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Summary

” _
LM g
The historical development and current status of compressive orthotropic
stability theory is reviewed and a systematic development of the linear theory is
presented. Available test data on orthotropically stiffened cylinders are synthe-
sized and correlated in terms of this theory. The correlation was used to estab-

lish regions in which linear orthotropic theory appears to be valid in terms of
currently available test data.

Within the restriction that the minimum weight analysis be confined to those
regions where linear stability theory is valid, a generalized presentation for
symmetrically stiffened orthotropic cylinders under compression was developed.
Similarities and differences in the minimum weight behavior of stiffened cylindrical
shells and flat transversely stiffened wide columns were investigated in some
detail to provide a satisfactory physical picture. The concluding results provide
a comparative evaluation of various forms of stiffening systems for cylindrical

shells under compression.
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Symbols

rib area

membrane axial rigidity in longitudinal direction
membrane axial rigidity in circumferential direction
membrane shear rigidity (average)

structural efficiency coefficient

cylinder diameter

bending ridigity in longitudinal direction

bending rigidity in circumferential direction
twisting rigidity (average)

elastic modulus

rib height

B,/ B,

cylinder buckling coefficient

spring constant

length

support spacing

number of half-wavelengths in longit'udinal direction, also exponent
number of half-wavelengths in circumferential direction, also exponent
axial load per unit width

cylinder radius

effective thickness

cylinder wall thickness

area of sheet and stiffener per unit width in a plane perpendicular to the

circumferential direction

area of sheet and stiffener per unit width in a plane perpendicular to the

longitudinal direction
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Symbols (Continued)

asymmetric m-continuous buckling

lateral deflection

stiffener width

wavelength parameter

curvature parameter

B,D,/B,D,

stiffened wide column efficiency coefficient
wavelength parameters

orthotropic parameters

half wavelength in axial direction
Poisson's ratio

solidity

experimental buckling stress

optimum stress for stiffened wide columns

theoretical buckling stress

iv
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MINIMUM WEIGHT DESIGN OF SYMMETRICALLY
STIFFENED ORTHOTROPIC CYLINDERS
UNDER AXIAL COMPRESSION

1. Introduction

Minimum weight analysis of stiffened cylindrical shells under compressive
loading is of fundamental interest in the structural design of launch and space
vehicles. Unfortunately, cylindrical shells under compression are probably the
least reliable of all structural components that can be designed because of discrep-
ancies which may exist between linear stability theory and the scatter of experimental
data. This situation is poorest for isotropic cylinders which exhibit an unusually
high sensitivity to imperfections; it can improve dramatically depending upon the
type of stiffening system employed, however.

Thus, in contrast to the general acceptance of minimum weight analyses
of flat plate elements which are based upon a satisfactory correlation of local and
general instability theory with experiments, existing minimum weight analyses of
cylindrical shells under compression are somewhat suspect and should be used
with some caution. This conclusion is based upon the fairly comprehensive review
of available minimum weight literature contained in Ref. 1.

The basic requirement for acceptance of minimum weight theory is clearly
satisfactory agreement between experiments and theory for the basic instability
modes. Fortunately, recent progress of a theoretical and experimental nature on
stiffened cylindrical shells under compression has permitted a clearer understanding
of the conditions under which satisfactory agreement between theory and experiment
can be achieved. Thus, for the purpose of defining the current status of theory and
test data in this area, a comprehensive review of linear orthotropically stiffened
shell theory is presented herein and available test data are evaluated consistently in
terms of this theory. A synthesis of these test data are presented in Section 2 which
provides a tentative indication of the regions in which linear orthotropic stability
theory is satisfactory.

In Section 3, the basic approach and assumptions involved in constructing a
general theory for the minimum weight design of symmetrically stiffened orthotropic

cylinders under axial compression is presented. Similarities and differences
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between the minimum weight design of flat, transversely supported, longitudinally
stiffened panels and the frame supported, cylindrical shell counterparts are investi-
gated in some detail in order to arrive at a satisfactory physical picture of the
minimum weight behavior of cylindrical shells.

Fundamental design synthesis results concerning the relative efficiencies
of various types of minimum weight stiffening systems for cylindrical shells are
presented in Section 4. These results include only those regions where linear
orthotropic theory and test data correlate although the theory is sufficiently general
to accommeodate changes in the regions as they become better defined. Major con-
clusions drawn from a comparative evaluation of these results are presented in

Section 5.
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2. Assessment of Linear Orthotropic Stability Theory

Historical Review of Theoretical Developments

The historical development of the general compressive instability theory
of stiffened cylindrical shells is marked by two periods of activity; the early and
mid 1930's which marked the introduction of semimonocoque metal construction
in aircraft and a current one, roughly a decade old, motivated by the design of
launch and space vehicles.

The early theoretical investigations were performed by Fliigge, 2 Dschou3
and Taylor. 4 Fligge derived a set of three linear coupled equilibrium equations
analogous to those used by investigators of isotropic cylinders at that time. Dschou
solved these equations for stiffened circular cylinders under axial compression.
Taylor utilized the Donnell assumptions for cylindrical shells and succeeded in
deriving a single uncoupled eighth order equilibrium equation for orthotropic shells
which reduced to Donnell's equation for an isotropic cylinder., The Taylor-Donnell
type of equation has generally been used in all subsequent work.

The fact that this theory was used for comparison with experimental data
with little success5 in 1943, as well as almost a complete preoccupation with
isotropic cylinders under compression since that time has produced the unfortunate
result that the early work languished. Bec1<cr6’ 7 and Becker and Gerard8 reviewed
this situation in the late 1950's and concluded that orthotropic general instability
theory for compressed cylinders had never been confronted previously with test
data in which local instabilities had not preceeded failure. On the basis of more
modern test data on external pressure and torsion as well as one recent test in
compression, they concluded that linear orthotropic theory may indeed be useful.
In addition, the theoretical work contained in Refs. 7 and 8 provided explicit elastic
general instability solutions in the moderate length range for circumferentially and
axially stiffened cylinders under a variety of loadings as well as results for the
flat plate and short cylinder regions.

While all the preceding t};eory was concerned with the linear buckling load,
Thielerrlann9 developed a non-linear post-buckling deflection theory for orthotropic
shells under a variety of loadings. The results obtained for ring and longitudinally
stiffened cylinders under compression are particularly helpful in providing an

understanding of the conditions where linear theory may be satisfactory.



Gerardlo extended the previous work to derive a general set of equations
for plastic general instability of geometrically orthotropic shells. These equations
were used to derive plasticity reduction factors for a variety of loadings. The
compressive loading case is of particular interest since the buckling loads for the
axisymmetric and asymmetric modes are generally different when the cylinder is
plastic or orthotropically elastic. In contrast, for the isotropic elastic cylinder,
both modes result in the same buckling load. The influence of the buckling modes
was studied in some detail in Ref. 11 and served to indicate the importance of
utilizing the appropriate buckling mode for the compressive loading case.

Returning to post-buckling theory, Almroth12 has utilized Thielemann's
theory in combination with more extended post-buckling deflection functions to
obtain a wide range of theoretical results for the minimum post-buckling load.

In an important extension of linear buckling theory, DeLuzio et al”~ have presented
a theory which includes prebuckling deformations of the orthotropic shell as well
as the effects of stiffener location upon the buckling load. More recently, Block

et al14 have contributed a theory for stiffener asymmetry.

A development of linear stability theory has been the recent discoverylS’ 16
that a previously unsuspected asymmetric buckling mode may govern for certain
types of longitudinally stiffened cylinders. This mode is in good agreement with

available test data and will be discussed in greater detail subsequently.

Linear Orthotropic Stability Theory

Having set an historical frame of reference, it is important now to review
the essential assumptions and features of current linear orthotropic stability theory
and to provide results that can be checked against test data. For this purpose,
Appendix 1 contains a rather general formulation of orthotropic shell theory for
symmetrical stiffening systems and its systematic reduction in terms of various
constitutive relationships. Appendix 2 presents specific solutions for the com-
pression and bending cases. In the interests of providing the essential theoretical
results for correlation with available test data, the following summary of the
compression case is presented here,

In Ref. 11, a solution for the general instability of orthotropic cylinders

under axial compression was obtained on the basis that for moderate length cylinders,

the number of buckles along the axis of the cylinder m, was large enough that it
could be treated as a continuous parameter along with g, the ratio of the buckle

length in the axial direction to that in the circumferential direction. The buckling




coefficient kx’ was treated as a function of two variables m and £ for obtaining a
minimum value. From the requirements of stationariness, the following quadratic
equation was obtained for f? in terms of the orthotropicity parameters y, a, and &

and exclusive of Zx’ the curvature parameter.

podf () 2131 2
where:  « = B,D,/B,D,
v = [(Ds/D)(1-v) + (v/2)(1+D,/Dy)] [(By/ Bs)(1+v) - (v/2)(1+Bo/ By)] ™
§ =B, [Bl{(B2/B3)(1+v)—(v/Z)(1+BZ/Bl)}Z]-1
B = B, [B,{(B./Bs)(1+v) - (v/2)(1+BZ/Bl)}]"lp?-
8 = nL/mnR

The corresponding buckling coefficient solution for moderate length ortho-

tropic cylinders was given as

K =0.702 1-v)%z U (2)
x X
where: k_ = N_L?/n?D,
X x
z = B,L*/12 R?D,
U = 1; axisymmetric mode

[(eB?+v)/(B%+ 1)]1/2; asymmetric mode

As a consequence of Eq. (1), it was found for certain combinations of y, «
and § that p was imaginary. Hence, for these y, @ and & combinations the moderate
length asymmetric solution or more precisely m-continuous solution, did not apply.
However, since the axisymmetric solution was independent of y, o, & and B, it
was assumed that the axisymmetric solution prevailed in the regions where the
moderate length solution failed. These conclusions, based upon the quadratic
equation, are shown in Fig. 1. Zones II and V represent the combinations of y
and a for which the quadratic equation yields imaginary values for . This figure

also indicates that the axisymmetric solution governs in the region bounded by
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Y>1, Zones I and VI, since the asymmetric m-continuous solution yields higher
values in these zones.

During the course of the investigation reported in Ref. 15, it was found that
in Zones I and II, an asymmetric solution with real § values can be obtained that is
lower than the axisymmetric solution provided m were not treated as a continuous
variable but were assigned the value m=1. By utilizing the nomenclature associated
with Eq. (1), we can rewrite Eq. (11) of Ref. 11 with m=1 to obtain the following

solution corresponding to the m=1 asymmetric mode:

k_=1+2y (B*/8) + a(p*/6)

+ (1222 (1-v?) /) [1+2(B2/6) + FY6) (3)

By differentiating kX with respect to B2 where now m=l, we obtain for the

stationariness of kx’ the following expression for ZX
— - 2 — = -1
[12(1-v?) /w22 = [1+2(B2/8) +(B*/8)]" (v+aB?) (1457 (4)

Finally, by substituting Eq. (4) into (3), we obtain the stationary value,

k= 1+2y(F?/6) + a(B*/6)
d[1+2(F2/6) + (B*/8)] (y+aP?) (1452 " (5)

Egs. (4) and (5) constitute the basic equations for the asymmetric m=1
solution. For a cylinder with specified a, y, 6; kx and the corresponding Zx can
be found by assuming values of B and solving Eqs. (4) and (5). Typical results
obtained for Zones I and II are presented in Ref. 15 and are compared with the
axisymmetric solution and also the asymmetric solution with m-continuous. It
was observed that the m=1 solution always results in lower values of kX in Zone
II. Typical results obtained in Zone I indicate that for y > 1, the asymmetric
m=1 solution is above the axisymmetric solution and then falls below at a value of
Zx that depends upon y. Thus, either solution can apply in this region. Fig. 1

illustrates and summarizes the buckling modes which apply in each zone.




Correlation of Theory and Test Data

As indicated in Refs. 8 and 16, correlation of test data on cylinders designed
specifically to check orthotropic theory is excellent for hydrostatic pressure and
torsion loadings. Similarly, test data contained in Refs. 16, 17 and 18 on specially
designed and fabricated stiffened test cylinders under axial compression and also
bending are in suprisingly good agreement with the predictions of linear orthotropic
general stability theory.

The range of orthotropic variables covered by the test data of Refs. 16, 17
and 18 are shown as Groups A and B respectively in Fig. 1. Also shown as Group
C are test results on filament wound cylinders19 analyzed in Ref. 15. It can be
observed that it is desirable to cover a far broader range of variables than repre-
sented by these three groups to assess the complete accuracy of the orthotropic
theory. Consequently, a search was initiated for test cylinders which could be
considered to be in the orthotropic category by virtue of their stiffening arrange~
ment and the fact that no other buckling mode preceded generaAl instability. These
other sources of test data.zo-22 shown as Groups D, E, and F in Fig. 1 are summar-
ized in Appendix 3. Summary plots of all the test data from all sources are also
given in Appendix 3 together with a tabulation of pertinent orthotropic parameters.

The test data from all sources displayed in Fig. 1 were analyzed and then
segregated as to their percent deviation from linear orthotropic theory. The
synthesis of these data are shown in Fig, 2. It is quite clear from all the data that
there is a singularity at the point (1, 1) representing isotropic cylinder behavior
and the region of greatest deviation as well as scatter of test results. As one moves
radially away from this point (with the possible exception of the third quadrant) the
situation improves uniformly and acceptable agreement between linear orthotropic
theory and experiment is obtained at the arbitrary distance indicated in Fig. 2.

An examination of buckle wavelengths in this enclosed region can provide
some theoretical clues as to the apparent unusual sensitivity to imperfections.

Eqg. (1) indicates that for a=y, the 45 degree line in Fig. 2 represents a singularity
for which the wavelength ratio B can theoretically assume any value between 0 and
infinity. Also, beyond (1, 1), the axisymmetric mode governs as indicated in Fig. 1,
so that our discussion is basically confined to the line segment Ol+.

It is also well known that a structure is sensitive only to small imperfections
whose wavelengths correspond to those in which the structure would buckle if it were
perfect. If we now hypothesize that a cylindrical shell structure contains some random

distribution of small imperfection wavelengths, then it is quite apparent that in the



‘uolssaxdwod 1apun sIIPUITAD

otdorjoyjro jo A3171qels aalssardwiod uo ejep 1593 S[qRIIRAR JO SIsayjukg 7 2an3dig
D
22 2l 02 Ol 80 90 v0 20 O
T T T T T T T T _ T T T ! T Y Y T 0
o o o
HEEE2°0
%0/-01%06 - 0O f st 04 |
%05-01 %08 - ¥ #2970
%0£-01 %0/ - O 0 P
%0/ : @
A109y [ 109017 Yim AouDA349510] . 18°
Rl iﬁ;&l.' o'l
o :
i i
S |
. ) H -

SUON28443dUIT O} dAIJISUBS
uoibay 4o Aiopunog arnjojua;

0¢

2l

olrs



neighborhood of the line segment Ol+, any imperfection wavelength will buckle the
shell into that form initially and prematurely. For the cylindrical shell under com-
pression, the imperfection determines the initial buckle form because the perfect
waveform is itself indeterminate. This situation which appears to be unique for a
cylindrical shell under compression with orthotropic parameters corresponding to
the line segment Ol+ is the reverse of that normally found for other types of struc-
tural elements and loadings. As one moves away from this critical line segment,

B becomes determinate and the unusual sensitivity to imperfections begins to dis~
appear. This trend is particularly evident for the longitudinally stiffened cylinder
data of Groups A and D.

It is obviously highly desirable that further experimental data be obtained
and analyzed to better define the region sensitive to initial imperfections. In the
meantime, it is proposed to use the region defined in Fig. 2 on the basis of current
test data for this purpose. It is believed that outside the cross hatched region linear
orthotropic theory can be used with reasonable confidence to predict the general
instability of compressed, symmetrically stiffened orthotropic cylinders. In the
subsequent minimum weight analyses we shall return to Fig. 2 to be sure that
results are obtained which will be outside of the initial imperfection region and
which thus can achieve an acceptable degree of reliability consistent with minimum

weight,

10



3. Minimum Weight Design Approach

Having established in Section 2 that there are indeed regions of orthotropic
parameters where good agreement exists between linear general instability theory
and test data on stiffened cylindrical shells, we turn now to our basic approach to
the minimum weight design of such shells. In doing so, it is important to establish
a basic physical picture of the behavior of minimum weight shells since there may
be important differences in the interrelationship of the pertinent stability modes as
the curvature of the cylindrical shell is varied. For this purpose now, we shall
review minimum weight design aspects of a transversely supported wide column
under compression and then proceed to generalize these results to a cylindrical

shell.

Transversely Supported Flat Wide Column

The minimum weight analysis of transversely supported flat wide columns
is contained in Ref. 23 for flexural types of ribs and in Ref. 24 for deflectional
types. In either case, the essential results are the same and we shall extract
here the essential physical features of the buckling modes and their relation to
the minimum weight design of such structures. Fig. 3 indicates the general con-
figuration of the structure assumed as well as other assumptions concerning boundary
conditions, relative geometries and the idealization of the lateral stiffeners.

The behavior of the structural arrangement shown in Fig. 3 is fairly well
understood and can be summarized as shown in Fig. 4. The main feature is the
existence of a critical value of the spring constant parameter KL:/DI which divides
the regions of general instability (buckling over supports) and local instability
(buckling between supports). Discrete element theory provides the correct trans-
ition between the two modes. Smeared element or orthotropic theory agree in the
region indicated; orthotropic theory essentially ignores the existence of the local
instability mode when extended beyond the region of agreement, unless the arbitrary
cut-off indicated in Fig. 4 is utilized.

In conducting a minimum weight investigation of the configuration shown in
Fig. 3 it is convenient to use the concept of solidity as a non-dimensional measure

of weight. In terms of the parameters of Fig. 3,

Z=t/ht A_/hL, (6)

11
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The corresponding parameters presented in Fig. 4 are represented by

D, = Et? /12 (1-v?)
(7)
K = "*Eh2A /w*
Tr (e}

Typical results obtained by use of Fig. 4 and Eqgs. (6) and (7) are displayed
in Fig. 5 where relative solidity is shown as a function of the normalized stiffness
parameter, (KL:/D,)/41TZ. Based upon discrete element theory, a minimum weight
design is obtained at a point considerably below the critical value of KL%/DI at
which an effectively rigid supporting structure is first achieved. However, the
solidity at the critical point where the general instability and local instability
stresses are equal is only slightly higher than at the minimum. Also shown in
Fig. 5 is the fact that orthotropic theory results in a minimum based upon the
arbitrary cut-off shown in Fig. 4. Although this is a false minimum in a physical
sense, it does provide a convenient and satisfactory approximation for the discrete-

element case.

Ring Supported Cylinder

Having reviewed the essential features of the flat panel, we turn now to the
ring supported cylinder shown in Fig. 3 which in the limit becomes the flat panel.

It is assumed that general instability of cylinders under compression occurs in the
axisymmetric mode as would be expected from Fig. 1.

The introduction of curvature immediately introduces circumferential
membrane stiffnesses as an important additional feature. For the cylinder, the
skin contributes its membrane stiffness as a foundation modulus or smeared set
of springs in parallel with the smeared or discrete deflectional spring system
contributed by the ring area parameter Ar/th' This is obviously different than
the flat case where the skin contributed no support stiffness and the transverse
supports contributed flexural stiffness only. Since the relative contribution of
skin and supporting structure depends upon the curvature, R, we shall examine a
relatively simple model in which the solidity is defined in the same manner for the
flat panel and cylinder,

In order to simplify the analysis without compromising the results obtained,
it is convenient to consider all spring systems as smeared in order that orthotropic
theory can be used throughout. The results obtained from this analysis will indicate
that the final conclusions are obtained in the region where orthotropic theory is

indeed valid.

14
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The governing equation for axisymmetric general instability of the ring

supported cylinder shown in Fig. 3 is given by

34w 2w B, K
D1—7+N—+<—+——w=0 (8)
ox ox? R?2 Lt

where: B, = E(t_+ Ar/Lt)/(l-vz)

and D, and K are defined in Eq. (7).

Assuming the following solution for Eq. (8), w=a sin (mx/\), and minimizing

the resulting expression with respect to A\, we obtain

N = ZTTZDl/)\Z (9)

and

t A 4 2 -1
(/my* = (DlRZ/Eh)["hi * R (“ ﬂ\iZR )] (o)

From Eqgs. (9) and (10) and the definition of D, given by Eq. (7), we find that the

required skin thickness tS for a given loading N is given by

3 4 2 4
YT % (5, A} Yo T30 NY(Ye @y
b/ [T, \% " hL_/ v*n2R2|" w2 \Eh/\'h

Similarly, by eliminating D, in Eq. (10)
2q. 4 2
Y= X 2l )1 (\/h) = Ar 15, A (T (n) T (12)
- Eh h th m\h hL, h R

For given values of (N/Eh) and (Wo/h) we can obtain from Eqgs. (11) and (12)

the variation of X with the support area parameter Ar/th for different values of
R/h as shown in Fig. 6. It can be observed from Fig. 6 that when the panel is flat
or only slightly curved, that there is 2 marked reduction in wavelength as the
support area is increased. On the other hand, for R/h < 100 which is the region

appropriate to practical stiffened cylinders, the wavelength is always finite and is

16
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determined primarily by the skin membrane stiffness with little influence exerted
by the supporting structure area.

We shall now consider the influence of this wavelength behavior upon the
weight or solidity of the overall structure. For this purpose, we now define the
solidity of the cylinder in the following special manner in order to be consistent

with that for the flat panel

N T x (surface area) (13)
~ (rib height) x (surface area)

Sincet includes the skin plus smeared supporting structure area, Eq. (13) reduces
to Eq. (6) for both cases.

From Eq. (11), we can obtain ts/h as a function of Ar/th for given values
of N/Eh, and Wo/h' Fig. 7 plots Z with respect to Ar/th for various R/h values.
It is interesting to note that for cylinders up to R/h = 100, the Z curve rises with
ring area and is the lowest for zero ring area indicating that the skin membrane
stiffness is of primary importance. This is in contrast with flat plate behavior
where a certain rib area provides for minimum weight, hence, an optimum design.
For very high R/h values the influence of curvature is small, the skin stiffness
plays a secondary role while the rib area is of primary importance in obtaining
a minimum weight design.

The significance of curvature is thus demonstrated rather directly by the
use of the orthotropic theory. We see that in the case of a flat plate the supporting
system prevents buckling as a wide column and hence helps to raise the buckling
stress, The weight of the supporting system is thus compensated by an increase
in the buckling stress and a weight optimization can be achieved. For the cylinder
of sufficient curvature, the skin assumes the role of the supporting system in the
flat panel to prevent it from buckling as a column; the addition of rings adds to the
weight without changing the buckling characteristics significantly.

Thus, in contrast to the flat case, minimum weight is not achieved upon
simultaneous buckling in the general instability and local instability modes. If
sufficient ring area is added to force this situation, a heavier design is always

obtained than that corresponding to the perfect cylinder with zero ring area.

18
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4. Minimum Weight Design of Orthotropic

Cylinders Under Compression

The material contained in Sections 2 and 3 essentially provides a frame of
reference and physical background for the assumptions to be utilized in the following
minimum weight analysis. Because of the restrictions necessarily imposed upon
the analysis in the interests of obtaining a relatively simple and direct solution, it
should be recognized that while the results obtained represent minimum weight
designs they may not constitute absolute minimums. Further research effort is
warranted in this area when the details of the boundary shown in Fig. 2 are further
clarified.

Because of the present uncertainites concerning the range of applicability of
linear orthotropic theory, the minimum weight analysis is presented in sufficiently
general form that changes in the boundary shown in Fig. 2 can be readily corrected
for. Furthermore, although the analysis is conducted for compressive loading, it
is apparent from the results presented in Appendix 2 that the analysis is equally

valid for bending.

Assumptions

Orthotropic theory for symmetrical stiffening systems is employed herein
in the interest of simplifying a rather complex problem. The effect of stiffener
asymmetry for the geometric proportions associated with minimum weight designs
is presently unknown. Thus, the results obtained herein for symmetrical systems
can provide useful data for investigating the significance of asymmetry upon mini-
mum weight designs.

As a result of the information developed in Section 3, it is assumed for this
analysis that the stiffened cylindrical shells have sufficient curvature (R/h < 100)
that the skin membrane stiffness dominates in establishing the general instability
buckle weavlength. Under these circumstances, the wavelength (\) will exceed
the frame spacing (Lt) and there will be no condition imposed upon the minimum
weight design that ) :Lt as is usual for the flat panel. The appropriate value of \

or its equivalent function thus becomes the parameter that minimizes the weight.

The minimum weight analysis is conducted in a quite general form and includes

the following cylindrical shell forms: perfect isotropic, ring stiffened, longitudinally

and ring stiffened. For the first two cases, only the general instability buckling
mode is involved. For the longitudinally stiffened case, the general instability

mode corresponds to Euler buckling of the stiffened wide columns in the wavelength
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\. Since the stiffened wide columns used in this analysis are of optimum design,
local instabilities of any of the stiffener elements will occur simultaneously at
general instability,

For specified design conditions of a compressive loading (N) and buckle half
wavelength (\) corresponding to the simply supported léngth, the optimum stress
of a wide column or a longitudinally stiffened wide column can be expressed in the

following form. 23-25

v, = apEl'm(Nmm ‘ (14)

In Eq. (14), the panel efficiency coefficient (ap) represents the optimum geometric
arrangement of stiffening elements in the cross section, and the exponent (m) depends
upon the number of possible buckling modes. Both @y and m have specific values for
a given cross sectional shape.

Appropriate values of . and m obtained from Refs. 23-25 are presented in
Table 1 for unstiffened wide columns as well as those with common Z and Y longi-
tudinal stiffeners and improved Z and Y stiffeners recently developed in Ref. 25.

In addition, the value of (ts/tl)o is given for subsequent use and represents the
optimum skin thickness to smeared thickness in the longitudinal direction. In

Fig. 8, the relative efficiencies of the various forms of stiffened wide columns are

shown.,
Table 1
Characteristics of Optimum Monolithic Wide Columns

Type “p m (ts/tl)o
unstiffened 1.22 2/3 1. 000
stiffened - common Z 1.01 1/2 0.444

- common Y 1.21 1/2 0. 344

- improved Z 0.984 4/9 0. 305

-~ improved Y 1.265 4/9 0.241
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Minimum Weight Analysis

In addition to the optimum wide column stress relation given by Eq. (14), we
have available the compressive general instability stress relationship for orthotropic
cylinders. Because of the data contained in Fig. 2, we shall restrict our analysis
to the "'safe' regions of Zones III to VI which encompasses the axisymmetric and
asymmetric m-continuous modes but excludes the asymmetric m=1 mode, As
shown in Appendix 2, the buckling load for the two modes to be considered can be

written in the following form from Eq. (2).

1/2

N = (4/d)(1-v1)%(B,0) !/ %U (15)

For the axisymmetric case U=l while for the asymmetric case U<l. Hence, in
general, U< L
In both Eq. (14) and (15), the loading (N) is related to the applied stress (o-a)

through the usual relation

U'a = N/tl (16)

In Eqgs. (15) and (16), the subscripts 1, 2 refer to the axial and circumferential
directions, respectively. Furthermore, it is convenient to define the following

geometrical parameters
ka = B,/ B, ak = D,/D, (17)

The solidity of the cylindrical shell is now defined in the usual manner as
the volume of structural material relative to the enclosed volume. For a cylinder

of diameter (d)
> =4 (t,/d + Ar/Ltd) (18)
However,

Ay Bty 4y
Ta "7 " T kel (19)
Substituting Eq. (19) into (18)

t
_§_ =g (tk_ - t /) (20)
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For an optimum wide column, (ts/tl) is fixed as indicated in Table 1. If k_ is treated
as a parameter that minimizes the solidity, then the essential step at this point is

to replace the quantity (t,/d) by the loading (N) and diameter {(d) which are the speci-
fied quantities for the design problem.

By use of Egs. (14) and (16), we can immediately obtain
t 1 (N A\
o= = == kA
d azp ( Ed ) <d ) (21)

The wavelength \ is, of course, unknown at this point and it is necessary to utilize
the general instability relation, Eq. (15) and its associated \ expression to solve
Eq. (21). From Appendix 2, the following convenient expression has been developed,

Eq. (B.21)

\ = (ZwZUZXZDllN)I/Z (22)

where X is a function of E For our purposes here, it is sufficient that we know that

X > 1 for the asymmetric m-continuous mode and X =1 for the axisymmetric mode.
We now turn to Eq. (15) and by substituting B, = kaEtl/(l-vZ) as defined by

Eq. (17), and the relation given by Eq. (22) for D,, we obtain

t; w2 X2 NV a\z
1T K (ﬁ)(i) (23)
a
By equating Eqs. (21) and (23)
<x>2+m X2 N\ ™
Al = = _— 24
d 8 k&, “ (Ed) (24)

By utilizing Eq. (24) in (23) or (21) to eliminate \/d
m/2+m 2/2+m (2-m)/2+m

t zx? 1 N
RO IE
a P

Finally, by substituting Eq. (25) for t;/d in Eq. (20), the following general

expression is obtained for the solidity

s -m/2+m 2/2+m
)(ka) F(k,) (26)

)

m/2+m 2/2+m (2-m)}/2+m ¢
= [mx? 1 N |
T \"38 'a—p- jor:)
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In the following, we will discuss results for various specific types of stiffening
systems whose characteristics are given in Table 1.

It is quite evident that for a given stiffener of optimum design, arp, m and tS/tl
are fixed and the loading parameter N/Ed is prescribed. Thus, the two remaining
factors in Eq. (26) are ka which we shall consider in the following and the parameter
X where for the axisymmetric mode X =1 and for the asymmetric m-cont. mode
X > 1. From the characteristics of X it is evident that buckling in the axisymmetric
mode will always result in a solidity less than or equal to that corresponding to the
asymmetric m-cont, case. Thus, minimum weight designs should conform to

Zones V and VI of Fig. 1,

Minimum Weight Results - Isotropic Cylinders

Having established the general solidity relation for orthotropic cylinders,
we can now proceed to obtain specific results. The first case to be considered is
the perfect isotropic cylinder of moderate length. Here the axisymmetric and
asymmetric modes are equal, X=1, and by definition for an isotropic cylinder,
ka = ts/tl = 1. Furthermore, from Table l for an unstiffened wide column, m=2/3
and ap =1.22. Thus, Eq. (26) reduces to the following for this case

/2

> = 3.63 (N/Fd)’ (27)

The analysis of cylindrical shells containing imperfections has been presented
previously in Ref. 26. In terms of the solidity defined herein

/5

T =1.40 (N/Ed)2 (28)

Results also have been obtained previously for honeycomb sandwich cylinders which
constitute another form of isotropic shell. For a sandwich with face density to core

density of 50, the following optimum solidity is obtained from Ref. 27

> =1.02 (N/Ed)llz (29)

Eqs. (28) and (29) will provide useful references in the subsequent comparative

efficiency analysis.,
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Minimum Weight Results - Stiffened Cylinders

The simplest form of stiffened cylinder consists of the addition of rings or
frames to an isotropic skin. Such cylinders will always buckle in the axisymmetric
mode and therefore X =1. Furthermore, with m=2/3, @ = 1. 22 and ts/’t1 =1 for

this case from Table 1, Eq. (26) reduces to

= =3.63 (k )°/* (v/EQ)/? (30)

Since ka> 1 for this case, it is apparent that the addition of rings only serves to

decrease the efficiency of a perfect cylinder, Eq. (27). The situation is somewhat

different when imperfect cylinders which behave according to Eq. (28) are considered.
If we replace the isotropic skin of the previous example with an optimum

longitudinally stiffened skin and furthermore restrict the design to the efficient

axisyrhmetric Zones V and VI, then X=1in Eq. (26). For a given optimum

panel design which fixes ap, m and tS/tl, it would appear that an optimum value

of ka can be established by performing the operation BZ/aka = Oon Eq. (26).
(ka)o = (l—tsltl) m/f2 (31)

Since ka > ts/tl, Eq. (31) generally results in a false optimum for the values
given in Table 1 and the cut-off condition ka > ts/t1 must be used instead.

In general, Eq. (26) can be replaced by
n
> = C(N/Ed) (32)

where C is a function of m, ozp, ts/tl and the value chosen for ka’ Appropriate
values of n and C for ka = ts/t1 which implies zero ring area or longitudinally
stiffening only are given in Table 2 together with a summary of such values for
the other cases.

Unfortunately, the results obtained when ka = ts /t; or zero ring area nec-
essarily place these designs in the region of # < 1 and y > 1 in Fig. 2. The latter
condition results from our assumption of axisymmetric buckling, X=1. Such

designs are potentially unreliable since they probably fall in the shaded zone of

Fig. 2. Since we desire to restrict the minimum weight analysis to those regions
where linear orthotropic stability is valid, we must now consider the addition of
sufficient ring area to the longitudinally stiffened cylinder to achieve axisymmetric

buckling in Zones V and VI.
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From Fig. 2, it would appear that a satisfactory criterion to achieve axisym-
metric buckling would be to require that « > 1. 8. For this purpose, it is convenient
to assume that ka =1 and by virtue of Eq. (17), then D,/D, > 1.8. The latter can
generally be satisfied through use of the ring stiffening configuration shown in Fig. 3
since there is no particular restriction on h for the rings. By letting ka =1in
Eq. (26), the C values given in Table 2 for ring stiffened cylinders were obtained
in conjunction with the specific values given in Table 1. It can be observed that
there is some weight penalty as compared to the longitudinally stiffening only case.
A summary plot of the data contained in Table 2 is presented in Fig. 9. For the
longitudinally stiffened cylinders, only the ka =1 results are shown, to conform to

the spirit of this analysis.

Table 2

Characteristics of Optimum Orthotropic Cylinders

Type n C

a. isotropic
perfect 1/2 3.63
imperfect 2/5 1.40
sandwich 1/2 1.02

b. longitudinally stiffened

common Z 3/5 4.91%
common Y 3/5 4,44%
improved Z 7/11 5.22%
improved Y 7/11 4.45%
c. ring stiffened

isotropic skin 1/2 3.63 (ka)3/4
common Z 3/5 6.48%*
common Y 3/5 5.93%#
improved Z 7/11 7. 14%*
improved Y 7/11 6. 0] %%

* corresponds to zero ring area, ka = ts/t1

¥¥*corresponds to k_ =1
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5. Conclusions

Within the restrictions imposed upon the minimum weight analysis that the
designs must conform to those regions where linear orthotropic stability theory
and available experimental data are in good agreement, the results obtained herein
and summarized in Fig. 9 are reviewed to establish their significance. The following

conclusions appear to emerge from the analysis:

1. As compared to a perfect isotropic cylinder, the use of ring
stiffening alone results in a decrease in efficiency. Practically,
however, ring stiffening tends to make an imperfect isotropic cylinder
behave as a perfect cylinder by suppressing its sensitivity to imper-
fections. In this respect, ring stiffening can result in a substantial
improvement in efficiency particularly at lower values of the loading

index.

2. 1In direct contrast with (1) above, combinations of ring and longi-
tudinal stiffeners can result in significant improvements in efficiency

as compared to perfect isotropic cylinders.

3. For the launch vehicle maximum (N/Ed) range, common stiffening
shapes are not directly competitive with perfect honeycomb sandwich
cylinders. At lower values of N/Ed, the situation becomes consider-
ably more competitive. Furthermore, the improved stiffener shapes
are competitive or superior to honeycomb sandwich as well as offering

significant weight saving potential as compared to the common shapes.

4, Because of the similarity in behavior of perfect honeycomb sand-
wich cylinders and perfect isotropic cylinders, use of rings only on the
sandwich cylinder cannot improve its efficiency. Rings conceivably

could improve the performance of imperfect sandwich cylinders.
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Additional Symbols for Appendices 1 and 2

Aij plasticity coefficients

bi stiffener spacing

E generalized elastic modulus
Es secant modulus

Et tangent modulus

Ii moment of inertia

M bending moment per unit width
[mi] 3 x 3 submatrix

N integer

P pressure

u, v, w displacements

a plasticity factor

p¥* wavelength parameter for bending
€ effective strain

p‘ij membrane Poisson's ratio
vij flexural Poisson's ratio

v generalized Poisson's ratio
T effective stress

Xij curvatures

Subscripts

x, Y, 0 coordinates

b bending

c compression
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Appendix 1

A General Linear Orthotropic Theory for
Stability of Thin Shells

Introduction

Our objective here is to present a systematic development of a general elastic
and plastic linear theory for the stability of orthotropic shells. The equilibrium and
the kinematic equations which govern the shell stability are formulated in the simplest
possible terms in the spirit of Donnell's assumptions for shallow curved panels.

The constitutive equations include the orthotropic, elastic and plastic effects. The

following development is based on Ref. 10,

Equilibrium Equations

A generic point on middle surface of the thin shell is described by an ortho-
gonal curvilinear coordinate system (x,y) which follows the lines of curvature of
the surface at the point. It is further assumed that the principal radii of curvature

R_, R_ at the point are different but constant. If N , N_, N__ represent a system
Xy x y Xy

of external loads per unit width, then the equilibrium of internal stress state with
these constant external loads during the buckling process is satisfied by the following

equations:

BNX /9% + any/ay =0

AN’ /ox + 8N7/ay =0
Xy Y
{A.1)
192M 7 /92 2ng 7 257 2 - -
[92M[/0x? + 202M [0xdy +92M(/9y?] +NJ/R + NI/R

2 2 2 2 =
+ Nx(a w/9x )+2ny(3 w/9xDy) + Ny(azw/ay Y+p =0

In Egs. (A.l), Ni' and Mi' represent the internal stress state produced during the
buckling process, or more precisely, the variation in the initial stress state at
buckling. In deriving the equilibrium equations (A.l), it is assumed that the shell

expands freely to its prebuckled shape.
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Kinematic Relations

The kinematic relations connecting the middle surface direct strains ¢;, €,

€3, and the curvature changes X;, Xz, Xs,» with the displacement components u, v,

and w are:

e =08u/dx + w/R_, Xy = 9%w/0x?
ez:av/8y+W/RY Xz = 8*w/dy? (A.2)
€3 = 1/2[8u/dy + 8v/8x] X3 = 02w /0xdy

Constitutive Laws

Since the plasticity effects for the stability problem are based on a deform-
ation or total plasticity theory, which implies a unique relationship between an
effective stress and an effective strain, we may write the elastic and plastic laws

for a plane stress system applicable for thin shell studies, in the following manner:

— E |’ + >
“x Ty L TV
f: _
vy = i=n leg + 7 ey) (A.3)
_E_ o _ E_ aw)e
“)_) Xy

o
Xy 1+v Xy (l-v

In Egs. (A.3), if the shell is elastic E = E, the Young's modulus and v = v the elastic

Poisson ratio; if the shell is plastic, v =1/2 and E = Es the secant modulus given by

E = __e
s €
e
with
c =[62 +c% -o_0o_+ 3¢ 2]1/2 (A.9)
e xy
and
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We can now write the relationship between the middle surface strain components

€ X and the stress resultants Ni', Mi" using the fact that Ni’, Mi" are related to

o, through

NS =f0'. dz M. =[cr. zdz (A.5)
i i i i

where z is the normal coordinate to the x, y surface and the integration is carried
through the thickness of the shell. Then the stress resultants and the strain com-

ponents are related through the following:

NX/BI €x
N‘/B i

Y/ 2 [ml] [ma] Ey
ny/B3 Xy

= |- (A. 6)

M_ /D, X5
My’/ D, [ms | [my] Xy
MXY/D3 i X xy

In Eq. (A.6), each [mi] is a 3x3 sub-matrix. The sub-matrices [m3] and [my]
show the coupling between the membrane and bending terms and are of importance
when the stiffening system is asymmetric. In general, bending about one axis will
produce a membrane resultant about an orthogonal axis. The importance of the
coupling depends upon the loading system and cross sectional geometry. Very
seldom is it required to have a full 3 x3 matrix for [ms] or [m4]. Depending upon
an analysis of the physical behavior and the geometry, only one term may be signi-
ficant; as for example, in deep stiffeners it may be the height of the c. g. of the
stiffener from the shell skin. In symmetric stiffening systems, [m3] = [my4] = 0.

The submatrices [m;] and [m,] together with rigidity terms B, and D, reflect
the generalization of the stress-strain relations, Eq. (A.6), to include orthotropic
effects. In the discussion of [m;] and [m,] it is convenient to differentiate between the

orthotropic and isotropic cases.
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Elastic Isotropic Case: For an elastic isotropic curved plate element symmetry

demands that[ms]=[m4] = 0. Furthermore, [ m,;] = -[m;]; and [m,] is given by:
1 v 0
[m,] = v 1 0 (A.7)
0 (1-v)

The rigidity terms are given by:

Et Et3
B. = D, = —
i (1-v?) i 12 (1-v?)

Elastic Orthotropic Case: An elastic orthotropic plate element possesses two axes

of elastic symmetry in the plane of the plate and these coincide with the coordinate
axes.

If the stiffening system for the plate is symmetric then [m3] = [my4] = 0. As
for [m;] and [m;] however, we recognize that, since there are two axes of elastic
symmetry, Poisson's ratio can be different in each direction. Furthermore, the
Poisson ratio for membrane behavior is generally different from that of flexure.

Hence, in general, [m,] # - [m,] and each is given by

1 Kz 0

[m,] = K21 1 0 (A. 8)
0 0 (1-p33)
1 Via 0

[m,] = Vai 1 0 (A.9)
0 0 (1-v33)

In Eqs. (A. 8) and (A.9), the “ij’ vij terms refer to the Poisson ratios for the

membrane and flexural cases, respectively, and the corresponding rigidities are

given by:
Bl = Etl/(l-“ 12“’ 21) Dl = EI]/bl (1"V12V21)
Bz = Etz/(l‘u lzu 21) Dz = EIZ/bZ (l-vlzvzl) (A' 10)
Bs = Et3/(1-ps%) D;= El;/b;s (1-v3%)
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Thus, it becomes clear that in the case of an elastic orthotropic plate there

are seven elastic constants to deal with, namely the six Poisson ratios and E the

Young's modulus. Only experimental evidence can determine how markedly the

Poisson ratio variation is in each direction and how much it influences the pre-

diction of the results. Taylor4, and Gerard and Becker,

6,7,8

’ 7 have shown that

in most of the problems of stiffened cylinders it is not necessary to consider the

different Poisson ratios and have found considerable success in theoretical correl-

ation of experimental data by taking all of the Vij’ p‘ij as equal to zero (Refs.

16).

15 and

Hence, it is convenient, as well as meaningful to take in Egs. (A.8) and (A. 9)

Miz = 2y =33 = vy, = vy = v33 = v the elastic Poisson ratio.

[my] = -[m,] =

with Eti

B. —
ta-w)

<|
o = <f

and

for the elastic orthotropic case.

0
0
(1-v)
EI.
D :.___1._
i bi(l-VZ)

Thus, it follows that

(A.11)

Plastic Isotropic Case: Here v = 1/2 and the plasticity coefficients Aij appear.

[m;] = - [m,]
.All
[m,] = 1/2 Ay,
-1/2 A3
with
Ajy=1-ac?/4
Aypy=1l-acl2/4
- 2
Az =1-a ny
where

1/2 AIZ
Az
~1/2 Ay

[ms] = [my] = 0
-1/2 Ay

‘1/2 A23
1/2 A33

A21 = ]. - a U'ny/Z

= Ay =1l-a O'X(J'xy

A =1 -a U-YD-XY

@ =(3/¢%)(1 - E/E )
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Also,

— _ 3
Bi = 4E5t/3 Di = Est /9

Plastic Orthotropic Case: In a plastic orthotropic plate with symmetrical stiffening

[m3] = [mg] = 0 and [m,] = -[m;]; [m,] has the same form as in the isotropic case

[Eq. (A.12)]. The rigidity terms are defined as follows:

B. = 4E t./3 D. = 4E t./3b,
i si i si i

Governing Stability Equations

By utilizing the kinematic relations Eq. (A.2), and the stress-strain relations,
Eqgs. (A.6), it is possible to write the equilibrium equations, Eqgs. (A.1l), in terms
of the displacement components, u, v, w. The following equations are written for
a cylinder (with Rx = 0 and Ry = R) which is elastic or plastic, isotropic or ortho-
tropic. It is assumed that only in the plastic case, the external torsion loads (ny)
are not applied in combination with the normal loads (Nx, Ny)' In this case,
Aj3 = A,y = 0. Assuming a symmetrical stiffening system, we find [ms] = [m,] = 0,

[m,] = - [m,] and

A v A, 0
[m,] = VA, A 0 (A.13)
0 0 (1-v) A a3
Et, _ _
B, =—2 Elastic: v = v; E=E
1 (1-v9)
-E-Ii Plastic: v=1/2; E = ES
i~ bi(l-?)

With these, the following are the equilibrium equations in terms of the displace-

ment components u, v and w, after manipulating in the manner following Donnell.

— A 33w A, [B,\ 03w
AVA) - -y 212 O W A2 (D2
BY "V R 530 "R (B1> 930y (A.14)
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Vi v = - 2 — ==
B R | (1-v) A33Bs  (l-v) ApB; 2

Anlg,B, V¢ ALB, UAIZ] 3w Ay (Bz>a3w

8x%y R \B,/dy’
(A.15)
2 [A11A22-32A§2 (_B_z)__vA ] Pw Ay (E) P w
RL (1-v) As3; \B3/ 2 "] ax?ay R \B,/9y?
Fw v (Dy+D,) — D3 H*w D,\ 04w
4 . - =3 ] WV
VB {AI —a_}(T + 2 Z‘ A]z Dl + (1 V) A33 Dl 8X28Y2+ AZ E —a?—
(A.16)
N N N 4
x #w Xy 92w y #Pw B, =22 9%w
+ _D-l_ BXZ +2 Dl axay + —’: ayl + RZDI (AIIAZZ v AIZ)W =0

where V]; is a differential operator given by

ot 3t Zl:(Aquz';zAlzz(Bz) _ Ay (B1+Bz)] 94 . (Bz> 94 (A.17)
= —t -V S 22\ &= .

B oax* (1-7) Ajs B 2 B, 9x29y*? B, /ay*
These equations together with the boundary conditions on u, v, w specify the com-
plete solution of the problem. However, usually only conditions on w are used for

the simply supported or clamped case;

"

Simply supported: wi(0, L) =0 Fw/ox? (0, L)y=0

Clamped: w(0, L)=0 dw/fdx (0, L) =0

1l

This implies that certain constraints are placed on the u, v displacements.
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Appendix 2

Solution for Compressive and Bending General Instability

Introduction

From Eq. (A.16) of Appendix ! we have the governing equation for the stability
of a cylinder including plastic and orthotropic effects. In this appendix we consider
the case of an elastic orthotropic cylinder with symmetric stiffening, subject to

compressive and bending loads.

Governing Equation

For an elastic cylinder, all the plasticity coefficients Aij become equal to
lor 0 and v = v the elastic Poisson ratio. Furthermore, the external load being
axial both the NXY and NY terms disappear in Eq. {A.16). If we replace the x, y
coordinates by an x, 0 coordinate system, where 0 represents the circumferential

direction and x the axial direction, we have the following form for the governing

equation:
VE{%* ﬁ?[”"’- (Dy#+D;)/ Dy + (1-v) DZ/DI} O+ D/, (/R 2 T gi—‘j}
+ (B,/R2D,) (1-v?) 3%w/8x* = 0 (B.1)
where

vg =9%/ox* + (Z/Rz)[(l-v)BZ/Bg, - (v/Z)(B1+B2)/B1] 84/0x2902 + (B,/B,)(1/R*) #*/906*

If N the axial force term is due to compressive force N = NC and if N is due to a
pure bending moment, then N = Nb cos 6 where Nb is the maximum bending axial
compressive force. Since the treatment in these cases is different they are best

considered separately.

Compressive Stability

A very general asymmetric solution for Eq. (B.1) satisfying simple support

conditions on w is obtainable by taking for w,
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_ . mmx
w = Am sin ——— cos nd (B. 2)
where n > 0.

By treating m.as a continuous variable and setting

we obtain from Eq. (B.1) utilizing Eq. (B.2) the following expression for NC:

m?2n?

N
_D_IC_ = 1z [1 + z{v/z (D1+Dz)/D1+(1-v)D2/D1}[32 + D,/D, p*

(B. 3)
+ [(BZ/RZDI)(I-VZ)] Lz/ﬂzrnz[1+ 2{(1+v) B;/Bs -v/2 (B1+Bz)/BI}ﬁZ + _gz ;34} -1
1

Eq. (B. 3) may be further transformed to

_ e 7-l
S ap‘*] 122%(1-v2) [ 2B . B 1
k_=m [1+ = .+ 5 = 1+ 5= ¢ & > (B. 4)

where:

R
|

= BIDZ/ Ble

<
1]

[v/Z (D+D,) + (1-v) Dz] {Dl [(1+v) B,/Bs-v/2 (B1+Bz)/Bl]}-1

§ =(B,/B;s?) with s :[(1+v) B,/B; - v/2 (BI/BZ)/BI]

B
=2 _ 2 2
P -(B,s)B (B. 5)
N L2
k = —<
c Tl'le
4
and 1272 = B2
R2D,

From Eq. (B.4) we obtain axisymmetric and asymmetric solutions by letting

be equal to zero or otherwise,
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Axisymmetric Solution: with p = 0, from Eq. (B.4) we have

1272 1
kc =me + — (1-v2) 5 (B. 6)

Treating m as a continuous parameter, this leads to the minimum solution

1/2

k_ = .702Z (1-v?) (B.7)

Asymmetric Solutions: From the general asymmetric form of Eq. (B.4) we can

obtain two types of minima depending upon whether m is continuous or discrete.

The lowest of the discrete solutions, of course, corresponds to m=1. Hence the

asymmetric solutions are divided into m-continuous and m=1 cases.

| Asymmetric m-continuous Solution: By treating m and f as continuous parameters

in Eq. (B.4) we can minimize kc with respect to m? and p2. Using the stationariness

' requirement with respect to m? and p? we have the following two equations:

|
12 (1-v3) Zz2/«* (1/m?) = [1+2\/F/6 + (a/5)64][1+ 2p%/6 +'|§4/5] (B. 8)
12 (1-v?) (Z2/7%) (1/m?) = [HZE‘/S + 34/6]2 (v +aB?)/(1+F?) (B.9)

Solving Eqs. (B.8) and (B.9) we obtain for ‘52’ the following:

B = 8/2 (a-y) [(l-a)_t{(l-a)z+(4/6)(1-Y)(a-v)}1/2] (B.10)

Making use of Eqs. (B.8) and (B. 9) in Eq. (B.4) we finally obtain:

k_ = .7022 (1-v3)/% (B.11)
where
U= [(v+aﬁ7)/(1+ﬁ7)] 1z (B.12)
Asymmetric m=1 Solution: In Eq. (B.4) if we let m=l then
-1
— | 12Z22(1-v? —
k_ :[1+2(y/5)62+(a/6)s4]+ -—%-l’—)[u(z/a)ﬁz ' (34/6] (B.13)

43




On minimizing this expression with respect to p? we have:

k, = [1+2Y (EZ/&)m(B‘/&)] +[1+ 2(62/6)+§4/5] (y+aE)(1+EZ)‘1 (B.14)

and

-1 (B. 15)

12 (1-v?) 22/ «% = [1 + 2(p?/ 8) +B4/5]2 (y+aB?) (1+R?)
From these three possible modes, namely the axisymmetric, asymmetric
m-continuous and asymmetric m=1, and the corresponding expressions for kc from
Eqgs. (B.7), (B.11) and (B. 14) we can determine the governing mode for given
combinations of the orthotropic parameters a, y, and §. Of these parameters,
5 is the least critical and for the most practical cylinders it is very close to unity.
Fig. 1 shows a y-a chart in which the governing modes are shown for zones
corresponding to certain @, y combinations. Further details regarding the three

solutions are to be found in Ref, 16.

Wavelengths in Axi- and Asymmetric Cases

In the solutions corresponding to Egs. (B.7) and (B.11) where we have taken
m as continuous and minimized the expressions with respect to m, the physical
meaning of m large or continuous is that the wavelength \ in the axial direction
which is given by L/m is small and can be treated as a continuous parameter. In
the m=1 case, obviously, the wavelength is equal to the entire cylinder length.

From the above minimized expressions it is possible to write down the
following relationships for the axial wavelengths ()\x) in both the axi and asymmetric
modes,

Thus, from Eq. (B.6)

Ao _2 -1
ni’“ - [222(1131" )] (B. 16)
From Eq. (B. 8) we have
A B,(1-v3) 1"} -
asy - [_L__] (1 + 2yP2/6 +af*/8) (1 + 2B2/6 + B*/5) (B.17)
m R?D,

However, by equating Eqs. (B.8) and (B. 9) we find

1+2yPB2/6 + aPt/6 = U (1+2P%/6 + B*/6) (B. 18)
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Hence,

4
)‘ asy _ [Bz(l'vz)
nt L R2D,

-1
] U (1+ 2596 + B*/5)° (B.19)

From an examination of Eqs. (B.19) and (B. 16) we see that the wavelength \ for
axisymmetric case is obtained by setting =0 in Eq. (B.19) since this also leads to
U=1.

Hence, Eq. (B.19) represents a general expression for the wavelength in axi-
and asymmetric cases. Utilizing Eq. (B.19) with (B.7) and (B.11) we can obtain
the following general expression for N valid for both axi- and asymmetric m-cont-

inuous cases:

N a2
_C -2 uy (B.20)
m2D,

where X2 = (1+2B2/6 + B*/6)

In Eq. (B.20) U < 1, X?> 1 the equality holding for axisymmetric case.

Bending Stability

Referring back to Eq. (B.1) we take N = Nb cos 0 where Nb is the maximum

axial compressive loading due to an external bending moment M with Nb =M
2

then we have the following governing equation for the bending stability: ™
+ [O'w 2 -1 9 tw 4 0w

Liw) = V4 [g* 2/R? (v/2)(D +D) + (1-v)Ds Dl} somg:t (Da/DW/RY ==

N
b #w 2 2y 9w _
+W5;'COSQ +(B2/RD1)(1 V)W—O (B.21)

Since Eq. (B. 21) has no direct solution satisfying the simple support condition on
w, the Galerkin method is used to obtain the stability criterion.
In Ref. 17, it has been shown that, based upon the results of isotropic buckle

pattern, the deflection function w can be represented by the following approximation.
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i
it
.,
1

€
"

A sin =X cos N @ |e|< w/2n

(B. 22)
=0 le|> /2N

where N is a fixed number greater than 1. It is shown in Ref. 17 that N is very much

larger than unity.

Following the Galerkin procedure the stability equation is obtained by setting

L w/2N
/ f L{w) sin mgx cos N6 dedx = 0 {B.23)
0 /2N ‘

™

Upon carrying out the indicated operation in Eq. (B. 23) we obtain as a result

k, = ﬁgﬁ- (1- 1/4N2)[m2{1+ 2(y/8) B** + %B*’*}
(B. 24)
12 Z2(1-v2) s =4 l{'l
+ =14 (2/8VR®2 4 B (1/m2):|
m™ J
N, L?
where ky = “_Zl; and PB* =(—§—f) p*¥, with p¥*= rl:1I:R (B. 25)
1

In Eq. (B.25) @, y, 6 are the same orthotropic parameters as those defined in
Eq. (B.5).

Since the function S(N) =Eﬁ11/?27§_1\_1 (1- 1/4N?) very rapidly approaches 1 as N

increases in value and since N is a fairly large number, Eq. (B. 24) finally reduces

to:
k= [mz{l +2(y/8)p* + (0/5)-5*4}

g " (B. 26)
+ 127 il-v ){1 +2/6F% + 5*4/5} (I/mz)]
™

Eq. (B.26), for the bending case, is seen to be identical with that of the compressive
case kc from Eq. (B.4) with the important difference that while § could become zero
leading to an axisymmetric mode in the compressive case, B¥* for the bending case

can never egual zero. However, it may approach close to zero when terms like

46




B*¥ and B* may be neglected. Hence in Eq. (B. 26), upon neglecting terms
multiplying B* and B*!, we can minimize the resulting expression with respect

to m? and obtain a limiting solution as

k, =.7022 (1-v2)H 2 (B.27)

which is identical to the axisymmetric solution for the compressive case, |
As for asymmetric solutions, the identity of forms for bending and compressive |

cases shows that we obtain the same stress results as in the compressive case, How-

ever, we have already seen that ¥ is never equal to zero which implies that there is

no true axisymmetric mode in the case of a bending problem.

Concluding Remarks

The behavior in the bending stability problem is generally governed by the
fact that the external stress distribution changes from a compressive one at the
top to a tensile one at the bottom half of a cross section of the cylinder. This pre-
cludes any buckling effect on the tension side. Hence, a compatible buckle pattern
for the bending problem has to be deflection free on the tension side. Hence, a |
general type of asymmetric mode with ripples running all the way around the cir-
cumference, which is perfectly suitable in a compressive stability problem, becomes
impossible in the bending case. A suitable pattern seems to have a single lobe
symmetric about a vertical axis and whose maximum width is a small fraction of
m which is signified by n/N, where N is usually a large number, Thus the buckling
pattern presents a widely differing picture in the bending case as compared to the
compressive case.

However, when we turn to the stress picture we find that for both the isotropic

cylinders and for the orthotropic cylinders kb/kc is essentially equal to unity,
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AEEendix 3

Test Data on Stiffened Cylinders Under Compression

Introduction

Table 3.1 lists the groups of experimental data analyzed according to the
orthotropic theory presented in Appendices 1 and 2. The data are grouped according
to the references listed and include the range of orthotropic parameters pertinent
to Fig. 1 on which they are displayed. Groups A, B, and C have previously been
analyzed using the theory of Appendix 2 and the individual reference sources can
be consulted for details of data reduction. Groups D, E, and F were analyzed in the
present report using the theory of Appendix 2. Consequently, the overall methods
of data reduction are discussed herein.

The total number of test points represent 63 orthotropic cylinders plus
several isotropic cylinders which were used as control points to indicate the quality
of the cylinder manufacturing and testing procedures. Cylinder diameters ranged
from 6 to 120 in. with roughly 70 percent of 8 in. diameter, Test data for each
group of data are individually displayed in Figs. 3.1 through 3.5; Groups E and F
represent single test points and are listed in Table 3. 1.

Reduction of Group D DataZO

Calculations for the theoretical buckling under axial compressive loading
of five longitudinally stiffened cylinders indicated by the data points in Fig. 3.5
followed methods presented in Refs. 11 and 16. These methods utilize three
orthotropic parameters, @, y, and 6§ which characterize the buckling behavior.
Both y and § are a function of the effective shear thickness of the cylinder wall
which was taken equal to the average of the sum of the cylinder cross sectional
area per unit width in directions along and normal to the longerons (Ref. 16).
The parameter y is also a function of the cylinder wall unit torsional rigidity which
was determined using the reference below.*®

The range of values for the @, y, 6 parameters for the test specimens are
presentedin Table 3.1. Values for individual specimens were based on cylinder
wall geometry in the buckle region and nominal values for the cylinder length and

diameter as given in Ref. 20, All cylinders had values for @ and y indicating

¥Becker, H., and Gerard, G., ""Measurement of Torsional Rigidity of Stiffened
Plates," NASA TN D-2007, July 1963,
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buckling in the asymmetric m=1. 0 mode. The corresponding theoretical stress
was determined using Ref. 16 and assuming v=0.

The test specimens of Ref, 20 were instrumented with strain gages attached
to the inside and outside skin as well as gages at stiffener locations. Test data
show that the average stress in both the skin and stiffener was essentially equal
up to failure. Values for the experimental stress used in the preparation of
Fig. 3.5 correspond to the maximum average stress in the cylinder skin at speci-
men failure as indicated by the strain gage data.

Test data for orthotropic cylinders using a waffle configuration are also
presented in Ref. 20. For these specimens, general instability failure was pro~
ceeded by local buckling of the skin between stiffeners. Because of this local
buckling, the test results do not allow a valid evaluation of the general instability
orthotropic theory and are not included. Results for two isotropic cylinders tested
in Ref. 20, however, are shown in the figure.

Reduction of Group E Data®l

As shown in Ref. 17, the theoretical elastic buckling stress of orthotropic
cylinder under either bending or axial compression loading are equal; hence, tests
on the general instability of cylinders in bending (such as Ref. 21) may be used
to check axial compression orthotropic theory.

Values for the orthotropic parameters a, y and 6 for the truss-core sand-
wich cylinder of Ref. 21 are given in Table 3.1. In the calculation of these para-
meters, the shear thickness for the sandwich was calculated as described previously,
and torsional stiffness parameters were determined using the reference below.*

One observes that both @ and y have values greater than one which is indicative of
buckling in the axisymmetric mode (Ref. 11).

As shown in Table I the experimental/theoretical buckling stress ratio for
the specimen was 0.67. The theoretical buckling stress was calculated as 86.8
ksi based on average cross sectional geometry and using equations presented in
Ref. 11 reduced for v=0. The experimental peak failure stress was given in Ref, 21
as 58 ksi and was based on the maximum value for the average strain for the sand-

wich cross section as determined from strain measurements.

¥*Libove, C., and Hubka, R., '"Elastic Constants for Corrugated-Core Sandwich
Plates," NACA TN 2289, February 1951.
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Reduction of Group F Datazz

The buckling strength of honeycomb sandwich cylinders under bending loading

was evaluated in Ref. 22, and the results for one cylinder which failed elastically

is given in Table I, (Uexp/o-x = .78). For this specimen a=y=6=1.0 (see Table 3.1},
and either the axisymmetric or asymmetric buckle mode governs (Ref. 11). Values
for these parameters were based on calculations for the effective shear thickness

as described previously and torsional stiffness relationships given in the reference
below.* The theoretical buckling stress (65 ksi) was determined using nominal
values for cylinder geometry and theoretical results presented in Ref. 11 reduced
for v=0. The experimental buckling stress (50.4 ksi) was determined from strain

gage data presented in Ref. 22 and corresponds to the average sandwich face stress

at the extreme fibre from the cylinder neutral axis.

*Cheng, S., "Torsion of Sandwich Panels of Trapezoidal, Triangular, and Rectang-
ular Cross Sections,!" Forest Products Laboratory Rept. No. 1874, June 1960,
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