A NOTE ON NON-BIIWARE ORMHOGOLAL CODES
son-itou bhans
Northenstul Universjety
Boston, Hascachucts

AESTRACT

This paper presents three mothods of constructing orthogonal signals whore amplitude levels are discrete, but not limited to binary: (1) method using ll-sequence, (2) mathod by inspection, and (3) recursive method.

'-

GPO PRICE \$
 \qquad

CFSTI PRICE(S) \$ \qquad

fin 653 July 65

A NOTE ON NON-BIMARY ORXIOCOHAL CODES*
Sec-Ttow Chent,
Northeatom Inivorsity
360 Funtincton Avome
Boston, Hassachuretts 02115
Area Code 617, CU 2-1100, Ext. 433

An effective set of signals for uce in a channel with additive white Gaursian noise is the orthogonal set. Mothods of constructing orthogonal contimuous waveforms are widely studied. The construction of binary orthogonal codes is bascd primarily on Hadamard matrices. A Indamard matrix is an orthogonal matrix whose elements are the integcrs +1 end -1 . Hadamard matrices of various orders have been constructed ${ }^{1,2,3}$ through the generation of pseudo-random sequences of the types (1) maximum lencth sequences (m-sequences), (2) quadratic residue sequence (or Legender coguence), (3) twin prime sequence, and (4) Hall sequence. It seems that no such study has been made for the construction of orthogonal matrices using intecors (or rational numbers) as elements, although their uses in non-binary coding con be anticipated. Furthermore, it is felt that such study may bring the two areas of endeavor, discrete coding and waveform design, closer to each other.

[^0]Three methods are explored. They are summarized as follows.

(1) M-Sequences Over $G F(p), p=3,5,7,11$

To illustate this method by an example, consider $p=5$ and an irreducible prinitive polynomial of degree $m=2$ over GF(5)

$$
f(x)=x^{2}+3 x+3
$$

With the aid o? the shift register circuit shom in Fig. I, it is easy to see that; a typical sequence generated by the polynomial is

$$
4102-122-201211 \text {-1 } 0 \text {-2 1 -2 -2 } 20 \text {-1 -2 -1 -1, }
$$

with period $r=5^{2}-1=24$. By listing the above sequence and 11 successive cyclic shifts of the sequence in 12 rows, and retaining only the first 12 columns, then a 12×12 orthogonal matrix using elements $0, \pm 1, \pm 2$ is obtained.

1	0	2	-1	2	2	-2	0	1	2	1	1
0	2	-1	2	2	-2	0	1	2	1	1	-1
2	-1	2	2	-2	0	1	2	1	1	-1	0
-1	2	2	-2	0	1	2	1	1	-1	0	-2
2	2	-2	0	1	2	1	1	-1	0	-2	1
2	-2	0	1	2	1	1	-1	0	-2	1	-2
-2	0	1	2	1	1	-1	0	-2	1	-2	-2
0	1	2	1	1	-1	0	-2	1	-2	-2	2
1	2	1	1	-1	0	-2	1	-2	-2	2	0
2	1	1	-1	0	-2	1	-2	-2	2	0	-1
1	1	-1	0	-2	1	-2	-2	2	0	-1	-2
1	-1	0	-2	1	-2	-2	2	0	-1	-2	-1

This method is easily extended to eenerate $n \times n$ orthogonal matrices, $n=\frac{r}{2}=\frac{2^{m}-1}{2}$. Similar procedures, with proper mapping of the elements in the ficld of $\mathrm{Gl}(\mathrm{p})$ onto elements of intecers, or rational numbers (see table) can
be used to obtain $n \times n$ orthogonal matrices with 3,7 and 11 elements with $n=\frac{r}{2}=\frac{p^{m}-1}{2}, p>2$.

Table of Mapping Elements of GF(D) to Integers or Rationals for the Construction of Oxthogonal latrices from the M-Sequences

| p | Elem of
 GF (p) | Integ | | p | Elem of
 $\mathrm{GF}(\mathrm{p})$ | Ratnl | Integ | p | Elem of
 GF (p) | Ratnl |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Integ

The construction is based upon the properties ${ }^{1}$ of the autocorrelation function $\phi(\tau)$ of the m-sequences of p elcments ($p=3,5,7,11$) relative to ceriain mapping η. The autocorrelation function has the same period as the m -s cquence, namely, $\mathbf{r}=\mathrm{p}^{\mathrm{m}}-1$. Under symmetrical mapping, as adopted here, the values of $\phi(\tau)$ at $\tau=0$ and $\tau=r / 2$ differ in signs but equal in magnitude. Therefore, unlike the case for $p=2$, a segment equal to the half period of the sequence is used for construction of the orthogonal matrices. Furthermore, for cases $p=7$ and $11, \phi(\tau)$ assumes non-zero values under ordinary mapping for t maller than a half period. These are restored to zero by suitable rempping the elements of $\operatorname{Gr}(7)$ and $\operatorname{GF}(11$.$) onto specially chosen sets of$ rationols or integers. Sinilax procodures mplied to the cases for $p>11$
result in solutions in mapping of elements of $\mathrm{GF}(13)$, etc onto elements of irrational or complex field.
(2) Construction by Inspection

The following orthogonal matrices are obtained by inspection.
(1) 2×2 (3 level or less)
(2) 4×4 (7 level or less)

$$
\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]
$$

$$
\left[\begin{array}{rrrr}
a & b & c & d \\
-b & a & -d & c \\
-c & d & a & -b \\
-d & -c & b & a
\end{array}\right]
$$

(3) 8×8 (15 level or less)

- $\left[\begin{array}{rrrrrrrr}a & b & -c & d & e & f & g & h \\ -b & a & d & c & -f & e & -h & g \\ c & -d & a & b & -c & h & e & -f \\ -d & -c & -b & a & -h & -g & f & e \\ -e & f & g & h & a & -b & c & -d \\ -f & -e & -h & g & b & a & -d & -c \\ -g & h & -e & -f & -c & d & a & -b \\ -h & -g & f & -c & d & c & b & a\end{array}\right]$.

By assigning suitable values to the letters, some of which may have the sam: value, orthogonal matrices of various elements can be constructed.
(3) Recursive Methods

Let A and B be two orthogonal matrices of size $n \times n$. Then the following recursive methods may be used to obtain new orthogonal matrices.

(c) $C=\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$ (X) A size $2 n \times 2 n$, different elements as A.
(d) $C=\left[\begin{array}{cc}A & B \\ -B^{T} & D\end{array}\right] \quad$ size $2 n \times 2 n$, same elements as A and B.

In the last method, the matrix D is computed from:

$$
D^{T}=B^{-1} A B
$$

However, if $A B=B A$, then
and

$$
D^{T}=B^{-1} B A=A
$$ $D=A^{T}$.

References

1. N. Zierler, "Linear Recurring Sequences", J. Soc. Indust. Appl. Math. 2 7,

31-48, 1959, also in W. H. Kautz (editor), Iinear Sequential Switching Circuits, Holden-Day, 1965.
2. E. F. Beckenbach (editor), Applied Combinatorlal Mathematics, Chapter 13, Block Designs by M. Hall, Jr., John Wiley and Sons, 1964.
3. S. W. Golomb (editor), Digital Communications with Space Applications, Chapter 4, Codes with Special Correlation by L. D. Baumert, Prentice-Hall, 1964.

Fig. I. Shift Register Circuit used to Generate M-Sequence Over GF(5).
Recursion Polynomial: $f(x)=x^{2}+3 x+3$.

[^0]: *imhis research work was supported hy Air Force Cambridge Research Labs, under Contract No. AF19(623)-3312 ad by HLectronde Roseareh Center, NASA mane Grant No. IGR-22-011-013.

