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Deformed wind tunnel models have been used in an experimental investigation

of the loads on bodies in wakes, thus allowing the measurement of both local
and wake source dependent submerged body loads. An analysis of these data
reveal that the application of the separated to attached flow axial force
ratio to the campntation of the local Apollo cammand module load is wvalid.
However, as the wake source to submerged body distance is increased a eritiecal
range is experienced where large induced upstream cemmmmmication effects occur.
These upstream effects amplify the loads dependent upon wake source conditions
as well as those that result from the local submerged body crossflow, and
could, therefore, seriously alter the vehicle dynamics.
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SUMMARY

TR ———— T

The loads generated on a body submerged in a wake are dependent upon the
geometry, attitude, and relative displacement of the wake generating forebody

as well as the submerged body geametry and attitude. This aerodynamic coupling
between the wake source and the submerged body has a large influence on the
vehicle dynamics, and a camplete understanding of coupling effects is needed

to predict the vehicle dynamies. To facilitate such an understanding an in-
vestigation of the static loads preduced on a submerged body has been accomplished.
Using deformed models and autamated carpet plot techniques the static leads caused
by each mode of wake source and submerged body motion have been obtained. The
results substantiate the veracity of the simple assumptions made in the dynamic
amalysis of the Saturn vehicles. For greater wake source distances upstream
cammnications effects occur which are larger than the more conventional wake
induced loads and thus may have a large dymamic effect.
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INTRODUCT TON

The loads induced by the eacape rocket wake on the Saturn-Apollo vehicles
constitute the greatest single separated flow loading on these vehicles:
(Ref. 1 and 2). The aerodynamic damping of these vehicles, as influenced
by flow separation, was camputed from static experimental data (Ref. 1).

In order to make these computations the static data were subject to some
interpretation to determine the fractional dependence of the measured total
load on the various modes of wake source and submerged body motion. The
following basic propositions were fundamental to the quasi-steady technique:

1) That the wake source induces loads on a body submerged in ite wake
by virtue of both its attitude and displacement relative to the
submerged body;

2) That the load generated by crossflow over a body submerged in a
wake is less than for the same body in attached flow due to the
reduced wake dynamic pressure;

3) That the reduced wake dynamic pressure may be related to the reduced
submerged body axial force.

To verify these propesitions a wind tunnel program was carried ocut wherein
various models with tower mounted wake sources were tested. On each model
the tower was deformed such that either wake source ‘pitch or relative dis-
placement was simulated. These deformed models were pitched and the result-

ing force data were carpet plotted to obtain the cross derivatives simlated

by tower deformation. The reduction of the data (including corrections for
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tower deflection under load, manufacturing tolerances, wake source to
balance misaligmments, and autcamatic plotting of the reduced data) involved
a considerable programming effort which is discussed fully in Ref. 3. In
what follows the testing technique and carpet plotting procedure will be
discussed briefly for background before presenting the results of the

analysis.
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FORCE DATA REDUCTION

In the analysis of the Saturn vehicles it was postulated that three separate
normal force derivatives acted on a body submerged in a wake (Ref. 1). The
first was the usual local attitude dependent derivative %‘a (vhere s
denotes that the body is submerged in separated flow). The remaining two
dervatives, A0y, amd Aoy, , are functics of conditiens at the wike

source and are termed "induced" derivatives. Both resuli from translating

the wake over the submerged body. Referring te the shadowgraph of Fig. 1

one may see that the wake is translated to the leeward side of the submerged
body by virtue of the relative position of the two bodies. However, because
the wake source is slender the wake is directed initially downward at the

wake source for positive wake seource attitudes tlms reducing the amount of
translation due to relative displacement, i.e.; cansing a negative translation.
The two induced derivatives may be defined, with the help of Fig. 1, as follows:

Aicuz is the relative displacement or translaling derivative.

Aicue is the wake source attitude dependent derivatives.
For amall displacements one may express the translating derivative as
i 1 ,1
Ny = ¢ Gnﬁ,
where ¢ is the distance between the wake source and the pormal force vector.

It wvas these three derivatives that were measured in this test program along
with their assoclated moments and axial forces. Due to practical mamfacturing

Ul



IMSC/667990

constraints the various derivatives were not necessarily measured directly.
For instance, separate models were made with the tower and wake source pitched
relative to the submerged body. Thus, the wake socurce attitude was not zero
for these cases but was naminally equal to the tower attitude. Furthermore,
the tower attitude, & ., was not equal to B . However, the two are related
as defined below with the help of Fig. 1.

B X fan /8 : =

R]N |

therefore, /g P =5, %

thus _5_';: = ‘_ﬂ_
Ve X

The wake source attitude was varied directly and its effects could then be
subtracted from the uncorrected translatory derivative ( /gu.) to obtain the

/5 derivative.

It was necessary to make separate models for each wake source or tower deflection.
Therefore, the procedure followed was to obtain coefficient versus o results
and to carpet plot to obtain the forebody dependent slopes. The data reduction
procedure was further complicated by the effects of mamufacturing tolerances,

as it was impossible to hold $4 = 0 for 6 ~ variations or to have 8y = 0 for

$ ¢ - variations. Furthermore, the tower was not completely rigid and under-
went deflections under load that had to be accounted for. It was, therefore,

necessary to carpet plot the data using the nominal values of 64 and §;. The
data were then curve fitted and corrections were made for the misaligmments.
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This process was repeated until the magnitude of the correction was within
acceptable limits (Ref. 3). The §, derivatives were then transformed to £«
derivatives (including & loads). A sample corrected, transformed, carpet
plot is shown in Figure 2. Finally slopes of the carpet plotted data were
corrected for wake source loads and the effects of 8 were eliminated fraom
thg;%L derivatives. These final corrections are outlined in Appendix B.
The final data output was then the angle of attack derivatives, the ® and
£ induced derivatives, and the separately measured wake source loads. The

submerged body loads are related as follows:

Sl ( 1)

Thus, although they were not measured directly, the three force derivatives

which make up the submerged body load were obtained fram the data.
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RESULTS AND DISCUSSION

The ability to calculate the aerodymamic damping in regions of separated
flow hinges on being able to split the loads on the sulmerged body into the
components dependent on local crossflow and those dependent upon conditions
at the separation souree. Since the axial ferce of a body submerged in
separated flow is less tlmn for attached flow, it was suggested in Ref. 1
that the reduced axial force could be used as a measure of the dynamic pres-
sure in the wake.

Thus, B4 = _,,(c.,‘”__)s
2°  (Cap)a (2)

where a refers to attached flowand 8 to separated flow. Furthermore,

the normal foreced derivative produced by pitching a body within the reduced
dynamic pressure field ef a wake was assumed to be simply

(o), (3)
(Céo)a
The induced load may then be found from the total submerged body normal force

Cu, = S,

derivative

ACy, 7 Gy - Cy, (%)

where
! c ¢
A?CN,O(:L) CA//& + D CA/g (5)
The data obtained in this test program (published in Ref. L and 5) tests
the veracity of these assumptions.

11
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Wake Velocity Deficit

That there is a reduction in the axial force is amply demonstrated in Fig. 3
(and Ref. 6 through 8 as well). As the wake source distance (distance between
wake source and submerged body) is increased the submerged body axial force
approaches the attached flow value. This results from the wake closing for-
ward of the submerged body (cutting off the low velocity recirculating wake
core) and the viscous interaction with the free stream flow increasing the

wake velocity. The trends in Fig. 3 also indicate that for higher drag wake
sources the submerged body axial force decreases. As a matter of fact the

disk wake source causes the submerged body axial force to go negative at M= .9
for wake source distance less than about 1.9 submerged bedy calibers. This
"three dimensional cavity" effect results from reattachment occurring well

aft of the conic portion of the submerged body. Roshko (Ref. 9) has measured
negative static pressures on the downstream face of a cavity at subsonic speeds
and Nicoll (Ref. 10) has presented data for "step-down" cavities on a conic
surface that show decreasing cavity pressure for hypersonic Mach numbers as

the step height increases. An extrapolation ef Nicoll's data indicates the
existence of negative cavity pressures. Evidently the flow attaching aft of
the cavity (on the cylindrical portion of the submerged body in this case)

has a low reverse mass flow rate and there is a tendency to aspirate the cavity.
The minirum pressures obtainable in the cavity would of course be the wake
source base pressure which the submerged body axial force seems to be approach-
ing as the wake source distance goes to zero. Examination of the shadowgraphs

of Figure 3 indicate that reattachment occurs aft of the conic surface for all

12
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configurations; however, no discernible reattachment occurs for the disk
wake source indieating very little reverse flow and substantiating the

agpirating effect.

The trend of reduced smtmerged body axial force with increasing wake source
axial force shown in Fig. 3 suggests the existenee of same correlation between
the two. The wake source axial force is a direct measurement of the wake
mamentam deficit and could be used to predict the submerged body axial force
if reattachment occurred on the cane. Unfortunately, reattaclment ocecurred
well aft of the cone for the configurations tested; however, it appears that
one could establish some empirical correlation between the submerged body
axial force ratio and the wake source axial force (Fig. L).

Upstream Commnication Effects

One of the primary purposes of this test program was to verify the use of the
axial force ratio in splitting the sulmerged body load into local and induced
components. Exsmination of the loads on the 30° conical portion of the sub-
merged body indicate a deviation from the results camputed using the axial

force ratio (Eq. 3). Good agreement occurs for a .5 caliber wake source dis-
tance but then the curves deviate (Pig. 5) with the experimental data showing
a%' as smch as 6 or 7 times above that predicted fram the axial ferce ratio
at a wake source distance of approximately 1.0 caliber. The curves converge
again for larger wake source distances as attached flow conditions are approached

* Same of the wake flow must be turned back. However, judging by the extent
of the wake it must indeed be only the low velocity core.

13
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on the aft body. It is worthy of note that the axial force ratio seems
to be valid for the Saturn-Apollo geametry which justifies its application

in Ref. 1.

Examination of the accompanying shadowgraphs indicate that the large increase
in the local derivative occurs when the wake closes on the submerged body.

For tower lengths shorter than this eritical length the presence of the sub-
merged body opens the wake moving reattachment aft of the shoulder. Thus,

the submerged body is completely engulfed in separated flow and pitching the
body in no way alters the wake geometry. For wake source distances in the
critical range the wake closes on the submerged body and pitching the body
alters the reattachment conditions increasing the windward reattachment pres-
sure and decreasing the leeward pressure. The effect of changing the reattach-
ment conditions is propagated upstream through the reverse flow region changing
conditions at the wake source and causing the wake to be translated further to
the leeward side. The tendency for the windward reattachment to move forward
toward the cone apex as the wake is translated over the submerged body is
counteracted by the increased return mass flow in a reduced stream tube tend-
ing to expand the windward wake. On the leeward side the tendency for the
reattachment zone to move toward the shoulder is countered by reduced return
mass flows in an increasing stream tube; thus the wake translation due to
submerged body attitude is stabilized. As the wake source distance is in-

creased the wake closes forward of the submerged body cutting off any forward

18
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propagation effects” and the experimental data converge toward the pre-
dictions obtained using the axial force ratio.

That the submerged body has an effect on conditions at the wake source is
indicated in Fig. 6. The effect of the submerged body on wake source base
pressure diminishes approaching the free wake value as the wake source distance
increases. At subsonic Mach mmmbers the base pressure reduction with wake

source distance is not as rapid as for supersonic Mach numbers which correlates
with the less rapid convergence at M = .9 of the experimental data and pre-
dicted normal force values shown in Fig. 5. WVhile the wake scurce base pres-
sure variation indicates that upstream commnication exists, it is not indic-
ative of the sensitivity of wake source conditions to changes of the reattach-
ment conditions. Figure 7 presents,o Cpy/ oo, the rate of change of wake

source base pressure with the angle of attack of the wake source-submerged

body combination, as a function of wake source distance. Since the wake source
is non-directing in this case (as will be shown later) this represents the cam-
bined effects of % 5 and £ , i.e., 3 Cp /ot = o Cpfog*t 3Cp/ag -

The deviation of the base pressure derivative from the free wake value corre]ates
with the increased local derivative for critical wake source distances (Fig. 7),
thus giving further evidence that this is indeed an upstream communicationeffect.
The accampanying shadowgraphs verify that the increased normal force is due to
sweeping the wake further to the leeward side.

¥ Phe shadowgraphs in Fig. 5 show a shock in the wake forward of the submerged
body at M = 1.96 and a wake source distance of 2.0 calibers which indeed
isolates the wake source fram any upstream commnication effects.

19
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The deviation in the local load is then due to the relative windward to
leeward side variations of the reattachment conditions being propagated up-
stream and flipping the wake to the leeward side. Reattachment, as used
here, refers to the impingement of the onter high veloeity portion of the
wake flow on the submerged body as shown in Sketch 1.

Ln'tial Wake 54“/15/54/’)/

Pca 'ff«-’:, eh ti&n
Strean:liye

U0

e ke

U:U R’e(bé’fa.ch ey i{’
V{%/o‘.:?/)‘/ e faa,téa—d/?mg;;.f- X =0
Fro file A= o<s
Sketch 1

Pitching the submerged body causes the initial reattachment streamline to
move forward on the windward side and aft on the leeward. If the wake is
approximated by a series of ‘constant velocity streamtubes it becomes evident
that this shifting occurs through&:t the reattachment gone. This will result
in a windward to leeward side pressure differential in addition to the usual
differential camsed by the variation in flow turning at angle of attack.

The pressure di.fferential will in turn produce a vertical velocity component
within the wake that,when propagated forward to the wake source, will produce

23
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the observed flipping of the wake to the leeward side. The magnitude of

the vertical velocity will of course vary with the submerged body configura-
tion as will the reverse mass flow rate. When the wake is translated over
the submerged body the resulting vertical velocity component results entirely
from the shifting of the reattachment zone. It becomes apparent fram the
foregoing discussion that the additional normal force will be a maximum when
reattachment occurs on the submerged body; thus, maximizing the vertical wake
velocity (because of the large velocity gradients in the outer wake flow) and
the recirculation mass flow (due to the turning back of higher velocity flow).
Conversely, these effects diminish when the sulmerged body is exposed to the
low velocity gradients and small recirculation mass flow rates (both of which

characterize the flow at wake source distances ocutside the critical range).

The additional normal force is then the result of a vertical wake velocity
component being comminicated upstream to the wake source. The vertical velocity
is related to the submerged body normal force, and the upstream cammnication
is a function of the reattachment pressure. The reattachment pressure is a
function of the sulmerged body geomeiry as well as the wake conditions since

it increases with the body slope at reattachment. The axial force moment is
indicative of the reattachment pressure rise as affected by both the submerged
body geometry and the wake properties (Ref. 11). The axial force moment on a

cone may be related to the normal force as follows;

2y
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where D is the diameter at the centroid of the pressure distribution and
8 is the cone half-angle. Both the vertical velocity and the upstream
commnication are then related to the normal force. In the first order
approximation it has, therefore, been assumed that

22 of9z ) WK )e Ly 2z (6)
Sot. A Ilw]l 3 ol S S CN
where for submerged body rotation
/7 -
L =
The total load on the submerged body due to local rotation is thus
{:,\/( = C-/»/< 4= Jf:‘p :,ﬁ, /7 {} ya :’\'_5
7 . £ X
and
('r”;g S LCy, 22
55 ‘ Y

above gives i ;
L = Cy o+ 2t ) SE L.
e g Ay =
i b s f

However, z =/£ , therefore,

— - 4 N 5

Likewise an additional translation of the wake, A z, occurs as the result

of the vertical wake velocity produced by an initial wake source translation, z.

L2 Z = é_{, A‘CN (8)
QCp

where .1 igy is the initial wake induced translatory force coefficient, and

AC, T al, Z

25
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The total translatory normal forece is

-

il - . 7

% Z
9&«/ /) J (9)
and
R S N A V- 10
ar T el T T ) -
8ince 2z =4?§ .

The wake directing derivative is simply a translating derivative caused by

the wake source imparting an initial inclination to the wake centerline.
Thus

z=2Z g (11)
bR

[

The total wake directing load is then

,,.;.C”/’__ = C//{ ((; £ m)
= ,'t"‘s‘ ( 1/6; : )é A2
( 1‘.(.. /

/

substituting Equations (8), (9), and (11) into the above and differentiating
(remembering that z =;2 ),

fo

. ' / ‘ .
ﬁ"v(: sl T /-\‘ ( / 7“ // b ) ( 12 )
> I . /J

-~
From Equations (7), (10) and (12) the initial (computed from axial force ratio)

0N

N

~

to total derivative ratios may be related for a given wake source distance as
follows:

TSI/ __gii&: e C},, S (13)
c . \i’-,v"» ;o \‘/ ( N \L }
iy i b PIEO /‘f’:: f ‘/ca - "_‘l

26
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shere € is a constant for a given Mach mmber, configuration, and wake
source distance. Therefore, by knowing the initial and total derivatives
for ome load component (in this case CMSI/CNCLS) one may obtain the up-
stream commnication effects for all derivatives. In this manner the up-
stream commnication component of the translational derivative (A ‘Uge) was
canputed (Fig. 8). Large upstream commnication effects are evident for
critical wake source distances. Figure 9 presents similar data for the
directing derivatives. Again strong upstream effects are indicated. The
subsonic data (Fig. 9 .) shows the elliptiecal wake seurce to be non-directing
while the ellipse-cylinder wake source has directing effects oppozite to
those of a slender wake source, i.e., Aicna>0., Nose-induced separation
occurs at the ellipse-cylinder juncture (Ref. 13) and the cylinder supplies
sufficient length for the separation to "move"; thus, as the wake source is
pitched separation increases on the leeward side and diminishes en the wind-
ward side causing the wake to be swept to the leeuardsideandtherebypro»
ducing a positive A loyg. This is evident on the accompanying shadowgraphs
as is the increased slender body wake directing for critical wake source
distances.

Inherent in the axial force ratie prediction ef the local derivative is the
assumption of cemstant Mach mumber, or at least constant local force coeffi-
cient, throughoat the wake. This obviocusly introduces same errer into the
predictions as shown in Figure 10 where the experimental data are actually
leas than the predictions for large separation distances. The correected
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data point* agrees rather well with predictions indicating the difference
is indeed due to the llach deficit. For the geomeiries considered herein,
the effect appears to be of secondary importance judging by the usually
good agreement beltween prediction and experiment outside the regions of
large upstream influence. This effect will obviously diminish in import~

ance as the submerged body to wake source diameter ratio increases.

The submerged body may also affect wake source forebody characleristics if
separation occurs forward of the wake source base thereby allowing commni-
cation with the wake., It has been demonstrated that the submerged body has

a large effect on wake source base pressure (Fig. 6). At M = 1.2 a deviation
between the total axial force on the wake source with and without a submerged
body in the wake occurs as a result of these base pressure effects (Fig. 11).
Likewise a portion of the total axial force deviation at M = .9 also results
from the submerged body affecting the wake source base pressure. However,

at 11 = .9 a difference in the forebody axial force with and without a body

in the w=ke was observed. This occurs because the boundary layer just for-
ward of the base is weak and just about to separate, and the increase in
base pressure due to the pressure of the body submerged in the wake is suffi-

cient to force separation to occur forward of the base. This causes the

ordinarily negative pressure field on this portion of the ellipse (Ref. 15)

* The correction was made by measuring the shock angle in the wake (8g) and
consulting Ref. 12 and 13 to obtain the correct Mach mmber and force deriw-
ative, respectively.
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to become more positive increasing the forebody axial force. When the
total wake-source submerged-body cambination is pitched this upstream
effect of the submerged body becomes stronger on the windward side (due
to the # deflection) causing the windward side to experience greater
pressures tlms increasing the wake source normal force. These effects,

of course, diminish with wake source distance as shown in Figure 12.

The experimental data have produced evidence that substantiate the veracity
of the rather uncomplicated technigques applied to the Saturn-Apollo vehicles.
They have also indicated that for other geametrics strong upstream effects
occur that drastically alter the loads on both the submerged body and the

wake source.

Aft Cylinder Loads

In the analysis of the Saturn vehicles it was discovered that separation
quite often passed over the shoulder of a sloping surface and attached

on the aft cylinder (Ref. 1 & 2). The effect of increased crossflow angle
at the separation source was to increase the leeward side separation tlms
allowing more of the reattachment pressure rise to propagate forward to the
shoulder. The leeward shoulder pressure was therefore increased while the
corresponding windward pressure was reduced due to opposite effects. The
result was a negative induced shoulder load. The local shoulder load was
either positive or negative depending upon whether reattaclment occurred
initially forward or aft of the shoulder. Due to the limjted extent of
this test program detailed load distribution data were not obtained on
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the cylinder aft of the conical submerged body. It was possible, however,
to obtain same pertinent information fram the total load on the one caliber

long aft cylindrical segment.

The local crossflow load on the aft cylinder evidently has a negative cam-
ponent as illustrated in Fig. 13 which shows the total aft cylinder load
to be less than for attached flow. The center of pressure data (Fig. 1),
when considered with the force data, alse indicate that a force couple is
acting on the submerged body. The forward center of pressure at M = .9
for a total negative cylinder load could enly be realiged in the presence
of a force couple. The aft positive compenent produces a larger moment
than the negative load (in spite of the larger magnitude of the latter
load) by virtue of its lomger lever arm. The result is a negative mament
and a total negative load producing the forward center of pressure. The
far aft center of pressure locations for a positive total load shown at

M = 1.96 are also indicative of this type of force couple. A very small
portion of the negative load just aft of the shoulder may propagate forward

onto the cone causing the forward center of pressure shift shown in Fig. 15*.

That the translational shoulder load is negative (as postulated in Ref. 1)
may be seen in Fig. 16. The center of pressure data (Fig. 17) indicate

* It sheald be noted that the center of pressure should normally be somewhere
between the attached flow value and the 1/2 tan 6 (where 6 is the cone 1/2
angle) due to the velocity deficit in the wake core. The latter value (derived
in Ref. 16) corresponds to an equivalent bubble wake model with reattachment
at the cone shemlder.
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that part of this induced load must also be positive. This is the result
of the downstream reattachment pressure rises. These effects must be amall,
however, since the total induced load is negalive and rather large, and the
center of pressure irregularities are small (Fig. 17). There is also same
evidence of the forward feeding effect. (Fig. 18). The forward shift of
the center of pressure on the cone is the result of the effective wake core
contracting as the induced loads approach zero.

Figures 19 and 20 indicate that the directing derivative on the shoulder,
like the translational load, is opposite in sense to its counterpart on
the cone. Therefore, the slender wake source induces a positive shoulder
load while the ellipse-cylinder induces a negative load. Again a forward
shift in the center of pressure data (see Fig. 21 also) occurs as the in-
duced load approaches zero.

The data tend to substantiate the theories of Ref. 1. The induced shoulder
loads are of opposite sign to the preceeding cone loads. The translational
load has a small positive component that was recegnized but neglected pre-
viously (with some justification since they are indeed small). The directing
derivatives undoubtedly have similar effects. The shoulder loads alsoc must
have upstream commnication camponents as evidenced by the shape of the load
variation with wake source distance. The absence of detailed pressure dis-

tribution data preclude illustrating these effects quantitatively.
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CONCLUSION

Experimental data have been obtained on a wake submerged boedy which indicate
the loads on the submerged body are dependent upon:

1) submerged body crossflow

2) relative lateral displacement of wake source and submerged
bedy

3) wake source attitude

Furthermore, the rather unsophisticated technique of predicting the local
loads fram the submerged body separated to attached flow axial force ratio
is valid for the Saturn-Apollo gecmmeiry. Far grealer wake source distances
substantial upstream comminication effects occur for each of the submerged
body derivatives. Recognition of these upstream effects is of paramount
importance to any computation of the vehicle dynamics from the static force
characteristic since these loads could have profound dynamic effects. A
method for extracting this upstream commnication cemponent fram each of
the experimentally obtained submerged body derivatives has been indicated.
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APPENDIX A
NOMENCLATURE

Axial farce,coefficient Cy = A/(pU°/2) S

Pressure coefficient;, Cp = 5
@

Reference diameter (submerged body base dimmeter)

Longitudinal distance between wake source and submerged body normal
force vector

Mach nmumber

Pitching moment, coefficient Cpy = m/( /002/2) SD
Normal force, coefficient Cy = N/( /002/2) s
Pressure

Average pressure

Dynamic pressure, q =p 02/2

Reference area, 'm)z/h

Velocity

Longitudinal distance between wake source and tower base
(tower length)

Vertical weke displacement

A~1



1MSC/667990

& Angle of attack
2 Angular translation of wake source
A B Increment
J
S % Tower attitude
9 Wake source attitude relative to submerged body centerline
6 Wake source attitude relative to tower centerline
Subscripts
a Attached flow
b Base
¥ Leeward
s Separated flow
T Total
u Uncorrected
v Vertical perturbation velocity
W Windward
o Undisturbed flow
. 0 Conditions at o= 0
Superscripts
i Denotes induces increment e.g., AicN = induced increment in

normal force coefficient

Upstream induced camponent

A-2
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APPENDIX B

FINAL CORRECTIONS TO THE FORCE DERIVATIVES

The final step in the data reduction was to eliminate the wake source loads
from the ¢y .8, ,and ;7. derivatives (the subscript u denotes data un-
corrected for wake source loads). The wake source body axis loads were
measured in the presence of the aft body. For the o( corrections one need
only subtract the wake source leoads since both wake source and submerged body
load are in the same coordinate system as shown in Sketch B-l.

e C,

,7\‘ / ,/
F i{, /// \< b-
———— ( l—-zgz—v &i\ 7\
p

Sketch B=1 A// " \{

Thus
' - . o~
v//} Lo, - &/
- e A o)

s = - _
\"A(_t C/,/,;A 233 *‘.46) w , B-1
” - . £
L, £ ’/‘, = l./..~ Vd - [‘///\ —

k & - ij'/,

For the 8y corrections one must account for the difference in attitude between
wake source and submerged body.

4 e
L‘N;_./' L.L0 L (71 :’n

—. A -
1
. O ‘“’4;".,
SR “hy, g o it
\ "
,’/‘/ H
dﬁ‘h e

Sketch B-2
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If A 4 C - A ¢ - . . C, )
el ' 1'\/@ - ’L’/r/ é.‘.l. 2 1’7

& - ‘/ } — I'd ]
Pl C}/He P t,sr;—:eu o Cr/la

and . o e
. / )(,
differentiating the Svove far &0 93‘4» = ¢ sin K,;ﬁ— , cos Bfi= 1
. &
yields
g (//e = C/./aw - CJ'O‘,J
similarly
5 C,”«9 ) —-—((// B ) (::';?'-'r’p: }
Therefore, i
) = " e - e
A bd@ “ h'//é’u. ( (A:/aw,v T /
( ¢ _ 7 .
C;ﬂ A C/ '79‘41 _{{_ ,\ L /’\/y‘____; "’/(aL,qu )

Finally the 5 t derivatives were corrected for wake source loads and 6 effectis.
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From Sketch B-3 for small values of ¢

B =tang =12/y
§ t= tan $¢= 2/%
sv= (H/g =X£

and ét = et

Therefore, transforming the wake source load into the submerged body axis

system
= C 4 s :)(4"“ = &
5CA/ - Mewr ces dt‘ h —An é AL
. 2 2 if
- (—f/;,! ﬁv:t"!‘i’ - /Cl‘owf (Astg)(’, /\ 6
where 2Caw "Cor

differentiating with respect to A fors =0, Cp st = O,sin K5=0, cos K5=1
gives,

5Cy, = K¢ "f’w -KC = K St ~Can ) B-3
/j C) I “w . 2 T
Likewise transformingthe mament
/
AN IR /
5\4”7 E {.,\w‘:ﬁj S ‘,’Lﬁab i L,/ . i"‘) Ll

substituting St = K4 and 5 =~ % tan’,j?:.r:% 4 and differentiating with respect
to # for =0, Cpq gr=0s sin K& = 0, cos K 5= 1 yields

e ) - \ -
5 Cr;1= cAL (o O,y XL @ B-
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The incremental derivatives (Eq. B-3 and B-4i) are applied to the &, derivatives
along with the 8 derivatives as follows;

s L 3 F . e
M\ 4/5 .9 = f\ <, ,_‘[':“\ —Ly a2 -y va &2
;’ / R -~ I3 «"\ o /' - B-S
l-l C,u-,,\ & = L ,,:‘ /‘.’: - A (/,«99 - = """7/72“' /f;,’
since 6 = then -9-- K and substituting Eq.. B-3 for ,.CN .
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B-3
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Likewise the induced translational mement may be computed from Equations
B-l and B-5 as follows;

Hi
P w w

(: = L' X _ ¢ _ /, o K
A C»Iré AC K[A 5,,,9 _5((//5(; C% )] ECAO B-7




