exchanges between the two phases.

Since it would be futile to attempt a detailed description
of the flow of a large number of particles in a gas, average
properties of the flow should be defined in such a way that
simple meaningful equations result, The resulting equations can
be considered as describing two coexistent continua, a gas phase
and a particle phase. This approach is valid for flow problems
where the characteristic length is large compared with the dis-
tance between the particles,

The conservation equations governing the two-phase flow are
usually derived by physical arguments., The derivation is ac-
complished by specifying a control volume and then applying a
physical principle to the volume. Terms which represent various
effects are formulated by physical arguments and analogy with
similar terms for single-phase flow., This approach actually

amounts to a rederivation of the mathematical laws uf fluid



motion for the two-phase system, In such a derivation, the worker
is required to formulate each term properly and include all sig-
nificant factors.

Aﬁ alternate approach, which is more rigorous and deductive
in nature, is possible, It does not appear to have been carried
out in the literature, Starting from first principles, the
conservation equations, one may proceed mathematically by inte=~
grating over a controllvolume, defining new average variables,
and limiting the control volume to 2ero size. This will produce
new differential equations describing the two-phase flow, The
advantage of such an approach is twofold: first, the variables
appearing in the final equations have explicit definitiens in
terms of the local flow field variables; second, the assumptions
are stated explicitly during the derivation in order to simplify
the mathematical expressions and thus the reason and necessity
for each assumption is apparent, Together this leads to a clearer
understanding of the meaning of each term in the two-phase equa-
tions and the applicability of the equations themselves,

The dependent variables in the resulting equations will be
area averages of the local time-averaged quantities. In addition,
terms appear containing variables which are area averages of the
time average of the product of two local fluctuations., These
terms are analogous to Reynolds stresses in turbulent flow. The
word analogous was used since these terms can exist in two-phase
flow even when the flow is laminar. The particle equations also
contain the "Reynolds stress" type of term., Some authors have

considered that "random" fluctuations constitute a particle phase

A by
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pressure, The viewpoint taken in this work interprets the particle
phase pressure in a different manner and ascribes the fluctuations

their proper role as a Reynolds stress.

B, Physical Background

In order to simplify the work and emphasize the important
concepts, consider a flow where gravity and electrical effects
are negligible and where the flow is one~dimensional. By '"one-
dimensional" it is meant that certain time- and area-averaged
quantities, to be defined later, are only functions of one space
coordinate X . The particles will be thought of as spherical
liquid droplets; however, the definitions will usually remain un-
changed or be simplified for solid particles. The nonparticle
phase, sometimes called the continuous phase, will be taken as
a compressible gas but the extension of the equations to any
fluid should not be difficult,

Consider a flow containing numerous dispersed liquid par-
ticles. The x-direction velocity across a typical cross-section
is depicted in Figure 1-1, In this figure, the gas phase velocity
is arbitrarily assumed to be higher than that of the liquid. The
gas velocity decreases in the neighborhood of the droplet surface
in order to "stick" to the wall, At positions inside the droplet
the velocity is the liquid velocity. The same situation exists
for the temperature and density variables, Now as time goes on
the particles move past the cross-section and the position pre-
viously occupied by the liouid is now occupied by the gas. The

velocity at the former time has changed from a value corresponding



to the gas, Thus, the two-phase flow is essentially unsteady
and three-dimensional in its detailed structure,

The main theme of this chapter is to establish meaningful
definitions of spatially and time-3.eraged properties which
will also result in simple conservation equations, The area
averaging will be done in much the same way that one formulates
average quantities for pipe flow., The time-averaging process
will be similar tc that used in turbulence theory, Lven thoucqh
the flow may be laminar, the time averaging is necessary because
of the essential unsteady nature of the flow, The uifficulty
comes from the fact that each phase occupies only a pcrtion of
the flow field for a portion of the time and each phas2 is
typified by different magnitudes of temperatures, veclocity, etc.

The equations relating the averaged propertiecz m=2y be
viewed as conservation laws for two coexistent continua, the gas
and the particles. This viewpoint can be taken, of course, only
when one is concerncd with problems whose characteristic length
and time are large comparcd with the lengths and times required
to form suitable average properties., The concept of two co-
existent continua is used, for example, when two different mo-
lecular species constitute a gas., The distinguishability of the
species and the fact that the molecules are dispersed allow this
description (see Morse and Feshbach, ref. [12] for a gencral
discussion of the representation of matter as continuous). In
the two-phase problem the distinction between the two phases and
the fact (assumption) that both phases are dispersed allow a

continuum formulation., The gas phase and the particle phase
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interact by exchanging mass, momentum, and energy between each
phase., These interchanges depend upon the particle radius and
becaus2 of this it is expedient to consider a set of distinct
particle sizes and regard each size as a separate distinguishable
continuum, The advantage of this view will become clearer during
the derivation,

In formulating the derivation one of the important aspects
is the mass, momentum, and energy transfer between the phases.
To clarify the assumptions regarding these processes we consider
the situation around a single drop, as depicted in Figure 1=-2,
The gas stream, which may be iaminar or turbulent, approaches
the particle and stagnates at some point, Depending on the
Reynclds number it may or may not be appropriate to consider that
a boundary layer exists in the gas around the particles. In any
case the gas velocity decreases so that the tangential liquid
velocity and gas velocity are equal at the surface of the par-
ticle, For large Reynolds numbers a wake exists behind the par-
ticle, The pressure and viscous stresses at the particle surface
provide the mechanism for accelerating the particle. The shear
forces at the particle surface also induce an internal flow of the
liquid. This flow has a circulation pattern as indicated in the
figure. In addition to this, one must remember that the flow

field is unsteady., As the disequilibrium between the particles

and gas changes, the detailed flow around the particles is altered

appropriately,
What has been said concerning the velocity field is also
true for the temperature field and the concentration distributiecn

of various chemical species, if need be.
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In the discussion above it has been assumed tha. a discon-
tinuity of zero thickness exists between the gas and the liquid.
The state of affairs at the liquid-gas interface is very compli-
cated and constitutes a subject in itself (see Fig. 1-3).

Gibbs [13, p. 219] formulated the thermodynamics of an interface
in a rigorous manner., A recent review of this subject with
particular emphasis on water droplets is given in Dufour and
Defay [14].

It is widely known that a tension force exists in the sur-
face region and that from static equilibrium conditions the
pressure within a drop is much higher than that on the outside,

A figure for a drop of wate., radius 104 cm (1 micron), is

f’c‘( - fals = |, 4’(0 Lar (' ot = O.76 Ll")

(all numerical estimates are taken directly from Dufour and

Defay [14]» In addition to this, other thermodynamic properties
may be attributed to the surface region--a surface enthalpy,
entropy, adsorbed mass of a particular species, etc., In general,
these properties are dependent upon the radius of the particle,
Hence, in a rigorous analysis, changes in the thermodynamic state
of the surface region must be considered, Several examples com-
paring properties at a plane interface and those at an interface
of a droplet of water of r = 104 cm will be given, The vapor

pressure ratio at 273° K is

Pr / fo = 1.0CI
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The ratio of latent heats of vaporization 1is

,Qr//ﬁ.o:p,ooo

And finally for a partial pressure of 6.1 mb the equilibrium
temperature of the droplet is 272.98° K, compared with 273° K
for a plane surface, These figures show that for particles
larger than 1 micron in radius these effects can be ignored;
except for the excessive internal pressure within the droplet.

The discussion above concerns the static properties of an
interface region, The interface also has a dynamic character
and it can be viewed as a two-dimensional world in which a two-
dimensional flow is taking place. Two recent papers on the
formulation of the equations of motion in a surface are
Scriven [15] and the commentary of Slattery [16]. The problem
requires a full tensorial treatment and this subject has been
included as Chapter 10 in Aris [17]. For flow in a surface, the
surface tension plays a role analogous to pressure in the three-
dimensional world, Likewise, one can propose a surface viscosity
coefficient and indeed in some liquids the surface behavior is
non-Newtonian, The important aspect of the detailed study of
surface flow, as far as this work is concerned, is that the
stress tensor differs from one phase to the other not only be-
cause of the surface tension but because of the viscous effects
in the surface flow,

The thermodynamics and fluid mechanics of surfaces have
been briefly discussed above in order to indicate the complexity

of the subject and point out when certain of the assumptions
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will become invalid, As far as this work is concerned, the gas-
liquid interface will be characterized by a surface across which
fluid properties may be discontinuous. Properties on either side
of the surface will be taken as those of the bulk fluid just out-
side the interfacial region, The density is the distinguishing
property of each phase and hence is discontinuous across the sur-
face. On the other hand, the temperature will be assumed as con-
tinuous, The surface will have one property, a tension force
which varies with the radius and maintains the mechanical equi-~
librium of the surface. Therefore, the pressure is discontinuous
across the surface. Sometimes it will be necessary to consider
an arbitrary cross-section of a particle., The cross-section
would also cut the interface surface. When the forces are inte-
grated over a cross-section, the contribution of the tension
force will be associated with the liquid inside the particle, It
is also assumed that the surface contains no mass, momentum, or
energy and hence these quantities are conserved across the surface,
With regard to the motion of the fluid, the tangential components
of the velocity and of the stress tensor on each side are assumed

equal across the surface,

C. Scheme for the Derivations

Consider a flow field consisting of a gas and dispersed par-
ticles of liquid, At each point in the flow, inside the particles
and out, the velocity, temperature, etc.,, are given in the usual
continuum sense, The surfaces of the particles are discontinu-

ities for some properties like density, but other properties such
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as temperature are continuous across the particle surface, The
usual differential equations for the conservation of mass, momen-
tum, and energy are valid and these may be integrated over a
volume in space V(&) whose boundary S (% moves with an
arbitrary velocity g . This has been carried out by Thorpe [18]
and his equations are used here as a starting point, An example
of the method of obtaining the integral forms is given in section C
of the next chapter.

The continuity equation indicates that the rate of change of
the mass within V(t) is equal to the net flux of mass across

the boundary:

d aVv = - S (v-¥%)n As
Z‘é gfo / (1-1)
V(%) S |

Variables without subscripts denote local values without speci-
fying the particular phase. The momentum equation states that
the rate of change of the momentum within V(t) is equal to the
net flux across the boundary plus the net surface forces. We

specifically neglect body forces of any kind:

d

:97: /w-,ev-_ f'\:(v—-v\‘n25+ \1'?_.'0“3 (1=2)

- 3

V(+) Stx) S(t)

The energy of the fluid (neglecting external fields) is the sum
of the internal energy, & , and the kinetic energy,%_'\r". The

rate of change for the control volume V(%) equals the net flux
across the boundary plus the work of the surface forces and the

flux of the heat.
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- S n-(gv) 4 (1-3)

where

These three equations provide a fundamental point of departure
for the derivation,

To apply the equations, it is first necessary to choose a
control volume and specify its motion. For a one-dimensional
flow in the X ~-direction, attention is focused on the matter be-
tween two stations x and X+4% . The elemental control volume
is pictured in Figure 1-4, Since there is a distinction be~-
tween the gas phase and the particle phase, it can be further
specified that the control volume consists of only the gas phase
between X and X+ a&x . This control volume resembles a piece
of Swiss cheese where the holes are regions to be occupied by the
particles, The planes at x and X+ A X are stationary, The
holes move with a speed ¥ at each point on their surface. Across
the end surfaces x and %X+ ax , there are fluxes of mass, momen-
tum, and energy due to the gas prhase, Fluxes across the holes
represent interchanges between the particles and gas phase. The
equations derived by considering this control volume are called

gas phase equations.,
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In a similar manner, a particle or liquid control volume
can be distinguished and defined as all the particles or portions
thereof between » and x + ax . This control volume consists
of a finite number of disjoint control volumes, one for each
particle. The surface of the control volume moves with veloc-
ity Y except for the particles cut into by the planes at ~x
and A+ AXx . At these positions the control volume is sta-
tionary. Again, across the surface of the particles, there are
mass, momentum, and energy fluxes as the gas interacts with the
particles. The principal restriction on this control volume is
that the dimension of the discrete volumes, the particle radius,
must be a macroscopic length,

To be complete, a third control volume would be needed for
the matter in the interfacial region between the gas and par-
ticle regions., As discussed previously, the interfacial region
will be idealized, and changes in the state and motion of the
interface will be neglected,

The notation for the derivations is very extensive and will
be introduced as it is needed. To begin, several surfaces of
the control volume are denoted by special symbols. The surface
of a particle is denoted by S, ; S, if the surface is inside
of, or interior to, the sections at x and Xxtax , and Spe
if the surface is an end surface located at ¥ or x+ax . All
other surfaces are denoted by A , Ax indicates an arbitrary
cross-section across both the gas and liquid phases; Aa, is

that portion of A,,_ which is occupied by gas, and A that

ax
portion occupied by liquid. The cross=-section occupied by the
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gas and located at ¥ and x+ax , i.e., Aa,(ﬂ and Aa,(‘x-rm) ,
is given the additional symbol Aae for gas end cross-section,

The local values of velocity, temperature, density, etc.,
are designated by the usual symbols V' , | ,/p , etc, If the gas
occupies the position %X, Y » 3 ,’t , then a subscript g is
added; if the liquid occupies the position, then § is subscripted,
The integrals of the local properties will appear naturally from
the integral form of the conservation equations applied to the
control volume., These integrals will define area-averaged,
density-averaged, or mass-flux-averaged quantities which will be
functions of x and £ . When the length of the control volume is
limited, Ax=0 , a differential equation results in which the
dependent variables are the average quantities.

The area-averaged quantities above are not useful variables
because they average the instantaneous local values of u:,jp ’
etc., and the flow is essentially unsteady., Dependent variables
which are area averages of the local time-averaged property are
better both for physical insight and experimental verification,

In order to time-average the equations, one proceeds in a manner
similar to turbulent flow theory; however, some peculiarities are

introduced by the existence of two phases.

D. Area Averaging of Continuity and Momentum Equations

The continuity and momentum equations for the gas phase will
be considered first, and then the same equations for the liquid
phase, The energy equations and overall gas-plus-liquid equa-~-

tions will be treated in the next chapter,

-
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For the gas-phdse control volume, the integrated continuity

equation may be applied with the following result:

KTAR

4 - -

ZES Sfaﬁsaez = }oa ,QS Z f& 'V’) h Qs (1-4)
b A%X Aae (: S'\ e

The integration over Aﬁg actually consists of two integrals,
one for x and one for x+ax . Likewise, the symbol summation
over \ means that the integrals over all particles are added;

¢ is not used as a dummy index., This equation will be re-
duced to a differential equation for the gas phase of the two-
phase mixture by defining suitably averaged quantities and then
limiting the control volume by letting Ax-> o .,

The symbol < > will designate a simple area average, The

symbol < i/ will imply that the density has been used as a
weighting factor., These definitions are exemplified by the

density and velocity as given below:

\
p,> = — 'K (1-5)

A%,

- ' (1-6)
U. - ————— [}
% oA S/a‘—"aﬂ"s
S8 Py
Ad’
Consider the left-hand side of the continuity equation; the

differentiation with respect to time may be moved inside the
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integration over x and then the mean=-value theorem for integrals
applied., The first term on the right-hand side is identified as
an increment in the average mass flow rate, The equation now

reads

2| = - /"a>< ”‘a) "'Z fa‘” Erya-n

XeYX,

The last term represents the net mass interchange between the
gas phase and the condensed phase per unit length of flow di-

rection., This term will be denoted by V¥ :

Y= - Z g/’a”’a ) Dy dS (1-8)

AX=> 0 A“'
SY"

Letting Ax-»0 in equation (1-7) gives the continuity equation

for the area-averaged quantities:

Al - ) i,
5;(A3x<f’a>) - %7—((%><\3,} Ap) + Y (1-9)

With regard to the function ¥ it will be assumed that drop-
lets of a given sized' could be grouped together and a ‘*’d‘ de-

fined for each distinct size:

|
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Z i _Z axvo sz- gm('\r "-”"Da"’} o
J

d ¢ See
where i is a finite number (there are only finite number of drops
in consideration!),

The momentum equation for the gas is derived by considering
the same control volume as for the continuity equations. The
momentum theorem states that the rate of ‘hange of momentum within
the control volume is equal to the sum of the net flux of momen-
tum across the surface and the net force on the surface. Body

forces will be neglected:

L f:cﬁv--g (V=% nds + | nog IS .
#gf f’\f"r'\’; hdS + I (1-11)

VY S(4) St¢)
For the gas-phase control volume, the x -component of this equa-
tion is
X +4X
33’251"‘ - fa'\’( “}15

x
A A&‘

(1-12)
z £V (Y=Y 0 B + (93-33\95-*2 Loy 5), ds
' Spi Aae"Aai ‘ Sii

The left-hand side is reduced as follows:



20

X +a% x*“
Cr = 25 d
f:;() J/’t\ Vi L34 gf‘w B
X a,‘ x ¥
= 2 (<< a*>A'):) A%

KeXe
The first term on the right-hand side of equation (1-12) is the
momentum flux of the gas through the ends of the control volume.
This motivates the definition of a "density average of the veloc=
ity squared" as opposed to the "den;ity-averaged velocity" de-

fined by equation (1-6):

' A
v, = TR N
a* ¢ (1-14)
Va Va’ <A Aa*

The second term on the right-hand side of equation (1-12) is

the x -direction momentum is transferred between the two phases.,
The mass flux‘/fz(ga-}g);tls into or out of the droplet
surfaces is multiplied by the % ~-component of the gas velocity
at the surface of the droplet. Then this product is integrated

over the droplet surface and the integrals are summed over the
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distinct droplets. A precics evaluation of this term would require
a detailed knowledge of the flow field around the droplet (and this
requires a knowledge of the flow on the surface and inside the
droplet). Since an overall continuum description of the spray is

the present goal, one seeks simplifying assumptions that will

allow this term to be expressed by the overall mass transfer
function Y and the overall droplet velocity. Two assumptions seem
to be required: the mass flux from a droplet is unifoim around
the surface, and the droplet moves without distorting in (surface
only) trarslational motion. The proof of this is involved and
will be given in the appendix. For the present, only the result

will be stated:

ey Z (fa Lm-3) 'hy ds =Z<'\iﬁ> \}3 (i-16)
0

f only one size of particles is in the problem,

L‘A—’ ¢

v, >VY = Z 4"3.\-‘)\% (1-17)

The last two terms in the momentum equation (1-12) are the
results of surface forces. The surface forces c¢n the particles

are used to define a drag function:

- F- + &_” ey ZS(n a) ds (1-18)
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If more than one size of particle is present, the integrals may
be grouped according to particle size and a drag function for

each size J defined:

‘:, = Z EJ (1-19)

L]

d

The drag function represents the forces on the particles in the
particular flow field at a specific time. Formally the drag
force does not separate into a steady-state part, a part due to
heat or mass transfer, a part due to unsteady motion, a part due
to a gas phase pressure gradient, and so forth, This separation
can occur only when one considers a specific situation. Zuber
[8] has given some interesting ideas on the detailed representation
of the drag for slow laminar flow.

Another aspect of the drag force arises when one considers

two particles passing each other., As the two particles approach
each other, the gas flow field between them changes and the
surface forces on the particies, and hence the drag, changes,
The particles need not touch each other for the encounter to have
a significant effect on the dray function. On the other hand, a
physical collision causes an almost instantaneous transfer of
momentum between the particles., Consideration of collisions at
the boundary of the control volume has been excluded from this
analysis. A thoughtful paper on this subject has been given
recently by Marble [19].

The svrface forces on the gas portion of the control volume

are divided into pressure and viscous forces:

! e
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- g\(na-%)lls = -j‘ [fa(ga-_«;)+ (ha-&'i),,] ds
Aae*”“as A%'
(1-20)

- { Tpearive o] &
Age

The viscous forces on the side wall will be dropped. The pres-
sure on the side wall does not contribute to the «%x-direction
forces. (If a variable flow area A, is considered an addi-
tional term  p, LA,/ dx will occur).

The integrals over the ends of the control volume give

X¢+ox% Xeax

f(ns ra ds - - Aaq,a] - A <,’,>} (1-21)
A x
ae

where the area-averaged properties are
<6y = — | £ds
4 A d (1-22)

ax
A&"

<?K;> = *l" S‘ L o
Py (¢ ga\ S

Age
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The viscous stress <7T,> will be retained because it has appli-
cation in the shock wave problem; usually it would be neglected.
Substituting the results that are discussed above into the

momentum equation (1-12) yields

2
Se (g

The effect of the particles shows up in two terms: F; ,» the drag
force and V(('V‘Q‘) , the momentum added to the gas phase by the
vaporizing liquid. Note that the velocity <“§,> is characteristic
of this momentum whether the liquid is vaporizing or the gas is
condensing. In either case the matter that is about to change
phase is located at the interface surface where the local veloc=
ity of the gas and the liquid differ only by a small component
normal to the surface,

The equations referring to the particles are derived by inte-
grating the appropriate conservation law over the volume occupied
by the particles between x and x+ ax . The overall continuity

equation is

pedY = Z, pul=35) b el (1-24)
LS )

L V\ . ﬂﬂg
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The liquid will be assumed to have a uniform density. Suppose
the cross-section area of the particles at any station x is

called F\‘,; then the volume integrals are rewritten to give

X+AX

[ {’%—tf)zt- SAASXIT (1-25)
Z f/t“” NS Z&%W V5)on, 45

L s?g
The particle velocity averaged over the area is defined as

L S'x

then

ATAR
/‘ A <v> \ /0 Z_ S Ve Ny LS (1-27)

The last term on the right-hand side of equation (1-25) is
the mass transferred between the gas and liquid phases. This
is shown by noting that across the liquid-gas interface the mass

conservation law requires that

fzfif“iﬁ\'D,:ﬂ(‘f—&\-na (1-28)

\
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Substituting this into the integral of the last term in equa-
tion (1-25) shows that this term is -Y as defined by equation (1-8).
The continuity equation is derived from equation (1-25) by
using the mean value theorem for the integral over on the left-
hand side, Then dividing by A% and limiting Ax - o , the result

2 e -2
51-(/”‘ he) = /OA‘”< YY) Y (1-29)

Note that for the constant density particles,v/ni may be taken
from under the differentiation sign,
For several distinct sizes of particles, the equation above

is valid for each particular size, i.e.,

2 — 1-
;tfxd'Alxd‘ - fd x<v >) \V (1-30)

Proceeding in a way similar to the deviation of the conti-
nuity equation, the momentum theorem is written for the sum of

the particles between x and x4+ A% . For the x-direction,

‘Zj%gf::\&,‘owf- Zj/’“*& %)n, 45

"
(1-31)

+ Z g(n,-g:)xﬂs
E S Se
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Since the particles are composed of an incompressible fluid, the

left~-hand side is

X+AR

fz [ %EZ Nt Dy LS | o

X LA”
(1-32)

:/x. g:(<\§,> A,e,\ o AX

X=X,
The first term on the right-hand side accounts for fluxes of mo-
mentum across the control surfaces. The "interior" droplet

surfaces account for momentum leaving the liquid phase:

—-2:. S;jQ£\4; (ﬁi'“IES)'lJ, Azs
L <.

é%‘ ‘g
= Z:{I‘fa(%’%\‘ﬂ Uy 45 (1-33)

L
= =L W7 = =Y <
.

The steps for arriving at the last equation are given in the
appendix,

The liquid momentum flux across the ends of the control
volume at x and at x +ax is by definition an increment in the

mass~-flux-averaged droplet velocity:
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A+AX

where
| ( :
A - aAJ, L
<"’1:Z.‘ <N{p > X‘ Z ) (WprL) 45 (1-35)
‘(1 ’ !Svg

The terms representing tih: surface forces in the x-direction
will be considered next (equation 1-31), At a point on a particle
surface, the force from the liquid side upon the gas side is

h

-2
the surface and normal to the surface,

I This force can be broken into two components, along
=

It was previously assumed that the tangential stress on the
liquid side was the same as that on the gas side; however, the
normal stress was discontinuous because of the surface tension,
Suppose that the surface tension is uniform around the surface
of the particle; then the jump in the normal stress across the
surface is uniform, The integral of the =x -component of a
constant over the surface of the particle will be zero. These
arguments show that the drag force of the gas upon the particles

is the same as the drag of the particles upon the gas:
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F," A = Z S\ (1»_\*._3';)* AS (1-37)

(s,

In addition to the surface tension there is actually an additional
jump in the normal stress because of the vaporization. This slight
recoil pressure can be handled in the same way as the surface )
tension, by assuming a uniform vaporization rate around the
particle,

The last term to be considered is the forces upon the liquid

cross-sections cut by the planes at x and x ¢ Aax. This term
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constitutes the pressure force for the liquid phase:

Y t AR

g (n,: S:I\,OQS = - A:.,«Pt) (1-38)

»

where

{p> =

Z g @ ds (1~39)

\
Ao i S

This pressure is the force of the liquid on one side of the con-
trol volume upon the liquid on the other; thus this is not part
of the drag. The integrals above include the surface forces or
surface tension in the particles. For droplets in a static
situation the surface tension is a force proposed to maintain
the mechanical equilibrium of the curved surface. The integral
over the cross-section of the droplet plus the surface tension
is balanced by the integral of the external pressure (see

Fig., 1-5), Thus, the average particle pressure defined above
would be the same as the gas pressure. If the stagnant gas
around the particle is increased in pressure, the internal
particle pressure is increased proportionally. The internal
particle pressure is a mechanical variable since the thermodynamic
state, as specified by the temperature and density, is unchanged

by the increase in pressure,
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When a particle is accelerated there exists a pressure
gradient within the liquid in the direction of the acceleration.
This gradient is easily envisioned if one imagines the hori-
zontal acceleration of a tray of water., Upon acceleration, the
free surface assumes a sloping position showing that a pressure
gradient exists within the liquid on any horizontal plane,

Since the gradient of particle pressure appears in the particle
momentum equation, it might be expected that particle acceler-

ation has an important influence on this term, This is not the
case, however, as will now be shown,

Figure 1-4 is a schematic of the flow field with a plane
at x (or x+ax ) cutting through the droplets, The term that
is of interest here is the gradient of the particle pressure times

the liquid cross=-section:

& ¥ g
= AL o zt: AR (1-40)

A% 5ot

The summation over the distinct particles changes with X , so
one cannot simply diffrrentiate the separate integrals., Let the
integral across a particle be denoted by an average pressure and

the particle cross-section area:

gptis = AC i (1-41)
Sy
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Next f; is expanded to two terms about the center of the

particle:

an’

Pe = P) =+ (x-c) =+ (1-42)

pCc:) is the average pressure at the center of the particle
and dp/Ax is the gradient caused by acceleration of the par-
ticle. Now by definition of the derivative, the particle pres-

sure force can be computed:

ﬂ A < (e ) g{: A (xra) [r(_c;\ -+ ‘;LEL(‘-;( "’M‘-C.')]
(1-43)
- % AL‘(F\[ PCCC\ + é";; Lf"' ) ] }

A'x-)o

The first sum is for particles cut by the ptane at - +a~x and
the second, for those at x . Each sum may have some particles
in common with the other but there wre undoubtedly particles
which belong to only one of the groups. Consider one of the
groups, say those located at ¥ , The group can be further
divided into plus particles whose centers are on the right of

X , and minus particles whose centers are on the left, There
are just as many particles on the left of x as on the right and
the particles are paired according to the distance between their
centers and the plane at ¥ , Thus, for a paired 4+ and - par-

ticle couplet,

o L
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(x-Ce )= - (v=c;.) = (x~ C4) (1-44)
and
A= A = Ay (1-45)

LY
With this pairing, the sum at x is written as the sum (%t over

pairs:
Z ( LA Y &1}(1.4.&)‘* A II’ (x-¢; )}
L't l-- c
(1-46)
0| _ AP \(x=¢
ZZ ;tg +-( - \"Zcﬂ
Ct"‘ ¢

The average of the center pressures is taken as the center pres=
sure at X, Qo) ; the particle acceleration (which causes

Jp/l'x] c. ) does not change significantly over the distance

equal to a particle diameter. The expression above then reduces

to

'22: Al‘.t fg‘m) = F‘('K\' ZZ A‘ct - fr-b‘] A‘l (1-47)
et it
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Finally, one can substitute into equation (1~43) and compute

the results:

4x

(1-48)
- L A, P.00)
A

The derivative of the particle pressure is the same as the
derivative of the average pressure of the center of the par-
ticles, But it was found previously that the average internal
pressure in a droplet was dependent upon the pressure of the
surrounding gas when in static equilibrium, When there is a
flow field around the particle causing an acceleration force,
the average external pressure might deviate from the "free
stream" gas pressure, A calculation for invised irrotational
flow arov..d a sphere gives favcngu (computed for the most
severe ussumption that the minimum local pressure is zero).
In any event, the particle pressure dcfined here is of the order
of magnitude of the gas phase pressure, its exact value depending
upon the details of the motion,

The final momentum equation is formed by substituting equa-
tions (1-32), (1-33), (1-34), (1-3v), and (1-38) into equa-

tion (1-31), then dividing by Ax and limiting AX— QO :




- 1
2 (em> AN = - 2 [ AN« oA,

(1-49)

- Yeu,> + T

E. Time Averaging of Continuity and Momentum Equations

The continuity and momentum equations derived in the pre-
ceding section represent instantaneous area-averaged equations,
The flow is not actually steady and it is necessary to time-
average the equations in a manner similar to turbulent flow
theory. Let an overbar denote the time average (see Hinze [20]

for a general discussion of this topic):
To

Y |
'F(x,t) = j‘_—' -’ch‘)t"ﬂlg (1-50)

The time average is independent of further averaging:

'F = 'F (1-51)

35
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Averaging also satisfies the following relations:

'¥ +‘1r = 4: *'5; '( 3 ‘r 5:

% _ 2F Q:E
ax Ax Dt

A fluctuation component is defined by the equation below, and

(1-52)

its time average can be shown to be zero by applying the

relations above:

—_— (1~53)

A useful relationship for the product of two quantities in terms

of the average values and the fluctuations may also be derived:
'gg = &-2 + '&g (1-54)

An equation may be time-~averaged by integrating from o to 'TL
and dividing by T, . Then the relations above are employed to
express the equation in the desired variables.,

The time-averaged continuity equation for the gas phase

is

2 (Aslp) = - 2 (A <Y, \

b s e
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11()
(1

(jK;xg;gs T Aé&:}ﬁgg')

AT

(1=-55)

= {: A ,ﬁjﬁb:> <}E§;)

\.

_._”-—

" G Al G, R
'A,"(/oa)'(v,):] + Ty

This equation contains five new terms which concern the fluctuating

quantities. As discussed by Hinze [20, pp. 19 and 368], the fluc-
tuations in density can usually be neglected when the Mach number
of the turbulence is small, M=king this assumption allows one to
discard four of the five new terms; the fifth term contains the
gas cross-section area fluctuation Aa'x . If the particles remain
dispersed and do not collect into temporary bunches or voids, then
the fluctuations in Aa, will be small compared with the average

—

value Aa, . Employing these two assumptions gives

2EG)= L (R T oo

This equation has the same form as the usual continuity equation
when the terms have been replaced by the time average of the

arsca=-averaged properties,
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{ o—
The assumption that Aa, /Aﬂ'« | is akin to the assump-
tion that the gas density fluctuations are incompressible
( S/h).{jp'> << ). The gas cross-section actually depends
a‘* A"t Ay )9

so, in discussing ﬁ\ax , one is really discussing the behavior

upon the number of particles at the cross=-section ( A

of the particles. This leads to the central point, which is that
of considering the particles and gas phases as two coexistent
continua,

The particles may be considered as a 'continuum" if they
are "numerous'" and '"dispersed." To make these notions more

precise, a number density of particles is defined

h('x\g\'é\f) = A -AN;/‘ (1-57)
AV-ro

by taking the ratio of the number of particles N in an arbitrary
cube AY around the point =x , 1 » 3 at € ., If the particles
are dispersed and numerous, then the value of N/4vV is closely
h even when N is small and the characteristic dimension of
AY is small compared with a characteristic dimension of the
problem,

The contiauum density of the particles is then given by

the following for spherical particles:

4 T
- — Tr n
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Another relation for the average density across the flow area
is found to relate to the actual liquid density and the

liquid cross=-section:
<¢‘;>A.x = Axyoe (1-59)

Thus, the number density, the liquid and gas cross-sections, and

the overall particle density are all directly related:
As = A
> = 4-:;—‘17"“3 L 4n> = As, T 3"/’; (1-60)

Assuming that the number density has only small fluctuations
implies that the fluctuations in A%’“ A, » and 9 are also
negligible. This could be summarized by stating that the par=-
ticles considered as a continuum undergo incompressible fluc-
tuations, This assumption is necescary in order to produce
tractabie conservation equations for two-phase flow, and it
will be made in all subsequent equé&*tions.,

Next, the time~averaging process is applied to the gas

phase momentum equation (1-23), aud density fluctuations (gas

and particles) are assumed to be negligible., The result is
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— — (1-61)
(T + (o) )

The dotted underlined term can be dropped by assuming negligible
fluctuation in the mass transfer rate ¥ . This assumption is
usually reasorable; in fact, the term "T Z{E;is usually small
compared with other terms in the equation,

The momentum and continuity equation for the gas phase looks
deceptively simple, Actually, more new variables have been
gained in the process of defining time- and area-averaged prop-
erties, The ciiginal differential equation has \5, as one of the

eT————

dependent variables; now two velocities, <%, and < 'Ué,?_ ,

3’7

appear. The relation between these two quantities depends upon

the velocity profiles. We can ignore the detailed structure of
the flow field but we must have some knowledge or make some
assumption connecting the density-averaged velocity and the
mass-flux-averaged velocity. An analogous situation occurs in the
one~-dimensionali treatment of laminar pipe flow of a single fluid,
In this case a direct calculation using the exact result (a para-

Q z
bolic profile) shows that < V5 7= 13'- v,




41

Besides the area averaging, we have introduced a time-
averaging process, Time averaging introduces additional variables
by splitting the quantities into a steady or average quantity and
a fluctuation; an example is the momentum flux in incompressible

turbulent flow:

X ~-

’Vg,’\lg = Vo Vg t 'V&Y'Va (1-62)

The last term is the Reynolds s“ress, and finding a relation for
it is a central problem of tuarbrilent flow theory. The velocities
appearing in the two-phase equations have bLeen both area- and
time-averaged, so the problem is doubly difficult, or anyway
doubly tedious,

Consider the velocity of the gas at a particular point in
the flow, Plotted against time the function has breaks in it
for those intervals when a particle occupies the particular point
under consideration. Suppose that, by some suitable averaging
process, it is possible to find a local average for the gas.veloc-
ity at X, 3 , é ,'t (see Fig. 1-6)., This average is zero at
times when a particle occupies the position just as thc gas veloc-
ity is zero. The local gas velocity fluctuation is defined by

the difference between the instantaneous and the mean values:

'\)31(1\3\3\{"\ = A'V{a* ('x\a\%\f'\ + Vé:: (7,3\}\£) (1-63)



The average is denoted by the symbol ~ since it is a local
average, whereas the previous time average, denoted by the
symbol — , was applicable to quantities which were continuous
functions of x and € only., If the local velocity is integrated

over time and divided by the interval of time occupied by gas,

i

gas veIOC1ty, provided, of course, that the time interval

(7\ \’é\t) , then the result should be the time-averaged

is appropriately chosen:

\

Wiy B LT g,
'T (Xﬂa\))t)

ah‘\&\'b{t\ =

T

As before, the local time average is considered independent of
subsequent averaging, the average fluctuation is zero, and the
process is distributive. But now these statements are true

only when 4 and 3 have the same domain of definition:

§. 7

42



43

The relationship between this time average, the bar time
average, and the area average must be considered more carefully.
Now, attention will be focused on the gas properties at a
particular cross-section of the flow, The domain in which gas
properties are defined is represented by a volume in 4 3 ,'t
space, When a particle passes the cross~section at some
location ! ,3 and some time t , the gas properties are un-
defined and this leaves a hole in the domain, In Figure 1-6 the
black regions represent the passage of particles past the cross-
section., Consider a cylinder which is T, time units long and
excludes the black regions. T is assumed long enough to form
valid average properties of the flow., Call this region VOL.
Choose a point ( 43 ); then T‘; is the time from o to T,
which lies within VOL in which the gas properties are defined.
Next consider a cross=-section of VOL at some specific time;
this region is merely the gas cross~section previously defined,
‘~3$f*ft)' Now the volume of the cylinder minus the "particle

holes" can be computed in two ways:
T -

r
Vou = ) Aa,(w\'ﬁ‘-tﬂif’- ’T“g(x,S)JS (1-66
)

Ax
The first integral is "r,\Aa, by the definition (1-50). The
right-hand side is easily identified so that equation (1-66)

reduces to

—

T A&" = A, (""3> (1-67)
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/\3, is a bar average in this equation since it is only a function
of x and £,
Next, the integral of a function defined on the cylinder VOL

is computed, This can be done by aiternate ways also:

S‘HA‘Q}) It = §§ for s tes)dfLS

Vou Ax -13 0,5)

= y ( ‘,F('x\%;bf g)IZSJS

T, A

(1-68)

Substituting from equation (1-64) gives

[ yoofonts « [y Putenls o
A ™

and using equation (1-50) results in

A<Mt = e (Agy <P (1-70)
_%: (T’a-'f> = :a,. <F> (1-71)

EWOE Ao e, -
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It would be desirable to remove Ta from the area-averaging
process, Now ‘Ta is, in general, a function of g ,‘3 ; however,
if the number density of particles is uniform across the area

Ay , then a uniform value of Tb independent of the area
averaging can be expected. This assumption is not expected to
hold where the number density changes appreciable, near a
phvsical wall for instance. Taking ‘Ts from under the area
averaging and employing equation (1-67) gives .he follow'ng

result:

Sn— e

) = <$Y

(1-72)

The time average of an area-averaged quantity is equal to the
area average of the local time average.

In order to treat flows where the number density varies
over the cross-section one takes advantage of the arbitrary
nature of A, ., The area Ay is chosen as a small region about
a point in the flow. Then it is proposed that the number den-
sity is uniform and that equation (1-72) holds locally. Now
¢$)~ is a definition of a local average property and dependent
upon the point about which Ay is chosen and another averaging
over the entire cross-section is required.

Equation (1-72) is only valid for an area-averaged property,
In order to apply it to the equations given previously, the

density-averaged properties are converted as given below:
<, - v,
2 T L A
(1-73) -

SPOGRT S _
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These relations conclude the preliminary work necessary to time
average the conservation equations,
The continuity equation for the gas is given by equa-

tion (1-55)., The terms in this equation are reduced as

follows:

“Agx$/9?

(Age* g ) Shy + o

—_— (1-74)

J
Re
A
o
v

(1-75)

vl ~
= Ag P <Tp)
The definiticn of the density-averaged velocity is analogous to

the previous definition, Substituting into equation (1-55)

gives the final form for the gas phase continuity equation:

— e\ o _D - WV
2 BB RGN+ T
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The significant difference between this equation and equa-
. . . ~ ~~
tion (1-56) is that the properties <f%> and < 'V‘,)/ ai:
time~-averaged locally before being integrated.
In a similar manner, the necessary terms for the momentum

equation are computed, Consider the convective momentum term:

]
>
s
o5
;}:2
Y

TR AT AR e
R LA 5> v

—~
= A [ PO RS %)

Substituting into the time=-averaged form of equation (1-23) gives
the gas phase momentum equation, Again, the assumption that

is small is employed:
= [z,,y;x«?a',}]

<5 '17_.u *
{Aa*/ﬁ ‘uﬁ"}'f <'\’3"v3'/?']?(1-78)
{‘Kax [< Pa) + (¥, )].}

- R

fwsw

+
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This equation contains the local Reynolds stress, xr:'U%:

averaged over the cross-section, This term was previously

hidden in the term (V",;) in the form of the momentum equa=

tion given in equation (1-64). That is, <'Vé:> contains both
“he contribution of the momentum flux due to the local time=
averaged velocity and that due to the fluctuations, This points
out the importance of displaying the equations in terms of local
time~averaged velocities (which are also measurable) and the
fluctuations, The continuity and momentum equations above have
been derived assuming that the particles are numerous, dispersed
uniformly across the cross=-section, and that they undergo incom=
pressible fluctuations when considered as a continuum, The
major assumption regarding the gas phase is that it also has
negligible density fluctuations.

A few remarks conceraing the various average velocities are
in order, These averages must be performed because the flow is
essentially three-dimensional and unsteady. The gas velocity at
a point fluctuates because periodically a particle comes along
and occupies that position. As a particle approaches, the gas
velocity drops (or rises) to the velocity of the particle surface,
This happens in order to satisfy the boundary condition on the
velocity at the droplet surface, Thus, even though the gas flow
field may be laminar, the velocity fluctuates, The same is true
with respect to the area-averaging process. The flow may have
a certain overall uniformity across each cirass~section; however,
a difference botween the mass- and momentum-averaged velocities

may exist because of the detailed gas velocity profile between
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each particle, Finally, a true turbulent flow situation may
exist because of the interaction of the gas and the particles.
When the difference between the gas and particle velocities is
large the flcw will separate and vortices will be shed from the
particle, Likewise, the particle velocities would be expected
to fluctuate.

The continuity and momentum equatiocn for the particles can
be handled by the same method employed for the gas phase. The
main difference between the definitions for the particles and
the corresponding desinition for the gas piaase is that the inte=-

grals are summed over the distinct particles, For instance,

V> = i Z Vel ds (1-79)

There are only a finite number of particles so from a mathematical
viewpoint one could simply dennte the disjoint domain of inte-
gration as i; srL and proceed with the usual mathematical

<

operations,

| 'U-‘.'_é, J\S
N/ S lre (1-80)
L5y
L

Reviewing the definitions of local time-averaged properties and
area-averaged properties shows that all the formulas regarding
the averages are still valid with the domain of definition

changed.
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Using the same assumptions as before ( V7 ¥ << "/03 /’«l
Jﬂ’ <>px , and uniformly dispersed particles across Ayx ),

one can derive the equations for the particles:

(/'tAtA - = "' (/.o A:x<"“’lix7\ = \V (1-81)

In the momentum equation a term appears because of the turbulence,
fluctuations, or random motion of the particles. This is a
Reynolds stress for the particle continuum, Frequently the
random motion of the particles is viewed as a particle pressure
in analogy with the kinetic theory of a gas (although the
corresponding temperature analogy is never used). Equation (1-82)
displays the random motion in its proper role in the continuum
viewpoint of the particle motion,

The equations for the gas and particle continuum may be
added to obtain overall mixture equations. These equations are
very useful and are given in the appendix where all equations

are summarized, In the overall equations, if one assumes the
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temperature and the velocities of both phases to be the same,
then the two phases are represented as a single fluid with
pseudo-physical properties., This is called the homogeneous flow

model in the literature.

N
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CHAPTER II

DERIVATION OF ENERGY AND STATE EQUATIONS

A. Introduction

The energy equations may be developed for the separate phases

as was done in the previous chapter for the continuity and momen-
tum equations., This process is lengthy and will not be carried
out here. Instead, an equation was derived describing the over-
all conservation of energy of both phases and another equation
describing the thermal energy of the particles. These two equa~
tions are more valuable for solving practical problems than equa-
tions describing the energy of each phase,

Once the conservation equations are established, attention
is turned tc the ~ppropriate form of the equations of state from
the viewpoint of two "coexistent continua." This leads naturally
to a discussion of the number density and phase cross-section
equations, A short discussion of three-dimensional equations

then closes the chapter,

B, Ovérall Energy Equation

For this derivation the control volume is taken as all the
matter between x and %x+Ax . This is essentially the sum of
the gas and liquid control volumes previously considered. The
integrated energy equation is written excluding gravitational and

electrical effects and neglecting radiation:
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5&552f(e:+14r)lV' = - j;/;(‘='4H%m;)(ﬁf~ls)ﬂnéps
Vi S

- g\gr-g LS - J\b.' ('}’.'9.5 "j.\j' [Z"‘I] JS(Z-I)

Stx) St

The symbol % denotes the transport of energy because of temper-
ature gradients and also the transport by diffusion if several
species are present, The integrals are divided into portions
referring to the liquid and portions referring to the gas phases.
Instead of distinguishing area-avaraged and density-averaged
properties at this stage, the general area-averaging process
defined by equation (1-5) is employed. Otherwise, the derivation
follows the familiar pattern established by Chapter I: the
volume integral on the left is broken into an integral over

and one over the area Ay ; the time derivative is independent of
the x integral which is then estimated by the mean value theorem;
then dividing by 4% and limiting a=x -» © produces the final

equation:

%%Eijﬁﬂpl}93¢%> *'{]9%“%?]*‘Kh,[:(c;z/%.fyfh'%‘<u£>]:}

(2-2)

;__
Bt - b
+ {qu> <t T ]

+ A[/4<1r1>+/<v; l7]}
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The heat transfer and viscous terms for the liquid phase have
been dropped.

This equation is to be time-averaged assuming incompressible
fluctuations of the particles and the gas., Finally, the various
average quantities are defined in accord with the previous de-

velopment, The time~averaged terms for the gas phase are listed

separately below:

=y
o»‘g,\
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There is a similar set of terms for the particle phase. Sub-
stitution of these equations into equation (2-2) above yields
the final energy equation, The final equation contains a great
many terms resulting from fluctuations, and it is obvious that
the solution of a practical problem will require several simpli-
fications. Another thing to note is that the internal energy
<e3>./ is a density-averaged quantity while the enthalpy (]‘a)';
is averaged by weighting it with the mass flux,

When the fluctuation terms are neglected (or assumed inde-
pendent of X ) and the steady state is assumed, the equation can

be integrated to give the familiar form (neglecting g and

(&1;\'33

— e v <%, BN %"
A SR <3 [hn ]
~ (2-4)
o Ky gy [« A+ 4 S X

This is an overall zas-plus-particle equation, A gas-phase
equation may be obtained by eliminating all variables which
refer to the particles. To do this, it is necessary to have
the particle thermal energy equation which will be the subject

of the next section,

C. Thermal Energy Equation for the Particles

The thermal energy differential equation is well known and

widely used, The integral form of this equation will be derived
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since this was not done by Thorpe [18]; this will display the
method of arriving at the integral forms., Thermal energy is
integrated over a volume with arbitrary motion. The time rate
of change of this integral must be found and the Leibnitz

formula applied:

i_e; fc£y=§%f€1V+ /eyﬂdos (2-5)

Now the differential equation for thermal energy is (ref. [21],

p. 323, eq. Q):

%’-E(/oe\ = —chve"_f -Vof-fv"! = TVY (e

This is substituted into the integral of the first term on the
right-hand side of equation (2-5). The divergence theorem can

be applied to the first two terms, i.e.,

gv-/(oe'\z -r.@;W-—-— n-ye AL 4 k\ s (2-7)

V(¢) J¢t)

Carrying this out and collecting terms yields the final equation:

%:. S}oe AV = S}et«:-'\_r-,\ogﬁs - gﬁ.%ﬁs

V() Stk) St (2-8)

- S[( ev-r)t Tivr 1Ay
Vi)

i aG—— =
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The equation demonstrates that thermal energy is not conserved.
The rate of change of internal energy within V is equal to the
sum of the net flux convected across the boundary and the heat
crossing the boundary plus the production of internal energy
within the volume (compression and viscous dissipation)., Ordi-
narily the production terms would be hard to determire but for

an incompressible flow V.= O , and the dissipation term is
ignored., This drops the last term on the right-hand side,

When the "incompressible' thermal energy equation is written

for the particles, we get

X+a%

&
I_t..' Sf& < AV = _Z Sr.(/le..c('\-’;”'yg}‘bz*%t'-nﬁjs
¢ Spe

X ‘\Ax

(2-9)
““Sj/p‘ € M As
‘Ale

The integrals over the surfaces of the particles contain the
properties on the liquid side of the interface discontinuity,
It would be desirable (especially because of the heat flux )
to change to the gas side properties. To do this, consider that

energy is conserved across the interface:

Sr Gy 4, + g vn,

(2-10)

VA T R PRk R R
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This expression contains a pressure term which does not appear

in the integral above. The equation is rearranged as follows:
€2 , :
fx(ex+/:‘)(1"x-'\£3 n, -t { Ne

(2-11)

= A0Syt Gy g (g

The last term on the right-hand side is nonzero because of the
surface tension forces; it is neglected primarily because it
would introduce the droplet radius into the equations. For very
small particles this term could be significant. Likewise, on

the left-hand side, it is assumed that g, 5p‘<< €, . This

is usually true becausi/q,is high even though the pressure inside
the particle may be double that for a plane interface. Intro-
ducing these simplifications into the thermal energy equation
gives

X+A%

[ % ft" AY

L g o

Sﬁ. Y,-h, LS
Age
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The heat flux% contains a conduction flux q(c)

4 .
due to molecular diffusion q;( ) . The molecular diffusion

flux is (ref. [21] p. 566)

and a flux

hpnn

where 4&K is the partial enthalpy of species K per unit mass,
,/OK is the density of species Kk , and.ﬁfkis the velocity of
species K with respect to the mass-averaged velocity ¥, The
diffusion flux and the gas enthalpy flux can be combined to-
gether and this is done for the special case of a binary mixture
in the gas phase., Say species A will be "inert" and only species

B will cross the interface of the particle:

[ %m-*/jfa (1’3—'!;)} ny

[fn‘ (Va~ V‘*f Va -3ﬁ£(v}-y;) 'n&
VAl

(2-14)

= [/OA‘R (qJ« 'US R )VAAA (-'1);-'-1‘5)

Pl sl

\
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Since only species B crosses the interface,

/Oe(Tn"‘—"s) Dy :/’8(1’3'“—5\'3& (2-15)

and species A does not (actually species A could be a mixture

in itself),
/A("-);\-’U;). hg = O (2-16)

also, the enthalpy is given by

= + kg 2-17
/&'K}s /al.. /o (2-17)

Utilizing these expressions gives the simple result:

[ k2] g = py (0350 o

The integral terms over the particles in the thermal energy equa-
tion now describe two effects: heat transferred by conduction on
the gas side of the interface, and the transport of partial

enthalpy of the condensing material:
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Z g[ %? *_11 + ,ﬁsyoa ('_\3“&-—'\2;3'“3] s (2-19)
L S

The heat transferred from the gas to the particles per unit

length of flow is called &

Q = AX=0 A'XZ g%ﬁ = ny 43 (2-20)

Also, if one assumes that the temperature of the gas at the par-

ticle surface is uniform, then
) f/a%gfr%—m-ngﬁs = =) YO G
L :&;

Since the gas enthalpy appears in the equation above, it is con-
venient to use the liquid enthalpy in the remaining terms, That
is, the approximation 1\‘ ® €, is used. The final area-

averaged thermal energy equation is

v lv.)

2
St (A A0 7 (Ag pe <)

(2-22)

+Q—"P«23

Ayl l
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This equation is time=-averaged in the usual manner:

Also, in interpreting ‘Qz (x, b&\g\f\ it is interesting to
note that a nonuniform temperature distribution within the par-
ticle would cause a fluctuation as the particle passes the
point X, 3. 3 .

Before leaving the particle thermal energy equation it is

[\ [ g

noted that one can differentiate by parts, assume <‘&l7=<‘l‘>ﬁ. ,
and substitute the particle continuity equation to get a dif-

ferential equation for the particle enthalpy:

- N T ATk -
/OxAtx %E*“’ZP?"; <> = Q AS "(2-24)

When the average particle temperature is the same as the surface
temperature, the last expression is simply the latent heat of

vaporization R

by
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D, Thermodynamics

The conservation equations developed thus far are not a
complete set for the solution of problems. The thermodynamic
equations of state must be included to determine the problem,
First the gas phase is considered, The conservation equations
contain the gas densit%/3rand one notes that it is always asso-
ciated with the gas cross-section flow area l\a, . Considering
the two phases as two coexistent continua, the natural definition
for gas-phase density would be the mass of gas per unit volume
of gas~-plus-liquid mixture, This is given the symbol Cﬁi and

one notes that the following relation connects <, and :
3
~o (ad
<G>RA, = <py> Ag (2-25)

”»
Next one observes that the gas pressure <(’3> also appears in
combination with A}x in the momentum equation. The perfect \

gas law is assumed,

Pr= AT (2-26)

and the fluctuations in the density are taken %o be small. The
gas constant is also assumed constant; if there are significant
variations in the molecular weight, it would probably be best to

work in terms of concentrations instead of densities:
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@; "‘/(“; RTA (2-27)

Integrating across the cross-section gives

<E&> = <3> R<"F3> (2-28)

A continuum gas phase pressure<‘rf3> is defined in analogy with

the density:

—

<1}3>A.’ = Aa" (P%> (2-29)
then the perfect gas law is

<> = <&§> R <"F3> (2-30)

d s

Hence, the gas cross-section area Aa,, can be eliminated from

the conservation statements in favor of the prescribed flow area

A, » by utilizing the new variables ‘h-3 and 0‘5' . The
pressure <f'5>and density <a;> are the "coexistent continuum"
properties of the gas phase and are related by the perfect gas

law above.

> |
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The next question is to determine how the average gas
temperature fits into the second equation of state. The gas-
phase enthalpy is given by
~
A ¥ o« 4
1 Cp Ty A er (2-31)
Weighting the enthalpy with the density,
1\ oY
<hz = <oty he
(2-32)

= cf<T‘57 -+ ’QREF

7

Thus, if the gas-phase specific heat is constant, then the
density-averaged enthalpy is related to the density-weighted
temperature as defined in the perfect gas law., The masz-flux-
averaged ent:halpy"(‘&3 also appears 1n the energy equation.
The relationship between ({3> and <)\ ) depends upon the
detailed temperature profiles.

So the thermodynamic properties of the gas-phase continuum
are ’I‘I“3 , 03 , and T}. The temperature T" is the actual
local gas temperature; however, the pressure and density
include the gas-phase cross-section ‘\3, in their def1n1t1ons.
If the volume occupied by the particles is small, then <11~a> ( )
and (6;7'~U/%

The thermodynamic equations of state for an incompressible

fluid are

h)
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(2-33)

'2,(,—:- Cf‘-‘r; + /KKEF

The pressure is a mechanical variable. The conservation equations
indicate that the '"coexistent continuum" density, enthalpy, and

pressure should be defined as follows:

~ Z—lx
LqLY» =
r A /’1
~ A, o (2-34)
M2 = == <6?
< T, A, (
By = cp<T> + Reer :

Although the particies are incompressible, tae "coexistent con-
tinuum" particle density is a variable., Th2re is no equation
of state relating g, and ’h" and it cannot be obtained since
the fluid is incompressible., The prezsure qT} depends upon

Az, and @, , the internal particle pressure, As discussed
previously, the pressure of the gas phase influences Gﬁ , but
the detailed flow around the particle must be known before it
is possible to be more specific, The assumption regarding Q
must be made depending upon the problem at hand, but usually it
woeuld be reasonable to say that @, = @& and then neglect
‘h" when AM <& A, . Whatever the assumption is, it takes

the place of an equation of state between 0’; and 'n” .
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An additional quantity jas appears in the particle thermal
energy equation, This is the enthalpy of species B (the liquid)
in the gas phase at the surface of the particle, CSince the
temperature is assumed continuous across the interface, ‘st
is the enthalpy of gaseous species B at the temperature of the
liquid next to the surface.,

As a further indication of the reasonableness of the def-
initions given above, consider the equilibrium state. Suppose
that the particles and the gas are in equilibrium and a sample
is enclosed by imaginary planes. The temperature of the liquid
and the gas is the same; otherwise heat transfer would alter the
temperatures., Likewise, the partial pressure of the vapor of the
liquid species corresponds to the equilibrium value at that
temperature in order that the mass transfer go to zero. Finally,
the velocities of the gas and particles are the same, Let the
pressure of the gas be f}t <€a) . The particle pressure was
defined to be the sum of the integrals of the cross=-section of
the particles cut by the planes and the contribution of the sur-
face forces., Because the particles are not accelerating, the
average pressure across the particle cross-section is the same
as the gas pressure. The pressure for the mixture is then the

sum of the constituent pressures in analogy with the Dalton rule

\

for ideal mixtures:

TS = <THd+ <’ﬁ‘a n Aoy + Ap <96>
% »
(2-35)

An t R
= A &
X
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Similarly, the mixture density is the sum of the separate phase

densities:

0-:\ = 7 QS (2-36)

The enthalpy of the mixture is computed (unit mass basis) as
follows:

~. ~

oy D\h ~ G&-<}\a> + T < A;) (2-37)

e

When a mixture specific heat is introduced, we get
T (KT
= C,.<T.> + o, C 2-38
GT\CMTM U‘A ts 3) ¢ Tt 27 ( )
But all the temperatures are the same, so

C -~ 9, C + Sy (& 2-39
Ppm™ q_h f3 Q’;\ pe ( )

This is the customary formula for the specific heat of an ideal
mixture when 05 | 9., is recognized as the mass fraction of the

constituent.

E. Particle Flow Cross-section and Number Density

The conservation equations for the gas and particle c..ntinuum
contained thermodynamic properties discussed above. They also
contain terms relating to the interphase transport of mass Y ,

momentum F, , and energy ( Q for instance). These terms could
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be expected to be proportional to the number of parti les times
an interphase transport function per particle. Hence, in
formulating ¥ , F , and Q , one needs to know the number density.
Let ““‘EM v£) be the number of particles (of a specific

size group) per unit mixture volume, and ™ the nominal mass

of a particle. Then the particle phase density is given by
i — — n,
<¢r7 Ax “/"1 Alx = mn; <R Ax (2-40)

Substituting into the continuity equation for the particles, we

have

%(m;o‘?) AN = - g‘,; (mi YA =Y uany

This can be differentiated by parts to obtain the following:
2 ‘o
“‘c[ = <RYA, + 2 <RYA <47-,>l

(2-42)

'\'(h)A[ : g:]’ v

Recall that ¥ represented the mass flux leaving or entering the
particle holes per unit length of flow direction. Then Y /A,

is a volumetric source and is equal to the number density of
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particles times the substantial derivative of the particle mass.
Subtracting this from the equation above results in the number

density equation:

?-£<’R>A, + = WAy = O (2-43)

For a constant area and steady flow, equation (2-43) reduces
to the simple but very useful equation

(a4

LAY <V, > = constant (2-44)

The differential equation for the number density above was de-
veloped from a continuity equation which implied a conservation
of particles, When a source or sink of droplets (and mass)
exists, the right-hand side of equation (2-41) @nd eq. (2-43))
should be modified to include the net production of particles per
unit length of distance,

For the actual fcrmation of a particle drag force or heat
or mass transfer rate, it is necessary to know the particle
radius. Equivalently, the particle mass could be used since the

particles have constant density:

4 2
m; = 5 T "/% (2-45)

The equation for m: was actually described above but not

explicitly written:



'fl

Dm, S 9 My !
=+ V, 5 —\ = — \\J 2-46)
2 7 x Ay <R (

When the flow is steady, a much simpler method of computing the
particle radius is available. In this case the mass flow rate

is used as a variable instead of the density. By definition:

<TY = My <AD> (2-47)
SO
M. = <RY <Ry & 44L1j>._ Cln~{tadt
¢T T T ~ 1~ < 2-48)
4EY &Gy e

Thus, the particle mass is inversely related to the particle

mass flow rate.

F, Extension to Three-dimensional Flow

71

Thus far, the conservation equations and other relations have

been developed for quasi one-dimensional flow. The scheme was to

integrate over an elemental volume, This provided the motivation

to define area-averaged properties of the particles and of the

gas. Some of the properties were averaged by themselves, some

were weighted by the density, and some were weighted by the mass

flux, Limiting the length of the control volume resulted in dif-~

ferential equations for the average properties,
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In addition to being essentially nonuniform in space, the
two-phase flow is also nonuniform in time., By performing a
time-averaging process, it was possible to refine the definitions
of the properties of the gas and produce differential equations
for the area average of the time-smoothed properties. In addition
to the time-smoothed terms, the equations contained Reynolds
stress terms, that is, the time average of two fluctuations multi-
plied together. In the one-dimensional derivation, the cross-
section area Ax was allowed to vary and it was assumed that
there was no interaction with the wall; that is, no mass, momen-
tum, or energy left the control volume through the sides.

A relatively simple way to derive the three-dimensional
equation for two-phase flow would be to extend the one-dimensional
analysis. In order to do this, consider an elemental volume

AX 6‘363 and apply the same arguments with the variable area
A, Teplaced by A«aA‘é . One significant difference is that
now mass, momentum, and energy are convected across the side
walls of the control volume. Thus the convective terms which
were simple derivatives with respect to will now appear be-
hind a V operator. In a similar manner, it is necessary to
account for heat flow, pressure, and viscous forces on the side
walls. The liquid portions of these terms could be dropped, as
was done before, and the gas portion would result in the usual
heat and viscous terms.

The interphase transport between the particles and the gas
was previously formulated in terms of functions with the following

format:
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\ _\,Z{....&s
A (2-49)
( Sp;

f

In three dimensions the definitions would be made on a per

volume basis:

- Z‘_ g.....ﬂs

Aq‘"’z AanA'\J ; 59.: {(2-50)
t&g"
Aé—b (o]

A careful consideration would be expected to show that the
time average could be interchanged with the area averaging if
the particles were uniformly dispersed in 4% Aa_ A; . The
remaining Reynolds stresses for the gas and the particles should
come out of this operation (only <’6‘F‘\7‘;"> appeared in the
one-dimensional case).

Another possible way to derive the three-dimensional equa-
tions would be to integrate over a volume of arbitrary shape.

Then one would make use of the definition of the operator

given by Milne~Thomson [22]:

V*-£ — LA"V\ h*'F JS (2-51)

AY=>0 <
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The function {:and the multiplication % are arbitrary tensor
calculus operations. Since £ must be defined all over the
surface S, it is obvious that the formula above can only be
applied after one defines the average gas or particle velocities

at an arbitrary point,

oo .
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CHAPTER III
A TYPICAL RELAXATION PROCESS, THE TWO=-PHASE SHCCK STRUCTURE

A, Description of the Problem

In this chapter the problem of the rclaxation between two
phases will be formulated in detail., In general, one phase con~
sists of dispersed particles of liquid or solid and the other phase
is gaseous. The flow is one-dimensional and steady. Initially,
the gas and particles are at given states, but they are not in
equilibrium and they move at different velocities, The mixture
proceeds to its final equilibrium state by a relaxation process in
which the gas and particles interact with each other, The initial
state can be specified arbitrarily and the properties of the gas
and particles computed, using the distance along the relaxation
zone as the independent variable,

Physically, several situations might be imagined which would
produce the initial state: the acceleration of a static mixture to
the entrance of a pipe, the injection of droplets into a flowing
gas stream, or the support of the particles by a screen as in a
fluidized bed., In this chapter the initial conditions are assumed
to be produced by a shock wave in the gas phase, This problem has
been treated for the case of solid particles by Carrier [1],
Rudinger [10], and Kriebel [11]. Extending the problem to liquid
drops involves the consideration of mass transfer between the
phases, in addition to the momentum and heat transfer,

Viewed from a coordinate system on the shock wave, the par-
ticles and gas approach with the same supersonic velocity (see

Fig. 3-1). The particles, which are much more dense than the gas,
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penetrate the gas shock because of their high momentum, Likewise,
the heat-transfer and mass-transfer rates to the drop are slow
snd the particles emerge from the gas shock without being altered
in mass, temperature, or velocity. The gas shock wave, on the
other hand, is assumed to be unaffected by the presence of the
particles. Thus, the initial disequilibrium conditions for the
particles are the velocity and temperature in front of a gas shock
wave, and, for the gas phase, the velocity and temperature behind
a gas shock wave, The proper jump conditions are for a shock
wave in a gas with the specific heat ratio of the initial gas phase,
The gas phase will be assumed to consist of two species: a
diluent, A, which is insoluble in the liquid drops, and the drop-
let vapor denoted by B. The gas phase will be treated as a per-
fect gas mixture., Upstream of the shock, the gas and liquid
phases are in equilibrium and thus the partial pressure of
species B in the gas phase is the equilibrium pressure corre-
sponding to the droplet temperature, Imm:diately after passing
through the gas shock, the temperature of the drop is unchanged
and therefore the vapor pressure of species B at droplet surface
is unchanged. On the other hand, the vapor of species B in the
gas phase has been compressed by the shock to a higher value.
This partial pressure (or mole fraction) gradient between the
main gas stream and the surface of the particle results in the
diffusion of species B from the gas to the surface of the particle
where it condenses. The diffusion of species B through the gas
surrounding the particle is taken as the rate-controlling process,

i.e., the rate of condensation (or vaporization) is much faster
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than the diffusion rate, The droplet supplies or consumes

species B so that the partial pressure of species B at the sur-
face is in equilibrium with the liquid (as determined by the
liquid temperature). This partial pressure is then a boundary
condition at the particle surface for the diffusion of species B
from the main gas stream., The condensation of species B immedi-
ately after the gas shock is only the initial behavior; frequently
the mass transfer changes sign and vaporization occurs further

on in the relaxation zone,

The two-phase flow can be described by several choices of
dependent variables; the motion of the gas is given by the veloc=~
ity ”3 and that of the particles by Ve The thermodynamic
state is described by 'T; and T}a ; however, instead of another
thermodynamics variable, the mass flow rates \iz and "‘\e;\ will
be chosen as dependent variables, Knowledge of the mass flow
rates is equivalent to knowledge of the density since the
velocities are known. From a knowledge of these six quantities
any other properties of the flow can be computed by simpie

algebraic formula,

B, Algebraic Formulation

The conservation equations for a two-phase gas-particle
system consists of nine equations, namely, three mass, momentum,
and energy balances: for the gas, for the particles, and for
the overall mixture, Only six of these are independent since
the conservation equation r.ferring to the mixture may be ob-

tained by adding the equations for the gas phase and the liquid
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phase., For the problem at hand, it is most convenient to use the

overall conservation equations and the equations for the liquid

phase., The particle phase and gas phase equations were derived

in the previous chapters. The overril equations are obtained

by simple addition., The dependent variables in these equations

are averages of the local time-averaged flow properties. It is

assumed that the flow region under consideration is free of any

wall effects and thus the time averaged property is independent
= ~

of the area averaging, i.e., <‘F7= <-f-7f= <?>v§, .

A coordinate system is chosen with the origin on the shock
wave, The upstream equilibrium state is denoted by © , the
state immediately behind the shock by | , and the equilibrium
state for downstream by @@ ,

Let n;

\|

size group { of radius ¥v; and density . The density is
i Va

assumed to be constant, The density of liquid per unit volume

be the number density of spherical particles of a

of two-phase mixture is the sum of the densities of each size

group:
%= )L % -
J
Each size group has a velocity 15i. Thus the mass flow

rate of particles per unit flow area is sum of the mass flow

rates of each size:

me=L M=l %% oo
d d
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It is convenient to introduce a coefficient 5*3 which
denotes the fraction of the mass flux initially in each size
divided by the initial total partial mass flux, r;\'.:

S °
A, = m@&o I/ h\fo (3-3)
d
It will be assumed that there is no creation or destruction of
particles in any size group. Hence we explicitly ruled out
breakup and shattering. This means the solutions will be limited

to shocks of low Mach number. For a steady-state process the

conservation of the number of particles implies that

. . - ‘ . - taht 3"4
hA \J;,,\l hjeo U“d" cons (3-4)

With this restriction the radius of the particles depends only

on the mass flow rate:

| i/
: 3 ‘ 3
Yo (B ) [ B 5,
e P ae & h‘r')

Each size group of particles is transferring mass from the
particles to the gas at a rate‘%AA,per unit volume of mixture.
The mass conservation principle for steady-state flow requires
that the cderivative of the mass flow rate is equal to the
negative of the valumetric "sink" ‘f‘-/A,. This is the steady-

state form of equation (1-81) of Chapter I:



£ (h’xe&\ = = A (3-6)

Next consider the gas phase, The average velocity will be

denoted by ‘v

&

and the density of gas per unit volume of two
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phase mixture by <r5 . The overall conservation of mass requires

that the gas mass flow rate plus the total particle mass

flow rates be a constant:

h‘\a* h\\o"" h\o = Constaﬂt (3=7)
The constant\%. is evaluated from initial conditions.
The particles undergo changes in velocity because of the
drag force exerted by the gas phase (F:)/A,. force on sizeti
per unit volume). External body forces and momentum transfers

by physical collisions between the particles will be neglected:

- v ' ‘
h“@d OQ_.....N = A (3-8)
o x A,

This corresponds to equation (1-82) of Chapter I (reduced by
using equation (3-6)). The terms accounting for the gas phase
and particle phase Reynolds stresses have been neglected. We
will, in fact, ignore all terms with property fluctuations,
This is a matter which deserves further study. No experimental

information on fluctuations is available for the shock wave
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case. The present knowledge of drag and heat transfer coefficients
is actually so unreliable and meager that the analysis of fluctu-
ations might be a futile refinement at this time,

The overall gas and particle momentum equation assumes that
the overall momentum is a constant., Thus any viscous effects in

the bulk of the gas phase are neglected:
Z '\J'U -+ I’)'\a 3 + f = ¢ = cmatah (3-9)

In this equation, «! is the gas phase pressure. The volume
of the particles has been assumed negligible compared with that
of the gas. Rudinger [23] has recently investigated the overall
effect of this assumption.,

The 'thermal" energy equation for the particles shows that
changes in the particle temperature are the result of heat
transfer to the gas and heat required for the liquid-to-gas

phase transition:

C fy‘m' - - Y Qd (3-10)
R A ﬁ

The temperature of the particle is assumed to be uniform. This
assumption is usually good for metallic solids because of their
high thermal diffusivity and also for liquids because of circu-
lation within the drop. This has been verified experimentally

for large drops ([24].
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Let 423 denote the specific enthalpy of the gas. The gas-

plus-particle mixture will be assumed to be adiabatic; thus the

energy equation reads:

\ .
h;\ ( ""!‘Zq}é\ "\"Z h‘f\\' ('er‘ v FJ) "d C‘“" hg-ll)

3

Conduction and diffusional transport of energy in the gas phase
have been neglected. The enthalpies may be measured relative to
a reference datum as long as the enthalpy of species B in the
gas phase and the enthalpy of species B in the particles have the
same reference,

The equations above contain the terms ’ , and ’
representing the interchange of mass, momentum, and heat between
the particles of size and the gas, We divide these by the

number density to get

(’WB‘MB\[G ~ “P- /A
-F\- = FA / (Ar h\ (3-12)
‘L,__d = Q‘ / ( Ay h'\

where ("WQQ'\g\ 3 , and %‘d refer to the mass, momentum, and
heat transfer for a single representative particle L of 51zgd

The mass transfer from the particles to the gas will be
assumed as a diffusion-controlled process. The gas in the

immediate neighborhood of the particle surface is assumed to
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be saturated with species B in an amount determined by the par-
ticle temperatures. This determines the mole fraction of
species B at the surface of the particle Xgg. When there is a
net flux of species B to or from the particle it is because the
mole fraction of species B in the bulk of the gas phase has a
value different from the equilibrium value., For a diffusion
process of species B through a stagnant film of species A, the
mass transfer coefficient is defined by the equation relating
the total molar flow rate 7Vb and the driving concentratioun

gradient (see Bird, et al, [21], Chapter 21):

'XBS' - pr
A' Sun J 1 (3-13)
e T
B.Sd

A

Bii YJ

In a similar manner, the drag and heat transfer coefficients are

defined by the relations

2

{
g’c‘d‘ = CDJ' AJ X-Sac 2/3 (va—'\r,j) {3-14)

G = '£ "A(SM (de'—jg) (3-15)

Experimental correlations for the transfer coefficients are

expressed in terms of dimensionless numbers. These are the
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Reynolds number, the Nusselt number for heat transfer, the Nusselt

number for diffusion, the Schmidt number, and the Prandtl number:

Rew. = 2L 201V Vil
4 P
. ZQ'/ k

Nu = ABG

Nuo = l'(,x‘j 7 k«‘ / (C DAB)

=\
Se v plp P
Pr = ’//( Cp / K

(3-16)

In these equations k is the thermal conductivity of the gas, ¢ is
the concentration of the gas (moles/cc), [)An is the binary dif-
fusion coefficient,/ is the viscosity, and Cp is the heat
capacity.

Combining all the preceding equations beginning with equa-
tion (3-12) (and noting that hi may be eliminated by eq. (3-4)

and the particle mass flow rate definition) will yield

(3-18)
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b

I
3
|
-

In these equations Cﬁ%ld is the nondimensional radius formed by
dividing the actual radius by a reference Ye . The thermo-
dynamic properties should be evaluated at a mean value for the
gas film around the particle instead of the '"free stream values.,"
However, this choice has not been tested experimentally [21,

p. 409] and this refinement will not be made here,

The transfer coefficients are the primary source of uncer-
tainty in the formulation of the problem, For the shock relaxa-
tion problem one needs the drag of a particle in an accelerating
flow influenced by the presence of other particles and undergoing
heat and mass transfer, Torobin and Gauvin [25, 26, 27] have
reviewed the drag coefficient experiments for accelerated motion,
They were unable to explain the large decrease in drag coefficient
found in some acceleration experiments. The steady~flow drag

coefficient for low ch is the well-known formula of Stokes:
CD= 24— / R.z (3=20)

At higher Reynolds numbers the experimental data is approximated

by the relation
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CD='4.8 ‘" 28 Rea

(3-21)

Ingebo [28] performed unsteady drag measurements on both solid
and vaporizing particles and reported the following law which is

considerably lower than the steady flow value:

- 8¢

CD= 27 Reé. (3-22)

Rudinger [29] measured the drag coefficient for solid particles
by performing shock-tube experiments and he obtained still

another value:

=7

Co'* G000 Rea (3-23)

Rudinger considers this formula tentative and feels that extra-
neous factors may have been influential. In most of the calcu-
lations the steady flow equation will be used simply because more
accurate information is lacking.

The heat transfer coefficient for spheres in steady flow

is given by Ranz and Marshall [30]:

i/ “3

Ne=2 +.6 R‘a Pe (3-24)
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When there is no flow the equation gives Nu= 2 which corresponds
to the theoretical value for the conduction of heat through the
stagnant inert gas surrounding a sphere, The mass transfer co-
efficient is found by replacing Nu by NuD and Pr by Se . This
analogy depends upon the assumption of small heat and mass trans-
fer rates such that the mass transfer does not affect the temper-

ature profile:

v Vx
Nu = 2 + G ReA‘Sc

D (3-25)

When R“& =~ O this equation gives the theoretical value for the
diffusion of a species through a stagnant spherical film.

This concludes the dynamical analysis of the problem. In the
next section the thermodynamic equations will be described. 1In
these equations it will be assumed that the liquid drops have a
constant density and unifcsm temperature. The gas phase is con-
sidered as a mixture of perfect gases. Also, it must be remem-
bered that the volume occupied by the particles is small compared
with the mixture volume so that the gas density based upon the
mixture volume is nearly the same as that based upon the actual
volume,

Under these assumptions the perfect gas law is written

B RTy © RT, = DR
3
(3-26)

f% * fﬂ~" G’B

¢n= Xaf ) fo=Xef
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The partial pressures of srecies A and B are denoted by fa and
g - The molecular weight of the gas mixture is the sum of the

mole fractions times the molecular weight of each species:

%% = ’XA‘)"A + Xg 9’1'

(3-27)

= [Xhtl-?)*.f] M.\

where

?‘7’\8 /m\A

The mass fraction of a species will be denoted w (mass of a
species per mass of gas mixture). It is related to the mole

fraction through the molecular weights; for instance, l

M
> (3-28)
M

Wo = xa

Combining the two preceding equations gives

T Wa |

X, = (3-29)
A L+ w, (5-1) |

The mass fraction can also be expressed in terms of the mass |

flow rates:
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/QA,v- hA h“

T cmemage e

Wy = f_‘\ =

f& /‘)’6 'v-% r;\a. m.& (3-30)

The subscript designates the initial state., Because species A
t
is the diluent it is conserved and ™ is a constant., Hence
h\
\Nao
Wa = "")Ao —3 (3-31)

\

!

The specific enthalpy of the gas mixture is the sum of the

component enthalpies:

’8‘3 -~ W, 'p\ﬁ * “"3’25 (3-32)

Constant specific heats will be assumed for the specicz and the

particles:

A

A

Cpa (T% - T.)
’&E = Cf' (Ta "Ta\ -+~ ,k;: (3-33)

l?&g C".(T—’&-Tﬂ\
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The heat of vaporization at the reference temperature Teo is

®
R,
from .& because of difference between the specific heats of

+ The heat of vaporization at any temperature ‘}. differs

the 11qu1d and the vapor:
A

A (7)) = _K

+y e '&B X

A -]
- - (3-34)
= (Cpp~ SI(T-T,) + jﬁ
The final equation for the statement of the problem is
supplied by the Clausius-Clapeyron relation., 7The slope of the

vapor pressure curve for equilibrium of pure species B liquid and

vapor is related to the heat of vaporization:

Aa
A /K ( (3-35)

?g is chosen to distinguish from Po previously defined, The
vapor is assumed to be a perfect gas; hence this equation is not

valid near the critical point. Substitution of equation (3-34)

gives

A ° A :}'--T; A
B =LA RIS+ (Gred 7] 4T 6

Integration yields the vapor pressure as a function of the liquid

temperature. In the problem at hand the partial pressure of the

- A%
&
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vaporizing species B at the particle surface is assumed to be the
equilibrium value corresponding to the particle temperature. i.e.,

A
é\!‘ flss;\ and T“Tt& . The firal equation is

e CP\" Crn. ! ( c )
._a.sd = (Bd.) Re . C'XP - Cra e ( - :'_g.
Cao T, Re " (3-37)
he o T
rexpy = (1 -2
{-R‘ ° 1}5

The first two terms can be seen to represent a correction for

the case when <£;: is constant, Empirically the relation

Casg T,
= = expiq(1-=2) (3-38)
fgo ol T;

is sometimes used., In this instance ﬂ. is deterrined from experi-
ment but should be approximately
-]
1

Ra To

(3-39)

A graph of vapor pressure-temperature relationship is given as
Figure 3-2,

The preceding equations give all the necessary ~elations
to solve the problem. Before this is done it is convenient to

nondimensionalize the variables as follows:



M L= .' . . \ L
e W\N/ay)a, ) M.A'* ha/aﬂ,

Vv, / ao .) \/Pd‘ = /V"J / ao
3° ) H = R / a:
) G T/ T

e /ToRe )/4"—./( / v, 3./oa°
T/ |
v fa' ) @ -~ R/Rc"”a./'n\g

/r.‘ ' )
d \ ﬁe;\‘\ = Y‘.J / | 'S (340
Y op, T o F
) - .= -9 fx re
Ay @opyy ) J'\\ Ax (o, AN
= QJ /o& Ve X - l f »

Ax al ; ) Ve /o‘
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In terms of these variables the equations to be solved reduce to

M2x+ Z "Kr;x = Ve (841) (3-41)
i
M\VJ ) ZJ; M"J Vf\f *P-1 (3-42)

. . - Lyt .
Mg (B + SV )+ L M,J(HN-+—Z-VN\, J
3 J ) i (3-43)
éi.ﬁ\ti = 7.
AdX J
(3-44)
n . AVe( = F
M\‘& A J
(3-45)



=4

il

i

Bri e Moo &7 ag = oy
Rad, 9’14 Se V\'J. LT Y”\J
Moy i C v, v,,-l(XL-vN)

!ix Nu 2™ -8

«.93‘ = M (O )

J:-'q?jl.]%-t- CLQ
( ﬁ\qd //613 PqFo )

(3-46)

(3-47)

(3-48)

(3-49)

(3-50)
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(3-51)

(3-52)

(3-53)
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The specification of the thermodynamic properties of the

mixture will require that one assign values for the following:

> ) X ™

Pr\sc ‘CrA\CP‘)C‘.g)H{ s 'x, S (3-55)

1) Y tBey

The drop sizes and the amount of liquid in each size is

specified by the constants

Ve = re'Fcrer\ce Y“QAL;JS

‘ecres = Y. [ Y.
xp = s (9 (3-56)
/‘

-
n.az/%.
The reference radius ¥\, does not actually enter into the non-
dimensional problem except through the parameter’/ur which, for
fixed initial gas phase state, must be considered as the primary
drop size parameter.

The initial conditions for the dependent variables can be
given arbitrarily, as previously noted. Here the initial con-
ditions are assumed to be produced by a shock wave in the gas
phase (subscript | ). For this situation the Mach number of the
shock (and Yo ) and the shock tables provide the initial data.
The initial gas temperature is simply the temperature ratio
across the shock, while the particle temperature is unity
according to the assumption that the particles are initially un-

affected by the shock:
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Qa‘ST\ /T—. 5 eﬂil: l

(3-57)

The initial particle velocity is unchanged across the shock and
hence it is the shock Mach number, The initial gas velocity is

the velocity ratio of the shock times the Mach number:

v?‘i| = \/‘Oo = Mo
(3-58)

v%| = véu /ao = ('Vé,/'\)“%.\ Mo

Finally, the nondimensional mass flew rates at the initial state

are also related to the shock Mach number and the loading factor:

(3-59)

The mass flow rate for a particular particle size is formed,
employing the definition of a(k and noting that all particles
have the same velocity at the initial point.

The problem is now to solve equations (3-41) through (3-54)
(plus a few additional thermodynamic relations for the gas mix~-

ture), when the properties of the mixture are specified by
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equations (3-55) and (3-56) and the initial values of the de-
pendent variables are specified according to equations (3-57),
(3-58), and (3-59)., The numerical solution was accomplished on

a computer as the next section will describe.,

C. Description of Computer Solution

The solution begins at Station 1 just downstream of the gas
shock where the independent variable X is set equal to zero. The
main dependent variables are the mass flow rates, the velocities,
and the temperatures ( Ma , !&\r,‘: , Vg » Vegd 93 , and Qr&). The
equations which are to be int:, rated refer to the particle prop-
erties and are given by equations (3-44% (3-45), and (3-46). When
the initial data are substituted into these equations, the right-
hand side of each equation is known and may be integrated one
step, DX . This will furnish new values of the particle proper-
ties \}d,

performed for all the particle size groups.

Mg » and Sjat X+ DX . This integration is

With the state of the particles at X =0+ DX known, it
remains to solve for the gas properties., Equation (3-41) yields
the gas~-phase mass flow rate rka , Since all the ﬁﬂ,d are known,
With ﬂ\: known, the mass fraction &, (and hence Wy ) is
found from equation (3-31). This leaves the gas velocity and
temperature as the only major unknown variables. These variables
will be found by iterating on two equations, using the Newton-
Raphson method to estimate the increments to change the variables
at each step in the iteration, From the energy equation [equa~

«
tion (3-43)], a function F,(V\éa) is formed:
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Hg is an explicit function of 91 through equation (3-32). When
the prohper values of the gas properties are found, 'Va* Va and
92’1 6.& , the energy equation is satisfied, and F‘(V.h Qa\-'- 0.
Next, the pressure is eliminated from the momentum equation
[equation (3-42)] by equation (3-51) and another function is

formed:

A A
This equation is also zero when the proper values of VJ and 9:
are found,
A A

A choice is made for the values V, and 91 . Then Taylor's

series are written about that point to the point (V,, 93 ):

O= F(Q \Va) F( 1 a)* (\S v; 3:; (9‘-3‘)* e (3=62)
"a\‘i W
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- k4 & DF& _« DF; A
o Fl“6\63) 'EJ6E$%0‘*‘;5; (Va\%\*'525 (G%—é%s + e

9 A A .
e YW (3-0%)

If only first-order terms are retained, then the above is a
linear system for unknowns ( Vq- 0}\ ) and ( 61-32 ) once

A A

\a, EH are specified, Solving for these increments gives cor-

A
rections for new estimates of V.‘ and éa :

VaNew" Vou + CVQ-Va\

(3-64)

A 4§

93 New e'gm N (9&'935

The process is continued until the correction is as small as
desired,

When the gas properties are fouund, the solution is complete
at X»0+DXand another step in the integration may be taken.
This describes the essential aspects of the computational scheme,
A flow diagram is shown in Appendix D, a dictionary of FORTRAN
symbols is given in Appendix E, and the progra~ listing comprises

Appendix F,

D. Asymptotic Theory of Two-Phase Shock Structure

The preceding discussion of the two=~phase shock was presented

as a typical relaxation process for two-phase dispersed flow. The

ey -
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gas-phase shock was viewed as a mechanism to provide the initial
disequilibrium state, and the particles were assumed to penetrate
the shock without change., Likewise, the shock was assumed to be
unaffected by the particles passing through it,

At low density a gas-phase shock has a thickness of range
of a centimeter, Physically, one would not expect the assumption
above to be valid for small parvicles whose density was of com-
parable order of magnitude to the gas density. Therefore, it is
of interest to look at the problem in a more general light and
to see how the assumed problem, gas shock plus relaxation zone,
fits into the general equations for two-phase, one-dimensional
flow,

The problem is stated in a way similar to the formulation of
the theory of gas-phase shock waves. What are the solutions to
the one-dimensional, dispersed, two-phase flow equations which
allow the passage from a uniform upstream state to a different
uniform downstream state?

The upstream state is taken as given and it is possible to
find the downstream state by solving the conservation equations
for a jump in a two-phese flow. This provides the upstream and
downstream boundary conditions for the structure problem, The
differential equations for the structur of the jump will appear
too complicated to solve directly and so an asymptotic solution
will be proposed., As indicated in the previous physical argu-
ments, the problem can be separated into two problems if the
parameter € L //.a,—voo ; hence this is the proper pertur-

bation parameter,



102

Formally, the equations and boundary conditions (up- and
downstream states) to be colved are considercd, and the equa-
tions are nondimensionalized so that the variables are of order
unity as the parameter & -» o , The equa:ions and boundary
conditions which result from this limit constitute the zero-
order problem in an asymptotic expansion in € , It will be
found that the zero-order solution will not satisfy both the
upstream and downstream boundary conditions; hence, one must
be ignored. The downstream boundary condition is tue proper one
to ignore. Since the zero-order solution does not satisfy both
boundary conditions, it is not : .. ‘formly valid solution, i.e.,
it is "singular" as X-»0e ., The solution is usually called
the "outer" solution and is actually the solution to the structure
of a gas~phase shock wave,

The next task is to find a solution which is valid as
X000 , To do this, one rescales the x variable (call itX )
so that the terms which were neglected and caused the singularity
in the outer problem, will be of order unity as the parameter
€ 00 , C(Carrying out this process results in the differential
equations for the relaxation zone, as given in the first part of
this chapter, This constitutes the "inner" problem, The inner
equations require only one set of boundary conditions, whereas
the solution must actually satisfy two sets. At one boundary
the equilibrium downstream conditions must he sa*isfied (X —»9°),
At the other boundary ( X =» O ) the inner solution must match the
outer solution as the outer variable X-»o00 , that is, the outer
solution must satisfy the boundary conditions downstream of a gas

shock. It turns out that if tne conditions behind the gas shock
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are prescribed, then the equilibrium conditions at will
also be satisfied,

The previous discussion indicates that the solutions for a
gas shock plus a relaxation zone are actually the first terms
in two matched asymptotic expansions in the density parameter
€ as € oo, This will be demonstrated in the next few pages
by using the actual equations,

The one-dimensional equations for the gas phase are written

in dimensional form:

Continuity:

oA i 4

— N = ———

ax S8 T A, (3-65)
Momentum:

Energy:
X Y] - L4 [k4T dv, ]
= [hoa(f,ai- -,L_'V‘a)] = [K I “+ '\ra (A+2) ‘ha- 4};_/»“‘(2“ %}

PR B A O I Y -
x"ov; Ax-u- uas 3 ) (3-67)



104

The equation for the particles are:

Continuity:
4 hd
— 0"'\)' = e — -
Momentum:
B T dv, F. )
-_ = - (3-69
[ o aQ'X ‘\x
Thermal Energy:
G;V', 3(-&" = - ':P- 1\ -+ g (3-70)
X A

o

— | x ‘3 Ay

In the equations above, the'volumetric source terms are
given in dimensional form by equations (3-18), (3-19), and (3-20),
and will not be repeated here. The thermodynamic equations for
the gas and the particles complete the set of equations. The
boundary conditions are two uniform equilibrium states which
satisfy the two-phase jump equaticns,

The initial state is characterized by the velocity, gas

thermodynamic properties, particle loading, particle radius, and

e T el e T
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liquid density. One can imagine a sequence of problems where all
the initial data are held constant except the liquid density,
which is increased; i.e., ‘7’3‘-’ o© , Thus, if T,, Q. ,
V/A%. and Y, are used as reference quantities, one would expect
the nondimensional variables to be of order unity as € @ O .
These nondimensional variables were used previously in the first
part of this chapter and are given by equations (3-40). A few

new variables will also be used:

A - ‘{;—} /:\._.._ 2/\"")\
‘/oa ./03' Y‘o a:/ao
A
Kk ~ <To &= S (3-71)
r. Q, v/na.
A = = & = A2

re. .
%
Introducing the nondimensional variables gives the following set

of equations:

Gas Continuity:

l
Axfé.ao é (3_72)
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Gas Momentum ‘

/Y 2. Lr %(pﬂ’) "(-'5'—"*')-(i 1"’-)(\:-\/,,)

23 40 Aa Aa M a2l) (A, )
(3-73)
= -‘;}i—:(ﬁ ‘f—}*)-é—&-é—?(va-v,) |
Gas Energy:
Ié' [/3\8\13(“3*’%-\/31 )J = %L?‘ .“{—iz + 5\ ‘_f,-i; +§ HVZ‘K(V,K-VI)] |
(3-74)

AT L\
ZLV‘.GI' + % -W(HN"":{V,.)]
Particle Continuity:

A A
2&; (J;‘V; =T é; R4

Particle Momentum:

(3-75)
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Before taking the limit € =»9© in the equations above, the
detailed expressions for ¥ ,F , and f given by equations (3-49),
(3-50), and (3~51) should be checked to verify that these quan-
tities are actually independent of € , Performing the limit on
the gas phase equaticns gives a set of equations in which no
interphase transport terms appear. This set is identical with
the Navier-Stokes formulation of the problem of a gas=-phase shock
wave, The limiting equations for the particles have trivial

solutions:

ﬁ\' = ¢:oh£t3¥{e

>
z'
-
-
f
)

\._._ O \ vr = cons'ean't' (3-76)

LN L v b
g <
°

H", = Cor\:fﬂh t

Thus, the zero-order equations give constant values for the par-
ticle flow and produce the pure gas-shock structure problem for
the gas phase. There are two sets of boundary conditions to
satisfy: the equilibrium conditions across a two-phase jump;
however, the particle properties are constant and can obviously
satisfy the boundary conditions only at one end, Likewise, the
gas shock will not satisfy the end conditions for a two-phase
shock but can be made to coincide with the conditions at one end.
It is appropriate to let these problems satisfy the upstream
boundary conditions and allow the solutions to be "singular" at
A = no . To correct this situation ar "inner" or "boundary

layer" solution is required.
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The inner solution should satisfy the proper downstream
boundary condition at one end and match the outer solution at
the other, To find the proper differential equations the distance

variable 4 is magnified by introducing a new independent variable:

X - £ (3-77)

€

There is no need to rescale the dependent variables,

The new distance variable X is introduced into the full set
of two-phase equations (3-72), (3-73), (3-74), and (3-75). Then
the limit € —> o092 taken and the equations previously given for
the relaxation zone result:

Gas:

N& égy; -+ fgl? - - - 1Tr V.-V
Iax  4x § (%=%)

(3-78)

J > L A
}}[Mg(“a*"iva)]: -Fv - ¢

+TP'(H .4-.1.\/‘)
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Particles:

A M,
Jx'—cP—

“\‘\‘, %‘: - ?v\ (3=79)

T
T, _EP'H%*'Q

By performing a little algebra and adding the gas and particle
equations, it is possible to reproduce the overall equations
(3-41), (3-42), and (3-43)., The particle equations (3-45),
(3-46), and (3-47) are identical with the equations above. The
equations above will admit only one set of boundary conditions;
however, if the boundary conditions are chosen to match the
outer solution, the solution will also satisfy the downstream
equilibrium conditions., In fact, specification of any set of
initial conditions will determine a final equilibrium state,

To summarize, it has been found that the problem of the
structure of a two-phase discontinuity can be split into two
problems, The first problem is the pure gas-phase structure
problem, while the particles remain unaffected. The second
problem is the relaxation zone and is matched to the solution
of the first problem. The solitions to these problems con=-
stitute the zero-order terms in two matched asymptotic expan-

sions in the density parameter & = / —» @ ., In this
ANV
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connection it is noted that all of the solutions are independent

of € , as they should be,

E. Discussion g£ Related Problems

The equations which describe the structure of a two phase
relaxation zone require boundary conditions at only one point,
Then the solution for all downstream points is determined., There-
fore, the nature of the process which produced the disequilibrium
is arbitrary and the equations can be applied to any problem by
specifying the proper initial conditions.

One physical phenomenon which was not accounted for in the
analysis was the addition of particles to the flow, This ex-~-
tension would be of great practical importance since large drop-~
lets are known to break up or shed small particles until the
surface forces can retain the particle shape.

Additional improvements to make the computer solutions more
realistic must include better equations for the drag coefficient,
This is primari’y an experimental problem but theory must supply
the equations by which the results are analyzed, Along these
same lines is the problem of the Reynolds stresses. Experimental
determinations of particle and gas fluctuations would be extremely
useful in formulating these terms, Simple estimates of the fluc-
tuations might be arrived at by considering the present knowledge
about vortex shedding (size, frequency, dissipation, etc.,) from
spheres., By taking the aggregate of all the particle wakes, one

might produce an estimate of the velocity fluctuations,
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The shock wave plus a relaxation zone is only one type of
two-phase discontinuity, There are also solutions for which the
initial velocity of the mixtures is subsonic. In these solutions
the gas arnd particles change state over an extended region similar
to the relaxation zone without any initial gas shock. The jump
states for these weak solutions have been discussed by Soo [14],
and the structure has been analyzed by Kriebel [11]. Both of
these papers considered solid particles.

The mass transfer mechanism assumed throughout this chapter
has been the diffusion-controlle” process from the drop surface
to the gas phase, If only a singie chemical species is present,
the composition gradient is nonexistent and this assumption is
inappropriate., For this situation, the evaporation and conden-
sation rate for a pure liquid-gas system should be used to find
the mass transfer rate, The assumption of isothermal particles
would probably also be invalid because the evaporation rates are
extremely high compared with diffusional rates,

Another modification of the problem is possible by changing
the droplet-gas interaction to describe burning droplets. The
theoretical model of a burning particle has been reviewed in a
book by Williams [31]. The burning rate for a droplet :is
essentially a diffusion-controlled process with slightly dif-
ferent boundary conditions. The heat and momentum interchanges
should also be modified to describe this special situation,

The asymptotic theory of two-phase discontinuities given in
the previous section implicitly assumed that there was no gas-

phase chemical reaction. If one takes an even more general
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attitude and considers the gas mixture as combustible, then
the asymptotic theory would separate the two-phase combustion
wave into a gas~-phase wave and a '"relaxing' two-phase combustion
region, The gas=-phase waves would be the usual detonation and
deflagration waves. The jump conditions for the two-phase deto-
nation has been studied by Williams [32], He has also formulated
an analysis of two-phase deflagration and investigated the burning
velocity for "heterogeneous' combustion [3, 33]. This model
assumes no gas-phase combustion wave and in this respect Williams'
heterogeneous combustion is analogous to the weak shock wave de-
scribed above, The structure of a heterogeneous detonation wave
was discussed in Williams [34].

It is interesting to note that the shock and detonation
waves are relatively thin and one can easily imagine a decoupling
between the gas-phase wave and the relaxation region., The gas- '
phase deflagration wave, on the other hand, is somewhat thicker

and the coupling between the gas wave and the relaxation zone

could be significant, This would imply that first-order terms
(anyway, the second term) in the asymptotic expansions would be

significant,
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CHAPTER 1V

DISCUSSION OF COMPUTER SOLUTIONS

A. Introduction

The system of equations for the description of the relaxa-
tion zone of a two-phase shock was formulated in the preceding
chapters, In this chapter the results of several computer so=-
lutions to these equations will be discussed, Various aspects
of the relaxation zone have been investigated previously by
Carrier [1], Rudinger [10], and Kriebel [11]. 1In all of these
papers the particles were considered to be solid and there was
no mass transfer between the two phases. The inclusion of mass
transfer is the primary difference between this work and the
previous solutions. In the subsequent discussion this effect will
be emphasized, and the conclusions of the other workers will be
quoted only when they pertain directly to this purpose.

In formulating the problem in Chapter III, it was necessary
to assume an expression for the drag coefficient., The '"steady
flow" law was chosen because of a lack of reliable and consistent
experimental results for the actual situation, Rudinger [10]
has pointed out ithat the structure of the relaxation zone depends
strongly upon the choice of the drag law. He has also performed
experiments [29] where the results differ substantially from any
previous correlation. Primarily because of these facts, one
cshould have little confidence in the quantitive values of the
results of the computer solution., Thus one must view the im-
portﬁnce of the calculations as a study of the relative effects

of changing the various parameters.
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B. Parametric Study

The formulation of the nondimensional system of equations
requires eleven independent nondimensional parameters to be

specified before a solution can be obtained. These are listed

below:
- —‘z‘— /‘a D“ 'A "T° R.
Cs = cPl C-al - C_L_“ T = ?__13
Pe - R, P R, r U

,X - f;o G%o Yo L‘o a :g*;
Be T + T
b B @

The immediate object is to perform a parametric study
emphasizing the mass transfer process. A sequence of solutions
will be computed using various values of the parame:ers which
exert the most influence upon the mass transfer. All other
parameters will be held constant,

Species B is present in both the liquid and the gaseous
phases, The driving force for the mass transfer is the concen-
tration gradient, and at the droplet si:rface the «oncentration

of species B is determined by the vapor pressure curve or the
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pure substance, This curve is characterized by two parameters:
Xgo,» the initial mole fraction of species B, and \-\;,‘; , the
latent heat of vaporization (see Fig., 3-2). 1In addition to these
parameters the loading factor § and the viscosity radius param-
eter’/pf will be varied, Delta is chosen because it has a strung
inflvence upon the solutions, and//uf bacause the droplet radius
is an important variable from an experimencal standpoint.

All the other parameters will be fixed with following values.
The Mach number of the gas shock is taken as 1,3, The inert spe-
cies A and the vapor of species B are assumed to have specific
heat ratios of 1.4, This implies that CP,“‘ and C,; are both
equal to 2,5, The liquid specific heat is token as twice that
of its vapor, i.e,, C,t- 5.0 . The molecular weight ratio is
set equal to one, This ratio is not believed to have a strong
influence upon the solution,

The four parameters under investigation were assigned a
range of values which was thought appropriate to cover most
substances and situations, The viscosity-radius parameter was
computed using the viscosity of oxygen at normal pressure and
temperature and allowing for particle sizes of 4 to 100 microns

in diameter:

’/M‘-: 025 ( 4 wmicrons Atl\

/“\* =.00% ( 100 ncrans Jn‘i)

The loading parameter represents the mass of liquid per unit
volume of mixture divilod by the mass of gas per unit volume of
mixture, Lightly and heavily loaded mixtures were considered

to be
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S =.2

s -~ 1.5
The niole fractiorn par:.meter depends upon the vapor pressure of
species B and the total gas-phase pressure, Theoretically
could range between zero and unity. The values chosen for com-

putation were

XBO: .l
‘XB¢='7
Xage * D

The intermediate value was included because the value .9 gave
results significantly different than .1 for some cases, Some

typical values of Xg, for several substances are given below:

Hydrazine .02 (68°F), .2 (160°F)
Ethyl Alcohol .06 (68°F), .83 (160°F)

n-Hexadecane .01 (300°F)
n-Dodecane .01 (200°F)
Octane .03 (88°F)
F 11 .6  (50°F), 1,0 (75°F)
F 113 .23 (50°F), .47 (80°F)

These values are for a total pressure of 1 atmosphere and temper-
atures as noted., For some substances there is a large change in
the vapor pressure for only a small change in the temperature.
This is a result of the large heat of vaporization, The heat of
vaporization plays a dual role: it indicates the slope of the
vapor pressure curve and it indicates the heat given up when the
gas condenses upon the drop. Typical values of tJ;E are

shown below:
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Hydrazine 13

Water 10.5
Methyl Alcohol 5.4
Ethyl Alcohol 3.9
n~-Hexadecane; n-Dodecane 3.3
Octane; Fl1l1 1,5
F 113 1.7

The range chosen for study was 2 to 16,

The four parameters can be considered as independent variables
in a four~dimensional space. The range chosen for each parameter
constitutes the side of a four-~-dimensional cube and the solutions
corresponding to the interior points are of interest here, To
investigate the cube with the minimum of effort, only the center
point and the corner points are calculated. With these results
it is easy to determine where intermediate calculations should be
performed,

The center point corresponds to values of the parameters of

"

/4, - .002.
H“,o = 9\
3
LS >

> = I,

The results for this case are plotted on Figure 4-1 as functions
of the nondimensional distance., The actual distance is obtained
only if one specifies explicitly the particle radius and the

ratio cf the particle material density to the gas density, For
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a typical liquid slightly lighter than water, one unit on the
distance scale is about .9 cm., The distance scale changes as
the viscosity=-radius parameter changes; however, curves with |
different real distance scales have purposely not been plotted
on the same graph.

As one interprets the symbols on the figures, it is well to
recall that the subscript f refers to the particles, and 3 to
the gas. One new variable which was not defined in Chapter III
has been introduced: VJ} . This is the ratio of the mass flow
rate of gas divided by the initial value upstream of the gas~- ,
phase shock., It indicates the amount of mass interchanged be-
tween the two phases. In Figure 4-1,‘V13bfirst decreases
indicating condensation from the gas into the particle. This
initial behavior was anticipated in the discussion in Chapter III.
The condensation soon stops as the particle temperature rises and
hence the partial pressure at the particle surface has been in=-
creased to equal the partial pressure of species B in the gas
phase. The particles increase their temperature by two mecha-
nisms: heat transfer from the gas, and heat given up by the con-

densing vapor., As the particle temperature <ontinues to increase,

the partial pressure at the surface exceeds that in the main gas !
stream and diffusion of the vapor away from the particles occurs.

The partial pressure at the surface is maintained at the equi-

librium value corresponding to the particle temperature by
evaporation, At equilibrium for downstream the net effect for

the center point conditions was vaporization of a small portion

of the liquid.
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The velocity of both the particles and the gas decreases
behind the shock, Viewed from a shock wave coordinate system,
the particles approach with a supersonic velocity and are
initially unaffected by the gas shock. The gas velocity is
reduced to a subsonic value as it passes through th« shock and
the two phases ultimately move with the same velocity as they
approach mechanical equilibrinm., The gas temperature begins
at a high value because of the compression of the shock; it
increases to a maximum, and then decreases to a value lower than
the starting value. 13oth of these effects have been noted by
Rudinger [23] for solid particles also., A more detailed dis-
cussion of the gas temperature curves will be given later,.

Figure 4-1 gives an overall view of the relaxation zone.
From now on, attention is focused upon one variable at a time
and the differences caused by changing the parameters are
thereby emphasized. The graphs are organized in the following
manner: all curves for the different values o{//A“ , the radius-
viscosity parameter, are on separate sheets; then, if need be,
all curves for the same value of the loading parameter are
grouped together on the same sheet, Thus on one sheet the pri-
mary comparison is for various values of the heat of vapori-
zation and the initial mole fraction, Each curve is designated
by two numbers separated by a comma; the first number is the
value of Fﬂ; and the second is the value of g, . Sometimes
three numbers are used, the third is then the loading factor 6.

The nondimensional mass flow rate of gas is plotted on Fig-
ure 4-2 forl/:'- .025 (4-micron diameter)., The corresponding

set of curves for’/u‘- .005 was not plotted since the results
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have the same character, All the curves initially decrease,
indicating condensation, Curves for bﬁ; = 16 all reach a
minimum and ultimately show a small amount of net vaporization,

It is concluded that H;; = 16 represents a case where the
mass transferred between the phases is not significant, irre-
spective of the values of other parameters., The situations
which result in a large net interchange of mass occur when
has a low value and Xho a high value, The net effect is conden-
sation of the gas phase which can lose 80 to 90% of its mass in
severe cases ( FQ;= 2, ¥4;; = ,9). The region where mass transfer
effects are most dramatic has been located, and, to complete the
picture, computations were made at intermediate values of \4;3
and Xg,. Before leaving Figure 4-2 it should be noted that the
thickness of the relaxation zone increases appreciably as the
loading factor & is increased.

Both the gas and particle velocities are given on Figures 4-3
and 4-4, The first figure is for the loading factor & = ,2 and
the second for &= 1.5, The major difference between the two
graphs is that the relaxation zone is shorter for the higher
loading factors. Another difference is that the final equilibrium
velocities are much lower for & = 1,5, The trends with H‘:\ and
Xno are consistent with the previous results that low H;; and
high Xy, give appreciable effects on the relaxation. The curves
for H4; = 16 lie on top of each other along with the curve for
\-\;"a = 2, Xgo = +1. The final equilibrium states differ by
about ,1; hence it appears that the interaction process out to

!
X = 3 has been largely mechanical and that a very slow

R R T ]
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vaporization process will moderate the curve over an extremely
long distance.

The pressure variable plotted on Figure 4-5 is not the one
used in the basic equations, This pressure ratio is non-
dimensionalized by the pressure upstream of the gas shock. The
curves for ® = 1,5 rise more steeply and have much higher final
values than those for & = .2, Again curves for high Xg,and
low tg; give distinctive behavior,

The temperature variables show the most interesting and
varied behavior, For this reason the computer runs for both
/pf= «025 (4-micron diameter) and)/h¥= .,005 (100~micron diameter)
were plotted. The negligible effect of varying‘/uf is demon-
strated when one compares Figures 4-6 and 4-8 and Figures 4-7
and 4-9, The effect of changing & is to shorten the relaxation
zone, as noted for the case of all the other variables., Delta
also has a pronounced effect on the shape of the gas-phase
temperature curve, The increase in & has produced pronounced
peaking of the curves and generally lowered the final equi=-
librium value, When H;; has a high value the particle temper-
atures rise to a plateau which slopes upward slightly as’ziin-
creases. This indicates an equilibrium between the rate of
heating the particle by convection from the gas and the rate of
cooling the particle by evaporation, These curves are seen to
approach the thermal equilibrium between particles on gas very
slowly. For low values of H;; the particle temperature rises
in a smooth arc to the equilibrium value without establishing

this balance,
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In order to verify the gas temperature curves and gain an
insight into the wavy behavior, a separate calculation of the
gas temperature was made, In the computer solution the gas
temperature is found by solving several algebraic equations
after the differential equations for the particle properties have
been integrated, An alternate method is to integrate a dif-=
ferential equation for the gas temperature. 1ln this way one can
observe directly what terms are causing the gas temperature to
change. To obtain this equation, the overall energy equation
[equation (3-43)] is differentiated, Then substituting various
other equations and definitions, the following result may be

obtained:

y‘r ) ' X n _ T
;{55’ = ;;- (\C;q,(TL-jé + Z.(V% ‘\G)

o\
+ 9 ¢ L (v-v)s X 4P :
< c NgTwlr AX o

where

C = Ma(u. Cpa + WgCpe)

The first three terms represent the direct influence of the gas-
particle interaction: the vaporization, the heat transfer, and
the drag. The last term represents the effect of compression

of the gas phase. This equation was integrated term by term
and the results are shown as Figures 4-10 through 4-13, The
accumulative effect of each term is depicted on a separate

graph. The three curves on each graph are for various different

R—
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initial conditions, One case corresponds to the wavy pattern for
low Lho and high %, , another to th: sluggish curves for high
H;; (irrespective of Xm, ), and the third to the amplified
behavior of a high loading factor,

The integral of the first term on the right-hand side of
equation (4-1) is the direct effect of the difference in energy
between the main gas stream and the gas which is changing phase.
In all cases the contribution of this term is very small, The
szcond term is the contribution by heat transfer. Note that
this term is so large that the scale on the graph (Fig. 4-11) is
one half of those of the other figures, The heat transfer is al-
ways tending to an overall negative effect, Figure 4-12 shows
the drag of the particles upon the gas. For the high case
this term is negligible; however, for both the other cases it is
significant, The last graph in this series shows the effect of
compression of the main gas., All three cases are greatly in-
fluenced by this term.

In general, the effect of increasing the loading factor is
to intensify the gas-particle interaction. In the early portion
of the relaxation zone the drag work on the gas and the com-
pression of the gas dominate and increase ihe gas temperature in
spite of the heat transfer to the particles. The heat transfer
increases and finally depresses the temperature in the latter
stages of the process. When the mixture contains only a small
mass of particles the balance between the mechanical effects and

the heat transfer is more delicate,
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Let us discuss the case of small loading and high latent
heat Lﬁ; . The high 1:tent heat means that a small change in
the liquid temperature results in a large change in the vapor
pressure (see Fig. 3-2). When the particles first pass through
the shock, condensation occurs and heat is given up to the
particles., Only a little condensation is required %o increase
the particle temperature substantially, But the increased
particle temperature results in a very large increase in partial
pressure at the particle surface. The condensation changes to
evaporation as the partial pressure of the surface exceeds that
in the gas stream, The heat transfer to the particle soon de-
termines the rate of vaporization as the droplet temperature
stabilizes (a wet bulb temperature is; established in this case).
All of this can occur in a short distance behind the shock wave,
as indicated by the particle temperature curves, In the case
shown here, mechanical effects tend to increase the gas temper-
ature as the vapor is slowly added to the gas, and the heat
transfer to the particles slowly decreases the temperature, The

approach to equilibrium is very sluggish.

Now when bﬂ; is low and the loading still small, a completely
different temperature curve is observed. The condensation process —
occurs throughout the relaxation region anu the particles do not
approach a quasi-steady temperature., Since Lu; is small the
partial pressure does not rise rapidly as the particle temper-
ature increases, so that the diffusion of vapor to the surface
continues even for relatively large temperatures. The particle

temperature rises as more condensation occurs and the difference
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between the gas and particle temperature decreases to zero, Thus
the heat transfer changes sign and begins to aid in increasing

the gas temperature, It is interesting that there exists a situ-
ation of heat transfer away from the drop and sirxltaneous con-
densation upon the particle. The heat transfer plays a moderating
role as the mechanical effects produce the final equilibrium

gas temperature,

Several solutions have been discussed where Nié » Kgo » and
© were altered, and the changes produced in the temperature
curves have been noted, Rudinger [10] presented results for
solid particles when he changed the Mach number, the drag law, and
the specific heat ratio., He noted that the gas temperature curve
can have almost any shape. Thus it seems that a wide variety of
effects compete to influence the gas temperature, and the final

curve is sensitive to changes in a large number of parameters.

C. Two Particle Sizes

In this section the results of computations where two par-
ticle sizes were present in the mixture are shown, This problem
is of interest because spray-producing equipment frequently pro-
duces particles of two separate size groups. The reader is
referred to Kriebel's work [11] for exampleswith three sizes.

The initial conditions and constants were chosen to be the same
as the ones used in the parametric study of Section B, The
parameters which were varied in Section B were fixed in the two
particle size problem, The latent heat Hfa was taken as S,

'X‘. as .5, and the loading factor as unity. There are now two
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viscosity-radius parameters and these were com ‘'uted for 4- and
50-micron-diameter particles in oxygei: at NPT, This means that
the ratio of diameters of the two size groups is 12.5. Another
parameter is introduced when the analysis is extended to two
particle sizes, the fraction of mass in particle size group one,
say. The loading factor 8 is still the ratio of the total mass
of condensed phase to tle mass of gas phase. The ''group loading
factor," o<, , is the ratio of the mass of condensed phase in
size group one to the total mass of condensed phase. An o, could
be defined also; however, it would be superfluous since oq + o,
must equal one.

Three cases were computed in which er, was changed while
everything else was held constant as described above., The results
for o, = ,9, .5, and .1 are _hown as Figures 4-14 through 4-22,
Each case consists of a set of three figures, one each for veloci-

ties, temperatures, and mass flow rates, The first set is for

ox,

, .9; that is, .9 of the liquid mass is in the form of a

4-micron particle. As seen cn Figure 4-14, the small particles
and the gas interact strongly and in a short distance reach the
same velocity. The large particles change their velocity over
a much longer distance. Since there is only a small amount of
large particles (.1 of the liquid mass) they produce little
change in the gas velocity as they approach equilibrium, Fig-
ure 4-15 depicts the temperatures, Again, the small particles
and the gas interact strongly and the large particles approach
equilibrium without affecting the gas temperature, The last
figure in this set is Figure 4-16, It shows the mass flow

rates of the gas and both particle groups. They have been
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normalized by the initial values so that all curves begin at
one, At first, the particles gain mass as condensation occurs,
The small particles grow at a much faster rate and soon reach

a peak and evaporation begins. Only a small amount of vapori-
zation occurs and the small particles reach equilibrium with a
slight net increase in size, The large particles grow through-
out the relaxation zone, However this has little effect upon
the gas mass flow rate which is, more or less, just the opposite
of the small particles.

The case when the liquid mass is equally distributed be-
tween the two size groups is shown in Figures 4-17 through 4-19,
Figure 4-17 shows that the small particles interc~t over a
slightly longer region than they did in the first case. This
corresponds to the observation made in the single-particle study
that increasing the loading factor shortens the relaxation
zone, The stronger interaction of the large particles and the
gas is also evident in this figure as we note that the gas
velocity changes more smoothly over the entire relaxation zone.
The graph of the temperatures is similar to the first case with
the same effects as noted in the velocity plots., The mass flow
rate graph is given in Figure 4-18, The trends are again
similar to the first case. There is, however, a net loss in
mass from the small particles.

The last.case, Figures 4-20 through 4-22, is for .9 of the
liquid m.ss in the form of large particles. The gas velocity
reflects this situation as it changes almost entirely because

of the interaction with the large particles. The temperature

\
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curves also show little influence from the small particles. The
gas temperature no longer has a peak in the early portion of the
relaxation zone, It rises continually and has a low shallow peak
caused by the large particle interaction., The large particles
slowly increase their temperature in an unspectacular manner., An
unusual aspect is that the temperature of the small particles does
not equilibrate rapidly to the gas temperature. The velocity of
the small particles was essentially the gas velocity throughout
a major portion of the relaxation process.

The particle temperature rises rapidly at first but then takes
a more moderate tac in spite of the mechanical equilibrium. To
explain this, consider Figure 4-22, which shows the mass flow rates.
The large particles grow because of condensation throughout the
relaxation zone., The mass transfer is moderate and the gas mass
flow rate shows no significant change. The small particles show a
large decrease in mass which occurs throughout the relaxation zone.
For all practical purposes the small particles have completely
vaporized (they only comprised .1 of the liquid mass to start with).
Now it is possible to piece together the following picture about
the temperature of the small particles, The temperature levels
off once the vaporization starts because of the cooling effect of
the phase change. The heat transferred from the gas is sufficient
to raise the particle temperature (and thus increase the vapor
pressure at the surfaces) and supply energy for the phase change,
The gas temperature is maintained and increased by the strong
mechanical interaction with the large particles, A similar case

was not found in the single particle size work; all the cases
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where a large change in mass flow rate occurred were for con-
densation, not evaporation. Even in this case it is noted that
although most (if not all) of the mass of the small particles

changed to gas, there was not much mass to start with,

D. n-Dodecane-OXxygen System

A special computation was performed using the properties
which correspond to a mixture of liquid n~dodecane in oxygen at
NPT, There is a large difference in the molecular weights of
these two species, § = 5,33,

For mixtures of such dissimilar molecules there are highly
nonlinear variations in the transport properties as the compo-
sition of the mixture changes. In view of this it was decided
to allow the viscosity and thermal conductivity of the mixture
change with composition but still ignore the temperature de-
pendence., The viscosity of a mixture can be computed from

Wilkie's formula (see Bird, et al. [21], p. 24):

Xa Un 7(8//23

Xt ?(3 chn 'XB-I- Xa ¢3A
where
d <[+ (02T [geg 7 L |
< + | — /A . N
H K (ﬂj>] (8+gaﬁ]
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An analogous formula is valid for the conductivity where-/;QAB,

//4A R ané//AB are replaced by the proper conductivity and the

¢i}

are unaltered,
The properties of n-dodecane were estimated from various
formula from kinetic theory, The viscosity was computed from

equation 1,4-18 in Bird, et al, [21], p. 23:

-5 /41\“—

/u = 2.67.10
TE L

where/ [a em'sel], T Lox] ,T[R) ; and f).kis a function of

T/(e/x) . The constants < and €/K were estimated from a

knowledge of the critical temperature and molar volume of the
substance Bird, et al, [21], p. 22).
The binary Jdiffusion coefficient was estimated by the

following formula (Bird, et al. [21], p. 511):

VARETER
P 02; N

E%&ta = ,00186

Dac

where @ is in atmospheres. A nondimensional diffusion coefficient

is formed so that the Schmidt number is
%

S, = L —

¥
_(/o D)
In the calculations the variation in the Schmidt number with

density was ignored,

B ——
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The thermal conductivity of polyatomic molecules can be

estimated by Eucken's formula:

-
‘( = ( C? -+ j;'FEE/M

To apply this formula the specific heat is obtained from experi-
mental data and the viscosity is calculated as above,
Computations were performed for a shock with a Mach number
of 1.3 and particles of 25-micron radius., The vapor pressure of
n~dodecane is extremely small at room temperature and the initial
gas mixture has nearly the same properties as oxygen, Thus the
initial state is still given by a shock wave in a gas with gamma
equal to 1.4 as in the previous computations. The nondimensional

constants have the following values:

Con= 2.5 Xg= 000 |
Cpg = 412 Fege = . OO 25 cm
C.:_ = 569 /u’; =, 00192
H = 3,33 X = 00042
i) et T

? = S¢33 _/OA-//oa,= 570

To = |.+

S - |lo (./"ao DN‘ et .0004-7

Normal dodecane has a low value of Lh% and an extremely low
value of"Xe.. This combination did not show significant mass

transfer in the parametric study of Section B,
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The curves for this case are shown in Figure 4-23, Only
the velocity and temperature curves are plotted since the mass
flow rate variable gave no significant change from its initial
value of one, In view of this the calculations were repeated
with the program modified to exclude vaporization, The results
of this run show only slight differences from the original
computations, and would be imperceptible on the scale of Fig-
ure 4~23, Since the amount of mass transfer between the phases
was not significant the expressions for the transport coefficients
as functions of the mixture composition were an unnecessary re-
finement.

The results of this section indicate that mass transfer can
be ignored in systems of n-dodecane at room temperatures. In
fact, the generalization might be made that when the vapor pres-
sure of the liquid is a small fraction of the total gas pressure
for the temperature range of the problem, then mass transfer may
be ignored, A similar conclusion was proposed by Busch, et al.
[35], based upon the computation of several equilibrium end

states.,
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CHAPTER V
SUMMARY

Two fairly distinct topics are covered in this work: a
derivation of the basic equations for dispersed two-phase flow,
and the numerical solution for the relaxation zone behind a
shock wave., Two chapters are devoted to each topic. In the
first chapter the continuity and momentum equations are discussed,
while the energy and state equations are the subject of the
second, The shock wave relaxation problem is formulated in the
third chapter, and in the fourth, the numerical results are
analyzed,

The derivation in this study takes an essentially different
approach from those of previous authors., This work starts with
the conservation equations of continuum mechanics and proceeds
from the local flow to an average description of the two-phase
flow, This is accomplished by integrating the locally valid equa-
tions over a control volume and interpreting the integrals as
average properties of a dispersed two-phase flow, Limiting the
control volume to zero size results in differential equations
for the average two~-phase properties, Because the detailed flow
field is unsteady it is also necessary to time-average the equa-
tions. This process introduces the fluctuations of the local
flow, and the final two~phase equations contain terms similar to
the Reynolds stresses of turbulent flow theory,

In formulating the particle-phase momentum equation, a

particle~phase pressure term arises naturally., This term depends

| \
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upon the pressure within the particle, which in turn is dependent
upon the gas-phase pressure, The exact dependence involves the
nature of the detailed flow around a particle, Whatever the
actual case is, an assumption is required in order to eliminate
the particle-phase pressure from the momentum equation, This
assumption plays the role of an equation of state for the par-
ticle phase,

The thermal energy equation for the particle phase is also
derived from basic equations. Instead of deriving an energy or
thermal energy equation for the gas phase, the simpler task of
deriving an overall gas-plus~-particle energy equation has been
chosen here, The two-phase conservation equatioas are not a
complete set without a description of the thermodynamics of the
phases, The proper thermodynamics equations are found in a
straightforward manner by time~ and area~averaging the equations
of state which are valid locally.,

By defining average properties for the particles and for the
gas, the variables and equations have been constructed to describe
two coexistent continua which interact. The interaction is mani-
fested in the heat transfer, mass transfer, and drag functions
which appear in the equations, These functions will usually be
evaluated from experimental data, The process of averaging local
variables allows many of the details of the complex local flow
field to be ignored. However, they cannot be completely dis-
regarded, For example, the unsteady flow was time-averaged but
this introduced the Reynolds stresses as new variables. Thus

addition2l information is required which really depends upon the
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local flow, The area-averaging process produced several '"new"
average velocities, each weighted with a different property,
i.e,, density, mass flux, or momentum flux, These various
average velocities could be related to each other if the local
flow is known, In practice, then, one must make assumptions
about the Reynolds stresses and the various averages in order to
apply the two-phase equations. The appropriate assumptions
depend upon the particular problem being considered., It has been
customary in most papers on two-phase flow to ignore this problem
or assume that these effects are negligible. The latter has been
done in this work for solution of the relaxation zone behind a
shock wave,

The shock relaxation problem, as it is formulated here, is a
straightforward extension of previous papers which dealt with
solid particles. Neglecting Reynolds stresses and the distinction
between the various area averages casts some doubt upon the
exactness of the results presented in this work. Another area
of even greater uncertainty is the drag coefficient for this situ-
ation., Nevertheless some useful information might be obtained
by performing a parametric study emphasizing those parameters
which most directly affect the mass transfer process.

The sheck relaxation zone problem is proposed on the basis
of physical arguments. A gas-phase shock, which is very thin,
exists unaffected by the presence of particles, Likewise, the
particles are unaffected by the gas shock. This establishes the
initial conditions for a relaxation zone in which the gas and
particles interact, In the last part of Chapter III the arti-

ficial separation of these two regions, i.2., gas shock and

| \
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relaxation zone, is formalized., The differential equations and
boundary conditions for two-phase flow are examined and solutions
which will pass from one uniform equilibrium state to a different
equilibrium state are sought, The density par.neter & 74 .//08°
appears to be of fundam:ntal importance in two-phase flow and the
problem is solved as an asymptotic expansion in€ as € —» Q®© ,

It turns out that the problem is singular, and two matched expan-
sions are required, The first term in one expansion is the
solution to the gas-phase shock wave, while the particles are un-
affected, The first term in the second expansion is the solution
to the relaxation zone problems, as previously formulated on
physical grounds,

By including the possibility of gas-phase reactions it is
possible to develop an asymptotic theory of two-phase waves. The
outer solution would be the gas-phase shock w.ve, deflagration
wave, or detonation .ave. The matching inner solutions would be
either a simple relaxation zecne or one witl, combustion around
the iundividual particles (sometimes calicd .eterogeneous com-
bustion).

The results of the computer calculations are discussed in
Chapter IV, A parametric study was made in which the following
were systematically changed:‘/ur , the viscosity-radius param-
eter; & , the loading factor; N_,; , the heat of vaporization;
and Xno, the initial vapor pressure of the liquid. The first
two parameters,/«" and $§ , are important from an experimental
standpoint, The viscosity-radius parameter does not affect the

equilibrium end states and has only a slight effect on the shape

R e 3




'

137

of the curves through the relaxation zone. The actual length of
the relaxation zone varies considerably as this parameter is
changed. The loading factor ® is the ratio ¢f the initial mass
flow rate of particles to the mass flow rate of gas. The final
equilibrium state changes as this parameter is altered, As

is increased the interaction betwec:: the particles and the gas
is stronger, i.e., the presence of the particles mcdifies the
gas-phase variables to a greater extent, There is also a slight
shortening of the relaxation zone and a pronounced peaking of the
gas temperature curves, All in all, the structure of the relax-
ation zone is amplified as the loading factor increases,

The latent heat of vaporization H;; and the initial mole
fraction Xg,characterize the vapor pressure curve of a substance,
Since the vapor pressure is a bosundary condition for the mass
transfer process, these parameters have pronounced effect upon
this aspect of the solutions. By examination of the mass transfer
rate equations and pﬁysical arguments, it can be concluded that
condensation will occur in the initial portion of the relaxation
zone, Condensation does not always continue, however, When
H{; has a high value the amount of mass transferred between the
phases is small and the net effect is a vaporization of some
liquid. In this case a balance is established between the heat
transfer to the particle and tlhic heat required for vaporization,
The droplet temperature stabilizes at a wet buldb temperature and
the gas temperature slowly decreases to the equilibrium vaiue,

The cases where X“ has & low value 3also result in a

negligibtle amount of mass transfer between the phases, A study
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was made using the actual properties of n-dodecane, which has

an extremely low vapor pressure at room temperature (‘7(‘,'° =,0001).
In this instance two calculations were performed: one with mass
transfer and another where the mass transfer was arbitrarily zero.
There was negligible difference between the results,

The most prominent mass transfer effects occur for the
combination of high Xn, and low H"&. . The condensation process
continues throughout the relaxation zone and a large portion of
the gas phase may be lost., The velocities of both the gas and
particles are decreased as substantial condensation occurs. The
gas temperature curve is the result of many competing effects
and has varied behavior., In severe cases, where mass transfer
was significant, the gas temperature oscillated about the particle
temperature curve,

In addition to the n-dodecane and parametric studies, several
runs were made with two particle sizes. The ratio of the particle
sizes was fixed at 12.5 and the total loading factor was held
constant, The mass of particles in each size group was varied
from one run to the next, If most of the liquid mass is in the
form of small particles, they interact with the gas in a short
distance to reach a semiequilibrium state, Then the large par=-
ticles relax to this state without affecting the gas phase. For
the opposite case, where most of the liquid occurs in large
drops, more complicated behavior may result, The large drops
may grow by condensation while the small drops are completely

vaporized,
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APPENDIX A

Proof Concerning Interphase Momentum

Transport by Vaporization

In this appendix it will be proved that the integral over
the particle surface of the mass flux times the x -component of
the velocity is the same as the mass transfer function times the

particle velocity:

D L g s -15) b 2
ax-»d A"ZL Sfaﬂ%,( Ve~ 1) 7373 (A1)

= <'v;>'\|’

It will be assumed that the particles are all the same size; this
assumption can pe easily removed and is not essential to the
proof,

Before the actual proof is given, it is desirable to digress
in order to prove a lemma concerning the relationship of the
lijquid and particle velocities. The particle~phase velocity was
defined by integrating the local liquid velocity across a cross-
section of the particle., It will be assumed that the liquid
velocity at the particle surface is constant and it will then be
proved that for each particle ¢ , the liquid surface velocity is

equal to the average lisuid velocity across any cross~section:

{

<V >e = Sv.e 25 =

g .- ¢x gunmace (A~2)
Ay
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Figure A-1] shows the velocity vectors at a point on the particle
surface. The liquid velocity Ve and the gas velocity 1?: are
different from the surface velocity 4 because of vaporization.
The vaporization (or condensation) causes normal components

Ve, and Mg, . Also shown in Figure A-1 is a spherical cap

"
formed by a plane intersecting the particle, The areas are
denoted by A_: and A, .

First it is assumed that the liquid is incompressible., Then

from the continuity equation:

v-ar, = O

=4

Thus Gauss's theorem may be applied to the integral over the

volume:

o= ‘fv. v, IV=| nv, ds

yn~v Ls -\-J‘n v, 45s

‘\X ’\z

(A-3)

The velocity of the liquid is assumed constant over the surface
of the particle, This implies that the particles are moving in
translation motion without distorting., Next, the integral over

the soherical cap is explicitly written out:
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3
A AL A,

-\ nv,ds= v, n,&s-rqas h, S+ Vs IS (a-4)

Because the surface A, has symmetry ab.ut the x -axis, the

last two integrals are zero., Thus for a single particle t ,

we have

Now, returning to the original problem, consider

z (/“a a;("’“-’”’)'h éQS (A=6)

The mass flux due to vaporization is constant over the surface,
i.e.,

(V- V)0 h
ST

o (V- V;) ‘h, = constant

¥,

S

(A=7)
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Also it is noted that the gas and liquid velocities at the surface

obey the following (see Fig., A-1):

’_l.)—a: ,y; + -“-‘-)jah— IU;\\ (A-S)

Substituting these relations gives

gfang,(v Ak thlS
( 5‘,‘
(A-9)
‘i}i qt jﬁ ['MEX'F (t!éh-'lfkglé]‘gés
¢ ‘Sri

The uniform vaporization assumption implies that the magnitude
of '\Jgh V. 1s constant over the particle surface. The
integral of the x =component of such a normal vector over a

closed surface is zero, Now the equation is

Z gfdl%x(l}a'_s)'ba"os '=Z 1;3) S‘I.S
(A=10)

= Z w& (.‘au,)d A
L
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On the right-hand side are the product of the vaporization flux,
the liquid surface velocity, and the particle surface area
summed over all the particles, Refer now to Figure A=-1 which
shows a section of the flow between X and X+ &% , Let
several planes & , b , ¢ , ... partition this region so that

all the particles are intersected. Then the sum is split up

into a separate term at each partition:

Zc Y/C ' (VE“)CASL = Z VY, ('U;,.); Ag,;
(2

+ Z Yo () Ase (A-11)
i

,{.Z— < v -+ .-
t¢

The surface area of all the particles is the same and it is
assumed that the vaporization rate at each x cross-section

a,b,c, ... is the same. Then

7{;\?6 (V;-x:)iASc = (Asg \Pf,\a % (%xé)t’

+ (Ag Y )1. L (vl (A-12)
th
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Using the lemma that was proved in the first part of this

appendix, replace ( Viyy ); by <V, >C and note that the

overall particle velocity is defined by
<> =
Vex? = T LSV (A-13)
v o
where ¥ is the number of particles cut by the plane, Hence

; LP!.: (EXS)L' ASC = (AS¢'-\'K' 7/a<’vi">>x )

+ (Asz 1’{ L/ <‘L£=>),

(A-14)

x= C

Next, the particle velocity at each cross-section d, b , ¢ , ...

is expanded in a Taylor's series about the end of the control

voiuwe:

[ Y5 A= <, [%at 4o AN,

Aex } ‘a
T } (A-15)
cm,
+ 20 LoD [ A (- A ]
Xex

2 JFRTNE BTN ]

ERT ] - n
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Now it is noted that the mass transfer function originally
defined by equation (1-8) is described equivalently by the

notation

Y= - /e""“ 'VA:;\KA bASL‘\PCb*""}

AX-»0 A‘X (A-16)

By substituting this result, dividing by & , and limiting,

we get

{ ‘S‘fav,hr AL \13:03

r

ayso X

Low. |
Ax~o { 0‘&')'7:. -A_';t{ A’(Y“*“V Aﬂw (A-17)

*_‘“’} - C <Vh>\ ‘-(b'*\T’A“

+ (55‘1“%!\:{‘"«. + o } + e }]

= <V.0 v
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This proves the desired result. In the last step the second

term may be estimated as follows:

<V
1. (b-x (c-X ...‘}
S~ '—A';')-V'-AS'L i5+ Z’,‘;”) yc.Asi Cp+
<,
< AA'K {-Vl. ASL,‘\& + ‘V‘Aﬂ{g*“}
% Iy 4% (A-18)
= 29% v oax
P X x

And so all the higher terms approach © as AX -» © .
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APPENDIX B

Summary of Two~phase Equations

for One~dimensional Flow

Gas Phase Equations

Continuity:
2 <<r> - 2 (c& Ay
2€ ox (“’5’(‘5’?) " A

Momentum: (inviscid)

? ~ o, 2
S (B3 = - 2= (F<sn)

Particle Phase Equatiouns

Continuity:

= B (¢
3t <&y o (<°;><

=

W
é’) + 'j:;
Momentum:
(<<F>< ,,)\- - 9, <v->< >) 2-((«‘})( Ves Ve 7 )

= 2—(’ﬁ,)+ "" {\r) + F"
A
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Thermailﬁnergy:
D v 'D ~ ~ o~
5_-5(<€f.><f\,>\, =T % (""?K Vi< ‘4‘7.3

+

219
+
pARS

dosm ——/<a~></71,>)

Overall Equations

Continuity:

5% (<3< = - 3 Lw«g,} +<<r><

aSe

2)

Momentiw;

EASOICAERT TR Y
= - 5—- [((q;)(‘tf >+ (Q"?(‘V' ))-& (1];,)-0(‘15]

[(a-x \c>+<<r><"5, ]

Energy (neglecting velocity fluctuations)

%t[«-;)((@ +4<EY) + <& G (<& % +3 <~'7~z>)]
=-2 3 oL ‘

<& (bt <ulh 3.]

-~ [ (w;.x&z* <]

- 5[4 ga%) « LT
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Thermodynamic Equations

s

Gas ~ - o~ :
<TMy> = <05> R(E)

S
< 'RA;: Cra<ﬁ\—a; + /RREF

Particles
)
(ﬂ‘)-: assumed relation to external
pressure and flow field
~ —\/o““ -2 » ~\
<G>= Y2 A, = M KRS
»
Overall

<'ﬁ'm = <ﬁi> + <ﬁa>
(T = <Gy + KT
@< Ty = <G Ay + <k

Ancillary Relations for {h Y and M

%-JR)-{— %((R)(&}:‘»} = 0

Am; Am; _ Y

B ke ae <o e e
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Dictionary of FORTRAN Symbols

Al = 1

AJ = J

ALPHA = oC

AU = /«"

AUX = [t

AUMDT = internal quantity
AUMDV = internal quantity
CAPPA = internal quantity
CON1 = constant for testing
CONA = K, ; CONB = kg
COND = K

CPA = Cpa

CPB = C/'g

CPF = Cp'y.

CPG = c:}

CPL = Cy

D1, D2, D3 = dummy spaces
DELTA = §

DEN VAL {/’d"

DET = internal quantity
DFIDT = DF, /jﬁ'}
DFIDV = QJF, / 9 \73
pFaDT = 3 F /2 ¥
DF2DV = a P, /2 VZ

DHLCD) = AHy /dX

DTG = A*’f-}
V= AN,

DVD(I) = ‘Qvfj/“xl
DWD(I) = 4 "“r& /X’
DX = AX!

ETA = 41

FDRG = ?’

Fl = Fﬁ
F2 = F;

HA = W,

HAO = \--lA°

HB = A4

HBO = gy

HFGO = K°*

HFG(I) = :

HL(I) = §4L{ (-GU)
!

HO = Hé‘

HUCI) = Ny!

HUD(I) = Nup)

NUM = number of particle sizes

Pep



PBP(I) = Pys)
PCOR(I) = internal variable
PIE= P/ ®,

PHI(I) = -\yl-
PHIAB = (:AB
PHIBA = &,
POl = P,

POO = P,

PR = P,
Q(I) = Qj
R=
RAD(I) = Ru4Z/
REALX = X d
REF = | Cllmeuswpil)

REY(I) = Rea 1
L3

RODAB = 9’3° Oag )

RREF(I) = r(,{}

SC = Se

SUMA(I) = internal quantity

SUMB(I) = internal quantity

SUM1 = internal quantity

SUM2 = wnternsl %uah'h‘t.a

TEN = dimensionless surface tension

6 = @,
TGO = .
TL(I) = 6,
TLO = &

[ )

Vo= Va
VD(I) = Y,
VDo = v,
Vo = Vo
VISA = u*,
VISB = j‘a
WA = o,
WAO = ¢ pe
WB = g
WBO = tJg,
WDD = h‘:\r
WDDO = Mg,
WD(I) = ﬂ'-
WDM = Ma
WDMO = h‘ﬂa.

WGG = 9\3 / 1‘43.

W(I) = breakup parameter

X=X =X .=,
XA = %, /"
XAO = X,
XB = X,
XBO = Xgo

XOUT = punch out interval
YOLE = 'ma /m.

YOLEO = 'ma, / Mo

ZETA = S Mg /M,

187
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COMPUTER PROGRAM FLOW CHART

4 Read Data

No 4 Exit

Compute Initial Conditions And Constants

Integrate Particle Equations

@

Find Gas Temrerature And Velocity
using

Newton ~Raphson Method

Is
There Any
Dota

Is
The Accuracy
Satistactory

No

Comrute Gas Transport Properties

R i
Form Differential Equations




X To 200

Is

Requy

Yes

Print Out
/

To 50 X

Print Variables

Print Again
After 0.1

Interval

Print Again
After 0.5

Interval

(5

471

Increment Particle Equations —|

Yes

Is

X=24
No

591

Change Integration
Step DX to Ol

Yes

No
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o g -

e,

;q
.




mey

an

=1

LY

in

n

12
12

la

15

16
18
17

10

100
171
102
500
501

[y
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APPENDIX E
FORTRAN PROGRAM

TWN PHASF SHOCK STRUCTURF
VARTARLF TRANSPORT PROPFRTIFS
N PARTICLF SIZFS
NIMFNSION  WDI(2) o ALPHA(2)sVN(2)sTL(2)sHL({2)sRAD(2) 4SUMA(2),SU4R(2)
sPCOR(2)Y4XRP(2)9RFY(2)sCDRG(2)YoHUI2) 4HUDI(2) sPHI(2) oFDRGI2)eQ(2)s D
WDL2)eDVNI2)eDHL(2) sRREF (2) oPBP(2) oW (2) sHFG(2)
PRINT 11
PRINT 11
PRINT 12
PRINT 12
PRINT 14
PRINT 16
PRINT 16
FRINT 18
PRINT 12
REAN 100 D1 eN2eNA9CPAICPReCPLIHFROsZFTAGAMMAZTENS TGO TLO9VO,sVDO,
DEFLTAGXRODSCONT¢DXsREF«NDENIVISASVISR+RODAB
PRINT 1004D19D2sN3,CPAsCPByCPLIHFGOs7ETAZGAMMAZTENsTGOsTLOHVN VDO,
NDELTASXROICONTI oDXsRFFSDENSVISAWWISALRNODAB
IFIVO)Y1I000,1N20451
CONTINUF
READ 1M1 eNUM
PRINT 101,NUM
NG 88 T=1¢NIM
RFEAD 1N24ALPHA(T)4RREF(I])
PRINT 102,ALPHA{T)sRRFF(T)

PPINT 12
PRINT 17
PRINT 19
PRINTY 12
FORMAT (80H TWO PHASE SHOCK STRUCTURFE VAF [ABLFE PROPERTIES
)
FORMAT (RNH N PARTICLF SI17Fs
)
FORMAT (1H )
FORMAT (80H D1 n2? 013 CPA CcPR CPL
HF GO )
FORMAT (80H 2FTA GAMMA TEN TGO TLO vo
vDOo )
FORMAT (BOH DFLTA XRP CON) DX REF DEN
VISA )

FORMAT (3Xea4HVISB5X s 5HRONAR)

FORMAT (8X s IHNUM)
FORMAT (2XoRHALPHA(1)s3Xs7HRRFFI(T))

FORMAT(130H REALX X PIF v TG wWGG
xB AU PR sSC :

FORMAT (4Xs1HT» 13X eSHVN (1) ¢10XsSHTLIT) s 10Xs6HRANIT) 99X s 6HREY (1) 49X,
GHWIT) 911X eSHWN (1) ¢ 10X s6HXRP(T))

FORMAT (7F11,5)

FORMAT (11N)

FORMAT (2F1046)

FORMAT (2F10,4+8F1046)

FORMAT (15+5X,7F1%545)




COMPIJTE INITTAL CONNITIONS ANN CONSTANTS
LOGICAL RFGIN
RFAL INNVY
X=n
XOUT==,0000Nn5
WDDO=DELTA#vDO
wDMO=VDO
POO=WDMO/ { GAMMA*®VDN)
XAN=1,-XRO
WAD=XAN/(ZFTA-XAD#*(7FTA=1,))
YOLFO=XAO*®(1,-2FTAY/2FTA+1,
FTA=GAMMA/YOLFO#*HFGO
wWDD=wNNO
V=vO
T6=TG0
WA=WAO
PO1=WNMNETGO/ ( GAMMAR®YN)
WRN=1,~-WAD
HAN=CPA* (TGO-1,)
HBO=CPR#* (TGO=1, ) +HFGN
HO=WAO*HAO+WSO*HRD
AJ=WDMO* (HO+ 4 S#VOR%2) +WDDO*, 5%#yDO#%2,
AT=WDMO#VO+WDDO*VNO+PO1
DO 170 1=14NUM
WD) =WDNNH*ALPHAL(T])
Vh(TY=vnO
TL(TY=TLO
170 HLIT)=CPL®#(TL(I)=1,4)
BREGIN INTFGRATTON LOOP
200 WDf):O.
DO 210 1=1,NUM
210 WDN= "MD(1)+WDD
WNM=VNN® (] (+NFLTAY=WNN
WA=WAO*WNHMO /WNM
WB=1 ‘-WA
XA=ZFTA®WA/ (1o +WAR(Z2FTA=1,))
XB=1le~-XA
YOLF=XA®(1,=-2FETA)/ZETA+1,
R=YOLFO/YOLF
DO 220 T=1eNUM
22N RANITYI=( WD(T)Y/WPNO/ALPHA(T))##(1,/3,)%RRFF( 1)
FIND GAS PROPFRTIFS RY N=R MFTHOD
Inn HA=CPAR(TG=1,)
HB=CPR*(TG-1,)+HFGO
HeWA*HA+WB #HB
SUM1=0,
DO 330 I1=1eNUM
SUMA(T)= WDITIR(HLIT)I+SRYD(T)#%2)
33n SUM1=SUMI+SUMA( )
Fl=H+,5#V#R2<AJ/WNM+SUM] /WNHM
DFINT=WA#(CPA-CPR)4CPR
DF1DV=V
SUM?=0,
DO 360 I=1,NUM
SUMB(TI)= WD(T)I#VD(T)
36N SUM2=SUM2+SUMB (1)
F2zy##24+R%¥TG/GAMMA+V# ( SUM2~AT) /WDM
DF2NDT=R/GAMMA
NDFONV=D ¢ #V4(SUMP=AT) /WNM

mm‘: I IR s e v SRR -




400

41N

430

450

460

471N

47
478

192

DET=NFINTHDF2DV=DF2DT#*DF 1DV

AUMDT =~ 1 #DF 2DV+F2%DF 1DV

AUMNV==F2%#NFINT+F 1 #DF2DT

DTG=AUMDT/DET

DV=AUMNDV/DET

TG=TG+NTH

V=V+DhV

IF(ARS(NTGR)~CON1ILN0140NL30N
JTFIABS(DV)I-CON1)410+410,30N

COMPUTE TRANSPORTPROPERTIES OF THE GAS MIXTURE
CPG=WA%CPA+WRXCPR

SIGMA=VISA/VISR

PHIRA=(1e4+1o/ZFTARR( ,25)/SQRT( STGMA) I #%D/SQRT( B+H,%2FTA)
PHTAR=({14+SORT( SIGMA)X#ZFTARR( ,25))*%2/SORT( Be+8+/ZETA)
AU=XA*VISA/(XA+XB#PHIAB)+XR#VISB/ (XR+XxA#PHIBA)
CONA=VISA#(CPA+54/4 ¢ #YOLEO*ZFTA/GAMMA )
CONB=VISB*(CPB+5,/4¢*YOLEN/GAMMA)
COND=XAXCNNA/ (XA+XB3%#PHIAR)+XB®*CONR/ ( XB+XA®PHIBA)
PR=AU*CPG/COND

SC=AU/RODAR .
FORM DIFFFRENTIAL FQUATIONS FOR NROPLET PROPERTIFS
P=WNMARE*TA/ ((SAMMAXY)
CPF=CPG

PIE=P/POO

YOLFF=YOLF
CAPPA=GAMMA /YOLFO*(CPR=CPL)

NO 430 T=1sNUM

TLETY=HL(T)Y/CPL+1,

HFG(TY=HFGO+(CPA=CPLY¥(TL(TY=-1,)
PCOR(T)I=TL{T)I*XCAPPARFXP(CAPPA*(1,/TLI(I)1=1,))
PBP(I)=(1e=XAD)RPOORFXP(FTA%(1e—=1e/TL(I1)))%PCORI(])
XBP(1)=PBP( ) /P

REY(1)=2.%RAND(T)#NOMBARS(V=VD(T})/7AU/V
CORG(1)=+48+28,/RFEY 1) #%#(,85)
HU(T)=2e+e6EPR*% (1,73, )#SQRT(REY (1))

HUD( T )22 e+ 6%SC#%(14/36)%SGRTIRFY (1))

PHI(T)=24/7 % WO(TY/RAND(TI#X2HHUN(T) /SCHAU/VDIIYH(XBP(TI)=XB)/(1e—X
RP(TY)

FORG(TI)=3.% WN(T)®WDMECDRG(T)I*(V=VD(T1))*#ARS(V=VN(T1))/(B*RAD(T)%V*
vD(1y)
Q(1)=1e5% WD(I)/RAD(T)#%2#HU(T)/PR®*¥AU/VDIT)*CPFR*(TL(T)-TG)
WlI1)=AU/TEN#ABS(V~VDI(1))
AUX=SQRT(VISA)
WGG=WDM/ZVDO

REALX=X#RFF#DFN/AUX

IF(XOUT=X)14504450N4475

PRINT 12
PRINT S00sRFALXeXsPIFsVsTGesWGGsXRsAlUIsPRySC
DO 460 1=1,NUM
PRINT 50151 sVD(T)sTLIT)sRADIT)ISREY(I)oW(T)sWDIT)sXRP(T)
PRINT 1?2

IF(X=4e)4T0+4704471

XOUT=X0UT+,1
GO 1O 475

XOUT=XOUT+,45
CONTINUF

X=X+DX

DO 490 1= 4NUM

DWD(1)==PHI (1) /AUX

DVN{1)=FNRG(T)/ WHIT)/AUX

\
v



49n

591

510

Nalaks

$DATA

5.3

N

5e3

la
N

DHLIT)==(PHT (T ) *#HFG(T)/WR(T)Y+QUT)/WN(T))/ANX
WD{T)Y=WDN{T)+PWN({T)%NX

VDET)Y=VDITYI+DYN (T ) #NX

HLOT =HL( TY4DHL (1Y %DX

IF(64,4=%X1591+591,200

DX=.]
TF(20,-Y)1060N 46NN 20N
GO TO 5N
CALL FXIT
STNP
END
245 Leb9 Seb69
lets «001 11909 1. «8575
« 2001 «N0N1 «001 00025 STN,
045 e NNNYT
1
1.
2¢5 4040 5¢69
1a4 «001 1.1909 ) S «8575
«0001 +0001 «001 « 0025 570
nas «N0ON4LT
1
le
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3633
1e3
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