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ABSTRACT 

The purpose of this report  i s  to summarize in the form of a discrete 
minimum principle the necessary conditions for optimality which 
have been derived for the optimal control of a class  of discrete-time 
systems. 
optimal feedback control law when the discrete dynamical system is 
linear and the index of performance is quadratic. 

The discrete  minimum principle is used to derive the 



CONTENTS 

I. 

11. 

111 . 

IV . 

INTRODUCTION 

DISC RETE DYNAMIC AL SY S TEMS 

A. Definitions 

B. Assumptions 

C. Remarks 

D. Linear Discrete  Systems 

THE OPTIMAL CONTROL PROBLEM AND 
THE DISCRETE MINIMUM PRINCIPLE 

A. Statement of the Problem 

B. A Convexity Assumption 

C. 

D. 

E. 

Sys tems Satisfying the Convexity Assumption 

Necessary Conditions for  Optimality - 
The Minimum Principle 

Remarks on the Minimum Principle 

page 1 

3 
3 

4 
4 
5 

THE DISCRETE LINEAR REGULATOR PROBLEM 

A. The Problem Statement 

B. Necessary Conditions for  Optimality 

C. The Discrete "Ricatti Equation'' 

D. 

E. 
F. Concluding Remarks 

The Optimal Feedback Control Law 

An Expression for the Optimal Cost  

V. REFERENCES 

11 

12 

15 

15 

16 

18 

20 

20 
22 

23 

V 



I. INTRODUG TION 

In discrete-time systems the time-evolution of the state variables 

The optimal is described by a set of f irst-order difference equations. 

control problem for such systems reduces to  the minimization of a 

cost  functional subject to constraints on ' he  control variables and subject 

to boundary conditions on the state variables. 

In this report  we modify the results due to  Holtzman and Halkin 

(see References 2 , 3 ,  5, 8 , 9 )  and state a minimum principle 

optimality together with the necessary assumptions required fo r  i ts  

proof. 

tained by Kalman and Koepke (see Reference ?) via dynamic program- 

ming pertaining to the l inear discrete regulator problem. 

for 

The minimum principle is  then used to derive the resul ts  ob- 

I - 1- 



11. DISCRETE DYNAMICAL SYSTEMS 

A. DEFINITIONS 

The class of dynamical systems which we shall call discrete a re  

characterized by the following elements : 

(1) An ordered subset T of positive integers, called the time 

set ,  i . e . ,  

T = {i} = (0, 1 , 2 , .  . . , N }  (2.1) 

where N i s  prespecified. 

(2)  A set  of states {x} = X = E called the state space, where - n 
E i s  an n-dimensional Euclidean vector space. n 

(3)  A set of inputs or controls {u} = U C E  called the input r - - 
space. 

(4) A set  of outputs {y} = Y = E called the output space. 

(5) 

- m 

A difference equation which describes the evolution of the 

state of the system in time, i .  e .  , 

x -x. = f.(x. u . )  i = 0 ,  1, ..., N-1 (2 .2)  -it1 -1 -1 -i'-i 

where x . , u .  a r e  the values of the state vector and the control 

vector respectively at time i and where -1 f .(x,u) - - i s  a vector- 

valued function which maps X x U into X .  The difference 

Eq. 2 . 2  i s  a rule which enables us to compute the state of 

the system at time from knowledge of both the state 

and the control at time i .  

-1 -1 

i t 1 

(6)  An algebraic equation which relates the output vector y. at 
-1 

time i to  the state vector x. and the control vector 21, i . e .  , 
-1 

where h. (x, u) 

X x  U into Y .  

is a vector -valued function which maps -1 - - 

A system, C, possessing the above properties i s  called a "dis- 

c re te  dynamical system". 

- 3- 
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B. ASSUMPTIONS 

F o r  every i = 0, 1, . . . ,N-1 we shall impose certain constraints 

upon the vector-valued function f . (x ,u)  inasmuch as they a r e  central  

to  the proof of the Minimum Principle. 
-1 - - 

These assumptions a re :  

(1) Fo r  every fixed u E U ,  the function f . (x ,u)  is  twice continu- 
-1 - - 

ously differentiable with respect to  x. 

f i(x,u) and all i t s  first and second partial derivatives with 

respect to x a r e  bounded over A x  B for any bounded se ts  

A C X ,  BCU.  

- 
(2) - - -  

- 

( 3 )  The n x n  matr ix  

I+ ax 
is non-singular on X x U. 

C .  REMARKS 

In Section B, assumptions (1) and (2)  correspond to  the usual 

"smoothness" conditions also common to the continuous time case.  

Assumption (3)  is, however, of a different nature.  

guarantees that i f  we know x and the control u. then we can -it 1 -1 
uniquely determine x. .  *To see this more clear ly  l e t  us  rewri te  Eq. 2 . 2  

in the form 

In essence,  it 

-1 

x. t f .  (x . ,u . )  = x 
-1 -1 -1 -1 -it 1 ( 2 . 5 )  

Since u. is known, we may think of the left-hand side of Eq. 2 . 5 - a ~  

a mapping g.(b) f rom X into X, so  that Eq. 2 . 5  may be rewrit ten 
-1 

1 
as 

In order  t o  be able to solve Eq. 2 . 6  for  x the Jacobian matrix -i ' - - 1x = x. - -1 

( 2 . 7 )  
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must  have an inverse .I But 

and, so, in order to be able to solve for all x. the matrix Eq. 2. 8 
-1 a 

must  have an inverse for all x E X and all u E: U. - - 
We note, furthermore, that in the case of continuous systems 

described by a differential equation A = f (x,~), knowledge of the state 

X(T) and of the input function ~ ( e )  i s  sufficient to uniquely determine 

x(t) for both t > T and t < T .  This property i s  a consequence of the 

"reversability" with respect to  time of the solution of a differential 

equation. Thus, assumption (3 )  provides this same property for the 

class  of discrete systems characterized by the difference equation 

-it 1 -1 -1 -i'-i 
As a consequence of the "time reversability" for continuous 

systems, it may be shown that assumption (3) i s  always satisfied in 

the case of a system of difference equations which approximates a 

system of differential equations31 t However, assumption (3) may 

well fail to  be satisfied for an arbitrary discrete dynamical system. 

- -  
- - 
- 

x -x. = f.(x. u.). 

D. LINEAR DISCRETE SYSTEMS 

As in the case of continuous dynamical systems, the linearity 

of the equations of motion i s  an extremely strong property which 

enables us to  deduce analytical solutions. 

A linear discrete dynamical system is characterized by the 

di f f e r enc e e quat ion 

x -x. = A.x. t B.u. -it1 -1 -1-1 -1-1 

y. = C.X. 
-1 -1-1 

(2 9) 

(2.10) 

1 This i s  often called the inverse function theorem. 
Rudin, W .  , Principles o-ematicaihalysis, Second Edition, 
McGraw-Hill Book Company, 1964, p. 193. 

See, for example, 

T Superscripts re fer  to numbered items in the References. 
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where A B C a r e  n x  n, n x  r and m x n  mat r ices ,  respectively 

for all i = 0 , 1 , .  . ., N-1. 
-i' -i' -i 

Note that assumptions (1) and (2)  of Section B a r e  satisfied for the 

l inear system Eq. 2 . 9 .  
N -  1 the n x n matr ix  (I t A .) be invertible. 

Assumption (3)  requires  that for all i = 0 , 1 , .  . . , 
- -1 

If the matrices A.,  B. C .  a r e  independent of the t ime i, then 

the l inear discrete system is time-invariant and is described by the 

difference equations 

-1 -1' -1 

x -x. = A X. t Bui -it 1 -1 --I -- 

y. = c x. 
-1 - -1 

(2.11) 

(2.12) 

The linearity of Eq. 2.11 enables u s  to obtain a closed form ex- 

-k ' - pression for the state vector x 0 < k <  N by recursion.  Subject to the 

boundary condition 

the solution for x is  given by -k 

(2.13) 

(2.  14) 

t The derivation of Eq. 2.14 i s  well-known and may be found elsewhere.  

See,  for  example, Zadeh, L. and Desoer ,  C., Linear System TheoryL 
McGraw-Hill Book Company, 1963. 
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111. THE OPTIMAL CONTROL PROBLEM AND 
THE DISCRETE MINIMUM PRINCIPLE 

In this chapter we shall state and discuss the discrete version 

of an optimal control problem and then present a s e t  of necessary 

conditions for this problem which we shall call the Discrete Minimum 

Principle. 

wi l l  be presented in  a framework paralleling that of continuous time 

optimization problems (see  Ref.1, Chapter 5). 

The formulation of the dis Crete optimization problem 

A. STATEMJSNT O F  THE PROBLEM 

We assume that we a r e  given a discrete dynamical system which 

is characterized by the difference equation 

X - x = f i  (5%. lli) -i+l -i - i = 0, 1, ..., N-1 (3. 1) 

In addition, we a r e  given an initial state - 6 E X for i = 0, i. e . ,  

x = f and a specified terminal (or  target)  s e t  S & X  which is 

a smooth n-k dimensional manifold of the form 
-0 - 

S = { E  : gi(x)  = 0; i = 1 , 2 ,  ..., k <  - n }  (3.2)  

where the functions g. (x ), ~ . . , g&) a r e  given twice continuously 

differentiable mappings from X into R1 such that for  every - x e X  

the vectors - 

1 -  

gi(x) ; i = 1,2,  ~ ~ * ,  k a r e  linearly independent. 

The opklmal control problem is to then determine the control 

a 
a x  - 

s eque nc e 
* 

-i { U  , i =  0, 1, ..., ~ - 1 )  (3.3) 

and the corresponding state trajectory 
* 

{X , i =  0, 1, ..., N} -i 

such that 
* 

-0 
x = E  - 

( 3 . 4 )  

I 
4 * * *  

-it1 X - -i x = -1 f . ( x i ,  - ui  1 ,  i = 0,1,  .. ., N - l I ( 3 . 5 )  
* 

u E U  , i =  0, 1, #.., N-1 -i * 
X N  €S 

-7 - 
I 
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and such that amongst all  sequences {u.} and {xi} - 

the above conditions, the cost  functional 

satisfying 
-1 

( 3 . 6 )  

>k a;< 
attains its minimum value a t  {u . }  = ( u .  } , {x.} = (xi} . 

{ x .  } 

-1 - 1 ,;< - 1 
Under these conditions, the sequence { u .  } is called the ' 'optimal 

-1 

control" and the sequence is called the "optimal trajectory".  

We shall assume that for every i = 0, 1, . . . , N-  1 the mapping 
-1 

Li(x, 2 )  from X x U into R1 
conditions ( 1 )  and ( 2 )  of Section I1 B a s  required of the f -i 

satisfies the same "smoothness" 

. 
B. A CONVEXITY ASSUMPTION 

P r i o r  to stating a Discrete Minimum Principle expressing necessary 
'* >k 

conditions for the optimality of u and x we shal l  require a rather  

strong assumption which i s  of central  importance i n  the proof of the 

Minimum Principle. 

-i -i 

We assume that for a l l  pa i r s  of vectors 2, - v E U and for  all 

r ea l  numbers a E[ 0, 11 there exists a vector W E U and a 

scalar  p - > 0 such that for  all i = 0, 1, . . . , N-  1 and for  

every - X E X  the n t l  dimensional vector 

-a 

y . ( x  u )  = -1 - ' -  ( 3 . 7 )  

sat isf ies  the relation 

- y i ( x ,  Ea) = a y i ( x ,  - -  v )  $. ( l - a ) l i ( z , E )  + P Z  - ( 3 . 8 )  

where - z is the n t l  dimensional unit vector co l (0 ,  0, . . . 0 ,  1). 

This assumption, which is due to J. Holtzman5 is called "directional 

convexity", I t  is a weakening of Halkin's original assumption3 which 

required that the se t  
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be convex for every - xcX . 
be convex is equivalent to Assumption(4)with p = 0. ) 

(Note that the requirement that Gi 

The convexity requirement, Assumption(4), i s  the crucial  assump- 

tion which enables one to derive a Minimum Principle for discrete 

systems. 

and continuous time systems relies heavily on showing the convexity 

of certain reachable se t s  in n+l dimensions. In the case of control 

sys tems which a r e  characterized by differential equations, the time, 

by its evolution on a continuum, introduces a "convexifying" effect 

which frees  us from the necessity of adding convexity assumptions 

to the problem statement. On the other hand, for control systems 

described by difference equations, the time, by i ts  evolution on a 

finite set ,  introduces no "convexifying" effect and i n  order  to obtain 

a Minimum Principle paralleling that of continuous sy3 tems, some 

convexity assumptions must  be added to the problem formulation. 

The proof of the Minimum Principle for both discrete 

A striking example of the I'convexifying" effect of time by i ts  

evolution on a continuum i s  most simply afforded by the following 

theorem. 3 

Theorem: If f :  [ 0, 13 --E is a piecewise continuous function and 

i f  A i s  the se t  of all subsets of [ 0, 11 which a r e  the union of a 

finite number of intervals then the se t  

n 

{ E j f ( t )  dt : 

is convex. 

On theo the rhand ,  i f  g :  { O , l ,  . . . ,  k}-.cEn andi f  Pk i s  

the s e t  of all subsets of { 0 , 1 , .  . ., k} then the s e t  

is not convex (unless g e 0). - 
C. SYSTEMS SATISFYING _ _  - THE CONVEXITY _ _  ASSUMPTION 

An important and fairly common class of systems for which assump- 

tion(4)is satisfied a r e  those for which each -1 f .  (x - , - u )  is linear in  - u 

(o r  linear in  x and - u jointly), the s e t  of controls U i s  convex and - 
for  which the functionals Li (x - -  , u ) a r e  convex functions of - u for 
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fixed x and for all i = 0, 1, . . . , N- 1. - 
The proof of this fact  is readily demonstrated since the convexity 

of Li(x , u )  implies that for  a l l  u ,  v c  U and for all a€[ 0, 11 
exists a p> 0 such that 

there  - -  - -  
- 

a L i ( x , u )  - -  t (1-a)  Li ( x ,  - -  v )  = p t Li(x, a u t ( 1 - a )  - - v)  (3. 10) 

If we now define 

W = a u  - t ( 1 - a ) v  - (3.11) -a  

the convexity of U assures  us that the vector W EU. On the other 

hand, the mapping - f (2, u ) ,  being l inear on U satisfies 
-a 

a - - -  f i ( x ,  u )  t (1-a)  -1 f . ( x  - ’ -  v )  = -1 f . ( x  -’ a u  - t ( 1 - a ) v )  - 

Finally, combining Eq. 3.10 and 3.12 we see  that 

(3.12) 

(3. 13) 

where 1. (x, u ) is as defined in  Eq. 3.7. Hence, for all u ,  v E U 

and all ac[ 0, 13 we have shown that there  exists a p > 0 and a vector 
W E: U such that the requirements of assumption ( 4 )  a r e  satisfied.  -a 

optimization problems for which assumption(4)is satisfied a r e  those 

for which the system of difference Eqs.  3. 1 approximates a system 

of differential equations and the cost  functional 3.6 approximates a 

cost functional of the form 

1 -  - - -  
- 

As shown i n  Reference 3, another important c lass  of d i scre te  

T 
P 

( 3 .  14) 

0 

In other words, we a r e  considering a d i sc re t e  optimization problem 

which is an approximation to a continuous t ime optimization problem. 

This is quite common in  practice,  since f r o m  a computational viewpoint 

a discrete  system of equations is more  adaptable to computer solution 

than is a system of differential equations, 

However, assumption(4)is not necessar i ly  justif ied i n  the case  of 

a system Of nonlinear difference equations describing a control process  
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which is basically d iscre te ,  

assure  the validity of this assumption (as  well as the preceding ones) 

pr ior  to applying the Minimum Principle. 

Considerable ca re  must be taken to 

D. NECESSARY CONDITIONS FOR OPTIMALITY-- 
THE MINIMUM PRINCIPLE 

Given the optimal control problem formulated in  Section 111. A 

and given that assumptions ( 1 )  - ( 4 )  a r e  satisfied, the following 

theorem can be proved by geometrical considerations. 
3 

Theorem: (Minimum Principle for Discrete Systems) * 
-i Let {x i = 0, 1 , .  . . , N} be the t ra jectory of the system 3. 1 

.L -8. .b 

corresponding to {u: }, where - u i  E: Uy which originates a t  

x = and terminates at x E S ,  where S is defined by 

Eq. 3.2 .  Then in  order  that {u-: 1 minimize the cost  functional 3 . 6  

i t  is necessary that there exist a sequence of n-vectors 

::< -1 4 

-0 - N  .b 
- 

-1 

4 , i = 0, 1, . . . 
1 : The scalar  function 

N} called the "costates" such that 'E i 

( 3 .  15) 

called the Hamiltonian has an absolute minimum as a function 

of u over U a t  u = u for  every i = 0, 1 , .  . .,N-l, i .  e . ,  
4 

-i -i -i 

or ,  equivalently 

( 3 .  16a) 

2. The evolution of p' i n  time is determined by the difference 
-i 4 

equation 

t n 
v- 

aibi  < a ,  b >  denotes the inner (o r  dot product) - -  
i =  1 
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for a l l  i = 0, l , , .  . , N-1 

3 .  ( T ransver s ali ty conditions ) 

There exists real  numbers such that Pk P I "  p2.  c . .  . 

( 3 .  17) 

(3 .18)  

a;c 
e. 9 E N  is normal to S,  

Special cases a r e  (1) If k = n then S = 8 is a point i n  E and 

and ( 2 )  If k = 0 
- n $< 

nothing may be said a pr ior i  as  to the value of 

in  which case S = E and p = 0 ,  
a t  N 

n - N  - 

E. REMARKS ON THE MINIMUM PRINCIPLE 

1. In order to be able to handle pathological optimization problems, 
0 we should, str ictly speaking, include an  additional constant p in  

our statement of the Minimum Principle in  the Same manner a s  for  

continuous time optimization problems. In other words, i n  the statement 

of the Minimum Principle we should consider the Hamiltonian function 

rather  than the function of Eq. 3 .  15 where po is a non-negative 
0 constant 

we may choose p 

generally a difficult task to ascer ta in  a pr ior i  whether p 

However, the linear regulator problem which is  considered in  the 

following chapter is not a pathological case.  

The pathological cases  Occur when po = 0 ;  when P # 0 
It is 

0 * 
= 1 (since the equation fo r  pi is l inear).  

0 # 0 ( s e e  Ref. 3 ) .  

2 .  In a manner similar to the Minimum Principle for Continuous 

dynamicdl systems, the discrete  Minimum Principle provides only 

necessary conditions for a sequence CU*:} to locally minimize' the 

' In contradistinction to the continuous case.  the concepts of "weak" 

-1 

and "strong" relative minima a r e  equivalent f o r  discrete  problems since 
the control u exists only on a finite s e t ,  -i 
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cost functional 3.6. In general, there may be several  control 

sequences, called "extremal" controls, which satisfy all  of the 

necessary conditions and which, therefore, a r e  possible candidates 

for the optimal control. 

tremals corresponds to the global optimal, one must compute each 

associated value of J({u . } )  and simply chose the control which endows 

J({ui}) with the smallest  value, 

and is analogous to the continuous case (see Ref. 1, Chapter 5). 

In order to determine which of these ex- 

-1 
This is generally a finite procedure 

3. It is assumption(4)which enables us to conclude that i f  the 
J;- * 

-1 -i control sequence {u .  } is to locally minimize J({IL}), then u 

must  necessarily absolutely minimize the Hamiltonian 3.15--a fac t  

expressed by Eq. 3.16. 

If, on the other hand, we did not require Assumption(4), then as 
4 shown by Jordan and Polak, a necessary condition for the sequence * * 

-1 -1 -i {u .  } to be a local minimum of J( {u.}) i s  that u locally minimize 

the Hamiltonian. In other words, in the absence of Assumption(4)., 

we can conclude a I'Stationarity" Principle but not a "Minimum" 

Principle. 

a unique control which absolutely minimizes the Hamiltonian but does 

- not locally minimize the cost  functional. 

is independently satisfied, the stationarity principle can also be used 
to determine the optimal control by the procedure outlined in the fore- 

going remark  2.  

In fact, i t  i s  possible under these circumstances to have 

In cases when Assumption(4) 

4. In the event that the terminal manifold S = E and i f  the cost  n 
functional J({u.}) i s  of the form 

( 3 . 2 0 )  

where K(  - ) i s  a twice continuously differentiable functional defined on 

X ,  (hence the effect of the final state x i s  included in our performance - N  
measure)  then i t  can be shown that the transversali ty condition co r re s -  

ponding to this problem is that 

a P =  - K ( x i )  
.L cc 

- N  a x  - (3.21) 

This fact  wi l l  be used in Section IV in the solution of the linear regulator 

problem . 



IV.  THE DISCRETE LINEAR 

A .  THE PROBLEM STATEMENT 

REGULATOR PROBLEM 

In this chapter the necessary conditions of the Minimum Principle 

will be used to solve a discrete optimization problem. The problem to  

be considered is the discrete analog of the Linear Regulator problem 

for continuous t ime systems (see Reference 1 , Chapter 9).  
m o r e  specific we suppose that the discrete system i s  l inear on X x U. 

The difference equation describing the evolution of the state is assumed 

t o  be given as 

To be 

x -x. = A. X. + B. U. i = 0 ,  1 , .  . . ,N-1 (4.1)  -it 1 -1 -1-1 -1-1 

where A. is an n x n matr ix  for i = 0 ,  1,. . . , N - l  
-1 

B. is an n x r matrix for i = 0 ,  1, .. . , N - 1  
-1 

The control space U = E ( i . e . ,  u. i s  unconstrained) r -1 

The matr ix  (I+ A . )  is non-singular for i = 0, 1, . . . , N-1 - -1 

The discrete regulator problem i s  to determine the control sequence 

Ju* 

{zi, i = 0,  1 , .  . . , N }  

i = 0 ,1 ,  . . . ,N-1} such that the corresponding state sequence .-i ' 
* 

satisfies 

x* = 5 = given ' '.initial' '  state 
-0 - 

* so that x is unconstrained, and such that -N 

is  absolutely minimized, where 

(4 .2 )  

(4.3) 

(4.4) 

Q. is a positive semi-definite n x n matr ix  for i = O ,  1 , .  . . , N  
-1 

R. is a positive definite r x r matr ix  for i=O, 1, . . . N-1 
-1 

- 15- 
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The performance functional Eq. 4.4 i s  the discrete analog of the 

quadratic performance functional for continuous problems. 

B. NECESSARY CONDITIONS FOR OPTIMALITY 

Pr ior  to applying the Minimum Principle to this problem we must 

insure that assumptions (1) - (4) are  satisfied. Assumptions ( 1 )  and 

(2)  are  clearly satisfied by virtue of the choice of -1 f .  and Li. 

matr ices  were assumed to satisfy assumption ( 3 ) .  

assumption (4) is  satisfied by virtue of the r emarks  of Section 1x1 c .  
We are  now in position to  apply the Minimum Principle. 

The -1 A. 

Finally the convexity 

* Let us  assume that {u!} -1 and {x. -1 } represent an optimal solution 

to  our problem. 

ciple requires that the Hamiltonian 

The first necessary condition of the Minimum Prin-  

<x*, Q.x? > t < u ,  - -1- R.u > t <p* -i + 1 ’ -i-i A x* > = z -1 -1-1 

u at u = u* for every - - -1 
have an absolute minimum as  a function of 

aH exis ts ,  the mini- aU and i = O  , 1 , . . . , N-1. Since u is unconstrained - 
aH 0 .  A t  this minimum aU=- - mum of the Hamiltonian is found by setting 

u = u. . Hence * 
- -1 

o r  hk 1 ’ *  u. = a; gi pi+] 
-1 (4.5) 

The required inverse exists since -1 R.  is positive definite. Fur ther -  

more, the Hamiltonian has a unique minimum at u = u! by virtue of - -1 

a2H * * 
a U  

the fact that (xi, pt l ,  2;) = -1 R.  i s  positive definite. 
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i 

t The “costatet1 vectors p? i = 0’1, . . .N-1 corresponding to u. 
-1 ’ -1 

and x? satisfy the difference equation 
-1 

Application of the transversality condition Eq .  3.21 corresponding 

to  a cost functional of the form Eq. 3.20 with S = En, yj .Ids, since 
1 (XN) - - 2 <%, g e ~ > ,  that & =  Q 

-N--X” 
Combining Eqs.  a, 1, 4.5 and 4.6 we obtain the 2n x 2n system of 

” c anonic all e qu ati on s 

* l l *  
X* -i+l -1 -1-1 -1-1 -1 

- X? = A. X. - B. R: B. pi+l (4.7a) 

with the lcspli t t l  boundary conditions 

x* = g - -0 
(4. 8a) 

i 

If we could solve the above two-point boundary value problem for 

we would then obtain (by Eq. 4.5) an expression, in te rms  of the * zit 1 
t ime i andini t ia l  state 6, for the optimal control u f .  This i s ,  in 

general, an extremely difficult problem. As an alternate proceedure,  

with consistent analogy to the continuous time problem, we shall 

seek the optimal control law i . e . ,  the optimal control u? as a 

function of the state x? and the time i. 

- -1 

- -1 

-1 

* * 
To be more specific, we shall assume that p. and x. a r e  r e -  

-1 -1 

la ted by a l inear transformation for all i, namely 

* = K.x?  
Pi -1 -1 

(4.10) 
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where each K is an  n x n matr ix  which is to be determined. The 

optimal control law Eq. 4 . 9  will then be a linear feedback law, 
-i 

* 
X 

* 1 '  u = - R-. -i -1 B-i z i t 1  - i t 1  (4 .11)  

C.  THE DISCRETE "RICATTI EQUATION" 

In order to determine a recur rence  relation for the matr ices  

K -i ' i = 0, 1 , .  . . , N- 1 we shall  make use of Eqs. 4.7 a ,  b. 

the assumed expression for p yields, respectively 

Introducing 
I 

- i t 1  

1 

(4. 12b) 
;$ ak * 8 $6 

- K . x  = - Q  x - A i K  x -i-i - - i t l - i d  1 K x  - i+ l  - i t 1  -1-i 

Rearranging t e rms  we have 

where 

(4. 13a) 

(4. 13b) 

(4. 14) 

*< 
Solving Eq. 4. 13a for - i t  x 1 (assuming that the required inverse  

exis ts)  we obtain 

* 
( 4 .  15) 

* 
= ( I t  B .  R _ l  I C t l ) - '  @ x .  -1 -1 - X - i t 1  

The inverse te rm in  the above expression can be simplified by making 

use of the matrix identity 6 

(4. 16) -1  -1  B1 (2 , tA-g)  = -n  I - A ( I  _ -  r t B '  - -  A )  - 
where A ,  B a r e  n x r mat r ices .  - -  

), taking A = B -1  ' 
Application of this identity to (1 t B si Ei  Ei t l  - -i' 

I - -  -1  B - = E i  B-i K-itl yields 
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Substituting this expression into Eq. 4.13b resul ts  in 

N-1. Since Eq. 4.19 must hold for any choice of f o r  all  i = 0 ,1 , .  . . , 
the initial state 6 and since the matr ix  K does not depend on 5 , - -i 
we can conclude that Eq. 4.19 must be satisfied for all x This 

implies that K must satisfy the matr ix  difference equation 

- 
- 

8 
-i 

-i 

(4.20) 

7 which is the desired resul t  (a l so  obtainable by Dynamic Programming ). 

Equation 4.20 is an explicit rule for obtaining K -i 
m a y  be regarded as a discrete analog for the matr ix  Ricatti (differential) 

e quation. 

f rom Eitl and 

1 

Turning our attention to  the boundary condition for Eq. 4.20 we * * 
have, since p = gNxN that -N 

9 - * 
K-NZN - Q_NXN 

* 
but since x is unspecified, we conclude that -N 

Note that use of the matrix identity Eq. 4.16 has  enabled us to r e -  
place the problem of inverting an n x n matr ix  with one of invert- 
ing an r x r xnatfix. In m a n y  control problems this can truly be 
advantageous since r is generally Cn. 

t 
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(4.21) 

C onsequently , the existence and uniqueness of the matr ices  K -i 
,t 4 

-i - -i i = 0,  1 , .  . . , N-1 validates our claim that p 

course,  that the inverse t e r m  in Eq. 4. 15 exists. 

= K i x  provided, of 

In addition, the matr ices  K i = 0,  1 , .  , . , N-1 a re  symmetr ic .  - i J  1 

This i s  a direct  consequence of the fact  that K and K both a re  

solutions of the same difference equation with identical boundary 

conditions--a fact readily ver i f ied by taking the transpose of 

Eq. 4.20, notingthat R = R and Q = E j .  Hence K -i = K  -i 

which implie's that K 

- i  -i 

I 1 I 

-i -i -i 
i s  symmetric.  -i 

D. THE OPTIMAL FEEDBACK CONTROL LAW 

Having obtained the difference equation for  K - i  we now can obtain 

an expression for the optimal feedback control law Eq.'4.13. 

ting Eq. 4. 18 for xit l  
Substitu- * 

into Eq. 4.11 yields 

-1  * 
= -si 12 - B_'..~+~B_~(R~ t B_'..~+~B~)-'I - B ~ K  - -i+l-1-i 9. x 

(4 .22)  

where the last  expression is obtained by use of the matrix identity 

- I - X(Y - -  + x ) - l  - = Y ( Y  + x ) - l  - 
Eq. 4.22 is the desired expression f o r  the optimal control law a t  

time i. The optimal control requires  knowledge of K (which can 

be pre-computed according to Eq. 4.20 and s tored)  as well a s  knowledge 

of the s ta te  of the system a t  time i. 

as  this one is indeed feasible f rom a pract ical  standpoint--requiring 

only adjustable feedback gains.  

-i+l 

A discrete  control scheme such 

E .  AN EXPRESSION FOR THE OPTIMAL COST 

We now claim that the matr ix  K for  i = 0, 1, . . . t N  has the 
-i 

property that 
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N- 1 
8 4  1 8  4 l *  8 4 8 x >ti 1 < x  Q x i >  J (xi, j ) = - < x  , K . x . > = - - < x  2 - j  -J-J 2 - N ' g N - N  -i' -i- 

8 8 
t < u i ,  - R i u i >  - -  

i =  j 

(4.23) 

- - minimum "cost remaining" along the optimal. trajectory 
starting a t  time j and s ta te  x* 

- j  

To prove this fact is i s  only necessary to substitute Eq. 4.22 for 

into the above expression. 
8 

u -i This gives (since ISitl is symmetr ic)  

N- 1 

N- 1 .. 

1 - 1  B.K I.t 
--i-itl-i 

1 8 - -  
- 2  

I 8 
I i K  I . ]  x > - - i t l - i  -i 

K [ I - B ~ ( R ~ + B ' . K  B.) -1 gi  ~ _ ~ ~ ~ ~ i p ~ ) x ~  4 > 
- i t 1  - - -1-it1 1 

N- 1 
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Consequently, since g N  = GN we have that 

8 8  1 8  8 
J ( z j ,  j )  = z <  x , K . x . >  

-J  - J - J  
(4.24) 

as claimed. In particular,  for j = 0 we have that 

1 - < x , Eo so > = optimal "cost" 2 -0  

= minimum value of J((U . } )  
-1 

It should also be noted that by virtue of the facts  

-1 - - i '  - -i - 
(a)  Q .  > 0 and F l - -  * 8  t 

(b)  R .  > 0 we have that J (x i )  > 0 for a l l  {x } , {ui  }. Thus 

Hence K is a positive semi-definite matr ix  for i = 0, 1, . . . , N. -i 

F. CONCLUDING REMARKS 

Using the property that K is positive semi-definite we can now -i 
regress and establish the validity of the assumption in Eq. 4.  15 that 

is > 0 , the - 1  ' 
I -1 -1- l t l  - -  the inverse of ( I  t B i R .  B,K,. )exists.  Since K t l  

mr x mr matrix B .  K B is a lso positive semi-definite. Fur ther -  

more ,  since the sum of a positive definite mat r ix  and a positive semi-  

- -  
-1 - i t 1  -i 

# 

definite matrix is i tself  positive definite, we conclude that (R - tEi.i+113i) 
> 0 . 
Finally, by the matr ix  identity 4. 16 we establish that (I  - t B i R - l B ; E i t l  - -i - 

Hence the claim that ( R i  t B' K B .)-I exists is validated, 

r 1  -i - i t l - i  - - 

indeed exists,  

Consequently, we have shown, by use of the Minimum Principle,  that 

i f  the optimal control exists,  then i t  is uniquely determined by Eqs. 4.20 

and 422. By independent arguments (such a s  those used i n  the continuous 

t ime case)  i t  is possible to  conclude that the optimal control indeed 

exists. Consequently, for the d iscre te  optimum linear regulator problem 

the minimum principle supplies us with both a necessary  and sufficient 

condition for  optimality. This completes our investigation of the above 

optimization problem. 
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