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LANDAU DAMPING AND DEBYE SHIELDING 

Peter D. Noerdlinger 
Enrico Fermi Institute for Nuclear Studies and 

Department of Physics 
University of Chicago 

. .  A physicc! exp!mat:on I;: terns of competition befween ion 

bunching and electron shielding i s  given for the dependence of the damping of 

longitudinal ion waves in a collisionless plasma on the electron-ion temperature 

mtio. The Debye shielding of an externally induced electrostatic perturbation 

of form exp (ikx - i W  t) in a plasma is  derived and discussed. The usual 

procedure of discussing the energetics of Landau damping in terns of only the 

damped part of  the distribution function f is justified. 
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I ;  !ntroduction 

The Landau damping of longitudinal electron oscillations at long 

wavelengths, when the damping i s  small, i s  rother well understood as a resonance 

between a wave propagating on the main body of the plasma and a small family 

of particles traveling at nearly the phase velocity of the wave. 
1 -4 

Landau 

damping in the regions of greater damping (large k, k = wave number) i s  not 

physica!!y explained by this resm~nce  pittiire. This may be seen from ihe dependence 

of the resonant-damping formula on f '(u), the derivative of  the init ial velocity 

distribution evaluated at  the phase velocity u = 

2 
0 

W /k of the wave: 

% =Re b4, M r  = R&i) 
For Maxwellian f this formula gives damping tending to zero with u , while 

0 

in fact the damping i s  greatest when Re(u) i s  least. The divergence i s  most clearly 

seen in Fig. 1 of reference 5. Superficially, the situation for ion waves seems better 

understood, but in fact inconsistency is  present in the explanation given by Fried 

and GouId. 
5 

The difficulty i s  in understanding why electron Landau damping, 

which should be largeat large k and small ur fails to bother the ion waves much 

if T. << T . It i s  not adequate to state 
I e 

waves then becomes smaii because f '(u j i s  small, for that explanation would imply 

- 
5 

that electron Landau damping of the ion 

o r  
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that the damping i s  also small for elecfron waves, a fake conclusion. The present 

paper presents an explanation of why electroc waves damp heavily at low phase 

velocity and yet why under some c3rcumsfances the ion waves may persist hardly 

damped. The approach has much more geFeralityr however. 

Consider first an electron plasma with fixed positive background. 

The init ial electron distributior! w i ? l  be takea as the MaxweIIian 

and later when ions are included their init ial distribution F (v) be assumed 

similar, with a replaced by the ion +hemal velocity A, As usual, the problem 

wi l l  be linearized and wi l l  be made om-dime&oraaI by integration over directions 

0 

orthogonal to k , and a single Fourier compocesrf proportional to exp (ikx) * 
wi l l  be used: l 'dx  d& 

6 
The correlationless kinetic equation now reads 

(For ions, let e 

f higher than the first are ignored. The most rigorous discussion in the k 

-e, m + M, f -3 F:, Terms involving powers of E or 
L 3 
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literature of the physical mechanism of Landau damping utilizes the assumption 

of a time-hamonic dependence of f leading to k ‘  

This procedure has well-known dangers; for example, the solution of the init ial 

7 
value problem shows that f does not have the above form, even for small or 

large t. When (5) i s  substituted in 

k - 
GGL Us4 1 a W  

a pole i s  present in the integral. I f  the Landau p r e ~ c r i p t i o n ~ ’ ~  i s  used to define 

the manner of going around this pole, the resulting dispersion relation nevertheless 

gives a correct description of the damping at long times. It wi l l  further be shown 

in Section Ill that the energetics may properly be discussed in terms of Eqs. (3) - 
(6). This justifies Wu’s assumption of (5) and permits much of the discussion here 

to be conducted in terms of the dispersion relation (see Section 11). In Section 1 1 1  

the shielding mechanism introduced in Section I1 is  put on a firm basis by a 

3 

rigorous treatment of  the init ial value problem. As side results, the dynamic form 

of Debye shielding i s  derived (this was done for a test particle problem in 

reference 6) and it i s  shown that the undamped part of the distribution function 

has no effect on the energetics. The ultimate motivation i s  to provide an intuitive 

7 

picture ihai can be used to interpret and predict the amount of damping in a 

wide variety of examples. 
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11. Analysis in Terms of the Dispersion Relation 

The dispersion relation 

t 

i s  obtained by substituting (5) in (6) w i th  the Landau prescription t h f  the conta~r 

C must pass below the pole at u. f 

f . If (2) i s  used for f , then (7) takes the form 

wi l l  be used to designate the derivative of 
0 

5 
0 0 

Since it determines the damping, the dispersion relation should give a clue as 

1 -4 
to the damping mechanism. The well known resonant damping at long wavelength 

results from the imaginary part of (7) or (8) and needs no further discussion. But 

at very small Re(u) the salient feature of (8) is  that in the region near the origin 

of the u plane, where one would lozk for slightly damped waves, W is  large and 

negative. This may be seen from Eq. (8) and the properties of Z(y) , especially 

the value Z'(0) = -2. Thus one i s  forced down to large negative values of Im(u) 

8 

to find any waves, which exist only where W i s  real and positive. The negative 

value of W at the origin may be given a simple physical interpretation as follows: 
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. 
If an electric field E = E exp (ikx-i Gc, t) were present in the plasma, it k 

would produce a perturbation in the distribution of form (5). For values of 

and k satisfying the dispersion relation, this would result in the correct charge 

density to satisfy Gauss' law (6)# but when W is  negative, the resulting charge 

density i s  of the wrong sign to fulf i l l  (6). If an additional charge density -- 
f e = - 2fk were inserted into the plasma by some means, it could drive the 

would shield out half the driving Jk oscillation. The plasma charge density 

field, leaving the remainder to drive the oscillation. Clearly, the "externally 

Je could stand for the charge density in a slightly introduced" charge density 

damped wave propcgatiq on the l m s .  Dependin-, e:, the detai!;, the electron 

lw 
A 

shielding wi l l  either be enough to damp the ion wave heavily or not. This wi l l  be 

discussed further in Section 111. The central point here i s  that the large negative 

values of W near u = 0 correspond to shielding, not resonant damping. No 

single narrow band of particles in f can be isolated a d  identified as producing 

the damping. For nonzero frequencies, the shielding must become a dynamic one, 

0 

leading or lagging the imposed field by some amount. If the lead or lag i s  nearly 

0 180 , the shielding becomes a regeneration instead and the wave can propagate 

with l i t t le damping. (Shielding - in phase is  defined as plasma charge density 

out of phase with the impressed charge density.) -- 
This kind of damping, due to the impossibility of satisfying the real 

part (the k part) of the dispersion relation, contrasts strongly with the resonant 
2 

damping, where the real part i s  satisfied in a large neighborhood of the solution 

ana the imaginary part# due to resonant particies, determines how tar down beiow 
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the real u axis one must look for the waves. On other physical grounds, it i s  

reasonable that shielding would predominate in the regime of large k . In such 

a regime, there i s  plenty of time for static or nearly static Debye shielding to occur, 

since particles do not have to go far ( A small). As one moves away from this 

situation, the particles have to go farther to do the shielding. Thus they pick up 

too much momentum and overshoot their mark, leading to oscillations. By the time 

one has moved out to the slightly damped region, shielding i s  nearly impossible, 

and only a few resonant particles can interfere with the wave. 

2 
There i s  a general method for determining when no positive k values 

are possible near the real u axis, which seems to correspond to large shielding- 

type damping. Mathematically, one can see from the l i t t le used form of the 
9 

dispersion relation 

a 
that for u nearly real W can be positive only when the phase velocity i s  in a 

region of large positive f 'I, This i s  due to the peak in -&(v-u) at v = u. 

Regions of f far distant tend to contribute l i t t le to k because the logarithm i s  

small and slowly varying and regions with opposite signs for f 'I tend to cancel. 

The imaginary part of the integral must also be zero, of course, for oscillations 

to exist. This i s  a resonant-particle condition. Here we must elucidate the 

0 

2 
0 

0 

1 -4 

connection between f I' and the shielding mechanism, a non-resonant mechanism. 

A good starting poini i s  the faci ihai very iarge vaiues of f !! aciuaiiy iead io  

- 0 

0 
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instability . The instability i s  a form of the two stream instability, since i t  involves 

an excess of particles moving both faster and slower than the wave. The two-stream 

instability i s  wellvnderstood as a bunching process , similar to that in klystrons. 

Hence it could be said that a large positive value of f "(u) produces bunching in 

the right phase to maintain a steady or even a growing oscillation, while f '(u) saps 

9 

2 

0 

0 

energy by a particle wave resonance, and a large negative f "(u) represents a 

deficiency of the two streams on either side of the phase velocity, so that bunching 

cannot occur and shielding predominates. Since instability can never set in unless 

f ' reverses sign due to large positive values of f 'I (i-e. f has a minimum ), 

one must conclude that resonant damping overcomes bunching in  a l l  cases where 

f has no minimum. The various effects are illustrated in Fig. 1. Cases a, b, and 

c illustrate forms of f leading to bunching, resonant damping, and shielding, 

respectively. Case d, in which the distribution becomes nearly flat at the wave 

velocity, may be resolved as shown symbolically into a combination of resonant 

0 

9,lO 
0 0 0 

0 

0 

damping and bunching. 

The arguments concerning ion waves depend crucially on the 

assertion that the nearly undamped behavior found for plasma oscillations at very 

long in a one species plasma result from a combination of bunching with 

very small resonant damping. Therefore this matter w i l l  be pursued further now. 

It rests on the observation that some bunching is  necessary for a plasma oscillation 

to persist at all. Clearly this must be so, as only bunching of the particles can 

result in an accumulation of charge at the places necessary to provide the 

required E if ~ i l e  examines the ~ I i g h t ! ~  d~iiiped high v e k i i y  p h r i u  O S C ~ I I G ~ ~ S  R '  
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in the wave frame of reference, one sees that the central part of the Maxwellian 

distribution i s  a fairly monoergetic beam (since u >> a) passing through a sinusoidal 

potential. Hence it w i l l  suffer bunching. Of course, this does not lead to instability 

unless there i s  a second stream going the other way to provide proper feedback. 

If the bunching argument i s  correct, however, it should be possible to work out the 

positive values of W at large, nearly real u from this model. This i s  easily done. 

First we note from Eqs. (5) - (7) that an electric field Ek = -ik#k in the plasma 

produces a charge density 

On the other hand, when u)) a, one may regard the problem from he wave fmme 

as one of a nearly monoergetic beam of  particles with mean streaming velocity u 

passing through a static sinusoidal potential 9 = e . The equation of con- 

tinuity for the stream gives nv = n v I where v 

conservation givesrmv2 - e(2hbv . If & v  = v-v and i n  = n-n then 

to first order in the perturbations n sv '+ vo Ab; = 0 and mv f v  = e@. Thus 

ikx 

i s  identified with u , and energy 
0 0  0 

2 
1 0 0 O f  

0 0 

$n = -n e v , and the charge density - e i n  found from the bunching analysis i s  
0 4 o2 

identifying v with u and pk' with yk for large u, one sees what W must have 

the asymptotic form 'vii - I/u . ~ u i  this i s  exociiy whai  i w s  been proven9 for L"V' 

0 

. / 2  
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under very general assumptions about f . It wi l l  be noticed that for very large u, 

f 'I i s  very small and one cannot associate the value of W locally wi th  that of f ' I .  

This i s  due to the slow variation of the logarithm in (10). 

0 

0 0 

If the plasma is  made up of many streams and the plasma frequency 

for each stream s i s  , while i t s  velocity is V , then the bunching of each 
S S 

stream i s  represented in W by an additive term 

2 2 
where & 

terms of well defined streams, but that possesses large positive values of f 'I in a 

small region of widthav centered on u , with smooth structure elsewhere, i t s  

contribution Wf to W may be estimated as 

= ZW, . If there i s  a portion of f that cannot be described in P 0 

0 

A V  

where I f  I' > 
large. This may be seen by the fact that if f I' i s  fairly constant in a region of 

width&, centered on u one may estimate (f "(v) In1v-u I dv over that 

region by 

i s  the mean of f I' over the width of the region Av where it i s  
0 0 

0 

0 

= -<F">4r D 
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The ion wave damping found by Fried and Gould can now be better 

understood. For the case of small damping, they obtain the result (their Eq. (33)) 

where y =u/a<< / and =m/M 

The term -1 represents a large electron shielding contribution, the second term i s  

from electron resonant damping (which i s  much smaller, since << l),  and the 

third i s  ion bunching. Since electron shielding i s  the main cause of damping, ion 

a 
bunching must be sufficient to overcome it, which means one needs a$ > 1. / 
However, one must have > BA/a where B i s  a constant equal to or 

exceeding about 2.5 for ion resonant dampi 

that the wave velocity be several times the ion thermal velocity, With the definition 

to be small. This i s  just the condition 3 
2 2  2 T n. = 0 = 6 a /A , the condition for small ion resonant damping i s  J > B d/0 , e i  

where again B 

shielding becomes e/2B > 1, or roughly 9 > 10. This i s  precisely where the 

waves are found to be slightly damped. The third term in (15) may be estimated from 

2.5. Then the condition for ion bunching to overcome electron 

2 

(13). The electron shielding term may be found from (9) and the argument showing 

JD. is the source 
that in  the center of the electron distribution Jk = -2Je , where 

field impressed on the electrons. A more careful calculation i s  done in the next 

section, however. 

If the wave i s  taken to propagate at only about the ion mean thermal speed 



i 
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(u le =a2 6 ), the ratio of the ion bunching term as estimated from (14) to the 

electron shielding term i s  0 / e ,  where e ," 2.72. Thus if 02 3 the ion bunching 

2 

predominates, but no ion resonant damping i s  large. if, on the other hand, u i s  

taken to be comparable to a , electron resonant damping becomes large, as 

discussed by Fried and Gould. At very large velocities, u >> a, Eq. (14) shows 

that both ion and electron bunching should help the wave propagate, but here the 

large electron plasma frequency makes the electron contribution much larger than 

the ion one, and the oscillations are essentially electron oscillations. 

111. The Initial Value Problem for Forced Plasma Oscillations 

Consider an electron plasma with fixed ions described by Eqs. (3), 2 
(4), and (6), but subject to an additional imposed electric field E exp (ikx-i% t). 

Clearly, only perturbations of the one fixed wave number k need be considered. 

In the sequel, the subscript k wi l l  be suppressed. E w i l l  denote the electric 

f ield due to the plasma as per (6) and E wi l l  denote E exp (-iw t). The Laplace 

transform 

0 

P 

e 0 b 

wi l l  be denoted by the same symbol as the original quantity; where confusion 

might result the argument wi l l  be given as either t (for the untransformed 

quantity) or p (for the transformed one). f(v, t = 0) w i l l  be denoted g(v). Taking 

the Laplace transform of (4) one gets 
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So that 

Substitution of  (17) into Gauss' law yields, after some manipulation 

7 
The contours of integration in (18) al l  must pass under u. The perturbation 

f( Yp)  of the velocity distribution may be found from (17), once E 

E and g by (18). Both f and E contain distinct contributions from E and g. 

i s  found from 
P 

e P e 

Only the relation of E to E enters the shielding discussion, but first both E 

and g wi l l  be kept, as it i s  desired to justify using the dispersion relation and 

P e e 

Eq. ( 5) to discuss energetics as was done in Section II. When the Laplace tmns- 

form i s  inverted, E (t) contains contributions from the poles of E f 

v i e s  of ji, + '  v ,  .*- '  g i q  j civ, onci from ihe zeros 0: defiomiiaioi ifi 

from the 
P e #  
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1 1  (18). Denavit has shown that Landau damping i s  obtained i f  the Fourier transform 

crt laye 9 
7 H(q) in velocity space of g (v) falls ofifaster than exp (-ADJ//qt)where 

i s  the imaginary part of the least damped root of D as a function of u. This 

assumption wi l l  be made, which then allows neglect of any contribution of 

(p + ikv)-' g(v) dv to E (t) other than through i t s  appeamnce in the residue 
P 

of  (18) at the zeros of D. Thus only the poles of E (p) and the zeros of D(p,k) will 

contribute to E (t). One must also remember that the contour of the integrals 

over v i s  explicitly deformed so that in inverting the Laplace transforms no 

e 

P 

- I  
singularity i s  encountered from the factor (p + ikv) 

when that factor is  inside an integration, of course, so that when f as found from 

(17) i s  Laplace-inverted, one cannot avoid terms from the singularity at 

p = -ikv. 

. This can be done only 

By hypothesis, E (p) = E / (p + i& )* Thus E(t) contains a 
e 0 0 

contribution from the residue at p = -imo . There would also be contributions 

from E due to i t s  residue at the zeros of D. These represent an effect of E on 

the naturally damped oscillations of the undriven plasma, and would damp at the 

plasma's free Landau damping rate. I t  does not seem to be of much interest to 

consider driving a plasma with a forcing field E which i s  more highly damped 

e e 

e 

than the free oscillations. Therefore it w i l l  be assumed that 0 > Im( No> >.r . - I  - 
Then the forced oscillations at C k  % wil l  dominate at long times, and we obtain 
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where 

and u = %/k 
0 

When I i s  real and negative for some u one can recover the case described in 

2 
Section I where E = -2E by setting k = -I, thus justifying the discussion there 

which skirted the initial-value problem. 

e P 

The other method to be justified here i s  that of the neglect by 

3 7 
Wu of the undamped part f 

E = 0. f i s  found from the residue of (17) at p = -ikv, and i s  

of f in considering energetics, for the case 
U 

e U 

where 

3 
The general formula for average transfer of energy to the particles from the wave is 
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However, at large times E is of the form E = E exp (-yt), SO (-AA) takes 

the form 

P P I  U 

11 
But m y  physIca!!y remenable f ‘ ( Y )  o k y s  the wme condltlons of Denavit 

0 

on its Fourier transform that were assumed for g , and this causes h to have 

-ikvt 
the same asymptotic behavior. Thus S(t) 4 (b(v) + h (v)l e dv must fa1 I 

J 
-ikvt 

off a t  large t faster than e”. But fvCg(v) + h(v)l e dv = ik” (dS/dt) 
I 

which must therefore also drop off faster than e” . Thus (AA) falls off faster 
U 

than e-2Yt at large t, and i s  negligible compared to the energy 

the portions of f that are Landau damped. 

Finally, i t i s  worthwhile to consider some specia 

runsfer from 

cases of Eq. (20), 

which gives the shielding of any sinusoidal perturbation in the plasma that i s  

steady or i s  damped at  a rate less than the free Landau damping rates. The case 

I real and negative has been discussed only if k = -I,  which results in 50 

2 2 
percent shielding of E . If u i s  kept fixed and k made very large, D+ k 

and the shielding disappears like 1/k , a strange result a t  first sight. However, 

if k 9 00 whiie u is  constant, a. 

2 

e 0 

2 

00 , in which case it i s  quite 
0 
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reasonable that the finite inertia of the particles prevents them from following 

the oscillation and shielding it. 

To do more interesting cases, one must allow u to vary, which 
0 

9 
means that the form of I(u ) must be known. If f i s  any reasonable distribution , 

0 0 

2 2  
however, I (u,) is  asymptotic to U /uo at large u so E - E 
where the limit (u 3 00, k j 0 , o  = constant) has been taken. 

small, the shielding i s  perfect, while i f  it i s  large enough the field 

P 0' p e 

0 0 

be enhanced by resonance of the plasma. To do the limiting case 

If i s  very 
0 

can actually 
3 

n L 
fixed, one must find the value of IfO). For distribution (2) this i s  -k I leading D 

2 2 2  
t o 4  = EekD / (kD + k 1- Thus if k,A i s  small, shielding i s  nearly perfect, P D 
while if it i s  large, there i s  hardly any shieldhg. This behavior is exactly the 

opposite of  what has been said eariier about Debye shielding being large at short 

wavelength. One must remember, however, that one has here the static limit, 

and that E i s  a sinusoidal function of x. Each crest in E tends to get shielded 

out by the plasma in a distance 

is not complete by the time the next ore i s  reached. If k i s  very small, 

e e 

I but i f  the crests are too close, the shielding 

however, complete shielding can occur before the next crest intervenes. This 

static behavior contrasts strongly with the dynamic behavior, near &J 

shielding is largest at large k. 

in which 
P , 

In the case that E is  interpreted as an ion wave in the electron 
e 

plasma, it can be verified that shielding i s  rather good even in  the slightly damped 

waves. But if T./T 

show ihai there is  enough urashielded ion charge i o  al low bunching. 

is  made small enough, the arguments in connection with Eq. (15) 
i e  
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Figure Captions 

Fig. 1. Initial Velocity Distributions for bunching (a), resonant damping (b), 

and shielding-type damping (c). Part (d) shows how a point 

of inflection in f may be regarded as producing a competition 

between bunching and damping, if f 

0 

(2) is split into parts f 
0 0 
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