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Summarv 

The historical  development and current status of compressive orthotropic 

stability theory is reviewed and a systematic development of the l inear  theory is 

presented. Available tes t  data on orthotropically stiffened cylinders a r e  synthe- 

s ized and correlated in terms of this theory. The correlat ion was used to estab- 

l ish regions in which l inear orthotropic theory appears  to be valid in  t e r m s  of 

current ly  available tes t  data. 

Within the restr ic t ion that the minimum weight analysis be confined to  those 

regions where l inear  stability theory i s  valid, a generalized presentation for  

symmetr ical ly  stiffened orthotropic cylinders under compression was developed. 

Similar i t ies  and differences in  the minimum weight behavior of stiffened cyli.ndrica1 

shel ls  and flat t ransverse ly  st iffened wide columns were  investigated in  some 

detail  to provide a satisfactory physical picture. 

a comparative evaluation of various forms of stiffening sys tems for  cylindrical  

shel ls  under compression. 

The concluding resu l t s  provide 
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Symbols 

r ib  a r e a  

membrane axial rigidity in longitudinal direction 

r A 

Bl 

B2 membrane axial  rigidity in circumferential  direction 

B3 membrane shear  rigidity (average) 

C s t ruc tura l  efficiency coefficient 

d cylinder diameter  

D, bending ridigity in longitudinal direction 

DZ 

D3 twisting rigidity (average) 

E elast ic  modulus 

h r i b  height 

ka = B,/B, 

k 

K spring constant 

L length 

bending rigidity in circumferential  direction 

cylinder buckling coefficient 
X 

support spacing Lt 

m number of half-wavelengths in  longitudinal direction, a lso exponent 

n number of half-wavelengths in circumferential  direction, a lso exponent 

N 

R cylinder radius 

axial  load per  unit width 

- 
t effective thickness 

cylinder wall thickness 

a r e a  of sheet and stiffener per  unit width in  a plane perpendicular to the 

circumferent ia l  direction 

t S  

t 1 

t 2 a r e a  of sheet and stiffener per  unit width in  a plane perpendicular to the 

longitudinal direction 

... 
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Symbols (Continued) 

asymmetr ic  m -continuous buckling 

la te ra l  deflection 

stiffener width 

wave length parameter  

curvature  parameter  

B*D*/B,D, 

stiffened wide column efficiency coefficient 

wavelength parameters  

orthotropic parameters  

half wavelength in axial direction 

Poisson 's  ra t io  

solidity 

experimental  buckling s t r e s s  

optimum s t r e s s  for stiffened wide c o h m n s  

theoret ical  buckling s t r e s s  
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MINIMUM WEIGHT DESIGN O F  SYMMETRICALLY 

STIFFENED ORTHOTROPIC CYLINDERS 

UNDER AXIAL COMPRESSION 

1 .  Introduction 

Minimum weight analysis of stiffened cylindrical  shells under compressive 

loading is of fundamental interest  in the s t ructural  design of launch and space 

\.chicles. Unfortunately, cylindrical  shells under compression a r e  probably the 

least  reliable of all s t ructural  components that can be designed because of discrep-  

ancies which may  exist  between linear stability theory and the sca t te r  of experimental 

data. This situation is poorest  for isotropic cylinders which exhibit an unusually 

high sensitivity to imperfections; it can improve dramatically depending upon the 

type of stiffening system employed, however. 

Thus,  in  contrast  to  the general  acceptance of minimum weight analyses 

of flat  plate elements which a r e  based upon a satisfactory correlation of local and 

general  instability theory with experiments, existing minimum weight analyses of 

cylindrical  shells under compression a r e  somewhat suspect and should be used 

with some caution. 

of available minimum weight l i terature  contained in Ref. 1. 

This conclusion is based upon the fairly comprehensive review 

The basic requirement for acceptance of minimum weight theory is clear ly  

sat isfactory agreement between experiments and theory for  the basic instability 

modes.  

stiffened cylindrical shells under compression has permitted a c l ea re r  understanding 

of the conditions under which satisfactory agreement between theory and experiment 

can  be achieved. 

t e s t  da ta  in this a r e a ,  a comprehensive review of l inear orthotropically stiffened 

shel l  theory is presented herein and available tes t  data a r e  evaluated consistently in  

t e r m s  of this theory. 

provides  a tentative indication of the regions in which l inear orthotropic stability 

theory  is  satisfactory.  

Fortunately, recent progress  of a theoretical  and experimental  nature on 

Thus,  fo r  the purpose of defining the cur ren t  status of theory and 

A synthesis of these tes t  data a r e  presented in  Section 2 which 

In Section 3 ,  the basic approach and assumptions involved in constructing a 

genera l  theory fo r  the minimum weight design of symmetrically stiffened orthotropic 

cyl inders  under axial compression is presented. Similari t ies and differences 

1 
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between the minimum weight design of flat, t ransverse ly  supported, longitudinally 

stiffened panels and the f rame supported, cylindrical  shell  counterparts a r e  investi- 

gated in some detail  in order  to a r r ive  at a satisfactory physical picture of the 

minimum weight behavior of cylindrical shells. 

Fundamental design synthesis results concerning the relative efficiencies 

of various types of minimum weight stiffening systems for cylindrical shel ls  a r e  

presented in Section 4. 

orthotropic theory and tes t  data correlate  although the theory is sufficiently general  

to accommodate changes in  the regions as they become better defined. 

clusions drawn from a comparative evaluation of these resul ts  a r e  presented in 

Section 5. 

These resul ts  include only those regions where l inear  

Major con- 



i' 
2 .  Assessment of Linear Orthotropic Stability Theory 

Historical  Review of Theoretical  Developments 

The historical  development of the general  compressive instability theory 

of stiffened cylindrical shells is marked  by two periods of activity; the ear ly  and 

mid  1930's which marked the introduction of semimonocoque meta l  construction 

in a i rc raf t  and a cur ren t  one, roughly a decade old, motivated by the design of 

launch and space vehicles. 
3 

The ear ly  theoretical  investigations were  performed by Fliigge, Dschou 

Fliigge derived a se t  of three l inear coupled equilibrium equations 4 and Taylor.  

analogous to those used by investigators of isotropic cylinders at that t ime. 

solved these equations for  stiffened circular  cylinders under axial compression. 

Taylor utilized the Donne11 assumptions for cylindrical shells and succeeded in 

deriving a single uncoupled eighth order  equilibrium equation for orthotropic shells 

which reduced to Donnell's equation for an isotropic cylinder. The Taylor-Donne11 

type of equation has generally been used in all subsequent work. 

with l i t t le success5 in  1943, as well as almost a complete preoccupation with 

isotropic cylinders under compression since that t ime has produced the unfortunate 

resu l t  that  the ear ly  work languished. 

this  situation in  the late 1950% and concluded that orthotropic general  instability 

theory for  compressed cylinders had never been confronted previously with tes t  

data  in which local instabilities had not preceeded failure. 

modern  tes t  data on external  p re s su re  and tors ion as  well as one recent t e s t  in  

compression,  they concluded that linear orthotropic theory may  indeed be useful. 

In addition, the theoretical  work contained in Refs. 7 and 8 provided explicit e las t ic  

genera l  instability solutions in  the moderate length range for  circumferentially and 

axially stiffened cylinders under a variety of loadings as well as resul ts  for  the 

flat plate and short  cylinder regions. 

Thielemann9 developed a non-linear post-buckling deflection theory for  orthotropic 

shel ls  under a variety of loadings. The resul ts  obtained for ring and longitudinally 

stiffened cylinders under compression a r e  particularly helpful in providing a n  

understanding of the conditions where l inear theory may be satisfactory.  

Dschou 

The fact that this theory was used for  comparison with experimental  data 

6 ,  7 Beckcr and Becker and Gerard8 reviewed 

On the basis  of m o r e  

8 

While all the preceding theory w a s  concerned with the l inear  buckling load, 
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Gerard" extended the previous work to derive a general  set  of equations 

for plastic general  instability of geometrically orthotropic shells.  

were used to derive plasticity reduction factors for a variety of loadings. 

compressive loading case  is of particular interest  since the buckling loads for  the 

axisymmetr ic  and asymmetr ic  modes a r e  generally different when the cylinder is 

plastic o r  orthotropically elastic.  In contrast ,  for the isotropic elastic cylinder,  

both modes resul t  in the same buckling load. The influence of the buckling modes 

was studied in  some detail in Ref. 11 and served to indicate the importance of 

utilizing the appropriate buckling mode for the compressive loading case .  

These equations 

The 

Returning to post-buckling theory,  Almrothl' has utilized Thielemann's 

theory in  combination with more  extended post-buckling deflection functions to 

obtain a wide range of theoretical  resul ts  for the minimum post-buckling load. 

In an important extension of l inear buckling theory,  DeLuzio e t  a l l3  have presented 

a theory which includes prebuckling deformations of the orthotropic shell  as well 

a s  the effects of stiffener location upon the buckling load. More recently,  Block 

e t  a l l 4  have contributed a theory for stiffener asymmetry.  
15, 16 A development of l inear  stability theory has been the recent  discovery 

that a previously unsuspected asymmetric buckling mode may  govern for  cer ta in  

types of longitudinally stiffened cylinders. This mode is in good agreement  with 

available tes t  data and w i l l  be discussed in grea te r  detail  subsequently. 

Linear  Orthotropic Stability Theory 

Having se t  an  his tor ical  f r ame  of reference,  it is important now to review 

the essent ia l  assumptions and features of cur ren t  l inear orthotropic stability theory 

and to  provide resu l t s  that can be checked against t es t  data. 

Appendix 1 contains a ra ther  general  formulation of orthotropic shell  theory for 

symmetr ica l  stiffening systems and i t s  systematic reduction in t e r m s  of various 

constitutive relationships. 

p ress ion  and bending cases .  

resu l t s  fo r  correlation with available test  data ,  the following summary  of the 

compress ion  case  is presented here.  

F o r  this purpose,  

Appendix 2 presents specific solutions for  the com- 

In the interests of providing the essent ia l  theoretical  

In Ref. 11, a solution for the general instability of orthotropic cylinders 

under axial compression was obtained on the basis that for  moderate length cylinders,  

the number of buckles along the axis of the cylinder m ,  w a s  large enough that it 

could be  t rea ted  as a continuous parameter  along with F, the ratio of the buckle 

length in  the axial direction to  that i n  the circumferential  direction. The buckling 

4 
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coefficient k , w a s  t reated as a function of two variables m and F for obtaining a 

minimum value. F rom the requirements of s ta t ionariness ,  the following quadratic 

equation was obtained for  in t e r m s  of the orthotropicity parameters  y, a, and 6 

and exclusive of Z 

X 

the curvature parameter.  
X' 

The corresponding buckling coefficient solution for moderate  length ortho- 

t ropic  cylinders was given as 

1/2 k = 0.702 (1-v2) ZxU 
X 

where: kx = NxLZ/r2D1 

zx = B , L ~ / ~ ~ R ~ D ~  

U = 1; axisymmetr ic  mode 

= [(c@ t y ) / ( F 2  t asymmetr ic  mode 

As a consequence of Eq. ( l ) ,  it  w a s  found for  cer ta in  combinations of y, CY 

and 6 that  p was imaginary.  Hence, for these y ,  CY and 6 combinations the moderate  

length asymmetr ic  solution o r  more  precisely m-continuous solution, did not apply. 

However, since the axisymmetr ic  solution was independent of y, a, 6 and P,  it 

was  assumed that the axisymmetr ic  solution prevailed in the regions where the 

modera te  length solution failed. 

equation, a r e  shown in Fig. 1. 

and a fo r  which the quadratic equation yields imaginary values for p. 
a lso  indicates that  the axisymmetr ic  solution governs in  the region bounded by 

These conclusions, based upon the quadratic 

Zones I1 and V represent  the combinations of y 

This figure 
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y l l ,  Zones I and VI,  since the asymmetric m-continuous solution yields higher 

values in these zones. 

During the course of the investigation reported in Ref. 15, it was found that 

in Zones I and 11, an asymmetr ic  solution with r ea l  f3 values can be obtained that is 

lower than the axisymmetr ic  solution provided m were not t rea ted  as a continuous 

variable but were  assigned the value m=l.  

with Eq. (l), we can rewri te  Eq. (11) of Ref. 11 with m=l to  obtain the following 

solution corresponding to  the m=l asymmetric mode: 

By utilizing the nomenclature associated 

By differentiating k with respect to p2 where now m=1, we obtain for the 
X 

s ta t ionariness  of k , the following expression for  Z 
X X 

Finally,  by substituting Eq. (4) into ( 3 ) ,  we obtain the stationary value, 

t[l t 2(P2/6) t (P4/6)] (ytap.2) (1 tp) - '  ( 5 )  

Eqs. (4) and (5) constitute the basic equations for the asymmetr ic  m = l  

solution. F o r  a cylinder with specified cy, y,  6 ;  k and the corresponding Z can 

be found by assuming values of and solving Eqs. (4) and (5).  Typical resul ts  

obtained for  Zones I and I1 a r e  presented in  Ref. 15 and a r e  compared with the 

axisymmetr ic  solution and also the asymmetr ic  solution with m-continuous. It 

was observed that the m=l  solution always resul ts  in  lower values of k 

11. Typical resu l t s  obtained in Zone I indicate that for y > 1, the asymmetr ic  

m=l solution is above the axisymmetric solution and then falls below at a value of 

Z that  depends upon y. Thus, either solution can apply in this region. Fig. 1 

i l lus t ra tes  and summar izes  the buckling modes which apply in each zone. 

X X 

in  Zone 
X 

X 
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Correlation of Theorv and Test  Data 

AS indicated in  Refs. 8 and 16, correlation of tes t  data on cylinders designed 

specifically to check orthotropic theory is excellent for hydrostatic p re s su re  and 

torsion loadings. Similarly,  t es t  data contained in Refs. 16, 17 and 18 on specially 

designed and fabricated stiffened tes t  cylinders under axial compression and also 

bending a r e  in  suprisingly good agreement with the predictions of l inear  orthotropic 

general  stability theory. 

The range of orthotropic variables covered by the tes t  data of Refs. 16, 17 

Also shown as Group and 18 a r e  shown as Groups A and B respectively in  F ig .  1 .  

C a r e  t e s t  resu l t s  on filament wound cylinders19 analyzed in  Ref. 15. 

observed that i t  is desirable  to cover a far broader range of var iables  than repre-  

sented by these three groups to  a s s e s s  the complete accuracy of the orthotropic 

theory. 

considered to be in  the orthotropic category by virtue of the i r  stiffening ar range-  

ment and the fact that no other buckling mode preceded general  instability. 

other sources  of t e s t  data 20-22 shown as Groups D, E,  and F in Fig. 1 a r e  summar-  

ized in Appendix 3.  

given in  Appendix 3 together with a tabulation of pertinent orthotropic parameters .  

It can be 

Consequently, a search  w a s  initiated for tes t  cylinders which could be 

These 

Summary plots of all the tes t  data f rom all sources  a r e  a l so  

The tes t  data f rom all sources  displayed in  Fig. 1 were  analyzed and then 

segregated as to  the i r  percent deviation from linear orthotropic theory. 

synthesis  of these data  a r e  shown in F ig .  2. 

t he re  is a singularity at the point (1, 1) representing isotropic cylinder behavior 

and the region of grea tes t  deviation as well as sca t te r  of tes t  resul ts .  

radial ly  away f rom this  point (with the possible exception of the third quadrant) the 

si tuation improves uniformly and acceptable agreement between l inear  orthotropic 

theory and experiment is obtained at the a rb i t ra ry  distance indicated in F ig .  2. 

The 

It is quite c lear  f rom all the data that 

As one moves 

An examination of buckle wavelengths in this enclosed region can provide 

some  theoret ical  clues as to the apparent unusual sensitivity to imperfections. 

Eq. (1)  indicates that  for  ~ = y ,  the 45 degree line in F ig .  2 represents  a singularity 

fo r  which the wavelength rat io  p can theoretically assume any value between 0 and 

infinity. 

so  that  our  discussion is basically confined to the line segment E t .  

Also, beyond (1, l ) ,  the axisymmetric mode governs as indicated in  Fig .  1, 

It is also well  known that a structure is sensitive only to  small imperfections 

whose wavelengths correspond to  those in  which the s t ruc ture  would buckle i f  it were  

perfect .  

distribution of small imperfection wavelengths, then it is quite 

If we now hypothesize that a cylindrical shell  s t ruc ture  contains some random 

apparent that  in  the 
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neighborhood of the line segment mt, any imperfection wavelength wi l l  buckle the 

shel l  into that form initially and prematurely. 

pression,  the imperfection determines the initial buckle form because the perfect 

waveform is itself indeterminate. This situation which appears  to  be unique for  a 

cylindrical  shel l  under compression with orthotropic parameters  corresponding to 

the line segment mt is the reverse  of that normally found for other types of s t ruc-  

t u ra l  elements and loadings. As one moves away from this  cr i t ical  line segment,  

p becomes determinate and the unusual sensitivity to imperfections begins to  dis-  

appear. This t rend  is particularly evident for the longitudinally stiffened cylinder 

data of Groups A and D. 

F o r  the cylindrical  shel l  under com- 

It is obviously highly desirable that fur ther  experimental  data be obtained 

In the and analyzed to  bet ter  define the region sensitive to initial imperfections. 

meant ime,  it is proposed to use the region defined in  Fig. 2 on the basis of cur ren t  

tes t  data for  this  purpose. 

orthotropic theory can be used with reasonable confidence to  predict  the general  

instabil i ty of compressed,  symmetrically stiffened orthotropic cylinders. In the 

subsequent minimum weight analyses we shal l  re turn  to Fig .  2 to be s u r e  that 

resu l t s  a r e  obtained which will be outside of the initial imperfection region and 

which thus can achieve an acceptable degree of reliability consistent with minimum 

weight. 

It is believed that outside the c r o s s  hatched region l inear  

10 



3. Minimum Weight Design Approach 

Having established in Section 2 that there  a r e  indeed regions of orthotropic 

parameters  where good agreement exists between linear general  instability theory 

and tes t  data on stiffened cylindrical shells, we turn  now to our basic approach to 

the minimum weight design of such shells.  

a basic physical picture of the behavior ~f minimum weight shells since there  may 

be important differences in the interrelationship of the pertinent stability modes a s  

the curvature  of the cylindrical shell  i s  varied. Fo r  this purpose now, we shall 

review minimum weight design aspects of a t ransversely supported wide column 

under compression and then proceed to generalize these resul ts  to a cylindrical 

shell. 

In doing so ,  i t  i s  important to establish 

Transverse ly  Supported Flat Wide Column 

The minimum weight analysis of t ransversely supported flat wide columns 

i s  contained in Ref. 23 for flexural types of r ibs  and in Ref. 2 4  for deflectional 

types.  In either case ,  the essential  results a r e  the same and we shall  extract  

he re  the essent ia l  physical features of the buckling modes and their  relation to 

the minimum weight design of such structures.  

f iguration of the s t ruc ture  assumed a s  well as  other assumptions concerning boundary 

conditions, relative geometries and the idealization of the la te ra l  st iffeners.  

Fig. 3 indicates the general  con- 

The behavior of the s t ructural  arrangement shown in Fig. 3 i s  fairly well 

understood and can be summarized a s  shown in Fig. 4 .  

existence of a cr i t ical  value of the spring constant parameter  KL3/D, which divides 

the regions of general  instability (buckling over supports) and local instability 

(buckling between supports).  

ition between the two modes.  Smeared element o r  orthotropic theory agree in the 

region indicated; orthotropic theory essentially ignores the existence of the local 

instabil i ty mode when extended beyond the region of agreement ,  unless the a rb i t r a ry  

cut-off indicated in Fig. 4 is utilized. 

The main feature i s  the 

t 

Discrete element theory provides the cor rec t  t r ans -  

’ 

In conducting a minimum weight investigation of the configuration shown in 

Fig.  3 it is convenient to  use  the concept of solidity as a non-dimensional measure  

of weight. In t e r m s  of the parameters  of Fig. 3, 

C = t f h  + ArfhLt 
S 
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The corresponding parameters  presented in Fig. 4 a r e  represented by 

Typical resu l t s  obtained by use  of Fig. 4 and Eqs. (6) and ( 7 )  are displayed 

in Fig. 5 where relative solidity is shown as  a function of the normalized stiffness 

parameter ,  (KL:/D,)/4aZ. Based upon discrete  element theory,  a minimum weight 

design is obtained at a point considerably below the cr i t ical  value of KLi/D, at 

which an effectively rigid supporting s t ructure  is first achieved. 

solidity at the cr i t ical  point where the general  instability and local  instability 

s t r e s s e s  a r e  equal is only slightly higher than at the minimum. 

Fig. 5 is the fact that orthotropic theory resul ts  in  a minimum based upon the 

a rb i t r a ry  cut-off shown in Fig. 4. 
sense ,  it does provide a convenient and satisfactory approximation for  the discrete  

element case.  

However, the 

Also shown in 

Although this  is a false minimum in a physical 

Ring Supported Cylinder 

Having reviewed the essent ia l  features of the flat panel, we turn now to the 

ring supported cylinder shown in Fig. 3 which in  the l imit  becomes the flat panel. 

It is assumed that general  instability of cylinders under compression occurs  in the 

axisymmetr ic  mode as would be expected f rom Fig .  1. 

The introduction of curvature immediately introduces circumferential  

membrane  stiffnesses as an important additional feature. For  the cylinder,  the 

skin contributes i t s  membrane stiffness as a foundation modulus o r  smeared  se t  

of spr ings in paral le l  with the smeared  o r  discrete  deflectional spring system 

contributed by the ring a r e a  parameter  A /hLt. 

the flat case  where the skin contributed no support stiffness and the t ransverse  

supports  contributed flexural stiffness only. Since the relative contribution of 

skin and  supporting s t ruc ture  depends upon the curvature ,  R, we shall  examine a 

relatively simple model in which the solidity is defined in the same  manner for  the 

flat panel and cylinder. 

This is obviously different than 
r 

In o rde r  to  simplify the analysis without compromising the resul ts  obtained, 

i t  is convenient to  consider all spring systems as smeared  in o rde r  that orthotropic 

theory can be used throughout. 

that  t h e  final conclusions a r e  obtained in the region where orthotropic theory is 

indeed valid. 

The results obtained from this analysis w i l l  indicate 

14 
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The governing equation for axisymmetric general  instability of the ring 

supported cylinder shown in Fig. 3 is given by 

where: 

and D, and K a r e  defined in Eq. (7). 

B, = E(ts t Ar/L t ) / ( l -vZ)  

Assuming the following solution for Eq. (8), w = a  sin ( m / X ) ,  and minimizing 

the resulting expression with respect  to  A ,  we obtain 

and 
-1 

( k / ~ r ) ~  = ( D l R 2 / E h ) [ k  t -(lt Ar r)] a4h ,R 
hLt 

F r o m  Eqs.  (9) and (10) and the definition of D, given by Eq. (7), we find that the 

requi red  skin thickness ts  for a given loading N is given by 

Similar ly ,  by eliminating D, in Eq. (10) 

F o r  given values of (N/Eh) and (wo/h) we can'obtain from Eqs. (11) and (12)  

It can be observed from Fig. 6 that when the panel is flat 
the var ia t ion o f x  with the support a rea  parameter  Ar /hL for different values of 

R / h  as shown in Fig. 6 .  
o r  only slightly curved, that there  is a marked  reduction in wavelength as the 

support  a r e a  is increased.  

appropriate  to  pract ical  stiffened cylinders, the wavelength is always finite and is 

t 

On the other hand, for  R/h  < 100 which is the region 

16 
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determined pr imar i ly  by the skin membrane stiffness with little influence exerted 

by the supporting s t ructure  a rea .  

We shal l  now consider the influence of this wavelength behavior upon the 

weight o r  solidity of the overall  s t ructure .  For  this purpose, we now define the 

solidity of the cylinder in  the following special manner  in order  to be consistent 

with that for the flat panel 

z= 
- 
t x (surface a r e a )  

( r ib  height) x (surface a rea )  

S i n c e i  'includes the skin plus smeared supporting s t ructure  a r e a ,  Eq. (13) reduces 

to  Eq. (6 )  for both cases .  

F r o m  Eq. ( l l ) ,  we can obtain t / h  a s  a function of A / h L  for given values 
S r t  

F i g .  7 plots C with respect to Ar/hLt for  various R /h  values. of N/Eh, and wo/h. 

It is interesting to note that for  cylinders up to  R/h  = 100, the C curve r i s e s  with 

ring a r e a  and is the lowest for zero ring a rea  indicating that the skin membrane  

stiffness is of p r imary  importance. 

where a cer ta in  r i b  a r e a  provides for minimum weight, hence, an  optimum design. 

F o r  ve ry  high R / h  values the influence of curvature is smal l ,  the skin stiffness 

plays a secondary role while the r ib  a rea  i s  of pr imary  importance in  obtaining 

a minimum weight design. 

This is in  contrast  with flat plate behavior 

The significance of curvature is thus demonstrated ra ther  directly by the 

use  of the orthotropic theory. 

system prevents buckling as 

s t r e s s .  

in  the buckling s t r e s s  and a weight optimization can be achieved. 

of sufficient curvature ,  the skin assumes the role of the supporting sys tem in the 

flat panel to  prevent i t  f rom buckling a s  a column; the addition of rings adds to  the 

weight without changing the buckling character is t ics  significantly. 

We see  that in  the case  of a flat plate the supporting 

column and hence helps to  ra i se  the buckling a wide 

The weight of the supporting system is thus compensated by an increase  

F o r  the cylinder 

Thus,  in  contrast  to the f la t  case,  minimum weight is not achieved upon 

simultaneous buckling in the general  instability and local instability modes.  If 

sufficient r ing a r e a  i s  added to force this situation, a heavier design is always 

obtained than that corresponding to the perfect cylinder with zero  ring a r e a ,  

18 
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4. Minimum Weight Design of Orthotropic 

Cvlinders Under ComDre ssion 

The mater ia l  contained in Sections 2 and 3 essentially provides a frame of 

re ference  and physical background for the assumptions to be utilized in the following 

minimum weight analysis. 

the analysis in the in te res t s  of obtaining a relatively simple and direct  solution, it 

should be recognized that while the results obtained represent  minimum weight 

designs they may not constitute absolute minimums. 

warranted in  this  a r e a  when the details of the boundary shown in Fig. 2 a r e  fur ther  

clarified. 

Because of the rest r ic t ions necessar i ly  imposed upon 

Fur ther  research  effor t  is 

Because of the present uncertainites concerning the range of applicability of 

l inear  orthotropic theory,  the minimum weight analysis is presented in sufficiently 

general  form that changes in the boundary shown in Fig. 2 can be readily corrected 

for .  Fur thermore ,  although the analysis is conducted for compressive loading, it 

is apparent f rom the resu l t s  presented in Appendix 2 that the analysis is equally 

valid for  bending. 

sumntions 

Orthotropic theory for symmetrical  stiffening systems is employed herein 

The effect of st iffener in  the interest  of simplifying a ra ther  complex problem. 

asymmetry  for the geometric proportions associated with minimum weight designs 

is presently unknown. Thus,  the results obtained herein for  symmetr ical  sys tems 

can provide useful data for  investigating the significance of asymmetry upon mini- 

mum weight designs. 

A s  a resul t  of the information developed in  Section 3 ,  it is assumed for  this 

analysis  that the stiffened cylindrical shells have sufficient curvature (R/h  < 100) 

that  the skin membrane s t i f fness  dominates in establishing the general  instability 

buckle weavlength. 

the f r a m e  spacing ( L  ) and there  w i l l  be no condition imposed upon the minimum 

weight design that The appropriate value of h 

o r  its equivalent function thus becomes the parameter  that  minimizes the weight. 

Under these circumstances,  the wavelength (1) w i l l  exceed 

t 
=L as is usual for the flat panel. t 

The minimum weight analysis is  conducted in a quite general  form and includes 

the following cylindrical  shell  forms:  perfect  isotropic,  ring stiffened, longitudinally 

and ring stiffened. 

mode is involved. 

mode corresponds to  Euler  buckling of the stiffened wide columns in the wavelength 

F o r  the first two cases ,  only the general  instability buckling 

F o r  the longitudinally stiffened case ,  the general  instability 
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A .  

local instabilities of any of the stiffener elements wi l l  occur simultaneously a t  

general  instability. 

Since the stiffened wide columns used in this  analysis a r e  of optimum design, 

F o r  specified design conditions of a compressive loading (N) and buckle half 

wavelength ( A )  corresponding to the simply supported 12ngth, the optimum s t r e s s  

of a wide column or a longitudinally stiffened wide column can be expressed in  the 

following form. 23-25 

1-m u = C Y  E 
O P  

In Eq. (14), the panel efficiency coefficient (CY ) represents  the optimum geometric 

arrangement  of stiffening elements in the c ros s  section, and the exponent (m) depends 

upon the number of possible buckling modes. 

a given c r o s s  sectional shape. 

Appropriate values of CY 
P 

P 

Both CY and m have specific values for 
P 

and m obtained from Refs. 23-25 a r e  presented in 

Table 1 for  unstiffened wide columns as well a s  those with common Z and Y longi- 

tudinal st iffeners and improved Z and Y stiffeners recently developed in  Ref. 25. 

In addition, the value of (ts/tl) 

optimum skin thickness to smeared  thickness in the longitudinal direction. 

Fig. 8 ,  the relative efficiencies of the various forms of stiffened wide columns a r e  

shown. 

is given for subsequent use and represents  the 
0 

In 

Table 1 

Character is t ics  of Optimum Monolithic Wide Columns 

CY m ( t s / t do  
Type P 

unstiffened 1.22 213 

stiffened - common Z 1.01 112 

- common Y 1.21 112 

- improved Z 0.984 419 

- improved Y 1.265 419 

1 .000  

0.444 

0.344 

0. 305 

0.241 
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Minimum Weight Analysis 

In addition to the optimum wide column s t r e s s  relation given by Eq. (14), we 

have available the compressive general  instability s t r e s s  relationship for orthotropic 

cylinders. 

to the r r safer '  regions of Zones 111 to VI which encompasses the axisymmetr ic  and 

asymmetr ic  m-continuous modes but excludes the asymmetr ic  m = l  mode. 

shown in Appendix 2 ,  the buckling load for the two modes to be considered can be 

writ ten in the following form from Eq. (2 ) .  

Because of the data contained in Fig.  2 ,  we shall  r e s t r i c t  our  analysis 

As 

N = ( 4 / d ) ( l - ~ ~ ) ' / ' ( B , D 1 ) ~ ' ~ U  (15) 

F o r  the axisymmetric case U = l  while for the asymmetr ic  case U<1. 

general ,  U< - 1. 

Hence, in 

In both Eq. (14) and (15), the loading (N) i s  related to the applied s t r e s s  (ua) 

through the usual relation 

In Eqs. (15) and (16), the subscripts 1, 2 re fe r  to  the axial and circumferential  

direct ions,  respectively. Fur thermore ,  it i s  convenient to define the following 

geometr ical  parameters  

The solidity of the cylindrical shell is now defined in the usual manner  a s  

the volume of s t ruc tura l  mater ia l  relative to  the enclosed volume. 

of diameter  (d) 

Fo r  a cylinder 

2 = 4 ( t i / d  t Ar/Ltd) (18) 

How eve r , 

Substituting Eq. (19) into (18) 

2 tl =r ( l + k a  - t,/tl) 
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For  an optimum wide column, (t  / t l )  i s  fixed a s  indicated in Table 1. 

a s  a parameter  that minimizes the solidity, then the essential  s tep at  this point is 

to  replace the quantity ( t , /d)  by the loading (N) and diameter (d) which a r e  the speci- 

f ied quantities for the design problem. 

If ka i s  t reated 
S 

By use of Eqs. (14) and (16), we can immediately obtain 

d c u  
P 

The wavelength A i s ,  of course,  unknown at this point and it i s  necessary to  utilize 

the general  instability relation, Eq. (15) and its associated X expression to solve 

Eq. (21). 

Eq. (B. 21) 

F rom Appendix 2, the following convenient expression has been developed, 

( 2 2 )  A = (2r2U2X2Dl/N) 1/2 

where X i s  a function of p. 
X - > 1 for the asymmetr ic  m-continuous mode and X = l  for the axisymmetric mode. 

F o r  our purposes here ,  it is sufficient that we know that 

We now turn  to Eq. (15) and by substituting B, = kaEtl/( l-v2) as  defined by 

Eq. (17), and the relation given by Eq. (22)  for D,, we obtain 

By equating Eqs. (21) and (23) 

By utilizing Eq. (24) in (23) o r  (21) to  eliminate A/d 

m / 2 t m  2 / 2 t m  (2  -m) / 2+m 

(25) 

Finally, by substituting Eq. (25)  for  t l / d  in Eq. (20),  the following general  

expression i s  obtained for the solidity 
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I .  L 

In the following, we w i l l  d iscuss  resul ts  for various specific types of stiffening 

systems whose character is t ics  a r e  given in Table 1. 

It is quite evident that for a given stiffener of optimum design, cy m and t / t l  P’ S 
a r e  fixed and the loading parameter  N/Ed is 

factors  i n  Eq. (26) a r e  k which we shall  consider in the following and the parameter  

X where for the axisymmetr ic  mode X = l  and for the asymmetr ic  m-cont. mode 

X - > 1. 

mode w i l l  always resul t  in a solidity l e s s  than or equal to  that corresponding to  the 

asymmetr ic  m-cont. case.  Thus, minimum weight designs should conform to 

Zones V and VI of Fig. 1. 

prescribed. Thus,  the two remaining 

a 

F r o m  the character is t ics  of X it is evident that  buckling in the axisymmetr ic  

Minimum Weight Results - Isotropic Cylinders 

Having established the general  solidity relation for orthotropic cyl inders ,  

we can now proceed to  obtain specific results. 

the perfect isotropic cylinder of moderate length. Here the axisymmetr ic  and 

asymmetr ic  modes a r e  equal, X = 1, and by definition for an isotropic cylinder,  

k = t / tl  = 1. Fur thermore ,  f rom Table 1 for  an unstiffened wide column, m = 2/3  

and (Y = 1.22. Thus,  Eq. ( 2 6 )  reduces to the following fo r  this  case  

The first case to be considered is 

a s  

P 

(27) 1 / 2  C = 3. 63 (N/Ed) 

The analysis of cylindrical shells containing imperfections has been presented 

previously in Ref. 26. In t e r m s  of the solidity defined herein 

(28)  
2 / 5  C = 1.40 (N/Ed) 

Resul ts  a lso have been obtained previously for  honeycomb sandwich cylinders which 

constitute another f o r m  of isotropic shell. F o r  a sandwich with face density to core  

density of 50, the following optimum solidity is obtained from Ref. 27 

(29) 
= 1. 02 (N/Ed) 1/2 

Eqs.  (28) and (29) will provide useful references in  the subsequent comparative 

efficiency analysis.  
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Minimum Weight Results - Stiffened Cylinders 

The simplest  form of stiffened cylinder consists of the addition of rings or 

f r ames  to  an isotropic skin. 

mode and therefore X = 1. 

this case  from Table 1, Eq. (26) reduces to 

Such cylinders will always buckle in  the axisymmetr ic  

Fur thermore ,  with m = 2/3,  cy = 1.22 and t /tl  = 1 for P S 

C = 3.63 (ka)3 /4  (N/Ed)l l2  (30) 

Since k > 1 for  this case ,  it is apparent that the addition of rings only se rves  to 

decrease  the efficiency of a perfect cylinder, Eq. (27). 

different when imperfect cylinders which behave according to  Eq. (28) a r e  considered. 

a 
The situation is somewhat 

If we replace the isotropic skin of the previous example with a n  optimum 

longitudinally stiffened skin and furthermore res t r ic t  the design to the efficient 

axisymmetr ic  Zones V and VI, then X = 1 in Eq. (26). 
panel design which fixes CY 

of ka can  be established by performing the operation 8Z/8ka = 0 on Eq. (26). 

Fo r  a given optimum 

m and t /t l ,  it would appear that  an  optimum value P' S 

Since k > t /tl ,  Eq. (31) generally results in a false optimum fo r  the values 

given in  Table 1 and the cut-off condition ka 2 t s / t l  mus t  be used instead. 
a -  s 

In general ,  Eq. (26 )  can be replaced by 

C = C (N/Ed)n (32) 

where C is a function of m ,  CY 

values of n and C for  k 

stiffening only a r e  given in  Table 2 together with a summary  of such values for  

the o ther  cases .  

t / t l  and the value chosen for  ka. Appropriate 
P' s 

= t /tl  which implies zero  ring a r e a  o r  longitudinally a s  

Unfortunately, the resul ts  obtained when ka = t /tl  o r  zero  ring a r e a  nec- 
S 

e s s a r i l y  place these designs in the region of CY < 1 and y > 1 in Fig. 2. 

condition resu l t s  f r o m  our  assumption of axisymmetric buckling, X = 1. 

designs a r e  potentially unreliable since they probably fall i n  the shaded zone of 
Fig.  2. 

where  l inear  orthotropic stability is valid, we must  now consider the addition of 

sufficient ring a r e a  to the longitudinally stiffened cylinder to  achieve axisymmetric 

buckling in  Zones V and VI. 

The la t te r  

Such 

Since we des i r e  to res t r ic t  the minimum weight analysis to those regions 
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F r o m  F ig .  2, it would appear that a satisfactory cr i ter ion to achieve axisym- 

F o r  this purpose, it  is convenient me t r i c  buckling would be to require that CY > 1. 8. 

to  assume that ka = 1 and by virtue of Eq. (17), then D,/D, 2 1. 8. 

generally be sat isf ied through use of the ring stiffening configuration shown in Fig. 3 

since there  is no particular res t r ic t ion on h for the rings. 

Eq. (26), the C values given in Table 2 for ring stiffened cylinders were  obtained 

in conjunction with the specific values given in Table 1. 

there  is some weight penalty as compared to the longitudinally stiffening only case.  

-4 summary  plot of the data coEtained in  Table 2 is presented in  Fig. 9. 

longitudinally stiffened cylinders,  only the ka = 1 resul ts  a r e  shown, to conform to 

the sp i r i t  of this analysis. 

- 
The la t ter  can 

By letting ka = 1 in 

It can be observed that 

Fo r  the 

Table 2 

Character is t ics  of ODtimum OrthotroDic Cvlinders 

a. isotropic 

perfect 

imperfect 

s andwic h 

112 3.  63 

215 1.40 

112 1.02 

b. longitudinally stiffened 

common Z 3 1 5  4.91" 

common Y 3 1 5  4.44" 

improved Z 7/11  5.22" 

improved Y 7/11 4.45" 

c. ring stiffened 

isotropic skin 

common Z 

common Y 

improved Z 

improved Y 

3.63 (k,) 3 I4  112 

3 1 5  6.48* 

3 1 5  5.93"" 

7/11 7.14"" 

7/11 6.01 ** 

* corresponds to zero ring a r e a ,  k 

**corresponds to ka = 1 

= t / t ,  a s  
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5. Conclusions 

Within the restr ic t ions imposed upon the minimum weight analysis that the 

designs must  conf:,rm to those regions where l inear orthotropic stability theory 

and available experimental  data a r e  in good agreement ,  the resul ts  obtained herein 

and summarized in  F ig .  9 a r e  reviewed to establish their  significance. 

conclusions appear to emerge  f rom the analysis: 

The following 

1. 

stiffening alone resul ts  in  a decrease in  efficiency. 

however, ring stiffening tends to make an imperfect isotropic cylinder 

behave as a perfect cylinder by suppressing i ts  sensitivity to imper-  

fections. 

improvement in efficiency particularly a t  lower values of the loading 

index. 

As compared to a perfect isotropic cylinder,  the use of ring 

Pract ical ly ,  

In this respect ,  ring stiffening can resul t  in  a substantial 

2. In direct  contrast  with ( 1 )  above, combinations of ring and longi- 

tudinal st iffeners can resul t  in significant improvements in efficiency 

as compared to perfect isotropic cylinders. 

3 .  F o r  the launch vehicle maximum (N/Ed) range, common stiffening 

shapes are not directly competitive with perfect honeycomb sandwich 

cylinders.  At lower values of N/Ed, the situation becomes consider- 

ably m o r e  competitive. Furthermore,  the improved stiffener shapes 

a r e  competitive o r  superior  to honeycomb sandwich as well as offering 

significant weight saving potential a s  compared to the common shapes. 

4. 

wich cylinders and perfect isotropic cylinders,  use of rings only on the 

sandwich cylinder cannot improve i t s  efficiency. Rings conceivably 

could improve the performance of imperfect sandwich cylinders. 

Because of the s imilar i ty  in behavior of perfect  honeycomb sand- 

t 
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Additional Symbols for Appendices 1 and 2 

A. 
1j 

bi 

ES 

Et 

Ii 

[mil 

E 

M 

N 

P 

u, v ,  w 

(Y 

P" 
E e 

IJ i j  

i j  V 

- 
V 

0- e 

x. * 
1J 

plasticity coefficients 

stiffener spacing 

generalized elastic modulus 

secant modulus 

tangent modulus 

moment of inertia 

bending moment per  unit width 

3 x 3 submatrix 

integer 

p re s su re  

displacements 

plasticity factor 

wavelength parameter  for bending 

effective strain 

membrane Poisson's ratio 

flexural Poisson's ratio 

generalized Poisson's ra t io  

effective s t r e s s  

curvatures 

Subs c r i D t  S 

X, y, e coordinates 

b bending 

C compression 
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A General Linear Orthotropic Theory for 

Stabilitv of Thin Shells 

Introduction 

Our objective here  is to present a systematic development of a general  e las t ic  

The equilibrium and and plastic l inear  theory for  the stability of orthotropic shells. 

the kinematic equations which govern the shell stability a r e  formulated in  the s implest  

possible t e r m s  in  the spir i t  of Donnell's assumptions for shallow curved panels. 

The constitutive equations include the orthotropic, e las t ic  and plastic effects. 

following development is based on Ref. 10. 

The 

Equilibrium Equations 

A generic point on middle surface of the thin shell  is described by an ortho- 

gonal curvil inear coordinate system (x, y) which follows the l ines of curvature  of 

the surface at the point. It is fur ther  assumed that the principal radii  of curvature  

R at the point a r e  different but constant. If Nx, N N represent  a system 
Rx' y Y 9  XY 
of external  loads pe r  unit width, then the equilibrium of internal  s t r e s s  s ta te  with 

these  constant external  loads during the buclkling process  is satisfied by the following 

equations : 

aNxO/ax t a" /ay  = 0 
XY 

-[aZM;/aX2 t 2 a 2 ~ '  /axay t a Z ~ ' / a y 2 ]  tiv;/Rx t N'/R 
XY Y Y Y  

t ~ ~ ( a 2 ~ / a ~ ~ )  t 2~ (aZW/axay)  t N (a4ir/ay2) t = o 
XY Y 

In Eqs. (A.1), N.' and M.'represent the internal s t r e s s  s ta te  produced during the 

buckling process ,  or m o r e  precisely,  the variation in the initial s t r e s s  s ta te  at  

buckling. 

expands f ree ly  to  its prebuckled shape. 

1 1 

In deriving the equilibrium equations (A.l) ,  it is assumed that the shell 
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Kinematic Relations 

The kinematic relations connecting the middle surface direct  s t ra ins  €1, € 2 ,  

€ 3 ,  and the curvature changes xl, xZ, ~ 3 ,  with the displacement components u, v ,  

and w are:  

El  = a u l a x  t w / ~ x  

Y 
c 2  = a v i a y  t w~~ 

c 3  = i /2 [au /ay  t av/ax l  

x 1  = a2wlaxz  

x 2  = a2w/ay2 

x3 = a2w/axay 

Constitutive Laws 

Since the plasticity effects for  the stability problem a r e  based on a deform- 

ation o r  total  plasticity theory,  which implies a unique relationship between an 

effective s t r e s s  and an effective s t ra in ,  we may write the elast ic  and plastic l a w s  

fo r  a plane s t r e s s  system applicable for  thin shell  studies,  in the following manner:  

- 
[ E x  t V €  ] E 

0- =- 
Y (1 -7 )  Y 

( A .  3 )  

In Eqs. (A .3 ) ,  if the shel l  is e las t ic  E = E ,  the Young's modulus and 7 = v the elastic 

Poisson  ratio;  i f  the shell  i s  plastic,  v : 112 and E = E the secant modulus given by 
- 

S 

with 

and 

112 a = [a: t a 2  - a Lr t 3a 2 1  
e Y X Y  XY 

(A. 4) 
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We can now wri te  the relationship between the middle surface s t ra in  components 

e x. and the s t r e s s  resultants N.., M;, using the fact  that N l ,  M;, a r e  re la ted t o  
i ' 1 1 

u. through 
1 

1 

where z is the normal  coordinate to  the x, y surface and the integration i s  ca r r i ed  

through the thickness of the shell. Then the s t r e s s  resultants and the s t r a in  com- 

ponents a r e  related through the following: 

In Eq. ( A .  ), each [m.] is a 3 x 3 suh-matrix 
1 

E x 

E 
Y 

E 
XY 

X X  

x Y  

XY 

The sub-matrices [m3] and [m4] 

show the coupling between the membrane and bending t e r m s  and a r e  of importance 

when the stiffening system is asymmetric.  In general ,  bending about one axis w i l l  

produce a membrane resultant about an orthogonal axis. The importance of the 

coupling depends upon the loading system and c r o s s  sectional geometry. 

seldom is it required to have a full 3 x3 matrix for  Em,] o r  [m4]. 

a n  analysis  of the physical behavior and the geometry,  only one t e r m  may  be signi- 

ficant; as for  example,  i n  deep stiffeners i t  may  be the height of the c. g. of the 

s t i f fener  f rom the shel l  skin. 

Very 

Depending upon 

In symmetric stiffening sys tems,  [m3] = [m4] = 0. 

The submatr ices  [ml] and [mZ] together with rigidity t e r m s  B. and D. reflect  

the generalization of the s t ress -s t ra in  relations,  Eq. (A. 6 ) ,  to  include orthotropic 

effects .  

or thotropic  and isotropic cases .  

1 1 

In the discussion of [ml] and [mZ] i t  is convenient to differentiate between the 
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Elastic Isotropic Case: 

demands that[m3] = [  m 4 ]  = 0. 

F o r  an elastic isotropic curved plate element symmetry 

Fur thermore ,  [ ml] = -[mZ]; and [ml] is given by: 

[m13 = 

The rigidity t e r m s  a r e  given by: 

1 P I 2  0 

P21 1 0 

0 0 (1-P33 1 

Et  B. =- 
1 (1-v2) 

Et3 D. = 
1 1 2 ( l - v 2 )  

Elast ic  Orthotropic Case: 

of e las t ic  symmetry in the plane of the plate and these coincide with the coordinate 

axes.  

An elastic orthotropic plate element possesses  two axes 

If the stiffening system for  the plate is symmetr ic  then [m3] = [m4] = 0. AS 

for Eml] and [mz] however, we recognize that, since the re  a r e  two axes of e las t ic  

symmetry ,  Poisson 's  ra t io  can be different in each direction. Fur thermore ,  the 

Poisson  rat io  for  membrane behavior is  generally different f rom that of flexure. 

Hence, in  general ,  [ml] # - [m2] and each is given by 

(A .  9)  

In Eqs.  (A.  8) and (A.  9 ) ,  the p i j ,  vij t e rms  re fer  to  the Poisson rat ios  for the 

membrane  and flexural ca ses ,  respectively, and the corresponding rigidities a r e  

given by: 

Bl = EtlI(1-P l2P21) 

B, = Et,/(l-p l2P21) 

B3 = Et3/(1-P3$) 

D1 = EIi /bi  (1-~12~21) 

DZ = EI2/b2 ( 1 - V i 2 v 2 1 )  

D 3 = EI3/b3 (1-v& 

( A .  10) 
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I '  
Thus, it becomes c lear  that in  the case of an elastic orthotropic plate there  

a r e  seven elast ic  constants to deal with, namely the s ix  Poisson ratios and E the 

Young's modulus. Only experimental evidence can determine how markedly the 

Poisson rat io  variation is in each direction and how much it influences the pre-  

diction of the resul ts .  Taylor4, and Gerard and Becker,  6 y  7 '  have shown that 

in most  of the problems of stiffened cylinders it is not necessary  to  consider the 

different Poisson rat ios  and have found considerable success  in  theoretical  co r re l -  

ation of experimental  data by taking all of the vij, p i j  as equal to ze ro  (Refs. 15 and 

16). 
Hence, it is convenient, as well a s  meaningful to take in Eqs. (A.  8) and (A.  9) 

- 
p12 = p 21 = U  33 = v12 = v21 = v33 = v the elastic Poisson ratio. Thus,  it follows that 

Eti with 

B. = - 
( 1 - 7 )  

for  the elast ic  orthotropic case.  

- 
1 V 0 

1 0 - 
V 

0 0 (1-V) 

and 
E Ii 

D. = 
1 bi ( l -7)  

( A .  11) 

P las t ic  Isotropic Case: Here v = 112 and the plasticity coefficients A. appear.  
1j 

(A. 12) 

where 
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I .  

Also, 

Bi = 4Est /3  Di = Est3/9 

Plast ic  Orthotropic Case: In a plastic orthotropic plate with symmetr ical  stiffening 

[m3] = [m4] = 0 and [ml] = -[mZ]; [ml]  has the same form a s  in the isotropic case  

[Eq. (A. 12)]. The rigidity t e r m s  a r e  defined a s  follows: 

D. = 4Esti/3bi 
1 

B. = 4Esti/3 
1 

Governing Stability Equations 

By utilizing the kinematic relations Eq. (A. 2), and the s t r e s s - s t r a in  relations,  

Eqs. (A. 6 ) ,  it i s  possible to write the equilibrium equations, Eqs. (A. l ) ,  in t e r m s  

of the displacement components, u, v, w. 

a cylinder (with Rx = 0 and R 

tropic.  

a r e  not applied in combination with the normal loads (N,, Ny). 

A13 = A23 = 0. 
[mz] = - [ m J  and 

The following equations a r e  writ ten for 

= R) which i s  elastic o r  plastic,  isotropic or  ortho- 

XY 

Assuming a symmetr ical  stiffening system, we find [m3] = [m4] = 0,  

Y 
It is assumed that only in  the plastic case,  the external torsion loads ( N  ) 

In this case ,  

A1 1 

&z 
0 

- 
Eti 

B. =- 
1 (1-7; 

- 
EIi 

I). = 
1 bi( l -T)  

- 
v A12 

A 2 2  

0 

Elastic: 

P las t ic  : 

(A. 13) 

- 
E = E  

- - 
v = 112; E = Es 

With these ,  the following a r e  t--e equilibrium equations in t e r m s  of the displace- 

ment  components u, v and w, after manipulating in the manner following Donnell. 

(A. 14) 
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I .  

(A. 15) 

(A. 16) 

where VA is a differential operator given by 

! 

a4 - v  - + A22 (?)% (A.17) 
v4 B = ax4 -t2[( ( 1 - q  A33 2 Bl a y  

These equations together with the boundary conditions on u, v,  w specify the com- 

plete solution of the problem. However, usually only conditions on w a r e  used for 

the simply supported or  clamped case;  

Simply supported: 

Clamped: w(0 ,  L) = 0 aw/ax  ( 0 ,  L) = o 

w ( 0 ,  L) = 0 g W / a x 2  ( 0 ,  L) = o 

This  implies  that cer ta in  constraints a re  placed on the u,  v displacements. 
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Appendix 2 

Solution for Compressive and Bending General Instability 

Introduction 

F r o m  Eq. (A. 16) of Appendix 1 we have the governing equation for the stability 

In this appendix we consider of a cylinder including plastic and orthotropic effects. 

the case  of an elast ic  orthotropic cylinder with symmetr ic  stiffening, subject to 

compressive and bending loads. 

Governing Equation 

F o r  an elastic cylinder, al l  the plasticity coefficients A. become equal to  
1j 

1 o r  0 and 

axial both the N and N t e r m s  disappear in Eq. (A. 16). If we replace the x, y 

coordinates by an x, 0 coordinate system, where 0 represents  the circumferential  

direction and x the axial direction, we have the following form for the governing 

e quat i o n: 

= v the elast ic  Poisson ratio. Fur thermore ,  the external load being 

XY Y 

- 
vhr& t $[,/2 (DltD2)/D, t (1-v) D2/D1 1 a x2a 02 

t D2/D1 ( l /R4)  - a4w t- N -} a Z w  a e 4  D, a x z  

t ( B J R ~ D ~ )  ( 1 - ~ 2 )  a4w/ax4 = o (B. 1) 

where 

If 

pure bending moment,  then N = N 

compressive force. 

considered separately.  

the axial force t e r m  i s  due to  compressive force R = N and i f  R i s  due to a 
C 

cos 8 where N b b is the maximum bending axial 

Since the treatment in these cases  is different they a r e  best  

Compressive Stability 

A very  general  asymmetr ic  solution for Eq. (B. 1) satisfying simple support 

conditions on w is obtainable by taking for w,  
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where n > 0. - 

mnx w = A sin - cos ne m L 

By t reat ing m .as  a continuous variable and setting 

p = -  n L  
m TR 

we obtain f rom Eq. (B. 1) utilizing Eq. (B. 2)  the following expression for  N : 
C 

Eq. (B. 3)  m a y  be fur ther  t ransformed to 

where: 

a = BlD2/B2Dl 

1 6 = (B2/Bls2) with s B2/B3 - v / 2  (Bl/B2)/Bl  

L4 B2 and 1222 = - 
R2D, 

F r o m  Eq. (B. 4) we obtain axisymmetric and asymmetric solutions by letting p 
be equal to  ze ro  o r  otherwise.  
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. h i symmet r i c  Solution: with p = 0 ,  from Eq. (B. 4) we have 

k = m2 t - 12 2 2  ( l -v2)  - 1 
C ‘IT m2 

Treating m as  a continuous parameter ,  this leads to the minimum solution 

(B. 7) 1/ 2 kc = .702Z (1-v2) 

Asymmetric Solutions: F r o m  the general  asymmetr ic  form of Eq. (B. 4)  we can 

obtain two types of minima depending upon whether m is continuous o r  discrete .  

The lowest of the d iscre te  solutions, of course,  corresponds to m=l. Hence the 

asymmetr ic  solutions a r e  divided into m-continuous and m=l cases .  

-Asymmetric m-continuous Solution: 

in  Eq. (B. 4) we can minimize k with respect to  m2 and p2. 
requirement  with respect  to m2 and p2 we have the following two equations: 

By treating rn and f!~ as continuous parameters  

Using the stationariness 
C 

Solving Eqs. (B. 8) and (B. 9)  we obtain for p, the following: 

= 6 / 2  (CY-y)  CY)^ t (4/6)(1-y)(a-y) 

Making use  of Eqs. (B. 8) and (B. 9) in  Eq. (B. 4) we finally obtain: 

1/2 u kc = . 7022 (1-v’) 

where 

Asymmetr ic  m=l Solution: In Eq. (B .4 )  i f  we let m=l  then 

(B. 10) 

(B. 11) 

(B. 12) 

(B. 13) 
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On minimizing this expression with respect to p we have: 

and 

12(1-v2) z2/lr4 = l t 2 ( P / 6 ) t F 4 / 6  2(ytCYF2)(lt$)-1 [ I 
(B. 14) 

(B. 15) 

F r o m  these three  possible modes,  namely the axisymmetr ic ,  asymmetr ic  

m-continuous and asymmetr ic  m=1, and the corresponding expressions for  k C f rom 

Eqs. (B. 7 ) ,  (B. 11) and (B. 14) we can determine the governing mode for given 

combinations of the orthotropic parameters  CY, y, and 6. 

6 is the leas t  cr i t ical  and for  the most  practical  cylinders it is very  close to unity. 

Of these pa rame te r s ,  

Fig. 1 shows a y-CY chart  in which the governing modes a r e  shown for  zones 

Further  details  regarding the three  corresponding to  cer ta in  CY, y combinations. 

solutions a r e  to be found in  Ref. 16. 

Wavelengths in h i -  and Asymmetric Cases 

In the solutions corresponding to Eqs. (B. 7) and (B. 11) where we have taken 

m as continuous and minimized the expressions with respect  to m, the physical 

meaning of m la rge  o r  continuous is that the wavelength X in  the axial direction 

which is given by L / m  is small and can be t reated as a continuous parameter .  

the m=l case ,  obviously, the wavelength is equal to  the ent i re  cylinder length. 

In 

F r o m  the above minimized expressions it is possible to wri te  down the 

following relationships for  the axial wavelengths ( X  ) in  both the axi and asymmetr ic  

modes . 
X 

Thus,  f rom Eq. (B. 6) 

F r o m  Eq. (B. 8) we have 

However, by equating Eqs. (B. 8) and (B. 9) we find 

1 t 2 y P / 6  t CY734/6 = u2 (1 t 2 p / s  tF4/6)  

(B. 16) 

(B. 17) 

(B. 18) 
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Hence, 
x4 -1 

(B. 19) 

F r o m  an examination of Eqs. (B. 19) and (B. 16) we see  that the wavelength 

axisymmetr ic  case  is obtained by setting p = 0 in Eq. (B. 19) since this a lso leads to 

u = 1. 

X fo r  

Hence, Eq. (B. 19) represents  a general  expression for the wavelength in axi- 

and asymmetr ic  cases .  

the following general  expression for  N 

inuous cases:  

Utilizing Eq. (B. 19) with (B. 7) and (B. l l) we can obtain 

valid for both axi- and asymmetr ic  m-cont- 
C 

(B. 20) 

In Eq. (B. 20) U - < 1, X2 - > 1 the equality holding for axisymmetr ic  case.  

Bending Stability 

Referr ing back to  Eq. (B. 1) we take = N cos 6 where N is the maximum b b 
M 

b = F  
axial compressive loading due to an external bending moment M with N 

then we have the following governing equation for  the bending stability: 

a 4w t-- Nb cos 8 t (B2/R2DI) (1-u2) 7 = 0 
D, ax2 ax (B. 21) 

Since Eq. (B. 21) has no direct  solution satisfying the simple support condition on 

w, the Galerkin method is used t o  obtain the stability cri terion. 

In  Ref. 17, it has been shown that, based upon the resu l t s  of isotropic buckle 

pat tern,  the deflection function w can be represented by the following approximation. 
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w = A s in  % cos ~e L 

= o  

where N is a fixed number g rea t e r  than 1. It is shown in Ref. 17 that N is very  much 

l a rge r  than unity. 

Following the Galerkin procedure the stability equation is obtained by setting 

COS N0 dQdx = 0 m m  L(w)  sin - L 

Upon carrying out the indicated operation in Eq. (B. 23) we obtain as a resul t  

(B. 23) 

to: 

(B. 24) 

(B. 25) 

In Eq. (€3. 25) e, y, 6 a r e  the same orthotropic parameters  as those defined i n  

Eq. (B. 5). 

Since the function S(N) = a / 2 N  
s in  a /2N (1- 1/4N2) very  rapidly approaches 1 as N 

inc reases  in value and since N is a fairly large number, Eq. (B. 24) finally reduces 

(B. 26) 

Eq. (B.26), for  the bending case ,  is seen to  be identical with that of the compressive 

case k f rom Eq. (B.4) with the important difference that while Q could become zero  

leading to  a n  axisymmetr ic  mode in the compressive case ,  p *  for the bending case  

can neve r  equal zero.  

C 

However, it may approach close to  ze ro  when t e r m s  like 
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p$ and p*4 may be neglected. 

multiplying pd and p**, we can minimize the resulting expression with respect  

to mz and obtain a limiting solution as  

Hence in  Eq. (B. 26), upon neglecting t e r m s  

11 2 k = .702Z (1-v') b (B. 27) 

which is identical to the axisymmetric solution for the compressive case.  

As for  asymmetr ic  solutions, the identity of forms for  bending and compressive 

cases  shows that we obtain the same s t r e s s  resu l t s  as in the compressive case.  

ever ,  we have already seen  that p* is never equal to zero  which implies that  there  is 

no t rue  axisymmetr ic  mode in the case of a bending problem. 

How- 

Concluding Remarks 

The behavior in  the bending stability problem is generally governed by the 

fact that  the external s t r e s s  distribution changes f rom a compressive one at the 

top to a tensi le  one at the bottom half of a c r o s s  section of the cylinder. 

cludes any buckling effect on the tension side. 

for the bending problem has t o  be deflection f ree  on the tension side. 

general  type of asymmetr ic  mode with ripples running all the way around the c i r -  

cumference,  which is perfectly suitable in a compressive stability problem, becomes 

impossible in  the bending case.  

symmetr ic  about a ver t ical  axis and whose maximum width is a small fraction of 

IT which is signified by T/N, where N is usually a la rge  number. 

pat tern presents  a widely differing picture in  the bending case  as compared to the 

compress ive  case.  

This pre-  

Hence, a compatible buckle pattern 

Hence, a 

A suitable pattern seems  to have a single lobe 

Thus the buckling 

However, when we turn  to the s t r e s s  picture we find that for  both the isotropic 

cyl inders  and for the orthotropic cylinders k /k is essentially equal to  unity. b c  
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Appendix 3 

Tes t  Data on Stiffened Cylinders Under Compression 

Introduction 

Table 3.1 l i s t s  the groups of experimental data analyzed according to the 

orthotropic theory presented in Appendices 1 and 2. 

to  the references l is ted and include the range of orthotropic parameters  pertinent 

to Fig. 1 on which they a r e  displayed. Groups A, By and C have previously been 

analyzed using the theory of Appendix 2 and the individual reference sources  can 

be consulted fo r  details  of data reduction. 

present  repor t  using the theory of Appendix 2. 

of data reduction a r e  discussed herein. 

The data a r e  grouped according 

Groups D, E, and F were  analyzed in  the 

Consequently, the overall  methods 

The total  number of tes t  points represent  63 orthotropic cylinders plus 

seve ra l  isotropic cylinders which were used as control points to indicate the quality 

of the cylinder manufacturing and testing procedures.  

f rom 6 to  120 in. with roughly 70 percent of 8 in. diameter.  

group of data a r e  individually displayed in F i g s .  3.1 through 3. 5; Groups E and F 

represent  single test points and a r e  listed in  Table 3. 1. 

Cylinder diameters  ranged 

Test  data for each 

2 0  Reduction of GrouD D Data 

Calculations for  the theoretical  buckling under axial compressive loading 

of five longitudinally stiffened cylinders indicated by the data points in  F ig .  3. 5 

followed methods presented in  Refs. 1 1  and 16. 

orthotropic pa rame te r s ,  Q, y, and 6 which character ize  the buckling behavior. 

Both y and 6 a r e  a function of the effective shear  thickness of the cylinder wall 

which was taken equal to the average of the sum of the cylinder c r o s s  sectional 

area p e r  unit width i n  directions along and normal  to  the longerons (Ref. 16). 
The parameter  y is a l so  a function of the cylinder wall unit tors ional  rigidity which 

was  determined using the reference below. * 

These methods utilize three 

The range of values for  the Q, y, 6 parameters  for the t e s t  specimens are 

p resen ted in  Table 3.1. 

wall  geometry in  the buckle region and nominal values for  the cylinder length and 

d iameter  as given in  Ref. 20. 

%Becker ,  H.,  and Gera rd ,  G. ,  "Measurement of Torsional Rigidity of Stiffened 
P l a t e s , "  NASA TN D-2007, July 1963. 

Values for individual specimens were based on cylinder 

All cylinders had values for CY and y indicating 
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I 

buckling in  the asymmetr ic  m=l. 0 mode. 

w a s  determined using Ref. 16 and assuming v=O. 

The corresponding theoret ical  s t r e s s  

The tes t  specimens of Ref. 20 were instrumented with s t ra in  gages attached 

t o  the inside and outside skin as well a s  gages at st iffener locations. Test  data 

show that the average s t r e s s  i n  both the skin and stiffener was essentially equal 

up to failure.  

Fig. 3.5 correspond to the maximum average s t r e s s  in  the cylinder skin at speci-  

men  failure as indicated by the s t ra in  gage data. 

Values for the experimental s t r e s s  used in  the preparation of 

Tes t  data for orthotropic cylinders using a waffle configuration a r e  a lso 

presented in  Ref. 20. F o r  these specimens, general  instability fa i lure  w a s  pro- 

ceeded by local buckling of the skin between stiffeners. 

buckling, the test resu l t s  do not allow a valid evaluation of the general  instability 

orthotropic theory and a r e  not included. 

in Ref. 20, however, a r e  shown in the figure. 

Because of this local 

Results for  two isotropic cylinders tes ted 

2 1  Reduction of Grour, E Data 

A s  shown in Ref. 17, the theoretical  elastic 

cylinder under e i ther  bending o r  axial compression 

buckling s t r e s s  of orthotropic 

loading are equal; hence, t e s t s  

on the general  instability of cylinders i n  bending (such as Ref. 21) may  be used 

to  check axial compression orthotropic theory. 

Values for  the orthotropic parameters  CY, y and 6 for  the t ru s s -co re  sand- 

In the calculation of these para-  wich cylinder of Ref. 2 1  a r e  given in Table 3 .  1. 

m e t e r s ,  the shear  thickness for the sandwich w a s  calculated as descr ibed previously, 

and tors ional  st iffness parameters  were determined using the reference below.* 

One observes  that both a and y have values grea te r  than one which is indicative of 

buckling in the axisymmetr ic  mode (Ref. 11). 

As shown in Table I the experimental/theoretical buckling s t r e s s  ra t io  for  

the specimen w a s  0. 67. The theoretical buckling s t r e s s  was calculated as 86.8 
ks i  based on average c r o s s  sectional geometry and using equations presented in  

Ref. 11 reduced for  v=O. The experimental peak failure s t r e s s  was given in  Ref. 21 

as 58 ksi and was based on the maximum value for the average s t r a in  for  the sand- 

wich c r o s s  section as determined from s t ra in  measurements .  

*Libove, C . ,  and Hubka, R . ,  I'Elastic Constants for  Corrugated-Core Sandwich 
Plates," NACA TN 2289, February 1951. 
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Reduction of Group F Data 

The buckling strength of honeycomb sandwich cylinders under bending loading 

was evaluated in  Ref. 2 2 ,  and the resul ts  for one cylinder which failed elastically 

is given in  Table I, (uexp/ux = . 78). F o r  this specimen cu=y=6=1.0 ( see  Table 3 .  l), 

and ei ther  the axisymmetr ic  o r  asymmetric buckle mode governs (Ref. 11). 

for  these parameters  were  based on calculations for  the effective shear  thickness 

as descr ibed previously and tors ional  st iffness relationships given in  the reference 

below.* The theoret ical  buckling s t r e s s  (65 ksi)  was determined using nominal 

values for  cylinder geometry and theoretical  resul ts  presented in Ref. 11 reduced 

for  v = O .  The experimental  buckling s t ress  (50.4 ksi)  was determined from s t ra in  

gage data presented in  Ref. 22 and corresponds to  the average sandwich face s t r e s s  

a t  the extreme f ibre  f rom the cylinder neutral axis. 

Values 

"Cheng, S. , "Torsion of Sandwich Panels of Trapezoidal, Tr iangular ,  and Rectang- 
u l a r  C r o s s  Sections,  Fo res t  Products Laboratory Rept. No. 1874, June 1960. 
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