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On the Michallov Criterion for Exponential Polynomials

by

Allan M. Kralll

We consider an equatlon of the form
m n 3

Mz) =g = %

Tyf1 gm0 137 et =0 (1)

where 0 < oy < w, ... < w, are real numbers and
gij’ i=1, ...m, =1, ... n are complex numbers.
We assume that there 1s at least one coefficient aiJ
different from zero when 1 > 1.

In many applications 1t 1s necessary to know whether
or not F(z) has any zeros in the right half plane. The
best known technique for answering this question 1is due to
Pontrjagin [1] and [2]. Pontrjagin's criterion, however,
is very difflcult to apply. In fact 1t has been found unsat-
isfactory except as a theoretical result (see [3, page 420]).
Popov, [3, page 420]), states that to provide a more useful
criterion, A. A. Sokolov [4] and N. N. Miasnikov extended

the Michailov criterion to cover exponential polynomials

such as F(z). Unfortunately no reference is given for

1
McAllister Bullding, The Pennsylvanla State University,
Unilversity Park, Pennsylvania.



Miasnikov's work and Sokolov's is inaccessible in this
country. Since the Michallov criterion is easily stated,
easlly proved and easy to apply, 1t seems advantageous

even at the risk of duplication to present it here.
V4

Dividing by e m” and letting aij = am—i+l,j we
transform (1) into
m n L _pay
G(z) =% T  ay. zJ e T1% = 0, (2)
i=1 j=0 J
Here TyoS W mW 54 >0 for 1i=2, 3, ... mand

ry = 0. The zeros of F(z) and G(z) are the same, and it
is 3{z) we will consider from now on.

In general G(z) will contain an infinite number
of zeros which occur in chains having the following
properties.

1. The imaginary parts of the zeros are

O(k) for k =+ 1, + 2, ... + n,
2. The real parts of the zeros are
0(log k), (advanced type), constant, (neutral
type) or - O(log k) (retarded type).
Any combination of advanced, neutral or retarded types
may occur.

The term aln zn is said to be the principle term

of G(z). If the principle term is present, there are

no zeros of advanced type. However, there still may be
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an Infinite number of zeros in the right half plane

because of the presence of zeros of neutral type.

We willl need the followlng hypotheses in what

follows. -
lai,] z lay, |
H 1. a > a
1n 1=p in

H 2. a3, = O, 1 =2, 3, ... m.

H 3. All the coeffilcients aij are real.

Theorem 1. Let H 1 hold. Let

|a

D= lalnl - in"

[
13
)

(3)

M = sup z laijl / D. (4)

Jzogl, .o on"l i=2

Then in the right half plane G(z) has at most a finite

number of zeros all of which lile inside a semicircle of

radilus M + 1 centered at the origin.

Proof, Let |z| > M+ 1. Then

m
la(z)] 2 Ialnl |z]" - 122lainl ,Zln -

n
z

1 m 3
o gzllaijl) | z]



n-1
> o[|z|® - M %lﬂﬁ

> Dllz|™ - ™ (|z]® - 1)/(]z] -1)]
>ollz|™ {lz] - (M+ 1)} +M] / (]z] - 1)
> 0.

If G(z) had an infinite number of zeros in the right

half plane, they would approach infinity giving a con-

tradictlon.
We write
a(z) = ay, 2" (1 + o(z) + ¥(z)), (5)
where
m
o(z) = 3 (a5,/a;,) €74 (6)
and
m n-1 _ _
AR O I

Note that 1in the rilght half plane including the imagilnary
axis |¢(z)| < 1 and ¥(z) = 0(1) as |z| - » whenever H 1

holds.

Theorem 2. (Michailov Criterion). Let H 1 hold. As =z

varles along the lmaglnary axls from - 1 o f£o 1 o then

G(z) passes through the origin each time G(z) has an

imaginary zero. If G(z) has no imaginary zeros, then




n 1
N= 5 -3z (- 1y, iy) arg G(z) + (8)
+ 5= larg (1 + o(1y) + ¥(1y)) - arg (1 + o(-1y)
+ Y(“iy))]s
where N 1s the number of zeros of G(z) 1in the right

half plane, y 1s any number greater than M +

1l of theorem 1,

large enough so that J|é(z) + ¥(z)| < 1 when

lz] > y and

A (iy, ~iy) arg G(z) is the net change 1n arg

G(z) as =z

varies from -1y to ly.

Proof. We choose a semicircular contour

from -iy to 1y along a clrcle centered at the

C varying

origin with

radius y and then along the imaginary axls from 1y to -iy.

If G(z) has no zeros on the imaginary axis then it is

well known that

e _ 1 3
N = b, arg G(z) 5= 4 (-iy, 1y) arg

l\)ll—‘
5

a(z) (9)

where Ac denotes the net change in arg G(z) along the

semicircle. We see from (7) that

A, arg G(z)

o n A, arg z + A, arg (1 + ¢(z) +

n 7+ arg (1 + ¢(ily) + ¥(1y)) -

A, arg Gg(z)

- arg (1 + ¢(-1y) + ¥(-1y))

¥(z)). (10)

s (11)

since 1 + ¢(z) + ¥(z) cannot wind around the origin. In-

serting (11) in (9) achieves the result.



Corollary 1. If H 1 holds, and G(z) has no imaginary

zeros, then N =0 1f and only 1f

A(-1y, 1y) arg G(z) = n 7 + arg (1 + ¢(iy) + ¥(iy)) -
(12)
-~ arg (1 + ¢(-1y) + ¥(-1iy).

Corollary 2, If H 1l and H 3 hold, and G(z) has no im-

aglnary zeros, then

N =% -2 a(0,1y) arg 6(z) + = arg (1+ ¢(1y) + ¥(1y)). (13)

Proof. When H 3 holds the argument for 7y are the

negatlve of those for y.

Corollary 3. If H 1 and H 3 hold, and G(z) has no imaginary

zeros, then N = 0 if and only 1if

A(0,1y) arg G(z) = Eg-+ %-arg (1 + ¢(iy) + ¥(iy)). (14)

Corollary 4., If H 1 and H 2 hold, and G(z) has no

imaginary zeros, then

N = %’"'%F A(-1 o, 1 ®) arg G(z). (15)

Proof. When H 2 holds, ¢(z) = O.
Since ¥(z) = 0(1), 1 + ¥(z) - 1 as |z| = ». Thus the last

two terms of (8) approach O.

Corollary 5. If H 1l and H 2 hold, and G(z) has no im-

aginary zeros, then N = O if and only if




A(-1w, 1«)arg G(z) =nr (16)

Corollary 6., If H 1, H 2 and H 3 hold, and G(z) has

no -Ilmaginary zeros, then

N =

s

-% A (0, 1 =) arg &(z). - (17)

Corollary 7. If H 1, H 2 and H 3 hold, and G(z) has no

lmaginary zeros, then N = O if and only 1f

A (0, 1 o) arg g(z) = 2L . (18)

If these statements are compared to those of
Pontrjagin, 1t 1ls easy to see that they imply each other.
The main advantage to the Michallov criterion 1is the re-
moval of the perpetual oscillation present in Pontrjagin's
criterion.

It 1s a fairly simple matter to see if arg G(z)
varies through the appropriate number of guadrants or
not. This procedure should prove qulte useful in

application.
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