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ABSTRACT

This report describes the modifications
made to the TRW Systems Orbit Determination
Program in order to provide the capability
of regressing for lunar potential constants.
A mathematical explanation of the modifica-
tions is given together with a flow diagram

and four test cases.
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DEVELOPMENT OF AN ORBIT DETERMINATION PROGRAM

TO REGRESS FOR LUNAR POTENTIAL CONSTANTS

By F. J. Lombard
TRW Systems

1. SUMMARY

The TRW Orbit Determination Program has been modified to regress for lunar
constants in a moon centered coordinate system using earth based observations.
The program has the capability to solve for an arbitrary number of lunar poten-
tial constants as well as the usual six orbital parameters; station location
errors and station observational biases may also be included. As many as 30

unknowns may be regressed for at one time.
The following procedure was followed in program checkout:

a) Noised observations were generated from a trajectory integrated
by using Goudes' lunar constants (see reference 1).

b) A differential correction was then attempted using an initisl
estimate of the trajectory in which some or all of the lunar
constants were perturbed (+30) from their nominal (Goudas)
values.

c) Subsequent iterations of the tracking program were then ex-
amined to see if the nominal values of the lunar constants were
recovered.

The first two cases involved about 10 hours of tracking on two different
trajectories, with the solution vector including 12 lunar potential constants,
i.e., the 1 term of the moon plus the 11 potential constants of Goudas' model.
The recovered values for the constants were found to be consistent with the

covariance matrix describing their uncertainties.

The second two cases involved a single trajectory. In one case, 11 con-
stants were perturbed and 7 were included in the solution vector; in the other

case 1l were perturbed and the solution vector contained 9. Data arcs of
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9-1/2 and 20 hours were used. The recovered values were not consistent with the
covariance matrix, particularly in the case where only T constants were solved
for, with errors sometimes many orders of magnitude larger than the respective

standard deviation.

2. INTRODUCTION

The method used by the TRW Orbit Determination Program (AT85) for recover-
ing lunar potential constants is termed the "direct" method. An alternative
approach called the "long-period" method may also be used. This second method

will be described later.

Suppose a trajectory is completely determined by a state vector YA (n x 1)
at a reference time (denoted as epoch), and further, suppose that a set of
observations z (m x 1) have been taken. In general, then

z = f (YA) +n

where n (m x 1) is a vector of zero mean random noise. Thus taking the first-

order terms of the Taylor expansion of f about an initial guess Yo

= + A - +
z z, (YA Yo) n
where
z = f(Yo)
and
9Z .
a =
i 3
J YJ
. .th .th
where aij is the element of the i row and j column. A component of the state



vector Yi may be, e.g., the six orbital parameters, various lunar constants,
radar biases, or station location errors. Let y (mx 1) = z - z, be a vector
of residuals, and x{n x 1) = v

A
correction, to the initial guess Yo'

- be the vector, known as the differential

Yy=Ax+n

The problem is then to determine an estimate of x which when added to Yo will

yield an estimate of YA'
The AT85 program finds a value of x, calls it %, which minimizes the pro-

duct (y - Ax)T (y - Ax). It can be shown that the value of % which does this is
given by

2= (W)t aTwy

The matrix W(m x m) is used to weight each individual observation. It is
usually taken as a diagonal matrix with wii = 1/012. The noise associated
with the ithobservation is g The assumption is that there is no correlation

between observations.

In addition, it can be shown that the covariance matrix associated with

%X is given by

E (x - &) (x - i)T = (ATWA)'l

The A matrix, a,

i3 = 3zi/ ayd is calculated internally by the chain rule

A= 3_2 .a_.z_ E.E
ay % /my6 \?Y/6xn

where o, (i =1, 2, ... 6) are the three components of position and velocity.



The matrix 3z/3a is computed by explicit formulas, while the elements of
the 3a/3y matrix are obtained by integrating the variational equations. A

detailed account of their computation is given in section 3.2.

The long period method involves making a number of six-dimensional fits
with nonoverlapping data arcs, assuming Keplerian motion. The sets of orbital
elements, so called "mean elements," are then treated as observations. The
observations are weighted by the inverse of the diagonal element of the co-
variance matrix (ATWA)-l, obtained in the 6 x 6 fit. Zero correlation is
assumed in formulating the new weighting matrix. The partial derivatives come
from solution of the equations of motion retaining only long-period and secular
variations. Thus all the information is available to calculate A and z. The
best estimate of the state R can then be obtained by the previously described

"direct" method.

3. MATHEMATICAL FORMULATION

3.1 Equations of Motion

Accelerations acting on the spacecraft are divided into those arising from
the two-body portion of the central-body gravitational potential, and those
resulting from the fact that the central body is not a homogeneous sphere. One
function of the gravitational potential subroutine (GPERT) is to compute these
perturbative accelerations. The interpretation of the GPERT equations is the
same for both earth and moon. The expressions set forth here are for perturba-
tive potential and accelerations; that is, the -u/r term of the potential and

the corresponding inverse squere law accelerations are omitted.

Components of the perturbative acceleration are most easily expressed in
a local rectangular coordinate system (f, g, h), with h along the outward
geocentric vertical, f directed south, and g east. These are then trans-

formed to an earth {or moon) centered system as will be explained later.



. The potential function can be written as:

N N N
L ~-n-1 2 -n-1 PP
= 3 - + 2 .
U=u z r JnPn(s1n¢) z r (Cmn cos mA + 8§  sin mA) n (sin ¢)
n= n=2’ m=
where
r = distance from center of body
¢ = selenographic latitude
A = selenographic longitude
u = GM, mass of moon (or earth) times gravitational constant
Nl = degree of highest zonal harmonic
N2 = degree of highest sectorial harmonic
N = degree of highest tesseral harmonic

The accelerations are found by taking the gradient of the potential func-

tion; thus

_ 1 U
g Hr cos ¢ 9

= _1 3U
& u or

where ‘A and ¢ are the geographic (or selenographic) longitude and latitude,

respectively.
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Carrying out this differentiation of the recursive potential functiou

yields the acceleration as follows:

: -n-2
- 2 : '
&f = cos ¢ (J r ) p

n=2

N2
+-E mr’m—z sin ¢ (sec ) pz ) (Cmm cos mA + Smm sin mA)

m=2
N3 N3 '
—2 Z rnz(coswm)(c cos mA + S sin md)
n nm nm
m=1 n=m+l
N2 -m-2 m
a'g = - Z;a nr (sec ¢ pm) (Cmm sin mx - Smm cos m\)
N3 N3
- Z m Z r—n—2 (sec ¢p§) (Cnm sin mA - 8 cos m\)
=1 n=m+l

N o
ah=z (n +1) (Jnr )pn

n=2

2
2

2

N
~m-2 m
- cos ¢ )3 (m+1)r (sec ¢ o ) (Cmm cos mA + S__ sin m))

N3 N3 n-2 m
+ Z (n+1l)r = “([sec ¢ p ) (C cos m\ + S__ sin m))
m=1 ng*-l ( n nn nm
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where

p =
n
p =
o
o, =
p' =
n
' =
°1
and
m
(sec $ Dm)
(sec ¢ Di)
m
sec ¢ 0
m
sec ¢ om—l
and

cOS

A

[(2n-1) sin ¢ p,_, - (n-1) o, ] /n n>0

1

sin ¢

sin ¢ px'l—l +n Pr-1

1

= (2m - 1) cos ¢ (sec ¢ pz:i)

= 1

= [(Qn - 1) sin ¢ (sec ) p:xl—l)- (n+m-1) (sec ) pf:_a)]/(n-m)
= 0

-m sin ¢ (sec ¢ pz )
-n sin ¢ (sec ) pl::) + (n + m) (sec ) p::—l)
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These accelerations undergo subsequent coordinate transformations to a
system where they are more easily integrated. This is explained in section

3.3 for the case where the moon is the central body.

Integration is accomplished in subroutine TRAJ using a Cowell technique
with certain refinements. The process is initiated with a Runge-Kutta starter
which sets up the finite differences from which the Cowell integration proceeds.
The veloecity is summed with an eighth-order Adams-Moulton single sum process.
The position is summed from the accelerations with an eight-order Cowell second
sum process. Both of these methods use & predictor-corrector formulation.
Interpolations for times intermediate between the time steps of the integrations
are calculated with e Cowell step.

The time interval between successive steps, i.e., step-size, is asutomati-
cally controlled to keep seventh-order differences within a certain numerical
range. This guarantees a given accuracy but permits the step size to be as

large as possible.
3.2 Variational Equations

The normal matrix of the differential correction process (ATWA matrix) is
developed from the A matrix of partial derivative of observations at time t
to the various elements in the solution vector. It is necessary to evaluate
these partial derivatives. The partial derivatives have two parts, a geometric
factor and a time dependent factor. The time dependent factor is derived from
a variational equation which describes how a perturbation contributes to the
effect of carrying the state vector at epoch to the state vector at some other

time.

The general modern approach is to set up the theory as a large matrix
operation to systematically represent the influence of all of the partial deriva-
tives. The same matrix formulation also gives insight in their derivation. By
examining the full influence of all perturbations on the state vector at epoch,

we can derive the matrix variational equations for all partial derivatives.



v,

For the purpose of illustration it is useful to consider a limited case

first in which a state vector is defined as

_ _ . . . T
X = = ["t’ Yio 2y Xpo Yy Zt]
Yt
The time derivative of the state vector leads to the equations of motion when

physical accelerations are identified with the perturbative potential U.

- T v

%, = ti - t] - £(x,, t)
. U
t N

where aU/art are the nonzero partial derivatives of U with respect to the com-
ponents of Xy - Integration of the equations of motion from the initial condi-
tions defined as the state vector at epoch leads to the spacecraft trajectory.
Differentiation of the equations of motion with respect to the state vector at

epoch leads to the variational equations:

Moo
ox ox ax
[+) t o

which may be written (under proper assumptions)

a th ) af . th
dt ox )4 X
o o

t
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A simple change in notation

o X

X

e}
ot O3 I3

A=3% T 1lae

t 3°U 0
art2 3
X = AX, x(to)=16

This equation represents a set of 36 linear differential equations which are
usually called the variational equations. The solution to this set of equa-
tions is the matrix X which is called either the fundamental matrix of the

set of linear homogeneous differential equations or the state transition matrix

which relates the state vector at one time to the state vector at another time

This development can be generalized to incorporate all of the perturbations
so that they too may be simultaneously corrected. The time derivative of the
state vector is considered to be a function of the state vector and the gravi-

tational (including earth and sun effects) and radiation pressure perturbations.

A new, extended state vector L incorporating the previous state vector Xy

and the coefficients P of the perturbation models is defined. This is the

dynamic portion of the solution vector.




. *To develop the variational equations for the gravitational poteutial con-
stants, first write the equations of motion of a point mass under the effects

of gravity,

3 .
o = (- Eev), 1mn3
dat i

. . . 2 2 2 2 .
where v is the gravitational constant, r = xi + Xy + x3 , and U is the
"perturbation potential," i.e., the difference between the actual potential
of the body and that of an equal mass concentrated at the center of gravity.

Differentiating the first term gives

8 *4 3U

—Exi = —u-—;--a-;- , 1=1,2,3

dat r i

or, with the notation
U, _
wa, = -3~ 1= 1,2,3

2 X.
-1—9—2—xi=-—%+ai i=1,2,3
Yoot r

The X5 Xp, x3 represents the inertial, orthogonal, selenocentric

coordinate system. The x, axis is directed toward the vernal equinox and

1
the Xq axis is normal to the earth's equatorial plane.
. * The remainder of this section is the work of 0. K. Smith.

(1)

(2)

11
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The potential U can be written as

o«

U = 2: Y-n—l J P (sin ¢) - 2: (Cnm cos mj + 5_ sin mx)P: (sin ¢) (3)
n=2 n=1

where ¢ is the latitude and A is the longitude.

Variational equations may be derived by differentiation. If p repre-
sents one of the six components of the state vector, or orbital elements, etc.,

then by differentiating equation 1:

2 ax x
4 ( -—-1)= SRS (t)(—’l) ()
where -
X 2
=yl 241 13 U
vij(t) s 'axJ ( r3) * axlaxJ

with the time dependence of V., arising through its dependence on the solution
xl(t), x2(t), x3(t) of equation 1 . Initial conditions for equation 4 depend

on the choice of the parameters p .

The equations of variation for the gravitational constant are, from equa-
tions 1 and 2,

2 X, ' 3 X X,
d i oy i .
ALY B N 2 V. (t)( ) - =-12,}; i=1,2,3
dt2( du ) o] ij du r3 i (5)

with zero initial conditions, while for any other coefficient ¢ in the potential



they are

3
2 ax ox da,
d i} _ J 1
dtz(ac) ) 32=:1 Yy, (ac) ' (ac ) ©

again with zero conditions.

Thus, all of the necessary equations are linear with the same coefficient
matrix vij’ and differ only in the inhomogeneous terms (equations 5 and 6).
Except for the aai/ac‘terms, all of the terms for these equations are already
being computed in the variational equations for the initial conditions. The
aai/ac partials are calculated most easily in a local (f, g, h) system (see

section 3.1) and then rotated back to the xl, x2, x, inertial system for inte-

gration. It is convenient to evaluate the aai/ac az the same time the recur-
sive potential is computed, since there are several quantities which are needed
in both computations (e.g., the Legendre polynomials, powers of the central
body radius vector, etc.); hence, they are included in the GPERT output. The

aai/ac partials are as follows:

Jn

Jaf _  _=(n-2)
3T = r cos ¢

da
9Jdn

aJdn

13



The argument of the Legendre polynomial is understood to be (sin ¢).

Cmn, Smm (sectoral)

1k

cos mA m sin ¢ r

-(m+2)

(sec ¢ P:;)

sin mA m sin ¢ o~ (m+2) (sec ¢ P:)

~ sin m) n r(m2) (sec ¢P$ )

cosm Am r_(m+2) (sec ¢ le:)

~cosm A (m#¥l) r

- sinm A (m#l) r

(

(m+2

m+2)

cos ¢ (sec ¢ Pl:l)

) cos ¢ (sec ¢ Pﬁ)



Cnm, Snm
m<n

aaf

aCnm

oa

95Snm

Ja
oCnm

oa
9Snm

a

with

, (tesseral)

- cos m A r-(n+2) (cos ¢ Pﬁ')

- sin m) r-(n+2) (cos ¢ Pz )

- sinm A r_(n+2) (sec ¢ Pﬁ)

cos m-Am r-(n+2)(sec ¢ Pﬁ)

- cos m A (n+l) r-(n+2)

cos ¢ (sec ¢ Pﬁ)

—(n+
- sinm A (n+l1) r (n+2)

cos ¢ (sec ¢ Pﬁ)

-n sin ¢ (sec ¢ Pﬂ) + (n+m) (sec ¢ Pﬁ-l)

15
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The partials are now rotated back to the (xl, Xps x3) system before being
added to equation 6.

_ q - _ _
da. da
e cos a sin ¢ - sin a cos ¢ cos a rye
o, doa
2 = sin a sin ¢ cos a cos ¢ sin a
ac ac
Ja, 3

3 . ®n
e -cos ¢ 0 sin ¢ o
L — d . .

For lunar trajectories, the (xl, X5» x3) system is selenographic so that ¢ and A

are the selenographic latitude and longitude.
3.3 Transformations from GPERT to TRAJ

The block diagram of figure 1 illustrates the coordinate transformations
necessary to generate the lunar trajectory. The same loop applies to the inte-

gration of the variational equations.

The TRAJ subroutine integrates the actual trajectory and variational equa-
tions. This is done in an inertial (xl, X5 x3) system, mean of 1950; i.e.,
the Xy axis is directed toward the mean equator and equinox of 1950 (normally
abbreviated "mean of 1950"). This frame was chosen because the ephemeris

tapes are written in mean of 1950.

Coming out of TRAJ, we have a state vector (position, velocity) and partial
derivatives in selenocentric mean of 1950. The state vector is then transformed
to selenographic and input to GPERT. Since GPERT computes the perturbative
accelerations for the next step of the integration, it must know the vehicle
position with respect to the asymmetrical mass distribution of the moon. After
computation, the accelerations are rotated to the mean-of-1950 system. TRAJ
can then accept the accelerations in mean of 1950 and provide by integration

the mean-of-1950 state vector for the next iteration.
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L. TEST CASES

A total of four test cases were designed to demonstrate the capability
of the AT85 orbit determination program in solving for lunar potential con-
stants. Simulated observations in range and range rate were generated from
the Deep Space Network (DSN) tracking stations at Woomera, Goldstone, and
Madrid. The trajectory used to generate these observations used Goudas' lunar
constants. The initial estimates of these constants were then perturbed, and

the program was used in an attempt to recover the nominal values.
4.1 Lunar Potential Model
The following constants (except for u) and their uncertainties were taken
from reference 1. The C and S notation conforms with the expansion of equa-

tion 1, in section 3.1.

TABLE I.—LUNAR CONSTANTS

Lunar constant Value x 10-h 1o Uncertainty x 10-h Units
u . 68023264 . 000042 (earth radii)3/(min)?
I, 2.048 0.1 none
Iq 0.863 .099 -

Jh -2.628 .556 -
S3l .296 .099 -
Shl .ko3 .230 —_
S33 .0067 .0105 -
Sh3 .0075 . 0025 -
022 .23 0.1 -
C32 -.069 .062 —
Ch2 -.0825 . .0k22 -
chh .0211 .0075 -




The above uncertainties were used to perturb the original trajectory in the

curve fit. The value of the perturbation was three times the one-sigma un-

certainty shown above.

4.2 Description of Test Case

The following is a summary of each test case and the results obtained.

Two different trajectories were used.

below.

Their characterisitics are tabulated

TABLE II.— TRAJECTORY DESCRIPTION

Description

Trajectory 01

Trajectory 02

Injection time (GMT)

Selenocentric coordinates

(km)

N 9 M

(km/sec)

e Mo

Ne

Selenographic elements

a (km)

e

i (deg)
Q (deg)
w (deg)
M (deg)

June 17, 1966
13" 5% 13.92°

950.17148
-2k00.6717
-364.25808
1.0958210
84073599
.28029238

2763.08T75
29857857
12.5
307.71
186.34
297.675

June 27, 1966
WP o 48,8

1626. 7478
1082.9332
365.48493
-.97861241
1.1517809
.94300L413

2788.0
.2869
15.0
25.47
-12.46
0.

19
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Three radar stations were used: Goldstone, Woomera, and Madrid. Range and
range-rate measurements were taken at a rate of one set per minute from each sta-
tion. The simulated observations were generated for both trajectory 0l and
trajectory 02. The injection vector appears in table II and the lunar constants
in table I. Uncorrelated gaussian random noise was added to the range and range-
rate measurements with standard deviations of 15 meters in range and .02 meter/sec
in range rate. In addition, a positive range bias of 20 meters was added to all
range observations. The moon was not considered transparent. A separate program

was used to remove simulated observations when occulted by the moon. Table III

summarizes the station characteristics.

TABLE IIT.— RADAR STATIONS

Station Latitude ° Longitude °E Elevation (m/i
Goldstone 35.206 24k3.150 100k,
Woomera -31.210 136.885 156.
‘Ma.drid 40,437 -3.765 800.

4.3 Running Time

The following formula will approximate the 7090 running time.

Time (min) = 5 + 2.5 x 10"h (# observations) (# iterations) (# variables)

The running time is proportional to the number of observations, iteratioms,
and variables with an additive constant of 5 minutes to allow for reading the

program plus the input instruction.



’ Case A

Description:

Results:

Trajectory Ol was used. Twelve variables were perturbed and the
solution vector contained the same 12 variables. A total of
1450 range and 1450 range-rate measurements was included. The
data rate is one observation per minute when the station is
visible. The data arc covers 9 hours of tracking after epoch.
Epoch was taken at June 17, 1966 ~ 13%/5%/13.92° GMT, the injec-
tion time of table II.

Results are tabulated on the following page. The uncertainty
column in the table is the lo error associated with each unknown.
Because of the statistical nature of the observations, absolute
certainty is impossible. The fourth column indicates the

amount by which the arrived-at value exceeds the nominal value

of table I.

21
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'I' Case B

Description: Trajectory 02 was used. As in Case A the same 12 variables were
perturbed and solved for. A total of 628 range and 628 range-rate
measurements was used. The data span begins at epoch (June 6, 1966 -
hh/lom/hBS GMT) and continues for 10 hours. The Madrid station was

not visible during this interval.
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Case C

Description:

Trajectory Ol was used. Eleven constants were perturbed and

seven solved for. The perturbed values not solved for were

S33, Sh3, Ch2’ and Chh' Range and range-rate observations

totaled 1550 each at a rate of one per minute. The data arc

covered 9-1/2 hours of tracking.
1966 - 17%/13%/13.92° GMr.

Epoch as before was June 6,
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case D

Description:

Trajectory 01 was used. As in Case C, 11 constants were per-
turbed, but this time 9 were in the solution. S33 and Chh

were not included in the solution, but were perturbed. A total
of 3245 range and range-rate observations were included. This

amounts to 20 hours of tracking.
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5. CONCLUSIONS

The program does indeed provide a corrected state vector of lunar con-
stants within allowable uncertainties whenever each perturbed quantity is
included in the state vector. This is the result in Case A and Case B. If
the number of perturbed lunar constants exceeds the dimension of the solu-
tion vector, the program will not provide a corrected solution within accept-

able uncertainties. This is illustrated in Case C and Case D.

h. NEW TECHNOLOGY

This section is included to comply with requiremenfs of the "New Tech-
nology clause of the Master Agreement under which this report was prepared.
This report describes a study performed using certain orbit determination
processes developed by TRW Systems. The most significant new technology

resulting from this contract is the recursive formulation for the calculation

of partial derivatives.
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ArPENDIX 1

A. INPUT

A typical ESPOD input for the test cases described here might consist
of the following:

1. Epoch time.

2. State vector at epoch.

3. The values of the potential constants used in trajectory
integration.

L, Flags to determine the quantities included in the potential
model.

5. Flags to determine which quantities are to be in the solution
vector.

6. Maximum number of iterations.

T. Bounds on the differential correction -- The bounds place an

upper limit on the correction on each iteration; a proper
choice of bounds will prevent divergence of the solution.

8. Weighting of observation -- The observations are usually
weighted by the standard deviation (o) of the noise. In our
case, the weighting corresponded exactly to the noise o used
in generating the data.

9. The sun, earth, and planets may be included as perturbative
forces. The test cases contained sun and earth only.

10. Input and output units are usually in ft and ft/sec; however,
any other system can be used. This is controlled by two input
cards.

11. The final corrected trajectory may be called for at any desired

sequence of time points.
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10.

11.

12.

32

B. oureur

A typical output print will furnish the following information :

Card image of all input statements.
Station locations.

Chronological listing of all radar observations, i.e., time,
range, azimuth, elevation, range rate, etc.

Listing of program constants, potential constants, radius of
earth, etc.

Residuals, listed chronologically or by station, at each
iteration.

The mean and rms of all residuals at a particular station.

The differential correction for the particular iteration, with
the 0ld and new value of the solution vector, the bounds, and
the sigma involved for variables in the solution vector...
sigma is the square root of the diagonal element of the covari-
ance matrix, (ATwWA)-1l.

The corrected state vector at epoch in true of date, ADBARV,
and Cartesian coordinates.

Statements as to whether or not solution is converging or
affected by the bounds.

The weighted rms of the residuals for the current iteration,
the predicted for the next iteration, and the best rms up to
the current iteration.

The covariance matrix of the solution and its associated
correlation matrix.

A printout of the final corrected trajectory.



APPENDIX II

CORRELATION MATRICES

The correlation matrices were obtained from the covariance matrix (ATWA)-l
by dividing the (i,j) element by 0i oj. Rows and columns containing zeros
indicate that this variable was ignored in all final computations. The correla-

tion matrices for the four test cases are given on the following pages.
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