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ABSTRACT 2 56/ /5 /

The purpose of this report is to summarize in the form of a discrete
minimum principle the necessary conditions for optimality which
have been derived for the optimal control of a class of discrete-time
systems, The discrete minimum principle is used to derive the
optimal feedback control law when the discrete dynamical system is
linear and the index of performance is quadratic.
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I. INTRODUCTION

In discrete-time systems the time-evolution of the state variables
is described by a set of first-order difference equations. The optimal

control problem for such systems reduces to the minimization of a

cost functional subject to constraints on "he control variables and subject

to boundary conditions on the state variables,

| In this report we modify the results due to Holtzman and Halkin
(see References 2, 3,5, 8,9) and state a minimum principle for
optimality together with the necessary assumptions required for its
proof. The minimum principle is then used to derive the results ob-
tained by Kalman and Koepke (see Reference 7) via dynamic program-

ming pertaining to the linear discrete regulator problem.




II. DISCRETE DYNAMICAL SYSTEMS

A, DEFINITIONS

The class of dynamical systems which we shall call discrete are

characterized by the following elements:

(1) An ordered subset T of positive integers, called the time

set, i.e.,
T = {i} = {0,1,2,...,N} (2.1)

where N is prespecified,

(2) A set of states {_’E} =X = En called the state space, where

En is an n-dimensional Euclidean vector space.

(3) A set of inputs or controls {u} = UgEr called the input

space.
(4) A set of outputs {y} = Y = E _ called the output space.

(5) A difference equation which describes the evolution of the

state of the system in time, i.e.,

f(x.,u,) i=0,]1, N-1 (2.2)

Zie17E T 4% Y
where fi'll-i are the values of the state vector and the control
vector respectively at time i and where _{i(i,ll_) is a vector-
valued function which maps X x U into X. The difference
Eq. 2.2 is a rule which enables us to compute the state of
the system at time i+ 1 from knowledge of both the state

and the control at time 1i.

1 (6) An algebraic equation which relates the output vector y. at
time i to the state vector x and the control vector u., i.e,

y:

L= hx,u); i=0,1,...N (2.3)

where h.l(x, u) is a vector-valued function which maps
! X x U into Y.
A system, Z, possessing the above properties is called a ''dis-

crete dynamical system''.




B. ASSUMPTIONS

For every i=0,1,...,N-1 we shall impose certain constraints
upon the vector-valued function fi(x,u) inasmuch as they are central

to the proof of the Minimum Principle. These assumptions are:

(1) For every fixed u €U, the function fi(x,u) is twice continu-

ously differentiable with respect to x.

(2) _fi(i,_\_l_) and all its first and second partial derivatives with
respect to x are bounded over A x B for any bounded sets
ACX, BCU,

(3) The nxn matrix

8f.(x,g)

—] '—
It 5 (2.4)

is non-singular on X x U,

C. REMARKS

In Section B, assumptions (1) and (2) correspond to the usual
""smoothness'' conditions also common to the continuous time case,
Assumption (3) is, however, of a different nature, In essence, it

guarantees that if we know X, and the control u., then we can .

+1

uniquely determine x.. ‘To see this more clearly let us rewrite Eq. 2.2

in the form

(2.5)

Xt ) = ox0,

Since u, is known, we may think of the left-hand side of Eq. 2.5 as

a mappin .(+) from X into X, so that Eq. 2.5 may be rewritten
pping g, q Yy

as

gl = x4 (2.6)

In order to be able to solve Eq, 2.6 for X, the Jacobian matrix

9g, (x)
x —
- X =X

(2.7)
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must have an inverse T But

of. (x,u)

9g;(x)

and, so, in order to be able to solve for all X5 the matrix Eq, 2.8
must have an inverse for all x € X and all u e U,

We note, furthermore, that in the case of continuous systems
described by a differential equation _:_c_ =_£(f’.‘i)’ knowledge of the state
E(T) and of the input function 3(') is sufficient to uniquely deterrhine
x(t) for both t > T and t <T. This property is a consequence of the
""reversability' with respect to time of the solution of a differential
equation. Thus, assumption (3) provides this same property for the
class of discrete systems characterized by the difference equation
X% = L)

As a consequence of the '"time reversability' for continuous
systems, it may be shown that assumption (3) is always satisfied in
the case of a system of difference equations which approximates a
system of differential equations?TT However, assumption (3) may

well fail to be satisfied for an arbitrary discrete dynamical system,

D. LINEAR DISCRETE SYSTEMS

As in the case of continuous dynamical systems, the linearity
of the equations of motion is an extremely strong property which
enables us to deduce analytical solutions,

A linear discrete dynamical system is characterized by the

difference equation

X+17% T Ax. + Bu, (2.9)
y; = Cx (2.10)

This is often called the inverse function theorem. See, for example,
Rudin, W., Principles of Mathematical Analysis, Second Edition,
McGraw-Hill Book Company, 1964, p. 193.

T T Superscripts refer to numbered items in the References.
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where éi’ Ei’ Ei are nxn, nxr and m xn matrices, respectively
for all i=0,1,..., N-1,

Note that assumptions (1) and (2) of Section B are satisfied for the
linear system Eq. 2.9. Assumption (3) requires that for all i =0,1,...,
N-1 the nxn matrix Q+ ﬁi) be invertible.

If the matrices -éi’ -Ei’ Ei are independent of the time i, then
the linear discrete system is time-invariant and is described by the

difference equations

(2.11)

I
S
X
+
uy)
[

X, , =X, . .
—it+l —i —_——i =

y.: = Cx (2.12)

The linearity of Eq. 2.11 enables us to obtain a closed form ex-
pression for the state vector x,, 0<k< N by recursion. Subject to the

boundary condition

X = E (2.13)

the solution for x

Xy is given by

k
X = g+é)k §+Z (l+é)-i§_gi_1 (2.14)
iz}

T

The derivation of Eq. 2.14 is well-known and may be found elsewhere.

Téee, for example, Zadeh, L. and Desoer, C., Linear System Theory,
McGraw-Hill Book Company, 1963.




I11. THE OPTIMAL CONTROL PROBLEM AND
THE DISCRETE MINIMUM PRINCIPLE

In this chapter we shall state and discuss the discrete version
of an optimal control problem and then present a set of necessary

conditions for this problem which we shall call the Discrete Minimum

Principle. The formulation of the discrete optimization problem
will be presented in a framework paralleling that of continuous time

optimization problems (see Ref.l, Chapter 5).

We assume that we are given a discrete dynamical system which

is characterized by the difference equation

u.) i=0, 1,

Xy~ %y =4 (x,0, ..., N-1 (3.1)

In addition, we are given an initial state _§_ € X for i=0, i.e.,
X, = € and a specified terminal (or target) set SC X which is
a smooth n-k dimensional manifold of the form

S = {x:g(®x) = 0;i=12,...,k<n} (3.2)

where the functions g; (x),.. (x) are given twice continuously

.y gk
differentiable mappings from X into Rl such that for every xeX

the vectors 58_x gi(§) ; i=1,2,..., k are linearly independent,

The optimal control problem is to then determine the control

sequence

{u} ,i=0,1, ..., N-1} (3.3)

and the corresponding state trajectory

{5: ,1i=0,1,..., N} (3.4)
such that
~

sk

x, = &

* * * % .

Xy oX =L x,u0), 1201000, N-l}(3.5)
*

u. eU , i=0,1, ..., N-1

* S

XN € y
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and such that amongst all sequences {Bi} and {51} satisfying

the above conditions, the cost functional

N-1
J({u}) = Z L (x., u,) (3.6)

iZi 2y
i=0

attains its minimum value at {u, } = {u*} {x } = {x }.
Under these conditions, the sequence {u } is called the '""optimal
control'" and the sequence {x } is called the "optimal trajectory''.
We shall assume that for every i=0, 1,..., N-1 the mapping
Li (x, u) from X x U into R1 satisfies the same '""'smoothness"

conditions (1) and (2) of Section II B as required of the -51 .

B. A CONVEXITY ASSUMPTION

Prior to stating a Discrete Minimum Principle expressing necessary
* sk
conditions for the optimality of u, and x, we shall require a rather
strong assumption which is of central importance in the proof of the

Minimum Principle,

We assume that for all pairs of vectors u, velU and for all
real numbers a 6[ o, 1] there exists a vector Wae U and a
scalar B> 0 such that for all i=0,1, ..., N-1 and for

every xeX , the ntl dimensional vector

yi{x,u) = fo(x, u) (3.7)

satisfies the relation

y;(x, W ) = ay. (x,v)+(l-a)y,(x,u)+pz (3.8)

where z is the n+l dimensional unit vector col(0, 0,..., 0,1),

This assumption, which is due to J. Holtzma,n5 is called ''directional
. 3 .
convexity', Itis a weakening of Halkin's original assumption™ which

required that the set

G, = {y,(x, u) :ueU} (3.9)
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be convex for every _>§€X . {Note that the requirement that Gi
be convex is equivalent to Assumption(4)with B = 0.)

The convexity requirement, Assumption(4),is the crucial assump-
tion which enables one to derive a Minimum Principle for discrete
systems. The proof of the Minimum Principle for both discrete
and continuous time systems relies heavily on showing the convexity
of certain reachable sets in n+l dimensions. In the case of control
systems which are characterized by differential equations, the time,
by its evolution on a continuum, introduces a 'convexifying' effect
which frees us from the necessity of adding convexity assumptions
to the problem statement. On the other hand, for control systems
described by difference equations, the time, by its evolution on a
finite set, introduces no '"convexifying'' effect and in order to obtain
a Minimum Principle paralleling that of continuous systems, some
convexity assumptions must be added to the problem formulation.

A striking example of the "convexifying' effect of time by its
evolution on a continuum is most simply afforded by the following

theorem.

Theorem: If f:[0,1] —-—En is a piecewise continuous function and
if A is the set of all subsets of [0, 1] which are the union of a

finite number of intervals then the set
{ Eff(t) dt : EeA}

is convex,
On the other hand, if g: {0,1,..., k} ~E_ andif P_ is
the set of all subsets of {0,1,..., k} then the set

{.z gli) : SeP,}

ieS

is not convex (unless g = 0),

C. SYSTEMS SATISFYING THE CONVEXITY ASSUMPTION

An important and fairly common class of systems for which assump-

tion(4)is satisfied are those for which each _{i(zc_,_g) is linear in u
(or linear in x and u jointly), the set of controls U is convex and

for which the functionals Li (x, u) are convex functions of u for
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fixed x and for all i=0,1,..., N-1,

The proof of this fact is readily demonstrated since the convexity
of. L.l(_zg, u) implies that for all u, ve U and for all ag[ 0, 1] there
exists a f> 0 such that

aLi(_>5,1_1)+(1-a) Li (x,v) = B+Li(§, au+(l-a) v) (3.10)

If we now define
Y_Va = au + (l-a)v (3.11)

the convexity of U assures us that the vector W_an . On the other

hand, the mapping —fi(f’ u), being linear on U satisfies

af,(x,u)+(l-a)f (x,v) = f.(x, au+(l-a)v)

Finally, Combining Eq. 3- 10 and 3, 12 we see that

y; (x, W) = ay,(x,v)+(l-a)y,; (x,u) +pz (3.13)

where -y—i(f’ u) is as defined in Eq. 3.7. Hence, for all u,veU

and all ae[0,1] we have shown that there exists a > 0 and a vector

Y-Va € U such that the requirements of assumption (4) are satisfied.
As shown in Reference 3, another important class of discrete

optimization problems for which assumption(4)is satisfied are those

for which the system of difference Eqs. 3.1 approximates a system

of differential equations and the cost functional 3.6 approximates a

cost functional of the form

T
J = f L(x(t), u(t)dt (3. 14)
0

In other words, we are considering a discrete optimization problem
which is an approximation to a continuous time optimization problem.
This is quite common in practice, since from a computational viewpoint
a discrete system of equations is more adaptable to computer solution
than is a system of differential equations,

However, assumption(4)is not necessarily justified in the case of

a system of nonlinear difference equations describing a control process
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which is basically discrete, Considerable care must be taken to
assure the validity of this assumption (as well as the preceding ones)

prior to applying the Minimum Principle.

D. NECESSARY CONDITIONS FOR OPTIMALITY-»
THE MINIMUM PRINCIPLE

Given the optimal control problem formulated in Section III. A
and given that assumptions (1) - (4) are satisfied, the following

theorem can be proved by geometrical considerations.

Theorem: (Minimum Principle for Discrete Systems)

Let {x ,i=0,1,..., N} be the trajectory of the system 3.1
correspond1ng to {u } where u, . € U, which originates at
b3 b3
x, = £ and terrnmates at Xy € eS, where S is defined by

Eq. 3.2. Then in order that {1_.1_1} minimize the cost functional 3.6
it is necessary that there exist a sequence of n-vectors

{-E; ,i=0,1,..., N} called the '"costates" such that

1. The scalar function

% Sk E3 E3 1'

= < >
H(x., Py .y by) Lix,, w)+<p (x5 u)

1+1 ?

(3.15)
called the Hamiltonian has an absolute minimum as a function
of u, over U at u, = 3; for every i=0,1,...,N-1, i,e,,

% * % *
min H(X » Pippo 8y) = H(x., p.ys ug) (3.16)
u. eU

or, equivalently
E3 sk e < sk :?:
Hlx; o iy 83 ) SHEKG . Byyy» #) forall uel
(3.16a)

sk

2. The evolution of Bli in time is determined by the difference

equation

T
<a, b> denotes the inner (or dot product) Z aib
i=1




|
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£ 5 _ oH o sk x* 3
Piy17 P 7 - 8 x (X, » Pi41 By ) (3.17)
for all i=0,1,..., N-1

3. (Transversality conditions)

There exists real numbers By- Byr cvve By such that
k
.= Z B, -2 . (3. 18)
En * i ox 8&yn) :
i=1

\
e

i.e., Pn is normal to S.
Special cases are (1) If k=n then S= 6 is a pointin En and -
nothing may be said a priori as to the value of -E;I and (2) If k=0

e

in which case S = En and Py =0,

E. REMARKS ON THE MINIMUM PRINCIPLE

1. In order to be able to handle pathological optimization problems,
we should, strictly speaking, include an additional constant po in
our statement of the Minimum Principle in the same manner as for
continuous time optimization problems. In other words, in the statement

of the Minimum Principle we should consider the Hamiltonian function

o o ‘
— ) >

(3.19)

rather than the function of Eq. 3,15 where po is a non-negative
constant. The pathological cases occur when po = 0; when P0 # 0
we may choose p° = 1 (since the equation for .Eﬂi‘ is linear), Itis
generally a difficult task to ascertain a priori whether Po #0 (see Ref. 3).
However, the linear regulator problem which is considered in the

following chapter is not a pathological case.

2. In a manner similar to the Minimum Principle for continuous
dynamical systems, the discrete Minimum Principle provides only

c e .ok . .
necessary conditions for a sequence {u,} to locally minimize the
-1

7

In contradistinction to the continuous case. the concepts of "weak!
and ''strong" relative minima are equivalent for discrete problems since
the control u. €xists only on a finite set.
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cost functional 3.6. In general, there may be several control
sequences, called "extremal' controls, which satisfy all of the
necessary conditions and which, therefore, are possible candidates

for the optimal control. In order to determine which of these ex-
tremals corresponds to the global optimal, one must compute each
associated value of J({Ei}) and simply chose the control which endows
J({Bi}) with the smallest value. This is generally a finite procedure

and is analogous to the continuous case (see Ref. 1, Chapter 5).

3. Itis assumption(4)which enables us to conclude that if the

e *

control sequence {Ei } is to locally minimize J({_u_i}), then u.
must necessarily absolutely minimize the Hamiltonian 3.15--a fact

expressed by Eq. 3.16.

If, on the other hand, we did not require Assumption(4), then as
shown by Jordan and Polak,4 a necessary condition for the sequence
{Ej} to be a local minimum of J({ll_i}) is that E? locally minimize
the Hamiltonian. In other words, in the absence of Assumption(4),
we can conclude a '""'Stationarity'" Principle but not a "Minimum"
Principle. In fact, it is possible under these circumstances to have
a unique control which absolutely minimizes the Hamiltonian but does
not locally minimize the cost functional. In cases when Assumption(4)
is independently satisfied, the stationarity principle can also be used
to determine the optimal control by the procedure outlined in the fore-

going remark 2.

4. In the event that the terminal manifold S = En and if the cost

functional J({Ei}) is of the form
N-1
I} = Kixy) + z L. (x.,u,) (3.20)
i=0

where K(-:) is a twice continuously differentiable functional defined on
X, (hence the effect of the final state x is included in our performance
measure) then it can be shown that the transversality condition corres-

ponding to this problem is that

ale

Py (3.21)

This fact will be used in Section IV in the solution of the linear regulator

problem.




1Iv. THE DISCRETE LINEAR REGULATOR PROBLEM

A, THE PROBLEM STATEMENT

In this chapter the necessary conditions of the Minimum Principle
will be used to solve a discrete optimization problem. The problem to
be considered is the discrete analog of the Linear Regulator problem
for continuous time systems (see Reference 1, Chapter 9). To be

more specific we suppose that the discrete system is linear on X x U.

The difference equation describing the evolution of the state is assumed

to be given as

X475 S AxtBu i=0,1,...,N-1 (4.1)

where Ai is an nxn matrix for i=0,1,...,N-1

B.is an nx r matrix for i=0,1,...,N-1

-1

The control space U = Er (i.e., u. is unconstrained)

The matrix (I+ Ai) is non-singular for i=0,1,...,N-1

The discrete regulator problem is to determine the control sequence

{E;k i=0,1,...,N-1} such that the corresponding state sequence

{f ,1i=0,1,...,N} satisfies

xz = £ = given '"initial" state (4.2)
5
xq €S = E_, (4.3)

so that x.. is unconstrained, and such that

=N

=
|
L
| e

. . >
i? i

N-
J({u}) = 2—<XN,Q AN >+ %z _)_(_ 9i§i>+<

(4.4)

is absolutely minimized, where

Q. is a positive semi-definite n x n matrix for i=0,1,...,N
51 is a positive definite r x r matrix for i=0,1,...,N-1

-15-
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The performance functional Eq. 4.4 is the discrete analog of the

quadratic performance functional for continuous problems,

B. NECESSARY CONDITIONS FOR OPTIMALITY

Prior to applying the Minimum Principle to this problem we must
insure that assumptions (1) - (4) are satisfied. Assumptions (1) and
(2) are clearly satisfied by virtue of the choice of _fi and Li' The éi
matrices were assumed to satisfy assumption (3). Finally the convexity
assumption (4) is satisfied by virtue of the remarks of Section IIl C,
We are now in position to apply the Minimum Principle,

Let us assumne that {_1_1_’;} and {ff} represent an optimal solution
to our problem. The first necessary condition of the Minimum Prin-

ciple requires that the Hamailtonian

* X
H(_}Ei, £i+1’3) (x yu) + <p+1, f(x u) >

1 F 3 sle 1 EN
Vi <§i’9'1fi >+2-<u Ru>+ <p+1,A.x. >

<
t <p{y;» Bu>

have an absolute minimum as a function of u at u = u, for every

i=0,1,...,N-1. Since u is unconstrained and —ag exists, the mini-

mum of the Hamiltonian is found by setting %ﬁ = 0. At this minimum

*
u=u. . Hence

_ OH  x % o
0= ’Jg(fi' Piypr %) = Ryui+ B pf,
* -1 L
or 4 = Ry BBy (4.5)

The required inverse exists since Ri is positive definite, Further-

more,; the Hamiltonian has a unique minimum at u = u’ by virtue of
— -— —1

the fact that —2- (x , p (410 B "'3 i is positive definite,
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The '""costate' vectors p;"‘, i=0,1,...N-1 corresponding to u;"

and x¥

i satisfy the difference equation

%« _ % _ _OH x x *
Piy17B < ‘5_:‘5(_1'Bi+1'31)
I
= 2% - 4 P (4.6)

Application of the transversality condition Eq. 3.21 corresponding
to a cost functional of the form Eq. 3.20 with S = En’ yi~lds, since
1 x
Gn) = 7 <2ne nEn > that Py OnXn-
Combining Eqs. 4.1, 4.5 and 4.6 we obtain the 2n x 2n system of

""canonical'' equations

-1_+v %

* * *

Xe1T5 T A Ei-&i B: P (4.7a)

* oo . ®_ A ® e s

Piy1 "B = 91 % _éi Py \4. (D)

with the "split" boundary conditions
*
x =5 (4. 8a)
Py = ey (4. 8b)

If we could solve the above two-point boundary value problem for
—E;:l we would then obtain (by Eq. 4.5) an expression, in terms of the
time i and initial state §, for the optimal control ll_f. This is, in
general, an extremely difficult problem. As an alternate proceedure,
with consistent analogy to the continuous time problem, 1 we shall
seek the optimal control law i.e., the optimal control Ez‘ as a

function of the state Xi* and the time i,
u. = u’¥ (x¥i) (4.9)
—i — =i’

P * *
To be more specific, we shall assume that p; and x, arere-

lated by a linear transformation for all i, namely

pr = K x¥ (4.10)




-18-

where each I_{_i is an n x n matrix which is to be determined. The

optimal control law Eq. 4.9 will then be a linear feedback law,

® -1 * _
u, = -R, ]_B_i I—<-i+l X (4.11)

C. THE DISCRETE "RICATTI EQUATION"

In order to determine a recurrence relation for the matrices

I_S_i, i=0,1,..., N-1 we sha.ll make use of Eqs., 4.7a,b. Introducing

the assumed expression for p irl yields, respectively

sie e % _1 e

oxF - 2
Kyt X7 Ayx CBy R OBUK. % (4.122)

e Sk sk sk 1 ES 4 le
Bir Zi “BiX 7 - Q5% -4 Binxg (4. 12b)

Rearranging terms we have

I+B.RI'B K., )x." =8 x' (4. 13a)
U+ B, Ry By K%y = =1 %
3K, x." +0.x -K.x =0 (4. 13b)
2B X Ty By x =0
s A
where —; = I+ éi (4. 14)

Solving Eq. 4. 13a for 3{_1:1 (assuming that the required inverse

exists) we obtain

* -1 - ® *

X = U+BRY BUK )T B G (4.13)
The inverse term in the above expression can be simplified by making
use of the matrix identity6

v 1 -
(1,+aB) " =1 -ag, +8 4 "B (4.16)
where A, B are nxr matrices.
I
Application of this identity to (I+ B, R’ K.,,), taking A = B.,,

-1 —i=-i ——1—-1+1 - —1
E =I_{_1 §1I-<- +1 yields

(1+B,R]'B.K. ) I-B.(I_ +R;'B'K,,,B.) 'R} B,K

= =i —i=i+l - =i¥r =i —i—i+l—= —i i+l




-1 ! 1
- 1-B,[R;a, +R}' BiK,, B]'BK

i+l —i—itl
! -1
=1 -BR;+BK;,) B)  BiK,, (4.17)
Hence Eq. 4.16 becomes
. T
4,18
xi1= (- B® +BK,,BOT'BIK,, ]2 X (4.18)

Substituting this expression into Eq. 4.13b results in

] 1 _1 1 E3
B 2[R K BB + BiK ) By) "BK; 13+ Q0% = 0

(4.19)
for all i=0,1,..., N-1. Since Eq. 4.19 must hold for any choice of

the initial state § and since the matrix K, does not depend on § ,
=2 — -« 2
we can conclude that Eq. 4.19 must be satisfied for all X, - This

implies that Iii must satisfy the matrix difference equation

: -1
K, = 8 [K,,,-K,, BR+B. K. B)

—1 —1

B KH]Q +Qi

(4.20)

which is the desired result (also obtainable by Dynamic Programming7).
Equation 4,20 is an explicit rule for obtaining I_{_i from K. and

—itl
may be regarded as a discrete analog for the matrix Ricatti (differential)

. 1
equation.
Turning our attention to the boundary condition for Eq. 4.20 we

%k *
have, since PN T QNEN that

* *
KN = 9nEnN
%
but since XN is unspecified, we conclude that

Note that use of the matrix identity Eq. 4. 16 has enabled us to re-
place the problem of inverting an n x n matrix with one of invert-

ing an r X r 1patrix. In many control problems this can truly be
advantageous since T is generally <n,
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Ky = Qp (4.21)

Consequently, the existence and uniqueness of the matrices K
sk

i=0,1,..., N-1 validates our claim that B, = Ii.lg: . prov1ded, of
course, that the inverse term in Eq., 4,15 exists,

In addition, the matrices K , 1=0,1,...,, N-1 are symmetric.
This is a direct consequence of the fact that K and K both are
solutions of the same difference equation with 1dent1ca1 boundary
conditions--a fact readily verified by taking the transpose of
Eq. 4.20, notmg that R = R. and Q'.1 = Q.. Hence K. =

phd = =i phad —i

which 1mp11es that K is symmetric.

D, THE OPTIMAL FEEDBACK CONTROL LAW

Having obtained the difference equation for Ki we now can obtain

an expression for the optimal feedback control law Eq."4.13. Substitu-

%
ting Eq. 4.18 for x, i+1 into Eq. 4.11 yields
* - r'B.K., LI R.+B'K. ,B.) 'B.K. ]2
u; = Ry B Ry B (R FBE By i+U 2%y
-1 ' 3 *
= -R; [I-B,K., B.(R, +BK B ]BK+1_1§1
' -1g * (4.22)
= - By +BiKin By Bk & X ’

where the last expression is obtained by use of the matrix identity

1-X(Y+X) ! = vy +x)!

Eq. 4.22 is the desired expression for the optimal control law at
time i. The optimal control requires knowledge of Kin (which can
be pre-computed according toc Eq, 4,20 and stored) as well as knowledge
of the state of the system at time i. A discrete control scheme such
as this one is indeed feasible from a practical standpoint--requiring

only adjustable feedback gains,

E. AN EXPRESSION FOR THE OPTIMAL COST

We now claim that the matrix K, for i =0,1, ...,N has the

property that




. p—

e o

N-1
* % 1 % * 1. % * 1 # *
= =< > = =< >+ 5 <
T X0 ) =gx; . Kix 2= <Xy XN~ * 3 X5 Q%57
iz
* *
+<u., R,u.> (4.23)
—1 —1-1

minimum ''cost remaining' along the optimal trajectory -
starting at time j and state x'j

To prove this fact is is only necessary to substitute Eq. 4.22 for

s
u. into the above expression. This gives (since Ki

41 s symmetric)

N-1
* %

Tx3) 3<% QX > = 3 <x 'K . +B B.)"
(X)) -3<xnN XNT 2 X0 Q8K BiR+B KBy
i=j

' * g
R.(R.+B.K. .B.) B K $. %,
—i'=i =i=—=i —_ —1

+1 =i —i+l}

N
C_ 1 * ' ' -
=5 z <x.,Q;,+% K. BII-(R.+B.K. B.)

—itl=it—= ‘=i —=i—itl=i

' ' -1 *
BiKi Byl B +BK,, B BIK, &% >

,[Q -8 K B.(R.+B'.K

N
=i =—i=-itl=i'—i —-1’-—i+1]—3-i-)' §i§i+lg’+

1

1 -1
-< e (oK, BUR ¥BIK, B) B

-1 *
K [I-ByR+BiK, B 'BI K, 18 }x]
N-1
1 * *
= < > . <
z Z Xy 51’—‘1 3‘-1+151+1—1+1
i=j
1 * * 1 * *
= =< > - =< >
2 5.]’I—<-J§j 2 2-{N’KN N
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Consequently, since I_(_N = 9—N we have that

% % 1 % *
J (x.,J)=5<x., K.x.> 4,24
(—'J j) 2 EJ 23525 ( )

as claimed. In particular, for j= 0 we have that

X , K x >
—0—0

21- optimal "cost"

minimum value of J({Ei})

It should also be noted that by virtue of the facts (a) 9—i >0 and
* % *
(b) R, > 0 we have that J (x.,1)> 0 for all {x }, {u u, }. Thus
* o *
<x,.,K.x.> >0 for all x.
-1 —=i1-1 - -1

Hence I_(_i is a positive semi-definite matrix for i = 0,1, ...

F., CONCLUDING REMARKS

Using the property that Iii is positive semi-definite we can now
regress and establish the validity of the assumption in Eq. 4. 15 that
the inverse of (I+ B R B K. 1)exists. Since §i+1 is Z 0, the

mrx mr matr1x§ Iﬁ i+1 B ;3 11s 1also positive semi-definite. Further-
more, since the sum of a positive definite matrix and a positive semi-
definite matrix is itself positive def1n1te, we conclude that (R +B K
> 0. Hence the claim that (R + B i Ki1B; ) exists is vahdated

Finally, by the matrix identity 4. 16 we estabhsh that (I + B, R BII_{_HI)

i+183)

indeed exists.

Consequently, we have shown, by use of the Minimum Principle, that
if the optimal control exists, then it is uniquely determined by Eqs. 4.20
and 422. By independent arguments (such as those used in the continuous
time case) it is possible to conclude that the optimal control indeed
exists. Consequently, for the discrete optimum linear regulator problem
the minimum principle supplies us with both a necessary and sufficient

condition for optimality. This completes our investigation of the above

optimization problem.

e ot B ot e
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