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ABSTRACT 

"his report describes the modifications 

made to the T R W  Systems Orbit Determination 

Program in order to provide the capability 

of regressing for lunar potential constants. 

A mathematical explanation of the modifica- 

tions is given together with a flow diagram 

and four test cases. 
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By F. J. h b a r d  

T R W  Systems 

1. SUMMARY 

The TRW Orbit Determination Program has been modified t o  regress f o r  lunar  

constants i n  a moon centered coordinate system using ear th  based observations. 

The program has t h e  capabi l i ty  t o  solve f o r  an a rb i t r a ry  number of lunar  poten- 

tial constants as w e l l  as the  usual s i x  o r b i t a l  parameters; s t a t i o n  loca t ion  

e r ro r s  and s t a t i o n  observational biases may a l s o  be included. As many as 30 

unknowns may be regressed f o r  at one t i m e .  

The following procedure w a s  followed i n  program checkout: 

Noised observations were generated from a t r a j ec to ry  in tegra ted  
by using Goudas' lunar constants (see reference 1). 

A d i f f e r e n t i a l  correction w a s  then attempted using an i n i t i a l  
estimate of t he  t r a j ec to ry  i n  which some or all of t he  lunar 
constants were perturbed ( 5 3 ~ )  from t h e i r  nominal (Goudas) 
values. 

Subsequent i t e r a t ions  of t he  t racking program were then ex- 
amined t o  see i f  the nominal values of t h e  lunar  constants were 
recovered. 

The first two cases involved about 10 hours of t racking on two d i f f e ren t  

t r a j e c t o r i e s ,  with the  solut ion vector including 12 lunar  po ten t i a l  constants,  

i.e., t h e  I.I term of t h e  moon plus t h e  11 po ten t i a l  constants of Goudas' model. 

The recovered values f o r  t he  constants were found t o  be consistent with the  

covariance matrix describing t h e i r  uncer ta in t ies .  

The second two cases involved a s ingle  t r a j ec to ry .  In  one case,  11 con- 

s t a n t s  were perturbed and 7 were included i n  the  solut ion vector;  i n  t h e  other  
case 11 were perturbed and t h e  solut ion vector contained 9. Data arcs  of 
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9-l/2 and 20 hours were used. 

covariance matrix, par t icular ly  i n  t h e  case where only 7 constants were solved 

for, w i t h  e r rors  sometimes many orders of magnitude la rger  than t h e  respective 

standard deviation. 

The recovered values were not consistent with t$e 

2. INTRODUCTION 

The method used by the  TRW Orbit Determination Program (AT851 for recover- 

ing lunar potent ia l  constants is  termed the  "direct" method. 

approach cal led the "long-period" method may a l s o  be used. 

w i l l  be described later. 

An a l t e rna t ive  

This second method 

Suppose a t ra jec tory  i s  completely determined by a state vector y (n x 1) A 
at  a reference time (denoted as epoch), and fur ther ,  suppose t h a t  a set  of 

observations z (m x 1) have been taken. In  general, then 

z = f (vA) + n 

where n ( m  x 1) i s  a vector of zero mean random noise. 

order terms of the Taylor expansion of 

Thus taking the  f irst-  
f about an i n i t i a l  guess 

Z 

where 

and 

t h  where a is  the  element of the i row and jthcolumn. A component of t he  state i d  
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e -rector yi may be, e.g., t h e  s i x  o r b i t a l  parameters, various Liz&- cczzs+-a_nts, l 

radar biases, o r  s t a t i o n  locat ion errors .  be a vector  

- y be the vector ,  known as the  d i f f e r e n t i a l  of res iduals ,  and x(n x 1) = yA 

correction, t o  the  i n i t i a l  guess yo. 

L e t  y ( m  x 1) = z - z 
0 

0 

y = A x + n  

The problem is  then t o  determine an estimate of x which when added t o  y 

y ie ld  an estimate of y 

w i l l  
0 

A' 

The AT85 program f inds a value of x, calls it 2, which minimizes t h e  DrO- 

duct (y  - Ax)T (y  - A x ) .  

given by 

It can be shown that  t h e  value of 2 which does t h i s  i s  

The matrix W(m x m) is  used t o  weight each individual observation. 

usually taken as a diagonal matrix w i t h  Wii = l / u i  . 
w i t h  t he  i observation is  u.. The assumption i s  t h a t  there is  no cor re la t ion  

between observations. 

It is  
2 The noise associated 

t h  
1 

In  addition, it can be shown tha t  t h e  covariance matrix associated w i t h  

2 is given by 

E (x  - a )  ( x  - j i lT  = ( ~ ~ w ~ 1 - l  

The A matrix, a = azi/ ayj is calculated in t e rna l ly  by t he  chain rule 
i d  

mxn mx6 xn 

where a (i = 1, 2, ... 6) a r e  t h e  three components of pos i t ion  and velocity.  i 
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The matrix az/aa is computed by e x p l i c i t  formulas, while the  elements ef 

the  a a / a y  matrix are obtained by integrat ing t h e  va r i a t iona l  equations. 

de ta i led  account of t h e i r  computation is  given i n  sec t ion  3.2. 
A 

The long period method involves making a number of six-dimensional f i t s  

w i t h  nonoverlapping data  a rcs ,  assuming Keplerian motion. 

elements, so ca l led  "mean elements," are then t r e a t e d  as observations. The 

observations are weighted by the inverse of t he  diagonal element of t h e  CO- 

variance matrix ( A  WA) , obtained i n  t h e  6 x 6 f i t .  

assumed i n  formulating the  new weighting matrix. 

from solut ion of t he  equations of motion re ta in ing  only long-period and secular  

var ia t ions .  Thus a l l  t he  information is ava i lab le  t o  ca lcu la te  A and z .  The 

best estimate of t h e  state 2 can then be obtained by the previously described 

"direct" method. 

The sets of o r b i t a l  

T -1 Zero cor re la t ion  is  

The p a r t i a l  der ivat ives  come 

3. MATHEMATICAL FORMULATION 

3.1 Equations of Motion 

Accelerations act ing on the spacecraft  are divided i n t o  those a r i s ing  from 

the  two-body portion of the central-body g rav i t a t iona l  po ten t i a l ,  and those 

r e su l t i ng  from the  f a c t  t h a t  t h e  cen t r a l  body is not a homogeneous sphere. One 

function of t he  grav i ta t iona l  po ten t i a l  subroutine (GPERT) is  t o  compute these 

per turbat ive accelerations.  

same f o r  both earth and moon. The expressions set fo r th  here are fo r  perturba- 

t i v e  poten t ia l  and accelerations;  tha t  is ,  t h e  -p/r term of t h e  po ten t i a l  and 

t h e  corresponding inverse square l a w  accelerat ions a re  omitted. 

The in t e rp re t a t ion  of t h e  GPERT equations i s  t h e  

Components of t he  perturbative accelerat ion are most ea s i ly  expressed i n  

a l o c a l  rectangular coordinate system ( f ,  g ,  h )  , w i t h  

geocentric v e r t i c a l ,  f directed south, and g east. These are then t rans-  

formed t o  an ea r th  ( o r  moon) centered system as w i l l  be explained later. 

h along t h e  outward 

4 



"he potential flmction can be written as: 

L 

where 

r 

4 

A 

lJ 

N1 

N2 

N3 

= 

= selenographic latitude 

= selenographic longitude 

= 

= degree of highest zonal harmonic 

= 

= 

distance from center of body 

GM, mass of moon (or earth) times gravitational constant 

degree of highest sectorial harmonic 

degree of highest tesseral harmonic 

The accelerations are found by taking the gradient of the potential func- 

tion; thus 

where A and $ are the geographic (or selenographic) longitude and latitude, 
respectively. 
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. 

Carrying out t h i s  d i f fe ren t ia t ion  of t he  recursive poten t ia l  functiou 

yields  the  acceleration 88 follows: 

-n-2 M1 

n=2 
a = cos @ ( Jnr ) PA f 

-m-2 cos mA + S= s i n  mA) s i n  4 (sec @ p: ) C C ~  

-n-2 ( cos  49:’) (cm cos mX + sm s i n  mA) 

82 
+. c mr 
m=2 

N 3  N 3  - c  c 
m=l n=m+l 

N 3  
- C m C  sm cos m h )  -n-2 ( Bec 4p: ) (cm s i n  mA - N 3  

m=l n=m+l 
0 

cos m~ + sm s i n  (n+l)r-n-2 (sec 0 p: ) (cm 
N 3  N 3  

m=l n=m+l 
+ 

e 
6 



W . 

where 

= 1  

and 

m 
sec $ P , ~  = 0 

and 
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. 

a These accelerat ions undergo subsequent coordinate transformations to a 

system where they are more easily integrated.  

3.3 f o r  the case where the  moon i s  the cen t r a l  body. 

This is explained i n  sec t ion  

Integrat ion is  accomplished i n  subroutine TRAJ using a Cowell technique 

w i t h  ce r ta in  refinements. The process i s  i n i t i a t e d  w i t h  a Runge-Kutta starter 

which sets up the  f i n i t e  differences from which the Cowell in tegra t ion  proceeds. 

The veloci ty  is summed w i t h  an eighth-order Adams-Moulton s ing le  sum process. 

The posi t ion is  summed from the accelerat ions w i t h  an eight-order Cowell second 

sum process. 

Interpolat ions f o r  times intermediate between t h e  t i m e  s teps  of t h e  in tegra t ions  

are calculated wi th  a Cowell s tep.  

Both of these methods use a predictor-corrector formulation. 

The t i m e  i n t e rva l  between successive s teps ,  i .e. ,  step-size, is  automati- 

ca l ly  control led t o  keep seventh-order differences within a ce r t a in  numerical 

range. 

la rge  as possible. 

This guarantees a given accuracy but permits the  s t e p  s i z e  t o  be as 

3.2 Variational Equations 

T The normal matrix of the d i f f e r e n t i a l  correct ion process (A  WA matrix) is  

developed from the A matrix of p a r t i a l  der ivat ive of observations at t i m e  

t o  t h e  various elements i n  t h e  solut ion vector. 

these p a r t i a l  der ivat ives .  

f ac to r  and a t i m e  dependent factor .  The t i m e  dependent f ac to r  i s  derived from 

a var ia t iona l  equation which describes how a per turbat ion contributes t o  t h e  

effect of carrying the state vector at epoch t o  the state vector at some o ther  

time. 

t 
It i s  necessary t o  evaluate 

The p a r t i a l  der ivat ives  have two pa r t s ,  a geometric 

The general modern approach i s  t o  set up the  theory as a large matrix 

operation t o  systematically represent t he  influence of all  of the  p a r t i a l  deriva- 

t i ves .  The same matrix formulation a l s o  gives in s igh t  i n  t h e i r  der ivat ion.  By 
examining the  full influence of all perturbations on the  state vector at epoch, 

w e  can derive the matrix var ia t iona l  equations f o r  all p a r t i a l  der ivat ives .  

a 



For the purpose of i l l u s t r a t i o n  it is useful t o  consider a L i m i i i e G  C G S ~  

first i n  which a state vector is  defined as 

The t i m e  der ivat ive of t h e  state vector leads t o  the  equations of motion when 

physical accelerat ions are ident i f ied  w i t h  the  per turbat ive po ten t i a l  U. 

where a U / a  are t h e  nonzero partial der iva t ives  of U w i t h  respect t o  the com- t 
ponents of x Integrat ion of the equations of motion from t h e  i n i t i a l  condi- 

t i o n s  defined as t h e  state vector at epoch leads  t o  the  spacecraft  t raJec tory .  

Different ia t ion of t h e  equations of motion w i t h  respect t o  the state vector  at  

epoch leads t o  the var ia t iona3 equations: 

t' 

af - -  - -  . -  
axO axO 

which may be wr i t ten  (under proper assumptions) 

9 



A simple change i n  notat ion 

This equation represents  a s e t  of 36 l i n e a r  d i f f e r e n t i a l  equations which are 

usually ca l led  t h e  var ia t iona l  equations. The so lu t ion  t o  t h i s  set of equa- 

t i o n s  i s  the matrix X which is ca l led  e i t h e r  the  fundamental matrix of the 

set of l i n e a r  homogeneous d i f f e r e n t i a l  equations o r  t h e  state t r a n s i t i o n  matrix 

which relates the  state vector at one t i m e  t o  t h e  state vector at another t i m e  

x = x x o  t 

This development can be generalized t o  incorporate a l l  of the  perturbations 

so t h a t  they too  may be simultaneously corrected. 

state vector is considered t o  be a function of t h e  state vector and t h e  gravi- 

t a t i o n a l  (including earth and sun e f f e c t s )  and r ad ia t ion  pressure perturbations.  

The t i m e  der iva t ive  of t h e  

t 
A new, extended state vector zt incorporating t h e  previous state vector x 

and t h e  coeff ic ients  P of t h e  perturbation models is  defined. nis is t h e  

dynamic portion of t he  solution vector. 

10 



I . 
. 

a "To develop the var ia t iona l  equations f o r  the  grav i ta t iona l  p o t e n t i 2  282- 

s t an t s ,  first wri te  the  equations o f  motion of a point mass under t h e  e f f e c t s  

of gravi ty ,  

where p is the  grav i ta t iona l  constant, r2 = x i + x 2 + x 3 ', and U is t h e  
"perturbation potent ia l ,"  i .e . ,  the difference between the  ac tua l  po ten t i a l  

of the  body and 

Different ia t ing 

that of an equal m a s s  concentrated a t  the  center of gravi ty .  

the first term gives 

au , i = 1,2,3 
2 X 

r 
i - d x = - p - - - -  
3 axi i dt2 

o r ,  w i t h  t h e  notation 

i = 1,2,3 = --- axi 

2 X 

r 
I d  x = - -  + a i = 1,2,3 

3 i i ' d t2  

represents t h e  i n e r t i a l ,  orthogonal, selenocentric 

The x1 axis i s  directed toward t h e  vernal equinox and 
x2' x3 The xl, 

coordinate system. 

t h e  x axis is normal t o  the ea r th ' s  equator ia l  plane. 3 

* The remainder of t h i s  section i s  t h e  work of 0. K. Smith. 
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a The po ten t i a l  U can be wri t ten as 

u = l J  3 QD 

pn ( s i n  4) - C (enrn cos mA + Smsin mA)< ( s i n  4) 
n=2 n= l  

where $ i s  t h e  l a t i t u d e  and A is  the longitude. 

Variational equations m a y  be derived by d i f f e ren t i a t ion .  If p repre- 

sen ts  one of t he  s i x  components of t he  state vector ,  o r  o r b i t a l  elements, e tc . ,  

then by d i f f e ren t i a t ing  equation 1: 

j =1 

I where - 

1 a 2  u 

with t h e  time dependence of V;. a r i s ing  through i t s  dependence on the  so lu t ion  

xl( t ) , x2( t ) , x (t ) of equation 1 . I n i t i a l  conditions f o r  equation 4 depend 3 
on t h e  choice of the parameters p . 

The equations of var ia t ion  fo r  t he  grav i ta t iona l  constant are, from equa- 

t i o n s  l and 2, 

"( j = 3 v. 2) - (>- ai); i = 1,2,3 lj 
j=1 dt2  

( 3 )  

( 4 )  

with zero i n i t i a l  cnnditions, while fo r  any other  coef f ic ien t  c i n  the  po ten t i a l  

12 



they a re  

3 

d t2  j=1 

again with zero conditions. 

Thus, all of t h e  necessary equations a r e  l i n e a r  w i t h  the  same coef f ic ien t  

matrix V and d i f f e r  only i n  t h e  inhomogeneous terms (equations 5 and 6) .  
Except f o r  t he  aai/ a c t e m ,  all of the  terms f o r  these equations are already 

being computed i n  t h e  var ia t iona l  equations f o r  t h e  i n i t i a l  conditions. 

aa./ac p a r t i a l s  are calculated most ea s i ly  i n  a l o c a l  ( f ,  g, h )  system (see  

i j ’  

The 

1 
sect ion 3.1) and then rotated back t o  the  xl, x2, x3 i n e r t i a l  system f o r  inte-  

gration. 

s ive  poten t ia l  is  computed, since the re  are several  quant i t ies  which are needed 

i n  both computations (e.g., t he  Legendre polynomials, powers of t he  cen t r a l  

body radius vector, e t c . ) ;  hence, they are included i n  t he  GPERT output. 

aa . /ac  p a r t i a l s  a re  as follows: 

It i s  convenient t o  evaluate the  aa./ac at the  same t i m e  the  recur- 
1 

The 

1 
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The argument of the  Legendre polynomial is understood t o  be (sin 4 ) .  

- cmm, (sector&) 
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- -(n+2) (cos 4 pm') aaf = - cos m A r n acm 

= - sin mA r -(n+2) (cos I$ < ) asnm 

- a% = - cos m A ( n + l )  r -(n+2) cos 4 (sec 0 acm 

15 



The p a r t i a l s  are now ro ta ted  back t o  t h e  (xl, x2, x system before being 

added t o  equation 6. 

cos a s i n  Q - s i n  a cos 4 cos a 

s i n  a s i n  Q cos a cos 6 s i n  a 

-cos 4 0 s i n  Q 

x ) system i s  selenographic so t h a t  4 and A 3 For lunar t r a j e c t o r i e s ,  t h e  (xl, x2, 
are t h e  selenographic l a t i t u d e  and longitude. 

3.3 Transformations from GPERT t o  TRAJ 

The block diagram of f igure 1 i l l u s t r a t e s  t he  coordinate transformations 

necessary t o  generate t h e  lunar  t ra jec tory .  

g ra t ion  of t he  va r i a t iona l  equations. 

The same loop appl ies  t o  t h e  in te -  

The TRAJ subroutine integrates  t h e  actual  t r a j e c t o r y  and va r i a t iona l  equa- 

This i s  done i n  an i n e r t i a l  ( x ~ ,  x2, x ) system, mean of 1950; i .e.,  

axis i s  directed toward the  mean equator and equinox of 1950 (normally 
t ions .  

the  x 1 
abbreviated "mean of 1950"). 

tapes  are wr i t ten  i n  mean 

This frame w a s  chosen because t h e  ephemeris 

of 1950. 

Coming out of TRAJ, w e  have a state vector (pos i t ion ,  ve loc i ty)  and p a r t i a l  

der iva t ives  i n  selenocentr ic  mean of 1950. The state vector is then transformed 

t o  selenographic and input t o  GPERT. 

accelerat ions f o r  t h e  next s tep of t he  in tegra t ion ,  it must know t h e  vehicle  

pos i t ion  w i t h  respect  t o  the  asymmetrical mass d i s t r ibu t ion  of t h e  moon. After 

computation, t h e  accelerations are ro ta ted  t o  t h e  mean-of-1950 system. TRAJ 
can then accept t he  accelerations i n  mean of 1950 and provide by in tegra t ion  

the  mean-of-1950 state vector f o r  t h e  next i t e r a t i o n .  

Since GPERT computes t h e  per turbat ive 

16 
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a 

unar constant 

4. TEST CASES 

A t o t a l  of four  test cases were designed t o  demonstrate the  capab i l i t y  

of t h e  ~ ~ 8 5  o r b i t  determination program i n  solving f o r  lunar  po ten t i a l  con- 

s t an t s .  Simulated observations i n  range and range rate were generated f r o m  

t h e  Deep Space Network (DSN) tracking s t a t i o n s  at  Woomera, Goldstone, and 

Madrid. 

constants. The i n i t i a l  estimates of these  constants were then perturbed, and 

t h e  program w a s  used i n  an attempt t o  recover t h e  nominal values. 

The t r a j ec to ry  used t o  generate these  observations used Goudas' lunar 

4.1 Lunar Poten t i a l  Model 

The following constants (except f o r  p) and their  uncer ta in t ies  were taken 

from reference 1. 

t i o n  l, i n  sect ion 3.1. 

The C and S notation conforms with the  expansion of equa- 

TABLE I.-LUNAFl CONSTANTS 

~ 

lJ 

J2 

J3 

J4 

31 

'41 

s33 

s43 

c22 

'32 

'42 

c44 

Value x 

.68023264 

2.048 

0.863 

-2.628 

.296 

.403 

.0067 

0075 

23 

- .069 
-.O825 . 

.0211 

l a  Uncertainty x 

.000042 

0.1 

099 

556 

099 

.230 

.0105 

.0025 

0.1 

,062 

.Ob22 

0075 

Units 

3 2 (ear th  rad i i )  /(min) 

18 



. 
The above un e r t a i n t i e s  

~ ~~ 

rere used t o  perturb t h e  o r ig ina l  t r a j ec to ry  i n  t h e  

curve fit. 

cer ta in ty  shown above. 

The value of the  perturbation w a s  th ree  times the  one-sigma un- 

4.2 Description of T e s t  Case 

The following i s  a summary of each tes t  case and the  r e s u l t s  obtained. 

Two d i f f e ren t  t r a j e c t o r i e s  w e r e  used. Their cha rac t e r i s i t i c s  are tabulated 

below. 

TABLE 11.- TRAJECTORY DESCRIPTION 

Description 

Inject ion t i m e  (GMT) 

Selenocentric coordinates 

Selenographic elements 

Trajectory 01 

June 17, 1966 

13 5 13.92' h m  

950.17148 

-2400.6717 

-364.25808 

1.0958210 

84073599 
.28029238 

2763.0875 

12.5 

29857857 

307 71 
186.34 

297 675 

Trajectory 02 

June 27, 1966 
h m  s 4 o 40. 

1626.7478 

1082.9332 

365.48493 
-. 97861241 

1.1517809 

.94300413 

2788.0 

.2869 

15.0 

25.47 
-12.46 

0. 

19 



0 0 Sta t ion  Latitude Longitude E Elevation (nil 

Goldstone 35.206 243.150 1004. 

Woomera -31.210 136.085 156. 

Madrid 40.437 -3 765 800. 

a Three radar s t a t ions  were used: Goldstone, Woomera, and Madrid. Range and 

range-rate measurements were taken at  a r a t e  of one set per  minute from each sta- 

t ion.  

t r a j ec to ry  02. 

i n  t a b l e  I. 

rate measurements with standard deviations of 1 5  meters i n  range and .02 meter/sec 

i n  range rate. 

range observations. The moon was not considered t ransparent .  

w a s  used t o  remove simulated observations when occulted by t h e  moon. 

summarizes the  s t a t i o n  charac te r i s t ics .  

The simulated observations w e r e  generated f o r  both t r a j e c t o r y  01 and 

The in jec t ion  vector appears i n  t a b l e  I1 and t h e  lunar constants 

Uncorrelated gaussian random noise w a s  added t o  t h e  range and range- 

I n  addi t ion,  a pos i t ive  range bias of 20 meters w a s  added t o  a l l  

A separate  program 

Table I11 

TABLE 111.- RADAR STATIONS 

4 . 3  Running Time 

The following formula w i l l  approximate t h e  7090 running t i m e .  

-4 Time (min) = 5 + 2.5 x 10 ( #  observations) ( #  i t e r a t i o n s )  ( #  var i ab le s )  

The running t i m e  i s  proportional t o  t h e  number of observations, i t e r a t i o n s ,  

and var iab les  with an addi t ive constsnt of 5 minutes t o  a l l o w  f o r  reading t h e  

program plus t h e  input instruct ion.  

20 



Case A 

Description: Trajectory 01 w a s  used. 

solut ion vector contained t h e  same 12 var iables .  A t o t a l  of 

1450 range and 1450 range-rate measurements w a s  included. 

data rate is  one observation per minute when the  s t a t i o n  is 

v i s ib l e .  

Epoch was taken a t  June 17, 1966 - 13 /5 /13.92' GM!l', t h e  injec-  

t i o n  t i m e  of t ab le  11. 

Twelve var iab les  were perturbed and the  

The 

The data arc covers 9 hours of t racking after epoch. 
h m  

Results : Results are tabulated on t h e  following page. 

column i n  t h e  t ab le  is the  l a  e r r o r  associated with each unknown. 

Because of the  s t a t i s t i c a l  nature of t h e  observations, absolute 

cer ta in ty  i s  impossible. The fourth column indica tes  the  

amount by which t h e  arrived-at value exceeds t h e  nominal value 

of table I. 

The uncertainty 

21 
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I 

C a s e  B 

Description: Trajectory 02 w a s  used. 

perturbed and solved for. 

measurements was used. 
4h/10m/48s W) and continues for 10 hours. 

not v i s i b l e  during t h i s  interval.  

A s  i n  Case A the same 12 variables w e r e  

A t o t a l  of 628 range and 628 range-rate 

The data span begins at epoch (June 6 ,  1966 - 
The Madrid stat ion w a s  

23 
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C a s e  C 

Description: TraJectory 01 w a s  used. Eleven constants were perturbed and 

seven solved for .  

S 3 3 ,  S b 3 ,  C42, and Ch4. 
t o t a l ed  1550 each at a r a t e  of one per minute. 

covered 9-1/2 hours of tracking. 

1966 - 17h/13m/13.92S GMT. 

The perturbed values not solved f o r  were 

Range and range-rate observations 

The data a r c  

Epoch as before w a s  June 6, 
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Case D 

Description: Trajectory 01 w a s  used. As i n  Case C y  11 constants were per- 

s33 and c44 t u b e d ,  but t h i s  time 9 were i n  t h e  solut ion.  

were not included i n  t h e  so lu t ion ,  but were perturbed. 

of 3245 range and range-rate observations were included. 

amounts t o  20 hours of tracking. 

A t o t a l  

This 
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a 5. CONCLUSIONS 

The program does indeed provide a corrected state vector of lunar  con- 

s t a n t s  within allowable u n c e r t d n t i e s  whenever each perturbed quant i ty  i s  

included i n  t h e  s ta te  vector.  This is the  r e s u l t  i n  Case A and Case B. If 

the  number of perturbed lunar constants exceeds t h e  dimension of t h e  solu- 

t i o n  vector,  t h e  proaram w i l l  not provide a corrected solut ion within accept- 

ablp uncertaint ies .  This is I1liist.rated i n  Case C and Case D. 

6. N F N  TECHNOLOGY 

This sect ion i s  included t o  comply with requirements of t h e  "New Tech- 

nology clause of t h e  !fester Arrrpement under which t h i s  report  w a s  prepared. 

This report  describes R study performed using ce r t a in  o r b i t  determination 

processes developed by I'RW Systems. "he most s ign i f i can t  new technology 

r e su l t i ng  from t h i s  contract  i s  t h e  recursive f o r m u l ~ t i o n  f o r  t h e  ca lcu la t ion  

of pRrtiRl derivatives. 



. 

A. INPUT 

A t yp ica l  ESPOD input f o r  t h e  t es t  cases described here might cons is t  

of t h e  following: 

1. 

2. 

3. 

4. 

5 .  

6 .  

7. 

8. 

9 .  

10. 

11. 

Epoch t i m e .  

S t a t e  vector at epoch. 

The values of the poten t ia l  constants used i n  t r a j ec to ry  
integrat ion.  

Flags t o  determine the  quan t i t i e s  included i n  the  po ten t i a l  
model. 

Flags t o  determine which quan t i t i e s  are t o  be i n  the so lu t ion  
vector.  

M a x i m u m  number of i t e r a t ions .  

Bounds on t h e  d i f f e r e n t i a l  correct ion -- The bounds place an 
upper l i m i t  on the  correct ion on each i t e r a t i o n ;  a proper 
choice of bounds w i l l  prevent divergence of t h e  solut ion.  

Weighting of observation -- The observations are usually 
weighted by t h e  standard deviation (u) of t h e  noise.  In  our 
case,  t he  weighting corresponded exact ly  t o  t h e  noise Q used 
i n  generating the  data .  

The sun, ear th,  and planets  may b e  included as per turbat ive 
forces.  The test cases contained sun and ea r th  only. 

Input and output un i t s  are usual ly  i n  f't and f t / s e c ;  huwever, 
any other  system can be  used. This  is  control led by two input 
cards. 

The f i n a l  corrected t r a j e c t o r y  may be ca l led  f o r  a t  any desired 
sequence of time points .  
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B. OUrPur 

A t yp ica l  output p r i n t  w i l l  furnish the  follawing information : 

1. Card image of a l l  input statements. 

2. S ta t ion  locat ions.  

3. Chronological l i s t i n g  of all radar observations,  i .e. , time, 
range, azimuth, e levat ion,  range rate, e t  c . 

4. Lis t ing  of program constants,  potential .  constants ,  radius  of 
ear th ,  e t c .  

5 .  Residuals ,. l i s t e d  chronologically o r  b y  s t a t i o n ,  at each 
i t e r a t i o n .  

6. The mean and rms of a l l  res idua ls  at a p a r t i c u l a r  s t a t i o n .  

7. The d i f f e r e n t i a l  correction f o r  t h e  pa r t i cu la r  i t e r a t i o n ,  w i t h  
t h e  old and new value of t h e  solut ion vec tor ,  t h e  bounds, and 
the  sigma involved f o r  var iables  i n  t h e  so lu t ion  vector. . .  
sigma is t h e  square root of t he  diagonal element of t he  covari- 
ance matrix,  ( A * w A ) - ~ .  

8. The corrected s t a t e  vector  a t  epoch i n  t r u e  of date ,  ADBARV, 
and Cartesian coordinates. 

9 .  Statements as t o  whether  o r  not solut ion i s  converging o r  
affected by the  bounds. 

The weighted rms of the  res idua ls  f o r  the  current  i t e r a t i o n ,  
the  predicted f o r  the next i t e r a t i o n ,  and t h e  b e s t  rms up t o  
t h e  current  i t e r a t ion .  

10. 

11. The covariance matrix of t h e  solut ion and i ts  associated 
cor re la t ion  matrix. 

12. A pr in tout  of t h e  f i n a l  corrected t r a j ec to ry .  
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APPENDIX I1 

CORRELATION MATRICES 

T 

Rows and columns containing zeros 

The correlation matrices were obtained from the covariance matrix (A WA)-’ 
by dividing the ( i , j )  element by ai uj. 
indicate that t h i s  variable w a s  ignored i n  all f i n a l  computations. 

t i on  matrices for  the four test cases are given on the following pages. 

The correla- 
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