

APPLICATIONS OF RATE DIAGRAMS TO THE ANALYSIS AND DESIGN OF A CLASS OF ON-OFF CONTROL SYSTEMS

by Ralph C. Lake

Prepared by
UNIVERSITY OF TENNESSEE
Knoxville, Tenn.
for
hational aeronautics and space administration - Washingion, d. C. - may 1966

APPLICATIONS OF RATE DIAGRAMS TO THE ANALYSIS AND DESIGN OF A CLASS OF ON-OFF CONTROL SYSTEMS

By Ralph C. Lake

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Grant No. NsG-351 by
UNIVERSITY OF TENNESSEE
Knoxville, Tenn.
for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TABLE OF CONTENTS

CHAPTER PAGE
I. INTRODUCTION 1
II. THE RATE DIAGRAM METHOD 3
III. RATE DIAGRAM ANALYSIS OF ON-OFF SYSTEM 1 10
Derivation of Equations 10
The Rate Diagrams 13
Remarks 13
IV. RATE DIAGRAM ANALYSIS OF ON-OFF SYSTEM 2 23
Derivation of Equations 23
The Rate Diagrams 37
Remarks 44
v. CONCLUSIONS 45
REFERENCES 47
APPENDIX I. A Program for Transient Response of System 1 49
APPENDIX II. A Program for Transient Response of System 2 53

LIST OF FIGURES

FIGURE
PAGE

1. An On-off Control System with a Pure Inertia Plant 4
2. Constructing Phase Trajectory from Rate Diagram 6
3. Rate Diagrams and Corresponding Phase Trajectories 7
4. Block Diagram of On-off System 1 11
5. Rate Diagram of System 1 for Variations of G_{1}. 15
6. Rate Diagram of System 2 for Variations of G_{2}. 16
7. Rate Diagram of System 1 for Variations of h.... 17
8. Rate Diagram of System 1 for Variations of y 18
9. Rate Diagram of System 1 for Variations of λ. 19
10. Rate Diagram of System 1 for Variations of \mathcal{T}_{R}, the
Transport^of Thrust Build-up 20
11. Rate Diagram of System 1 for Variations of \mathcal{T}_{F}, the
Transport Lag of Thrust Decay 21
12. Block Diagram for On-off System 2 24
13. Rate Diagram of System 2 for Variations of G_{1}. 39
14. Rate Diagram of System 2 for Variations of d. 40
15. Rate Diagram of System 2 for Variations of $e_{\text {SAT }}$. 41
16. Rate Diagram of System 2 for Variations of G_{2}. 42
17. Rate Diagram of System 2 for Variations of G_{3}. 43

CHAPTER I

INTRODUCTION

The design and analysis of on-off control systems can be very laborious if the system configuration is complex. This is because no general technique exists which would provide accurate information about the system performance for all classes of on-off systems.

Patapoff presented a method ${ }^{1 *}$ in which the performance of a class of on-off control systems may be analyzed. Patapoff's method, called the "rate diagram", is a plot of the output rate of a controlled element at "control removal" (removal of plant input) versus the rate at "control application" (application of plant input).

Patapoff's method used a Laplace Transformation of the error signal. Such an approach constrains the error signal filter to be linear. In this research the rate diagram idea is formulated by utilizing the state variable representation. This approach removes the constraint of the linear filter, thereby making the method applicable to a wide class of on-off systems.

It is the purpose of this paper to apply the rate diagram technique to some configurations of on-off control stystems. It is hoped that the illustration of specific applications will encourage

[^0]further study of this technique and its possible extensions to other classes of on-off systems.

CHAPTER II

THE RATE DIAGRAM METHOD

Consider the block diagram of a system shown in Figure 1. The controlled element is a second order pure inertia plant whose output position and output rate are represented by x_{1} and x_{2}, respectively. It is assumed that the switch has dead space such that the loop transient always dies out before the application of control effort, $\boldsymbol{\lambda}$, to plant input. Very often the dead space is deliberately introduced to avoid erratic switching caused by random noise. The switch may also possess hysteresis.

In a physical system there is a time delay, \mathcal{T}_{R}, between switchon and the application of control effort. Similarly, a time delay, τ_{F}, exists between switch-off and cut-off of control effort. This phenomena is represented by the "delay" block in the figure. Notice that \mathcal{T}_{R} and τ_{F} are, in general, not equal. The "filter" block is inserted into the system to obtain the desired switching characteristic and to reduce noise effect. The filter can be either linear or nonlinear.

Systems of this type may appear as the stability subsystem or reaction subsystem of a spacecraft command module. The pure inertia plant may represent a spacecraft traveling outside the earth atmosphere.

The rate diagram is a plot of the system rate at control removal
($x_{2 f}$) versus the rate at control application ($x_{2 i}$). Since the loop transient dies out before control application, the output rate at

Fig. 1. An on-off control system with a pure inertia plant.
control removal can be expressed as a function of control application. -
If output amplitude characteristics of the switch and of the controller have odd symmetry with respect to their inputs, the rate diagram is also symmetrical with respect to the origin. Therefore, it is sufficient to consider only positive $x_{2 i}$ and determine the values of $x_{2 f}$ relative to x_{21}

The system stability, transient response, and limit cycle behavior can be analyzed via rate diagrams. Phase plane trajectories can readily be constructed from the rate diagram, and vice versa. Figure 2 illustrates how to construct the phase plane trajectory from the rate diagram. Fig. $2 a$ represents a rate diagram of a typical system and Fig. $2 b$ is the phase plane. Draw the control application line on phase plane, which is a function of x_{1} and x_{2} only. Before control application the system output coasts at a constant rate until it reaches the control application line at A. Starting from A the system follows a constant acceleration trajectory until it reaches B. Point B is the point where the control is removed from the plant input. This point is given directly from the corresponding B point on the rate diagram. Starting from B the system again coasts at constant rate until it reaches the controller application line on the opposite side.

The behavior of the on-off system can be studied with the aid of the rate diagram. When the rate curve lies in the first quadrant of the rate plane, a stepping action occurs (Fig. 3a). That is, the phase trajectory, which alternates between free coasting and constant acceler-

Fig. 2. Constructing phase trajectory from rate diagram.

Fig. 3. Rate diagrams and corresponding phase trajectories.
ation, has a step pattern on phase plane. Under this condition the system eventually converges to a stable limit cycle. When the rate curve lies between the $x_{2 i}$-axis and the line $x_{2 i}+x_{2 f}=0$, the system output is oscillatory but converges toward a stable limit cycle (Fig. 3b, page 7). If the rate curve lies between the $x_{2 f}$-axis and the line $x_{2 i}+x_{2 f}=0$, the system rate is divergent. And, unless the rate curve recrosses the $x_{2 i}+x_{2 f}=0$ line as $x_{2 i}$ increases, the system would be unstable.

For most cases, the rate curve will intersect the line: $\mathrm{x}_{2 \mathrm{i}}+$ $x_{2 f}=0$. An intersection indicates the existance of a limit cycle, since $x_{2 f}=-x_{2 i}$ at such a point.

The vector-state differential equations for the state variables of the controlled element are:

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{1}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
\lambda(t)
\end{array}\right]
$$

In state-vector notation, the above equation may be rewritten:

$$
\begin{equation*}
\underline{\dot{x}}=A \underline{x}+C \underline{m} \tag{2}
\end{equation*}
$$

where:

$$
A=\left[\begin{array}{ll}
0 & 1 \tag{3}\\
0 & 0
\end{array}\right]
$$

and

$$
C=\left[\begin{array}{cc}
0 & 0 \tag{4}\\
0 & -1
\end{array}\right]
$$

The vector state differential equation may be solved by any of several methods. $3,4,5$ For the case where the input of the controlled element is of the form: $\lambda(t)=\lambda=$ a constant, the solution is:

$$
\left[\begin{array}{c}
x_{1}\left(t-t_{0}\right) \tag{5}\\
x_{2}\left(t-t_{0}\right)
\end{array}\right]=\left[\begin{array}{c}
x_{1}\left(t_{0}\right)+\left(t-t_{0}\right) x_{2}\left(t_{0}\right)-\frac{\lambda}{2}\left(t-t_{0}\right)^{2} \\
x_{2}\left(t_{0}\right)-\left(t-t_{0}\right)
\end{array}\right]
$$

For the derivation of the rate diagram equations, consider $r(t)=$ 0 . This defines an equilibrium state: $\underline{x}=0$. Thus, the response from any initial state $\underline{x}\left(t_{0}\right)$ will be defined.

From the preceding discussion, it is clearly seen that much information is contained in a rate diagram. The advantages of the rate diagram over phase plane methods are obvious: (1) the rate diagram curve considers all non-zero values of initial system rate on one plot. This would be impractical for phase plane plots. (2) The effects of changes in the values of the system parameters are shown directly. This can often be difficult to surmise using phase plane techniques. (3) The rate curves of different system configurations can be shown on one plot in order to compare the characteristics of the different configurations. This would be virtually impossible to do using phase plane methods without a resulting mesh of trajectories, thus making it difficult to obtain meaningful information.

RATE DIAGRAM ANALYSIS OF ON-OFF SYSTEM 1

DERIVATION OF EQUATIONS

Consider the system shown in Figure 4 , with an initial positive rate and a displacement such that the error signal lies within the deadband of the switch. By inspection of Figure 4, the error signal for the above configuration may be written as:

$$
\begin{equation*}
\epsilon=-G_{1} G_{3} x_{1}-G_{2} x_{2} \tag{6}
\end{equation*}
$$

where G_{1}, G_{2}, and G_{3} are constants.
The system will switch on when $\epsilon=-h$. Denote $x_{1 s}$ and $x_{2 s}$ as the values of x_{1} and x_{2} at the instant of switch-on, and note that x_{2} will be constant prior to control application. By substituting Equation (5) into Equation (6), $x_{1 s}$ is found to be:

$$
\begin{equation*}
x_{1 s}=\frac{h}{G_{1} G_{3}}-\frac{G_{2} x_{2 s}}{G_{1} G_{3}} \tag{7}
\end{equation*}
$$

If t_{o} is the instant of switch-on, $\mathcal{\tau}_{R}$ seconds later control will be applied to the plant. During this time interval $\boldsymbol{\lambda}=0$, we have from Equation (5)

$$
\begin{equation*}
x_{1}\left(t_{0}+\tau_{R}\right)=x_{1}\left(t_{0}\right)+\tau_{R} x_{2}\left(t_{0}\right) \tag{8}
\end{equation*}
$$

and

Fig. 4. Block diagram of on-off system 1.

$$
\left[\begin{array}{l}
x_{1 i} \tag{9}\\
x_{2 i}
\end{array}\right]=\left[\begin{array}{c}
x_{1}\left(t_{0}+\tau_{R}\right) \\
x_{2}\left(t_{0}+\tau_{R}\right)
\end{array}\right]=\left[\begin{array}{cc}
\frac{h}{G_{1} G_{2}} & -\frac{G_{2} x_{2 s}}{G_{1} G_{3}}
\end{array}+x_{2 s} \tau_{R}\right]
$$

If $t=0$ is chosen as the time instant of control application, then by substituting Equation (5) into (6) the error may be expressed as

$$
\begin{gather*}
\epsilon(t)=-G_{1} G_{3} x_{1 i}-G_{1} G_{3} x_{2 i} t+G_{1} G_{3} \frac{\lambda t^{2}}{2} \\
-G_{2} x_{2 i}+G_{2} \lambda t \tag{10}
\end{gather*}
$$

The system will switch-off when $\epsilon=-h+y h$. Define t_{1} as the interval between the beginning of control application and switch-off. Using this condition in Equation (10), t_{1} is found to be

$$
\begin{equation*}
\mathrm{t}_{1}=\frac{-\mathrm{B}_{1}+\sqrt{\mathrm{B}_{1}^{2}-4 \mathrm{~A}_{1} \mathrm{C}_{1}}}{2 \mathrm{~A}_{1}} \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
A_{1} & =\frac{G_{1} G_{3} \lambda}{2} \\
B_{1} & =G_{2} \lambda-G_{1} G_{3} x_{2 i} \tag{12}\\
C_{1} & =h-G_{1} G_{3} x_{1 i}-G_{2} x_{2 i}-y h
\end{align*}
$$

τ_{F} seconds after switch-off, control is removed from the plant. Denote $x_{1 f}$ and $x_{2 f}$ as the values of x_{1} and x_{2} at control removal. Using Equation (5)

$$
\left[\begin{array}{c}
x_{1 f} \tag{13}\\
x_{2 f}
\end{array}\right]=\left[\begin{array}{c}
x_{1 i}+x_{2 i}\left(t_{1}+\tau_{F}\right)-\frac{\lambda}{2}\left(t_{1}+\tau_{F}\right)^{2} \\
x_{2 i}-\lambda\left(t_{1}+\tau_{F}\right)
\end{array}\right]
$$

The rate diagram for this system may now be constructed by computing and plotting values of $x_{2 f}$ for arbitrary values of $x_{2 i}$ using Equations (11), (12) and the second one of (13).

THE RATE DIAGRAMS

The nominal values of system parameters used for constructing the diagrams are listed in Table I. Figures 5 to 11 are rate diagrams for various system parameters.

REMARKS

The rate diagrams for System 1 show that the system is stable for the values of system parameters considered. In addition, they indicate that an "over-shooting" response results from large values of initial rate, and a "stepping" response results from small values of initial rate.

The limit cycle rate is affected as follows:

1. The limit cycle rate increases as G_{1} increases.
2. The limit cycle rate decreases as G_{2} increases.
3. The limit cycle rate increases as h_{1} increases.
4. The limit cycle rate increases as y increases.
5. The limit cycle rate increases as λ increases.

TABLE I
NOMINAL VALUES OF SYSTEM PARAMETERS FOR SYSTEM 1

Parameter	Nominal Value	Units
G_{1}	2.0	ND
G_{2}	1.0	Degree-sec./degree
G_{3}	1.0	ND
h	2.0	Degrees
y	0.05	ND
λ	6.0	Segrees/sec. ${ }^{2}$
τ_{R}	0.02	Seconds
$\tau_{\text {F }}$	0.02	

Fig. 5. Rate diagram of system 1 for variations of G_{1}.

Fig. 7. Rate diagram of system 1 for variations of h.

Fig. 8. Rate Diagram of System 1 for variations of y.

6. The limit cycle rate is independent of γ_{R}.
7. The limit cycle rate increases as τ_{F} increases.

CHAPTER IV

RATE DIAGRAM ANALYSIS OF ON-OFF SYSTEM 2

DERIVATION OF EQUATIONS

Consider the system shown in Figure 12 with an initial positive rate and a displacement such that the errar signal lies within the deadband of the switch. It will be necessary to classify the magnitude of $x_{2 i}$ in order to determine the correct error signal mode.
I. $\quad\left|G_{2} \mathbf{x}_{2 i}\right| \leq h$

By inspection of Figure 12, the error signal mode for this magnitude of $\mathbf{x}_{2 i}$ is given by:

$$
\begin{equation*}
\epsilon=-G_{2} x_{2}+G_{1}\left(-G_{3} x_{1}+d\right) \tag{14}
\end{equation*}
$$

The system will switch on when $\epsilon=-\mathrm{h}$.

Denoting the value of x_{1} and x_{2} at switch-on as $x_{1}\left(t_{0}\right)$ and $x_{2}\left(t_{0}\right)$ respectively, the expression for $x_{1}\left(t_{o}\right)$ may be obtained by substituting the above boundary condition into Equation (14) to yield:

$$
\begin{equation*}
x_{1}\left(t_{o}\right)=\frac{-G_{2} x_{2}\left(t_{o}\right)+h+G_{1} d}{G_{1} G_{3}} \tag{15}
\end{equation*}
$$

Control will be applied to the system \mathcal{T}_{R} seconds after switch-on occurs. Denoting the values of x_{1} and x_{2} at the beginning of control application as $x_{1 i}$ and $x_{2 i}$, and by utilizing Equation (5), the following expressions are obtained:

Fig. 12. Block diagram for on-off system 2.

$$
\left[\begin{array}{l}
x_{1 i} \tag{16}\\
x_{2 i}
\end{array}\right]=\left[\begin{array}{c}
x_{1}\left(t_{o}\right)+x_{2}\left(t_{0}\right) \\
\tau_{R} \\
x_{2}\left(t_{o}\right)
\end{array}\right]
$$

Determine the value of time at which $G_{1}\left(-G_{3} x_{1}+d\right)=-e_{S A T}$. Define this value of time as $t_{\text {ESAT }}$. When control is applied to the system, x_{1}, is given by the expression below.

$$
\begin{equation*}
x_{1}(t)=x_{1 i}+x_{2 i} t-\frac{\lambda}{2} t^{2} \tag{17}
\end{equation*}
$$

Applying the given boundary conditions, $t_{\text {ESAT }}$ is found to be:

$$
\begin{equation*}
t_{E S A T}=\frac{-B_{E S A T} \pm \sqrt{B_{E S A T}^{2}-4 A_{E S A T} C_{E S A T}}}{2 A_{E S A T}} \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{E S A T}=\frac{G_{1} G_{3} \lambda}{2} \\
& B_{\text {ESAT }}=-G_{1} G_{3} x_{2 i} \tag{19}\\
& C_{E S A T}=-\left(G_{1} G_{3} x_{1 i}-G_{1} d-e_{S A T}\right)
\end{align*}
$$

It should be noted that the choice of sign for the radical is determined by using the sign which results in the smallest positive real value of $t_{\text {ESAT }}$. It should also be noted that if the solution has a complex value, then clearly, the stated boundary conditions will not be attained by the system for the given initial conditions. This procedure will be observed in the remainder of this analysis whenever there exists a possibility that the error signal does not saturate the attitude quantizer.

Define: $\quad \chi=G_{1}\left(-G_{3} x_{1}+d\right)$
Expanding the expression for χ yields:

$$
\begin{equation*}
\not x=-G_{1} G_{3} x_{1 i}-G_{1} G_{3} x_{2 i} t+\frac{G_{1} G_{3} t^{2}}{2}+G_{1} d . \tag{21}
\end{equation*}
$$

Differentiating the above expression and setting the result equal to zero yields:

$$
\begin{equation*}
t_{\text {MAX }}=\frac{x_{2 i}}{\lambda} \tag{22}
\end{equation*}
$$

where $t_{\text {MAX }}$ is defined as the interval between the beginning of control application and the instant at which the magnitude of χ is a maximum.

If $t_{M A X} \leq t_{E S A T}$, then saturation does not occur. Define t_{1} as the interval between the beginning of control application and switch-off. At switch-off,

$$
\begin{equation*}
=-h+y h . \tag{23}
\end{equation*}
$$

Thus:

$$
\begin{align*}
-h+y h=-G_{1} G_{3} x_{1 i} & -G_{1} G_{3} x_{2 i} t_{1}+\frac{G_{1} G_{3} \lambda}{2} t_{1}^{2}+G_{1} d \\
& -G_{2} x_{2 i}+G_{2} \lambda t_{1} . \tag{24}
\end{align*}
$$

Solving for t_{1},

$$
\begin{equation*}
t_{1}=\frac{-B_{1} \pm \sqrt{B_{1}^{2}-4 A_{1} C_{1}}}{2 A_{1}} \tag{25}
\end{equation*}
$$

where:
$A_{1}=\frac{G_{1} G_{3} \lambda}{2}$
$B_{1}=G_{2} \lambda-G_{1} G_{3} x_{2 i}$
$C_{1}=-\left(G_{1} G_{3} x_{1 i}+G_{2} x_{2 i}+y h-h-G_{1} d\right)$

T_{F} seconds after switch-off, control is removed.
If $t_{\text {MAX }}>t_{\text {ESAT }}$, saturation would occur. For this case, the analysis is continued as follows:

Evaluate x_{1} and x_{2} at time $t=t_{\text {ESAT }}$, as shown below:

$$
\left[\begin{array}{cc}
x_{1} & \left(t_{E S A T}\right) \tag{27}\\
x_{2} & \left(t_{E S A T}\right)
\end{array}\right]=\left[\begin{array}{rrr}
x_{1 i}+x_{2 i} & t_{E S A T}-\frac{\lambda}{2} & t_{E S A T}^{2} \\
x_{2 i}-\lambda t_{E S A T} &
\end{array}\right]
$$

Define t_{2} as the interval between $t_{\text {ESAT }}$ and the instant when switch-off occurs. During this interval,

$$
\begin{equation*}
\epsilon=-G_{1} x_{2}-e_{S A T} \tag{28}
\end{equation*}
$$

Switch-off occurs when $\epsilon=-h+y h$. From the above information, t_{2} is found to be:

$$
\begin{equation*}
t_{2}=\frac{e_{S A T}+G_{2} x_{2}\left(t_{E S A T}\right)+y h-h}{G_{2} \lambda} \tag{29}
\end{equation*}
$$

To investigate the possibility that switch-off does not occur while the filter signal is saturated, the following procedure may be used.

Define t_{5} as the interval between the beginning of saturation and the end of saturation. The following equation is now applicable:

$$
\begin{array}{r}
-e_{S A T}=-G_{1} G_{3} x_{1}\left(t_{E S A T}\right)-G_{1} G_{3} x_{2}\left(t_{E S A T}\right) t_{5} \\
+\frac{G_{1} G_{3} \lambda t_{5}^{2}}{2}+G_{1} d \tag{30}
\end{array}
$$

Solving for t_{5},

$$
\begin{equation*}
t_{5}=\frac{-B_{5} \pm \sqrt{B_{5}^{2}-4 A_{5} C_{5}}}{2 A_{5}} \tag{31}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
A_{5}=\frac{G_{1} G_{3} \lambda}{2} \\
B_{5}=-G_{1} G_{3} x_{2}\left(t_{E S A T}\right) \tag{32}\\
C_{5}=-\left[G_{1} G_{3} x_{1}\left(t_{E S A T}\right)-G_{1} d-e_{S A T}\right]
\end{array}\right\}
$$

If the expression for t_{5} has a negative or complex value, switchoff would occur at the end of the t_{2} interval.

If t_{5} has a positive value, the following procedure must be used.
If $t_{5} \geq t_{2}$, the system would switch off at the end of the t_{2} interval. Control would be removed γ_{F} seconds later. Thus, the total "on" time for application of control effort to the system is given by:

$$
\begin{equation*}
t_{o n}=t_{E S A T}+t_{2}+t_{F} \tag{33}
\end{equation*}
$$

x_{2} may be evaluated at this time with respect to $x_{2 i}$ using Eqaution (5), and the rate diagram may be constructed.

If $t_{5}<t_{2}$, the filter signal would operate in the linear mode again, and the approach would be identical to that used in Equation (24) with $x_{1 i}$ and $x_{2 i}$ being replaced by the values of x_{1} and x_{2} at the end of
. of the t_{5} interval.
II. $h+e_{S A T}>\left|G_{2} x_{2 i}\right|>h$

In order for the switch to be off, the polarity and magnitude of x_{1} must be such that the output of the attitude quantizer summed with the rate feedback signal lies within the switching dead-band.

Consider the case of positive $\mathrm{x}_{2 \mathrm{i}}$. From inspection of Figure 6, page 16 , the error signal mode for this magnitude of $x_{2 i}$ is given by

$$
\begin{equation*}
\epsilon=-G_{2} x_{2}+G_{1}\left(-G_{3} x_{1}-d\right) \tag{34}
\end{equation*}
$$

The system will switch on when $\epsilon=-\mathrm{h}$.
Denoting the value of x_{1} and x_{2} at switch-on as $x_{1}\left(t_{0}\right)$ and $x_{2}\left(t_{0}\right)$ respectively, the expression for $x_{1}\left(t_{0}\right)$ may be obtained by substituting the above boundary condition into Equation (34) to yield:

$$
\begin{equation*}
x_{1}\left(t_{o}\right)=\frac{h-G_{2} x_{2}\left(t_{o}\right)-G_{1} d}{G_{1} G_{3}} \tag{35}
\end{equation*}
$$

Control will be applied to the system \mathcal{T}_{R} seconds after switch-on occurs. Denoting the values of x_{1} and x_{2} at the beginning of control application as $x_{1 i}$ and $x_{2 i}$, the following expressions are obtained:

$$
\left[\begin{array}{l}
x_{1 i} \tag{36}\\
x_{2 i}
\end{array}\right]=\left[\begin{array}{cc}
x_{1}\left(t_{o}\right)+x_{2}\left(t_{o}\right) \cdot \tau_{R} \\
& \\
& x_{2}\left(t_{o}\right)
\end{array}\right]
$$

Assume that the system will switch off while the error mode is in the positive linear portion of the quantizer. In this mode, the error signal is given by:

$$
\begin{align*}
\epsilon & =-G_{2} x_{2}+G_{1}\left(-G_{3} x_{1}-d\right) \tag{37}\\
& =-G_{2} x_{2 i}+G_{2} \lambda t-G_{1} G_{3} x_{1 i}-G_{1} G_{3} x_{2 i} t+\frac{G_{1} G_{3} \lambda}{2} t^{2}-G_{1} d \tag{38}
\end{align*}
$$

The system will switch off when $\epsilon=-h+y h$. Define t_{1} as the interval between the beginning of control application and switchoff. Substituting the above boundary conditions into Equation (38) yields:

$$
\begin{equation*}
t_{1}=\frac{-\mathrm{B} \pm \sqrt{\mathrm{B}^{2}-4 \mathrm{AC}}}{2 \mathrm{~A}} \tag{39}
\end{equation*}
$$

where:

$$
\begin{align*}
& A=\frac{G_{1} G_{3} \lambda}{2} \\
& B=G_{2} \lambda-G_{1} G_{3} x_{2 i} \tag{40}\\
& C=-\left(G_{1} G_{3} x_{1 i}+G_{2} x_{2 i}+G_{1} d+y h-h\right)
\end{align*}
$$

Denote $x_{1 i}$ and $x_{2 i}$ as $x_{1}\left(t_{o}\right)$ and $x_{2}\left(t_{o}\right)$.
Define $t_{d p}$ as the interval between t_{o} and the instant when $G_{1}\left(-G_{3} x_{1}-d\right)=d$.

$$
\begin{equation*}
-G_{1} G_{3} x_{1}\left(t_{o}\right)-G_{1} G_{3} x_{2}\left(t_{o}\right) t_{d p}+\frac{G_{1} G_{3} \lambda}{2} t_{d p}^{2}-G_{1} d=d \tag{41}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
t_{d p}=\frac{-B_{p} \pm \sqrt{B_{p}^{2}-4 A_{p} C_{p}}}{2 A_{p}} \tag{43}
\end{equation*}
$$

where:

$$
\begin{align*}
A_{p} & =\frac{G_{1} G_{3} \lambda}{2} \\
B_{p} & =-G_{1} G_{3} x_{2}\left(t_{o}\right) \tag{43}\\
C_{p} & =-\left(G_{1} G_{3} x_{1}\left(t_{o}\right)+G_{1} d+d\right)
\end{align*}
$$

If $t_{1} \leq{ }^{t}{ }_{d p}$, the assumption was correct. $\quad \mathcal{T}_{\mathrm{F}}$ seconds later, control is removed from the system.

However, if $t_{1}>t_{d p}$, the assumption was incorrect. In this case, evaluate x_{1} and x_{2} at the time $t=t_{d p}$, using Equation (5)

$$
\left[\begin{array}{c}
x_{1}\left(t_{d p}\right) \tag{44}\\
x_{2}\left(t_{d p}\right)
\end{array}\right]=\left[\begin{array}{ccc}
x_{1 i}+x_{2 i} & t_{d p}-\frac{\lambda}{2} & t_{d p}^{2} \\
& \\
x_{2 i} & \lambda t_{d p}
\end{array}\right]
$$

Define $t_{d n}$ as the interval between $t_{d p}$ and the instant when $-G_{3} x_{1}=-d$.

$$
\begin{equation*}
-G_{3} x_{1}\left(t_{d p}\right)-G_{3} x_{2}\left(t_{d p}\right) t_{d n}+\frac{G_{3} \lambda}{2} t_{d n}^{2}=-d \tag{45}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
t_{d n}=\frac{-B_{n} \pm \sqrt{B_{n}^{2}-4 A_{n} C_{n}}}{2 A_{n}} \tag{46}
\end{equation*}
$$

where:

$$
\begin{equation*}
A_{n}=\frac{G_{3} \lambda}{2} \tag{47}
\end{equation*}
$$

$$
\begin{align*}
& B_{n}=-G_{3} x_{2}\left(t_{d p}\right) \\
& C_{n}=-\left(G_{3} x_{1}\left(t_{d p}\right)-d\right) \tag{48}
\end{align*}
$$

Assume switch-off occurs during this interval. Note that during this interval $\epsilon=-G_{2} x_{2}$.

Switch-off would occur when $\epsilon=-h+y h$. Define $t_{1}^{\prime \prime}$ as the interval between $t_{d p}$ and the instant of switch-off.

Substituting the given boundary conditions into Equation (49), ${ }^{\prime \prime}{ }_{1}$ is found to be:

$$
\begin{align*}
& t_{1}^{\prime \prime}=\frac{G_{2} x_{2}\left(t_{d p}\right)+y h-h}{G_{2} \lambda} \tag{50}\\
& \text { If } t_{1}^{\prime \prime} \leq{ }^{\prime \prime}{ }_{d n} \text {, then switch-off occurs during this interval. In }
\end{align*}
$$ this event,

$$
\begin{equation*}
t_{1}=t_{d p}+t_{1}^{\prime \prime} \tag{51}
\end{equation*}
$$

where t_{1} is the interval between the beginning of control application and switch-off. Control is removed from the system $\mathcal{\gamma}_{\mathrm{F}}$ seconds later. If $t_{1}^{\prime \prime}>t_{d n}$, switch-off would not have occurred during the interval. For this case, the analysis may be continued as follows:

Evaluate x_{1} and x_{2} at time $t_{d n}$, using Equation (5).

$$
\left[\begin{array}{c}
x_{1}\left(t_{d n}\right) \tag{52}\\
x_{2}\left(t_{d n}\right)
\end{array}\right]=\left[\begin{array}{cccc}
x_{1}\left(t_{d p}\right) & +x_{2}\left(t_{d p}\right) & t_{d n} & -\frac{\lambda}{2} t_{d n}^{2} \\
& x_{2}\left(t_{d p}\right)-\lambda t_{d n}
\end{array}\right]
$$

Define $t_{\text {SATN }}$ as the interval between $t_{d n}$ and the instant when $G_{1}\left(-G_{3} x_{1}+d\right)=-e_{S A T}$.

$$
\begin{equation*}
-e_{S A T}=-G_{1} G_{3} x_{1}\left(t_{d n}\right)-G_{1} G_{3} x_{2}\left(t_{d n}\right) t_{S A T N}+\frac{G_{1} G_{3} \lambda}{2} t_{\text {SATN }}^{2}+G_{1} d \tag{53}
\end{equation*}
$$

$t_{\text {SATN }}$ may be solved from the following expression:

$$
\begin{equation*}
t_{S A T N}=\frac{-B_{x} \pm \sqrt{B_{x}^{2}-4 A_{x} C_{x}}}{2 A_{x}} \tag{54}
\end{equation*}
$$

where:

$$
\begin{align*}
A_{x} & =\frac{G_{1} G_{3} \lambda}{2} \\
B_{x} & =-G_{1} G_{3} x_{2}\left(t_{d n}\right) \tag{55}\\
C_{x} & =-\left[G_{1} G_{3} x_{1}\left(t_{d n}\right)-G_{1} d-e_{S A T}\right]
\end{align*}
$$

During this interval, the error signal is given by the following expression:

$$
\begin{equation*}
\epsilon=-G_{2} x_{2}+G_{1}\left(-G_{3} x_{1}+d\right) \tag{56}
\end{equation*}
$$

If switch-off occurs during this interval,

$$
\begin{align*}
-h+y h=-G_{2} x_{2}\left(t_{d n}\right) & +G_{2} \lambda t_{3}-G_{1} G_{3} x_{1}\left(t_{d n}\right)-G_{1} G_{3} x_{2}\left(t_{d n}\right) t_{3} \\
& +\frac{G_{1} G_{3} \lambda}{2} t_{3}^{2}+G_{1} d \tag{57}
\end{align*}
$$

where t_{3} is defined as the interval between $t_{d n}$ and the instant when switch-off occurs. By solving the above equation, t_{3} is found to be:

$$
\begin{equation*}
t_{3}=\frac{-B_{3}+\sqrt{B_{3}^{2}-4 A_{3} C_{3}}}{2 A_{3}} \tag{58}
\end{equation*}
$$

where:

$$
\left.\begin{array}{l}
A_{3}=\frac{G_{1} G_{3} \lambda}{2} \\
B_{3}=G_{2} \lambda-G_{1} G_{3} x_{2}\left(t_{d n}\right) \\
C_{3}=-\left[G_{1} G_{3} x_{1}\left(t_{d n}\right)+G_{2} x_{2}\left(t_{d n}\right)+y h-h G_{1} d\right]
\end{array}\right\}
$$

Expanding the expression for χ yields:

$$
\begin{equation*}
\chi=-G_{1} G_{3} x_{1}\left(t_{d n}\right)-G_{1} G_{3} x_{2}\left(t_{d n}\right) t+\frac{G_{1} G_{3} \lambda t^{2}}{2}+G_{1} d \tag{60}
\end{equation*}
$$

Differentiating the above expression and setting the result equal to zero yields:

$$
\begin{equation*}
t_{M A X}=\frac{x_{2}\left(t_{d n}\right)}{\lambda} \tag{61}
\end{equation*}
$$

where $t_{\text {MAX }}$ is defined as the interval between $t_{d n}$ and the instant at which the magnitude of x is a maximum.

If ${ }^{t_{M A X}} \leq{ }^{\text {t }}{ }_{\text {SATN }}$, saturation does not occur. For this case,

$$
\begin{equation*}
t_{1}=t_{d p}+t_{d n}+t_{3} . \tag{62}
\end{equation*}
$$

Control would be removed from the system τ_{F} seconds later.
If $t_{\text {MAX }}>t_{\text {SATN }}$, saturation would occur. The analysis may be continued as follows:

Evaluate x_{1} and x_{2} at time $t=t_{\text {SATN }}$, as shown below:

$$
\left[\begin{array}{l}
x_{1}\left(t_{\text {SATN }}\right) \tag{63}\\
x_{2}\left(t_{\text {SATN }}\right)
\end{array}\right]=\left[\begin{array}{c}
x_{1}\left(t_{d n}\right)+x_{2}\left(t_{d n}\right) t_{\text {SATN }}-\frac{\lambda}{2} t_{\text {SATN }}^{2} \\
x_{2}\left(t_{d n}\right)-\lambda t_{\text {SATN }}
\end{array}\right]
$$

Define t_{4} as the interval between $t_{\text {SATN }}$ and the instant when switch-off occurs. During this interval,

$$
\begin{equation*}
\epsilon=-G_{2} x_{2}-e_{S A T} \tag{64}
\end{equation*}
$$

Switch-off occurs when $E=-h+y h$. From the above information t_{4} is found to be:
$t_{4}=\frac{e_{S A T}+G_{2} x_{2}\left(t_{S A T N}\right)+y h-h}{G_{2}}$
For the above case,

$$
\begin{equation*}
t_{1}=t_{d p}+t_{d n}+t_{S A T N}+t_{4} \tag{66}
\end{equation*}
$$

Note that in all cases, control is removed from the system T_{F} seconds after switch-off. Evaluate $X_{\text {If }}$ and $X_{2 f}$ as the values of $x_{1}\left(t_{1}+\mathcal{F}_{F}\right)$ and $x_{2}\left(t_{1}+\mathcal{F}_{F}\right)$ with respect to $x_{1 i}$ and $x_{2 i}$.

$$
\text { III. }\left|G_{2} x_{2 i}\right|>h+e_{S A T}
$$

In this mode, the system will be switched on independently of the value of $x_{1 i}$. This may be easily verified as follows:

Note that when the attitude quantizer is operating in the saturation mode, the error signal is given by:

$$
\begin{equation*}
\epsilon=-G_{2} x_{2}+e_{S A T} \tag{67}
\end{equation*}
$$

The system will be switched on when $\epsilon=-\mathrm{h}$

$$
\begin{equation*}
-h=-G_{2} x_{2}+e_{S A T} \tag{68}
\end{equation*}
$$

Define $x_{2 S A T}$ as the minimum positive value of $x_{2 i}$ which results in the system switching on independently of the initial value of x_{1}. Thus, from Equation (68),

$$
\begin{equation*}
x_{2 S A T}=\frac{h+e_{S A T}}{G_{2}} . \tag{69}
\end{equation*}
$$

Q.E.D.
\mathcal{T}_{R} seconds after switch-on, control is applied to the system.

$$
\left[\begin{array}{c}
x_{1 i} \tag{70}\\
x_{2 i}
\end{array}\right]=\left[\begin{array}{cc}
x_{1}\left(t_{o}\right)+x_{2}\left(t_{o}\right) & \tau_{R} \\
x_{2}\left(t_{o}\right) &
\end{array}\right]
$$

Define $t_{S A T}$ as the interval between the beginning of control application and the instant when the attitude quantizer signal becomes unsaturated. At this instant,

$$
\begin{equation*}
G_{1}\left(-G_{3} x_{1}-d\right)=e_{S A T} \tag{71}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
e_{S A T}=-G_{1} G_{3} x_{1 i}-G_{1} G_{3} x_{2 i} t_{S A T}+G_{1} G_{3} \frac{\lambda}{2} t_{S A T}^{2}-G_{1} d . \tag{72}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
t_{S A T}=\frac{-B_{S A T} \pm \sqrt{B_{S A T}^{2}-4 A_{S A T} C_{S A T}}}{2 A_{S A T}} \tag{73}
\end{equation*}
$$

where:

$$
\begin{aligned}
& A_{S A T}=G_{1} G_{3} \frac{\lambda}{2} \\
& B_{S A T}=-G_{1} G_{3} x_{2 i} \\
& C_{S A T}=-\left(G_{1} G_{3} x_{1 i}+G_{1} d+e_{S A T}\right)
\end{aligned}
$$

Evaluate x_{1} and x_{2} at $t=t_{\text {SAT }}$. Denote these as $x_{1}\left(t_{S A T}\right)$ and $x_{2}\left(t_{S A T}\right)$ respectively.

If $\left|-G_{2} x_{2}\left(t_{S A T}\right)+e_{S A T}\right| \geq h+y h$, the system will still be "on". In this case, denote $x_{1}\left(t_{S A T}\right)$ and $x_{2}\left(t_{S A T}\right)$ as $x_{1 i}$ and $x_{2 i}$ respectively, and follow the procedure outlined in Section II, beginning with Equation (41), and adding $t_{\text {SAT }}$ to the expressions for controller "on" time.

If $\left|-G_{2} x_{2}\left(t_{S A T}\right)+e_{S A T}\right|<h+y h$, the system has switched off before the quantizer signal becomes unsaturated. Although this is unlikely, this condition is investigated as follows:

$$
\begin{align*}
& \epsilon=-G_{2} x_{2}+e_{S A T} \tag{75}\\
& -h+y h=-G_{2} x_{2 i}+G_{2} \lambda t_{1}+e_{S A T} \tag{76}
\end{align*}
$$

therefore,

$$
\begin{equation*}
t_{1}=\frac{G_{2} x_{2 i}+y h-h-e_{S A T}}{G_{2} \lambda} \tag{77}
\end{equation*}
$$

\mathcal{T}_{F} seconds later, control is removed from the system.

THE RATE DIAGRAMS

The nominal values of system parameters used for constructing the rate diagrams are listed In Table II. Figures 13-17 are the rate

TABLE II

NOMINAL VALUES OF SYSTEM PARAMETERS FOR SYSTEM 2

Parameter	Nominal Value	Units
G_{1}	2.0	ND
d^{\prime}	2.5	Degrees
e $_{\text {SAT }}$	15.0	Degrees
G_{2}	1.0	Degree-sec./degree
G_{3}	1.0	ND
h	2.0	Degrees
y	0.05	ND
λ	6.0	Degrees/sec. ${ }^{2}$
τ_{R}	0.02	Seconds
τ_{F}	0.02	Seconds

Fig. 14. Rate diagram of system 2 for variations of d.

$$
\begin{aligned}
& \mathrm{e}_{S A T}=5.0-\ldots-\ldots \\
& \mathrm{e}_{\mathrm{SAT}}=7.5 \ldots
\end{aligned}
$$

Fig. 15. Rate diagram of system 2 for variations of $e^{\text {SAT }}$.

$$
\begin{aligned}
& \mathrm{G}_{2}=0.5------- \\
& \mathrm{G}_{2}=1.0-\infty-\infty, \\
& \mathrm{G}_{2}=2.0-\infty .
\end{aligned}
$$

Fig. 16. Rate diagram of system 2 for variation of G_{2}.

Fig. 17. Rate diagram of system 2 for variations of G_{3}.
diagrams for various system parameters.

REMARKS

The rate diagrams for System 2 indicate that a "stepping" response results from a large range of values of initial rate. This type of response is much faster than the "over-shooting" response. This illustrates the improvements which may be obtained using a non-linear filter for the error signal.

CONCLUSION

The use of rate diagrams for the design and evaluation of a class of on-off control systems has been illustrated. An important example of this class of control systems would be an attitude control system for a space craft operating beyond an atmosphere. For such systems, the use of an ideal step function is a very good approximation to the control torque. It should be noted however, that the rate diagram is not restricted to systems using an ideal step function as the control action. For other forms of control action the equations become more complicated and it may be necessary to resort to numerical or graphical methods to solve the equations.

A suggested topic for further research would be to investigate possible modifications of the rate diagram concept to include other classes of on-off control systems.

REFERENCES

1. Patapoff, H., Rate Diagram Method of Analysis of an On-off Control System, AIEE Winter General Meeting, New York, N.Y., 1961.
2. Lake, R. C., Investigation of Transient and Limit Cycle Behavior of the Stability Control Subsystem and Reaction Control Subsystem of the Apollo Command Module, FCA-63-6-17, LAD, North American Aviation, Inc., 1963.
3. Hung, J. C., Unpublished Class Notes, University of Tennessee, Winter Quarter, 1965.
4. Tou, J., Modern Control Theory, McGraw-Hill, New York, N. Y., 1964.
5. Rekoff, Jr., M. G., State Variable Techniques for Control Systems, Electro-Technology, New York, N. Y., May 1964.

APPENDIX I

A PROGRAM TO DETERMINE THE TRANSIENT RESPONSE OF ON-OFF CONTROL SYSTEM 1

C C C C C

$$
G 2=1.0
$$

$$
G 3=1 \cdot 0
$$

$$
\text { SWON }=2.0
$$

$$
\text { PUHYS }=0.05
$$

$$
T R=0.02
$$

$$
T F=0.02
$$

THE TRANSFER FUNCTION OF THE CONTROLLED ELEMENT IS OF THE FORM $1 / S * * 2$ 。

VARIABLE DESCRIPTION
G1
G2
G3
SWON
PUHYS
ACCEL
TR
TF
$\times 1$
$\times 2$
*
THE FOLLOWING VALUES OF SYSTEM PARAMETERS WILL BE CONSIDERED NOMINAL EACH PARAMETER WILL BE VARIED SEPARATELY, WHILE THE OTHERS ARE HELD CONSTANT.

$$
G 1=2.0
$$

$$
\text { ACCEL }=6.0
$$

$$
\text { PRINT } 101
$$

101 FORMAT(34H G1 WILL BE VARIED FROM 0.5 TO 4.0) DO $1 \mathrm{Kl}=50.400,25$
FK1 $=K 1$
G1 = FK1/100.
DO $21 X=20.1200 \cdot 20$
FLOATX $=1 \times$
X2IN $=$ FLOATX/ 100 .
CALL SUB1 (G1, G2, G3. SWON. PUHYS. ACCEL, TR, TF.
1 X1IN, XIFIN,X2IN,X2FIN, TEEONE, TIME)
PRINT 100,G1,G2,G3,SWON, PUHYS, ACCEL,TR,TF,XIIN,
1 X1FIN, X2IN, X2FIN,TEEONE,TIME
2 CONTINUE
1 CONTINUE
$G_{1}=2.0$

PRINT 105

105 FORMAT(38H ACCEL WILL BE VARIED FROM 4.0 TO 12.0) DO 150 KACCEL $=4 \cdot 12 \cdot 2$ ACCEL=KACCEL DO 200 IX $=20.1200 .20$
FLOATX=IX $\times 21 N=F L O A T X / 100$ CALL SUB1 (G1. G2. G3. SWON. PUHYS. ACCEL, TR, TF.
1 XIIN,XIFIN,X2IN,X2FIN, TEEONE, TIME)
PRINT 100,G1,G2,G3.SWON, PUHYS, ACCEL,TR,TF,XIIN,
$1 \times 1 F I N, \times 2 I N, \times 2 F I N, T E E O N E, T I M E$
200 CONTINUE
150 CONT INUE
ACCEL $=6.0$

PRINT 106
FORMAT (35H TR WILL BE VARIED FROM 0.01 TO 0.1)
DO $500 K T R=1,10$
$F T R=K T R$
$T R=F T R / 100$.
DO $6001 x=20.1200 .20$
FLOATX = IX
X2IN=FLOATX/100.
CALL SUB1 (G1, G2, G3, SWON, PUHYS. ACCEL, TR, TF.

PRINT 107
FORMAT (35H TF WILL BE VARIED FROM 0.01 TO 0.1)
DO $15 \mathrm{KTF}=1,10$
$F T F=K T F$
TF=FTF/100.
DO 25 IX $=20,1200,20$
FLOATX $=1 X$ $\times 21 N=F L O A T X / 100$. CALL SUB1 (G1. G2, G3. SWON, PUHYS, ACCEL. TR, TF,
1 XIIN,XIFIN,X2IN,X2FIN, TEEONE, TIME) PRINT 100,G1,G2,G3,SWON,PUHYS,ACCEL.TR.TF,X1IN.
$1 \times 1 F I N, \times 2 I N, \times 2 F I N, T E E O N E, T I M E$
25 CONTINUE
15 CONTINUE
$T F=0.02$

APPENDIX II

A PROGRAM TO DETERMINE THE TRANSIENT RESPONSE OF ON-OFF CONTROL SYSTEM 2

6 CALL SUBGH1 (G1, DEE,ESAT,G2.G3,SWON, PUHYS,ACCEL,TR1.
1 TF1, X11N,X2IN, X1FIN, X2FIN,ONTIME)

2 CONTINUE
1 CONTINUE

C
PRINT 102
FORMAT (35H DEE WILL BE VARIED FROM O.O TO 5.0)
DO 201 KDEE $=0.500 .100$
FKDEE=KDEE
$D E E=F K D E E / 100$.
DO 202 $1 X=20,1200,20$
203 FLOATX=IX
X2 IN=FLOATX/100.
IF (G2*×2IN-SWON)205.205.206
CALL SUBH1 (G1, DEE,ESAT,G2,G3.SWON,PUHYS,ACCEL,TR1,
1 TF1, X1IN, X2IN, X1FIN, X2FIN,ONTIME)
GO TO 207
206 CALL SUBGH1 (G1, DEE,ESAT, G2,G3.SWON, PUHYS.ACCEL.TR1.
1 TFI, XIIN, X2IN,X1FIN, X2FIN,ONTIME)
207 PRINT 200,G1,DEE,ESAT,G2.G3,SWON,PUHYS,ACCEL,TR1.
1 TF1, X1IN, X2IN, X1FIN, X2FIN,ONTIME
200 FORMAT (8F11•6/7F11.6//)
202 CONTINUE
201 CONTINUE
DEE=2•5
C
PRINT 103
103 FORMAT (37H ESAT WILL BE VARIED FROM 5.0 TO 15.0)
DO 301 KESAT $=10,30,5$
FESAT $=K E S A T$
ESAT=FESAT/2•
DO 302 IX $=20.1200 .20$
303 FLOATX $=1 X$
X2IN=FLOATX/100• IF (G2*×2IN-SWON) 305.305.306 TF1.X1IN, X2IN,X1FIN,X2FIN,ONTIME) GO TO 307
306 CALL SUBGH1 (G1. DEE, ESAT,G2.G3.SWON, PUHYS, ACCEL,TR1. 1

TF $1, \times 1 I N, \times 2 I N, \times 1 F I N, X 2 F I N, O N T I M E)$
307 PRINT 300, G1, DEE,ESAT,G2,G3,SWON,PUHYS,ACCEL,TR1. 1 TFI, XIIN, X2IN, XIFIN, X2FIN,ONTIME
300 FORMAT (8F11.6/7F11.6//)
302 CONTINUE
301 CONTINUE

SUBROUTINE SUBH1 (G1.DEE,ESAT,G2,G3,SWON.PUHYS,ACCEL 1.TR1,TF1, X1IN, X2IN, X1FIN, X2FIN,ONTIME)


```
C INSTANT OF SWITCH-ON.
    *1TO=(-G2**2IN+SWON+G1*DEE)/(G1*G3)
C. XIIN IS DEFINED AS THE VALUE OF XI AT THE BEGINNING
C OF CONTROL APPLICATION
    <1IN=×1TO+X2IN*TR1
C DEFINE T1 AS THE INTERVAL BETWEEN THE BEGINNING OF
C CONTROL APPLICATION AND SNITCH-OFF.
    A1=G1*G3*ACCEL/2.
    B1=G2*ACCEL-G1*G3**2IN
    C1=-(G1*G3**1IN+G2**2IN+PUHYS*SWON-G1*DEE - SWON)
    T1 = (-B1+SQRT(B1**2-4.*A1*C1))/(2.*A1)
    AESAT = G1*G3*ACCEL/2.
    BESAT = -G1*G3**2IN
    CESAT = -(G1*G3**1IN - ESAT - G1*DEE)
    RAD = BESAT**2 - 4.*AESAT*CESAT
    IF (RAD) 50.11.11
    11 TESAT = (-9ESAT-SQRT(RAD))/(2.*AESAT)
    IF (TESAT ) 12,13,13
    12 TESAT = (-BESAT+SQRT(RAD))/(2.*AESAT)
    IF (TESAT) 50.13.13
    13 TMAX = X2IN/ACCEL
    IF (TMAX - TESAT) 50.50.15
    15 <1ESAT = <1IN+X2IN*TESAT-TESAT**2*ACCEL/Z.
    ×2ESAT = ×2IN - TESAT*ACCEL
    T2 = (-SWON+SWON*PUHYS+ESAT+G2*X2ESAT)/(G2*ACCEL)
    IF (T2) 17,16,16
    17 PRINT 111
    111 FORMAT(35H ANALYSIS MUST EE CONTINUED FURTHER)
        ONTIME = 0.0
        GO TO 51
    16 T1 = TESAT + T2
    50 ONTIME =T1+TF1
    51 X1FIN=X1IN+X2IN*ONTIME-ONTIME**2*ACCEL/2.
        <2FIN=×2IN-ACCEL*ONTIME
        RETURN
        END
C *
$IBFTC SUBGH1
```



```
    SUBROUTINE SUBGH1(G1,DEE,ESAT,G2,G3,SWON,PUHYS.
        1ACCEL,TR1,TF1, X1IN, X2IN, X1FIN, X2FIN,ONTIME)
C
C
C INDEPENDENTLY OF THE INITIAL VALUE OF }\times1
    DEFINE x2SAT AS THE MINImUM pOSITIVE VALUE OF x2IN
    WHICH RESULTS IN THE SYSTEM BEING SWITCHED ON
```

```
        X2SAT=(SWON+ESAT)/G2
        IF (X2IN-X2SAT)1.1,2
    2 人1TO = 0.0
    NOTE THAT FOR THIS EXAMPLE, XITO WAS CHOSEN
    ARBITRARILY.
    X1IN= X1TO + X2IN*TRI
    DEFINE TSAT AS THE INTERVAL BETWEEN THE BEGINNING
    OF CONTROL APPLICATION AND THE INSTANT WHEN THE
    ATTITUDE QUANTIZER SIGNAL BECOMES UNSATURATED.
    ASAT = G1*G3*ACCEL/2.
    BSAT = -G1*G3**2IN
    CSAT = - (G1*G3**1IN+G1*DEE+ESAT)
    RAD = BSAT**2-40*ASAT*CSAT
    IF (RAD) 56.57,57
    56 PRINT 222
    222 FORMAT (18H TSAT IS UNDEFINED)
    ONTIME = 0.0
    GO TO 51
        57 TSAT = (-BSAT-SQRT (RAD))/(2.*ASAT)
        IF (TSAT)58.59.59
    58TSAT = (-BSAT+SQRT (RAD))/(2.*ASAT)
    59 <1TSAT = XIIN+X2IN*TSAT-TSAT**2*ACCEL/2.
        <2TSAT = X2IN-ACCEL*TSAT
        SWOFF=SWON-SWON*PUHYS
        3 ERTSAT=-G2**2TSAT+ESAT
        IF (ABS(ERTSAT) - SWOFF) 5,6.6
        5T1 = (-SWON-ESAT+SWON*PUHYS+G2*X2IN)/(G2*ACCEL)
    C
    TI IS THE TIME FROM THE BEGINNING OF CONTROL
    APPLICATION UNTIL SWITCH OFF.
    IF (T1) 6.60.60
    60 IF (T1 - TSAT) 50.50.6
    6 \1TO = XITSAT
        X2TO = X2TSAT
        GO TO 11
        1 <1IN=(-G2**2IN+SWON-G1*DEE)/(G1*G3)+X2IN*TRI
        X1TO=X1IN
        <2TO=x2IN
            TSAT=O.O
C DEFINE TIP AS THE INTERVAL BETWEEN TO AND SWITCH-OFF.
    11 A1P = G1*G3*ACCEL/2.
        B1P=G2*ACCEL-G1*G3**2TO
        C1P=-(G1*G3**1TO+G2**2TO+G1*DEE+SWON*PUHYS
    1 - SWON)
    RAD = B1P**2-4**A1P*C1P
    T1P=(-B1P-SQRT(RAD))/(2**A1P)
    IF (T1P) 76,75,75
    76 T1P=(-B1P + SQRT(RAD))/(2.*A1P)
```

```
    75 ADP = G1*1;3*ACCEL/2.
    BDP = - G1*G3**2TO
    CDP = -(G1*G3**1TO+G2**2TO+G1*DEE +DEE)
C TDP IS DEFINED AS THE INTERVAL BETWEEN TO AND THE
C
    INSTANT WIHEN G1*(-G3**1 - DEE) = DEE.
    RAD = BDP**2 - 4**ADP*CDP
        IF (RAD) 18,19,19
    18T1 = TSAT + T1P
    GO TO 50
    19 TDP = (-B)P-SQRT (RAD))/(2.*ADP)
    IF (TDP) 20.21.21
    20 TDP = (-BDP + SQRT (RAD) )/(2.*ADP)
        IF (TDP) 18.21.2i
    21 IF (T1P - TDP) 12.12.13
    12 T1 = TSAT + T1P
        GO TO 50
    13 *1TDP = ×1T)+\times2TO*TDP-TDP**2*ACCEL/2.
        *2TDP = ×2TO-ACCEL*TDP
    61 ADN=G3*ACNEL/2.
        BDN=-G3**2TDP
        CDN=-(G3**1TDP-DEE)
        RAD = BDN**2 - 4.*ADN*CDN
C DEFINE TDN AS THE INTERVAL BETWEEN TDP AND THE
C INSTANT WHEN (-G3* }\times1=-DEE)
    IF (RAD) 122.23.23
    122 T1PP = (G2**2TDP+SWON*PUHYS-SWON)/(G2*ACCEL.)
C
    DEFINE TIPP AS THE INTERVAL BETWEEN TDP AND THE
C INSTANT WHEN SWITCH-OFF OCCURS.
    IF (T1PP) 66,22.22
    66 T1 = TSAT + TDP
        GO TO 50
    23TDN = (-BDN-SQRT (RAD))/(2.*ADN)
        IF(TDN) 24.25.25
    24TDN = (-BDN+SQRT(RAD))/(2.*ADN)
    25 T1PP = (G2**2TDP+SWON*PUHYS-SWON)/(G2*ACCEL)
        IF (T1PP) 15.123.123
    123 IF (T1PP - TDN)22.22.15
    22 T1 = TSAT + TDP + T1PP
        GO TO 50
    15 *1TDN=\times1TUP+\times2TDP*TDN-TDN**2*ACCEL/2.
        <2TDN=×2TDP-ACCEL*TDN
C DEFINE T3 AS THE INTERVAL BETWEEN TDN AND THE
C INSTANT WIIEN SWITCH-OFF OCCURS.
    A3=G1*G3*ACCEL/2.
    B3=G2*ACCEL-G1*G3**2TDN
    C3=-(G1*G3**1TDN+G2*X2TDN+SWON*PUHYS-SWON-G1*DEE)
        RAD = B3**2 - 4**A3*C3
    28T3=(-B3 - SQRT(RAD))/(2.*A3)
        IF (T3) 23.30.30
```

```
    29T3=(-B3 + SQRT(RAD))/(2.*A3)
    GO TO 30
    30 AN=G1*G3*ACCEL/2.
    BN=-G1*G3**2TDN
    CN=-(G1*G 3* * 1 TDN-G1*DEE-ESAT)
    RAD = BN**2 - 4**AN*CN
    IF (RAD) .31.32.32
31 T1 = TSAT + TOP + TDN + T3
    GO TO 50
32 TSATN = (-BN - SQRT (PAD:)/(2.*AN)
    IF (TSATN) 33.34.34
33 TSATN = (-BN + SQRT(RAD))/(2.*AN)
    IF (TSATN) 31.34.34
34 TMAX = X2TDN/ACCEL
    IF (TMAX - TSATN) 31.31.17
    17 X2SATN=X2TDN-ACCEL*TSATN
    *1SATN = X1TDN+×2TDN*TSATN-TSATN**2*ACCEL/2.
C DEFINE T4 AS THE INTERVAL BETWEEN TSATN AND THE
C INSTANT OF SWITCH OFF.
    T4 = (ESAT+G2**2SATN+SWON*PUHYS -SWON)/(G2*ACCEL)
    A5 = G1*G3*ACCEL/2.
    B5 = -GI*G3**2SATN
    C5 = -(G1*G3**1SATN-G1*DEE-ESAT)
    RAD = B5**2 - 4**A5*C5
    IF (RAD) 41.37.37
    37T5 = (-B5-SQRT(RAD))/(2.*A5)
    IF (T5) 38.39.39
    38T5 = (-B5+SQRT (RAD))/(2.*A5)
    39 IF (T4 - T5) 41.41.42
    42 *1T5 = *1SATN + \2SATN*T5-T5**2*ACCEL/2.
    X2T5 = X2.3ATN - T5*ACCEL
    AG = G1*G3*ACCEL/2.
    B6 = G2*ACCEL - G1*G3**2T5
    CS = -(G1*G3**1T5+G2**2T5+SWON*PUHYS-SWON-G1*DEE)
    RAD = B6**2 - 4**A6*C6
    T6 = (-B6-SQRT(RAD))/(2**A6)
    IF (TG) 43.44,44
    43 T6 = (-B6+SQRT (RAD))/(2.*A6)
    4 4 ~ A T D N ~ = ~ G 1 * G 3 * A C C E L / 2 . ~
        BTDN = -GI*G3**2T5
        CTDN = -(31*G3**1T5-G1*DEE-DEE)
        RAD = BTDN**2 - 4.*ATDN*CTDN
        IF (RAD) 48,45,45
    4 5 ~ T D N 2 ~ = ~ ( - 3 T D N - S Q R T ( R A D ) ) / ( 2 . * A T D N )
    IF (TDN2) 46.47.47
    4 6 \text { TDN2 = (-9TCN+SQRT (RAD))/(2.*ATDN)}
        47 IF (TDN2 - T6) 40.48.48
    48 T1 = TSAT+TDP+TDN+TSATN +TS+TG
        GO TO 50
```

40 PRINT 111
111 FORMAT (35H ANALYSIS MUST BE CONTINUED FURTHER) ONTIME $=0.0$
GO TO 51
$41 T 1=T S A T+T D P+T D N+T S A T N+T 4$
50 ONTIME $=T 1+T F 1$
51 X1FIN=X1IN+X2IN*ONTIME-ONTIME**2*ACCEL/2. $\times 2 F I N=\times 2 I N-A C C E L * O N T I M E:$ RETURN
END
\$ENTRY
\$1BSYS

[^0]: *The superscript numbers represent similarly numbered references in the "List of References."

