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Measurements of the very low frequency impedance of the fheath
which surrounds a probe in the ionosphere can provide instantaneous and
continuous information on the electron density and temperature.

A simplified theory of the sheath was developed and its validity
was checked in the laboratory. Variations of the sheath impedance with
frequency, electron density and probe potential are presented.

The ac impedance of a dipole was measured in the ionosphere.

The interpretation of the data is complicated by the effect of the
earth's magnetic field and the wake of the rocket, but the theoretical
treatment is shown to apply with reasonable accuracy at low frequency.

We conclude with a discussion of the utility of impedance

measurements in the ionosphere as a diagnostic technique.
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I. INTRODUCTION

The determination of the parameters of the ionized gas which lies
in the upper atmosphere is important for many reasons. For example,
this natural plasma profoundly affects the propagation of radio waves
over a wide range of frequencies. Also it plays an important role in
various natural phenomena such as very low frequency emissions, the
aurorae and magnetic storms.

The most important of these parameters,gthe electron density, was
first measured by its effect upon the propag;{ion of an electromagnetic
wave. The vertical sounding method, described by Breit and Tuve,
measures the time required by a short electromagnetic signal, transmitted
from the ground, to come back after being reflected by the ionosphere.
The electron density can be plotted against the altitude by varying the
frequency of the carrier, but this method does not allow one to record
the electron density profile at an altitude higher than the point of
maximum electron concentration.

Propagation measurements with rockets were initiated by Seddon.2
In these experiments one obtains the electron density from the frequency
shift of a wave which has traveled from the rocket to the ground.

The phenomenon of Faraday rotation can also be utilized in the
determination of ionospheric parameters. One measures the rotation of
the polarization plane of a transverse linearly polarized wave propa-
gating in a magnetoplasma. This technique and all propagation experi-
ments in general yield a measure of the electron density integrated

over the path of the wave and tend to smooth away the irregularities of

the electron density profile of small size with respect to the wavelength.

In order to get better resolution in altitude it seems advantageous
to use a probe carried by a rocket or a satellite and to measure the
characteristics of the probe which are functions of the local parameters
of the plasma.

Following this line one may apply to the jionosphere the method
designed for the laboratory by Langmuir and Mott—Smith.3 Assuming that

the electron velocity distribution function is Maxwellian, one can
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determine the electron density and temperature by plotting the dc
volt-ampere characteristic of the probe. Predictions for the dc¢ char-
acteristic of an ionospheric dumbbell probe were made by Hoegy and
Brace.4 The Langmuir technique requires the location of the space po-
tential on the probe characteristic. This operation is delicate in
the laboratory and can be hazardous in the more complicated conditions
of the ionosphere. A more sophisticated device, the pulse probe, was
proposed by Bettinger;5 this method does not assume a priori a Max-
wellian distribution function for the electron velocity, but is more
complicated experimentally., Schematically the pulse probe consists
of an inner collector held at a fixed potential and surrounded by a
screen cage. All electrons in the interior of the cage are driven to
the collector when a negative pulse is applied to the cage. Knowledge
of the collected current, the cage volume and the pulse repetition
frequency yields the electron density at the probe surface.

Takayama,‘Ikegami and Miyasaki6 made an original approach to this
problem with the resonance probe. They showed that, if a constant
potential in series with an rf signal is applied to a probe, one
could determine the electron temperature and the plasma frequency by
recordirg the dc current flowing to the probe as a function of the
frequency of the alternating signal. It was shown by Harp and Craw-
ford7 and Fejer8 that the resonance does not occur exactly at the
plasma frequency, but provided the form of the expression for resonance
is known, this probe can provide a useful diagnostic technique without
much complication.

A different method consists of measuring the impedance between two
probes or between one probe and the body of the rocket or satellite, as
shown on Fig. 1. According to the geometry of the system and the
working frequency, this technique can be divided roughly into two
classes, With the first kind, which we will call "plasma impedance

probe,"

one determines the local permittivity of the ionosphere by
measuring the impedance of the system with the plasma as a dielectric.
The perturbation due to the positive sheath which surrounds the elec-

trodes and the effects of the plasma temperature are neglected. Detailed
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treatments of the impedance of a dipole in a magnetoplasma were made by
Balmain9 and Blair.lo Ionospheric experiments were realized by Kane,
Jackson and Whale11 and Crouse.12 This method yields the electron
density and, possibly, the coliision frequency.

The second kind of technique is generally used at much lower fre-
quency. We will call it "sheath impedance probe" because it is then
possible to make the opposite approximation; the impedance of the system
is due mainly to the ion sheath and the effect of the plasma is neglected.
Mlodnosky and Garriott13 suggested that this technique could yield the
electron density, the electron temperature and the space potential.

They predicted the value of the admittance of the positively charged
sheath which forms around the probe. The sheath incremental conductance
is the slope of the dc volt-ampere characteristic. They computed the
capacitance of the probe, assuming that the sheath was sharply bounded
and empty of electrons. This model was modified by Grard14 who, applying
Roltzmann's law to the electron density in the sheath, derived the sheath

capacitance from Poisson's equation. Similar modifications and a
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discussion of the limitations of this method were made by Crawford and
Mlodnosky.15

Compared to the propagation methods, the probe techniques offer b
high spatial resolution, although their resolving power is not limited
by their size, but by the distance traveled by the carrying vehicle,
rocket or satellite, during the time required to make one measurement.
The common inconveniences of the probes are due mainly to the fact that
they perturb the medium in which they are moving. The trail left behind
a satellite was studied by Jastrow and Pearse,16 and Al 'pert, Gurevich
and Pitaevski;,17 who showed that the wake is important when the velocity
of the body is larger than the thermal velocity of the particles.
Photoemission is another source of error, and the presence of the earth's
magnetic field complicates the computation of the plasma impedance and
perturbs the motion of the particles in the sheath,.

The present work deals mainly with the sheath impedance probe;
that is, the impedance probe in the very low frequency approximation,
where the ion sheath is responsible for the impedance of the probe.

The study which is presented in the following chapters has been
motivated by several reasons., First, there is a need for new ionospheric
diagnostic methods which can match the present requirements of space
research., It had been suggested by Mlodnosky and Garriott13 that the
electron temperature and density could be determined from the measure-
ments of the sheath impedance, but it was necessary to improve their
theoretical model and test its validity; it was important to show the
advantages of this method but also to point out its faults and limita-
tions. Secondly, there were available a set of unique v1f impedance
probe measurements made in the ionosphere by Orsak, Rorden, Carpenter,
and Ficklin,18 but it was necessary to improve our understanding of
the sheath phenomenon before giving an interpretation of these data.
Finally, independent of the applications of the sheath properties as
a diagnostic method, an improvement of the sheath theory was very
important for the accurate determination of the impedance of any antenna
in a plasma. Effectively, the depletion of electrons in the vicinity
of an antenna changes its impedance and may perturb its receiving and .

transmitting characteristics,
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This report is divided into three chapters. In Chapter II we
present a simplified theory of the sheath. First, we review briefly
Bohm's19 theory about the determination of the floating potential,
because we will use it later on for numerical comparison. Then we
present the model given by Mlodnosky and Garriott13 for the conductance
of the sheath, which is fairly satisfactory. Finally, we present
several models for the sheath capacitance which are all original but
one, borrowed from Butler and Kino.20 The models considered fall into
two classifications. In the first group, we do not take into considera-
tion the ac motion of the ions and the treatment is valid at relatively
high frequency where the ions cannot follow the variations of the ac
electric field applied to the probe. With one model, we consider a
smooth variation of the electron density from the sheath to the undis-
turbed plasma, rather than a step transition. 1In the two other models
we take into consideration the rarefaction of the ion density due to
ion acceleration by the dc electric field of the sheath. It is
interesting to note that all the preceding models give very similar
results in spite of the differences between the initial assumptions.

In the second class of models, the variation of the ion density with
the ac applied electric field is also taken into account. This
representation; which is valid in the lower freguency range, is found
to give answers differing from those found from the three first models.

In order to check the validity and the range of applicability of
the formulas derived in Chapter II under known and controllable condi-
tions, a laboratory experiment was set up to measure the sheath admit-
tance. A special tube was designed for this purpose and for the first
time we made ac measurements of the sheath impedance and interpreted
them. Typical results of this experimentation are shown in Chapter III.
We present unique data on the variations of the sheath admittance with
frequency, electron density and probe potential. These laboratory
measurements are important because they are the only reliable tests of
the validity of the theoretical treatment of the sheath; furthermore,
they suggest diagnostic methods in the laboratory which have never been

used before. The laboratory results are extremely valuable not only
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for the interpretation of the ionospheric data but also for the design
of a new space experiment.

Chapter IV deals with the interpretation of ionospheric v1f imped-
ance probe measurements made by Orsak et al.18 The ac impedance of a
dipole was measured in the ionosphere at frequencies of 1.54 kc/s and
120 kc/s. The 1.54 kc/s data are considered representative of the
sheath, because it may be shown that the impedance of the plasma is
negligible at that frequency.

The 120 kc/s results are not considered to characterize the sheath,
because the plasma beyond the sheath is believed to modify the measured
impedance. It was not possible to take its effect into consideration,
however, because Poisson's equation is hyperbolic at that frequency in
the conditions of the rocket flight. No reliable theory allows us to
compute at present the impedance of an antenna in a uniform magneto-
plasma under hyperbolic conditions, and we point out that there is a
need for more experimental data in this field. We suggest that compli-
cations may arise at low frequency in the computation of the impedance
of a dipole when the distance traveled by the particles during one
period of the applied electric field becomes comparable to the size of
the antenna. Kaiser21 had also suggested that, in such conditions, the
cold plasma theory was no longer valid., We support this statement by
computing this temperature effect on the capacitance of a planar
condenser for two different kinds of velocity distribution function.
The effect of a magnetic field is also considered. This study warns
us that the cold plasma approximation can be misleading at low
frequencies.

Finally, in our conclusions, we discuss the utility of the vlf
impedance probe in the ionosphere. We present the possibilities and
limitations of this technique and we use the experience gained through
laboratory measurements and interpretation of ionospheric data to show
how this probe can be improved and how we can increase our knowledge

of the sheath,.
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II. THEORY OF THE VLF ADMITTANCE PROBE

A. FORMATION AND DESCRIPTION OF THE POSITIVE SHEATH

In a plasma the electron velocity is generally much higher than the
ion velocity. If the different species of particles are in thermal
equilibrium, the velocity of a given particle is inversely proportional
to the square root of its mass. For example, the ratio of the electron
thermal velocity over the ion thermal velocity equals 43 for a plasma
made of ionized atomic hydrogen.

Consequently, when an uncharged probe is immersed in a plasma, it
collects more electrons than ions during a2 transient period and becomes
more and more negatively charged up to the point where its potential
with respect to the neutral plasma is sufficiently negative to limit
the flow of electrons. An equilibrium regime is reached when the flow
of electrons equals the flow of ions.

Only those electrons which have a velocity component normal to the
surface of the probe high enough to overcome the negative potential can
be collected. The others are reflected at a distance from the probe
which depends on their normal velocity.

Therefore there is a relatively low density of electrons in the
immediate vicinity of the probe. This region is positively charged and
is called the sheath. The charge of the sheath is equal in magnitude
and opposite in sign to the charge carried by the probe, since the

medium must remain neutral from a macroscopic point of view.

B. THE FLOATING POTEXTIAL OF THE PROBE

The negative equilibrium of the probe, or floating potential, has
been computed by Bohm et al19 for a planar geometry, and we shall review
briefly his theory. Let us assume that the singly charged ions arrive
at the sheath edge with a velocity perpendicular to the probe surface
and an energy which, measured in electron volts, equals eVi. The ions
are accelerated in the sheath and, from the continuity equation and

energy conservation, we find that their density is given by
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where n 1is the ion or electron density in the unperturbed plasma and
V is the potential in the sheath with respect to the neutral plasma.
Assume the electron distribution function to be Maxwellian, i.e., given

by

where vy is the thermal velocity of the particles, and v is the
component of the electron velocity normal to the probe. If the probe
is a perfect reflector, we can apply Boltzmann's law to the electron

density in the sheath and write

n = n exp — , (2)

where Ve, the electron potential, equals % g v:, m and e being
respectively the mass and charge of an electron.

However, a metallic probe should instead be considered as being a
perfect collector. The electrons which have a normal velocity in the

sheath such that

VO being the potential of the probe with respect to the neutral plasma,
reach the probe. Therefore they are collected and are missing from the

velocity distribution function, as shown on Fig. 2. The electron density

becomes

° 2 2
\ 1 v v
n =n exp —— exp [- — jdv + exp [- —= Jdv ],
v \%
—c0
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FIG. 2. ELECTRON VELOCITY DISTRI-
BUTION IN THE SHEATH.

The magnitude of the error made in the determination of the electron
density by Eq. {2) is maximum at the surface of the probe, but, when
IVo] > 2.3 Ve, it never exceeds 5 percent of the unperturbed electron
density. It is then a good approximation to use Boltzmann's law when
the potential of the probe is very negative.

Furthermore, use of Eq. (3) introduces an inconsistency because the

eleciron density in the unperturbed plasma, where V = 0, hecomes

instead of n, and varies with the probe potential.

In practice, an electrode has a finite size and this incompatibility
does not exist because the full Maxwellian electron velocity distribution
function is restored at infinity.

Consequently, substituting Egs. {1) and {2) in Poisson's equation,

one obtains

-
~

<l<
~———
|é\

where ¢ is the vacuum dielectric constant.
o
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Integrated once, this equation becomes

2
AV 2ne [ \4
(5?) = ?;: 2 vi\vi V) + Vv, exp V; + K

where K 1is found from the boundary condition at the sheath edge,

V = oV/3r = 0. Replacing for K we find

2
5V> 2ne / N v
- 2 - -2V -V - _—
(5; eo Vi(Vi V) i o 1 exp Ve

Expanding for small value of V 1in a region close to the sheath

—~
[9)]
~.

edge we obtain

2
We see that (Jdv/Or)” is positive only if Ve/Vi < 2 and,
following Bohm, we can say that the sheath edge is located where
= 2,
A Ve/
We can use this result to compute the floating potential of the

probe. The ion current at the sheath edge is written

where M 1is the ion mass and A 1is the area of the probe.
On the other hand the random electron current collected by the

probe can be shown to be

eVe Vo
= A —_— — . 6
Ie ne 21m exp \'%s ( )
e
At floating potential, V the total current collected by the probe

f,
is zero, then
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d
. an Vé y
= - — In —— )
Vf 2 21m (8)
This formula gives Vf = =-5.49 Vé for mercury, Vf = -4.23 Ve for
oxygen and Vf = -2.84 Vé for hydrogen.

A more accurate theory of the probe potential would require a more
refined computation of the ratio Ve/Vi at the sheath edge, taking
into account the generation of ions in the plasma., This probem was
considered by Self22 in planar geometry and by Parker23 in cylindrical
geometry. We shall note that, since V varies like the logarithm of

f
Ve/vi’ the accuracy of the determination of this ratio is not critical.

C. THE AC CONDUCTANCE OF THE SHEATH

We will summarize here the treatment given by Mlodnosky and

13
Garriott . The dc current collected by a probe is given by the

difference between the electron and ion flows,

There is no straightforward way of writing an expression for the
ion current as a function of the potential, but the electron current,
which is not a function of the probe geometry, is given by Eq. (6)

and can be written

Vo
Ie = Ise SXP ¥
e
assuming that the velocity distribution function is Maxwellian and
that the potential of the probé with respect to the space potential is
negative. Ise’ the saturation current, or electron random current

collected by the probe at space potential, is given by
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eVe
Ise = Anev 2xm (9)

The ac conductance of the sheath equals the derivative of the

current with respect to potential

If the variations of the jion current with potential can be neglected,

we reach the simplified result

From the measurement of the sheath conductance of the probe at
floating potential it seems that we could determine the saturation

current

and then compute the electron density from Eq. (9), assuming that Vf
and Ve are known. This would be an awkward approach because ISe
varies exponentially with Vf and the slightest error made in the
measurement of Vf would have the worst consequences in the computa-
tion of Ise' Moreover, the electrons which are collected by the
negative probe are the most energetic and belong to the tail of the
velocity distribution function, A Maxwellian function is a suitable
description of the velocity distribution function of electrons with
an energy less than about 4eVe, but is not always a valid representa-~
tion of the tail of the distribution.

On the other hand it would be convenient to make the maximum use

of the conductance measurements because, unlike the sheath capacitance,

the conductance is not a function of the probe geometry.
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If the probe potential is increased but kept less than the space
potential, electrons of lower energy are collected and their velocity
distribution function is more closely represented by a Maxwellian
function. Then, if we measure the conductance and the dc current of
the probe we can determine the electron temperature, Vé = Gs/Ie’ with
fair accuracy.

Knowing Vé and assuming that we can get the electron density from
the capacitance measurement, we compute the saturation current and

reach the floating potential through the relation

V. = -V In-S3%,
e "GV

1
s e

One notes that a lack of accuracy in the determination of Ise/Gs does
not perturb seriously the value of Vf. Then one can check if this
value of V is consistent with that adopted in the capacitance

f
computation.

D. THE AC CAPACITANCE OF THE SHEATH

1. Definition of the Sheath Capacitance

When one adds to the negative potential of the probe, Vo’
some positive increment AVO with respect to the potential of the
plasma at infinity, the sheath becomes thinner and its positive charge,
Qo’ decreases by a corresponding quantity AQO. In order for the
medium to remain neutral, the negative charge borne by the probe must
algebraically increase by the same amount. Therefore the ratio
AQO/AVO is positive.

We define the incremental, or dynamic, capacitance as being
the partial derivative of the charge carried by the probe with respect
to its potential, Cs = BQO/BVO-

We will give several expressions of the sheath capacitance for
a plane surface in rectangular coordinates, a cylinder of revolution
in cylindrical coordinates, and a sphere in spherical coordinates

(Fig. 3). We assume respectively planar, cylindrical or spherical
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FI1G. 3. DIFFERENT PROBE GEOMETRIES.

=

(a) PLANE (b)CYLINDER {c) SPHERE

symmetry for the electric quantities on the surface and in the vicinity
of these conductors. We neglect the edge effect on the borders of the
plane and at the tips of the cylinder. The edge effect is negligible
if the thickness of the sheath is much smaller than the size of the
probe. In a practical case it is possible to minimize this perturbing
effect by the use of a guard ring.

We are using two basic methods for computing the sheath capaci-
tance. In the first method one estimates the thickness of the sheath
and assumes that the electron density is unperturbed outside the sheath
and zero inside. One also assumes that the ions are attracted by the
negative dc potential of the probe but that their velocity is not
modulated by the superimposed ac potential. Then the permittivity
of the sheath is that of vacuum and the capacitance is that of two
parallel electrodes, or coaxial cylinders, or concentric spheres,
separated by a distance equal to the sheath thickness.

In the second method one computes the electric field at the
surface of the probe and, using Gauss' theorem, writes that the charge

borne by the probe is

where E° is the electric field at the surface.
By definition the electric field in the medium surrounding the probe
is E = -W; because of the symmetry in each case we have VV = BV/Br.
Consequently, E_ = - (BV/Sr)O, where (BV/Br)O is the value of
BV/Br on the surface of the probe.

SEL-65-102 - 14 -



Then the expression for the capacitance becomes

o

' Cs=—A€o§O<g—¥) . (11)

Now, it is convenient to define a new set of variables:

_ v
Y=y
e
and
r
X = ,
AD
eV
where AL = © € is the Debye length.

D
Using these dimensionless variables in the expression for the

capacitance we write:

€ ~ 3
o= -rn- (5)
. ® s DoyO xO
vo
. where yo =y
e

If, furthermore, we define a third dimensionless quantity,

o]
o

s D .
yE T (12;

o}

M

which we will call normalized capacitance, we finally obtain

Hos

~
7 E T Yy (%i) ’ 113)
o o

One must note that the per unit area capacitance of an infinite
plane or cylinder immersed in a plasma is well defined because the net
charge of the probe surrounded by its sheath is zero and the probe
potential remains finite. In free space, the problem is completely
different because the potential of a charged body of infinite size is

- also infinite and the notion of capacitance is not useful.
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2. Theoretical Determination of the Sheath Capacitance, Model I

a. Description of the Sheath Model
We assume that the electron velocity distribution function
is Maxwellian and that we can apply Boltzmann's law to determine the
electron density in the sheath. The validity of this assumption has
been discussed previously. In a first approach we neglect the motion

of the ions and consider that their density is unperturbed by the dc

notential of the probe., DPoisson's equation in the sheath is written
2
VV:—PE(I —exp-y—)
€ v
o e
Expressing Poisson's equation in terms of y and x we
have:
~2
oy _ - (
for a planar probe, —5 = exp y-1, (14)
ox
13 3
for a cylindrical probe, % 5% (x —g%) = exp y-1, {15)
1 93 2
for a spherical probe, ? Bo_x (x %ﬁ) = exp y-1 . (16)

b. Planar Geometry

Equation {14) is integrated once to give

g—y = * 2(exp y-y-K) .

X

At x = oo, y goes to zero and so does its derivative
with respect to x, therefore the constant of integration K is

evaluated to be 1 and

%’;— = +/2(exp y-y-1) .
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The value of By/ax on the surface is found by replacing y by yo:

By)

= t 2/ - - l
(§—x V2{exp Yo ~ Yo )
Using Eq. (13), we finally obtain

exp yo -1

2{ - -1
Velexp Yo Y, )

Since y0 is negative and » must be positive, we choose
the minus sign in the above expression of . Having assumed that
|yO] was large with respect to 1, we may neglect exp yo with

respect to 1 and write:

/

17/
y = [-2(y, + 1)1~ (17)
Replacing for » and y, we obtain:

€C =¢ — |-2l— +1 , (18
7 (18)

which is the capacitance of a planar sheath. We note that y is the
inverse of the equivalent sheath thickness measured in Debye length.

The normalized potential and electron density profiles, V/Ve
and ne/n respectively, were found from numerical integrations of Eq. (14)

with a computer and are displayed on Fig. 4.
c. Cylindrical Geometry

In cylindrical coordinates Poisson's equation is given by
Eq. {15).

We cannot integrate this differential equation as we did in
rectangular coordinates. However, we assume that exp y may be neglected

with respect to 1 within the sheath. In other words, we consider that

- 17 - SEL-65-102
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s empty of electrons and sharply bounded. We define the

radius of the probe ro and the outer radius of the sheath r and

we put

and its solu

SEL-65-102
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where Kl and K2 are two constants of integration estimated from the
boundary conditions at the sheath edge.

These conditions expressed in terms of Yy and x are:

We replace K1 and K2 in the above solution

X

1
n —

X

=
Y
I
o]
N
v
i
M
NIH N
fos)

On the surface of the cylinder, at x = X, we obtain

X2 X
=1 xz-xz)—_lzn_l
y0'4(1 o P x
(o]
and
X Xz

(By) - ..%, 11

ox/ ~ 2 2 x

o o]

Equation (13) can also be written

@
5§I ox o
Yy = - "__EET_—_'

with

o
= and -— = - x1
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that is

Eliminating x1 between yo and vy, we reach an expression

i 1vi d x
involving v, Vo an o

4y
2
1+—-?0=<1--—x— exp—%— (19)
x "o 7o

When Xo goes to infinity, Eq. (19) can be written

-l
y = (-2y )" (20)
which is the normalized capacitance of a planar and sharply bounded
sheath. Comparing Eqs. (17) and (20) shows how » 1is modified when

one smoothes the charge density profile by applying Boltzmann's law

to the electron density in the sheath.
d. Spherical Geometry

In spherical coordinates Poisson's equation is given by
Eq. (16). We assume, as we did in cylindrical geometry, that the sheath
is sharply bounded and that the radius of the probe and the radius of

the sheath, measured in Debye lengths, are respectively xo and xl.

53

1
2 ox
x

which, once integrated, gives
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Following the same siteps 53 bDolard, o oog suos Cosio Lo

aeterpine a relation between -, v aret X

[«

e
3 [l — Y
Lo U T = o L
3
X
O

Lauatien ‘210 also reduces to Eg. 20 when > voes to infind s

3. Theoretical Determina

a. Description of the Sheatwh

Qur sssumntiocns sroe hrsiog TRe snme a1 chE I
Madel I but this time we will consideyr thnv the sheasth 18 =horpl
{
Louanded., Furthermore, we w111 aszume thot the 1006 0Te aoi;ad &d v

the d¢ potential of the probe anc

initial velocity. YNeglecting the pr

the ion current is supposed to be limited by spnce charge lire the

electron current in a diode: the snaturstion regime deterni: the thick-

ness of the sheath., The capacitance of 1he shenth 1s tas same as the

cuprcitance of the s=vstem formed by the probe oo T Lng e

situnied il ine ouior edge ol shen i Ion . : S ; ]
surisces has the persiirivizy of ~aouanm -0 ; Cot D

the sheatih is negliginle and the Treguency ol The ol aransirg <signal g
supposed to be such that the ion current is negligible compared with

displacement current,
b. Planar geometry

The ion current collected by the probe is given by the

Child~Langmuir law

3/2
4 2e /e (—vo) / \
I = 5 r’:'o A (*) ————2 y (22/
d

where d 1is the thickness of the sheath.
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Since the electron velocity distribution function is
Maxwellian, the electron random current is given by Eq,. (6). At floating
potential Eq. (7) applies and

3/4

H
d_zx(m)“_ﬁz o[- £
=3 o\ m v P U2v )
e e

The capacitance of the sheath, C_ = €_ A/d, becomes

w [ v\ \
C = € —A—g ._M__. -._f. exp-_;_ (23)
s oA, 2 <4nm) v 2v,
If we replace the ratio M/m in Eq. (23) by its value found from Eg.
(8), we obtain
-3/4

e A3l
C =<, 5 2 < > (24)
D e

Comparing Egs. (12) and {24) we finally reach the result

v
<‘H,<

.:_3.2-%(

y =3 -y )73/% _ 1.2 (-yf)-s/4 (25)

f ?

where Ve = Vf/ve'
The normalized potential is derived from Eq. (25) and is

written

r 4/3
Yy = "'1.365 (‘7'\—'>

D

where the distance r is measured from the sheath edge toward the

probe.
The normalized ion density in the sheath is given by
n
i =%
— = (-2
— = (-2y)
These quantities are plotted on Fig. 5.
SEL-65-102 - 22 -
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c. Cylindrical and Spherical Geometries

Similarly the radius of the sheath is found by equating the
ion flow to the electron flow. For example, in cylindrical geometry,

the ion current is written,

3/2

where £ has been tabulated as a function of r, /r_ by Langmuir and
L v

24
Blodgett.
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The random electron flux is again given by Eq. {(6). Equating

the two currents, one computes  and finds rl/ro from the table

mentioned above. The sheath capacitance is then found from .
ZnGOE
C = . (26)
s rl
ln —
r
o

The spherical geometry is treated in a similar way, the
computations involving another constant £ which has been also tabulated

2
by Langmuir and Blodgett. 5

4, Theoretical Determination of the Sheath Capacitance, Model III

This model is borrowed from Butler and Kino.20 The initial
assumptions and the charge distribution in the sheath are the same as in
Model II and again we assume that the ion current to the probe is limited
by the space charge in the sheath.

From Eq. (22) the sheath thickness is written

when the potential of the probe varies, the sheath edge moves with a

velocity
- a4 Ya
31 < A  2e v,
ot 2\ I MV ot !
P o
the ion current, I , 1is not a function of time since it is assumed

that the ions cannot follow the alternating field.
The periodic variation of the sheath thickness is equivalent
to an electron current given by
- \Y
Ane od _ C ° °
5t = 7s Ot
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replacing for Bd/at we find

ne CoA g 2e ‘
c = = 2. - ==
s A 2 I MV
P [o]

Computing Ip

N N A A
C =¢ = (H_1I exp [ - =— (27)-
s o A_\mm V 2v ) \
D e e
Taking into account Eq. {8), Eq. 27) is written
~fa
A%
A ,
C,=¢, i -SV{ (28)
) e
Comparing Egqs. {12) and {28) we obtain
y = (-8y) 7" = 0504 (-y )74 (29)
5.

Theoretical Determination of the Sheath Capacitance, Model

This model has already been given by Crawford and Grard, the
initial assumptions are the same as in Bohm's theoretical determination
of the floating potential.

From Eq. {5) we know that the derivative
of the potential in the sheath can be written

ov 2ne \% p % v\1%

e ~z——) Z{Vi\vi -v)]”® - 2Vi -V, 1 - exp v .
o e

At the probe surface, we have

(5V> _ (2Ve)l/2

- =
or

Vz Ve -
r / \ 2

- V. - v )1% - +

N il TV \A ’
o D

where exp (Vo/Ve) has been neglected with respect to

- 25 -
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Assuming that the ion density can follow the variation of the

ac field and making use of Eq. (11), we obtain for the sheath capacitance

3/2 -!
v /v, - v\ v, v, - v %
1 1 (o) 1
A%

\) \)

1
2 . .
D e i e i

(30)
If we assume that the ions enter the sheath with an energy eVe/2 and
if we make use of Eq. (12), we reach the following result for the

normalized capacitance
/%
1 (1 3/2 ] 2
== |= -2 - - .
y [2(1 y,) (1 -2y) (31)

Numerical integration of Eq. (4) on a computer yields the
normalized quantities V/Ve, ne/n and ni/n. The profiles of these

quantities in the sheath are shown on Fig. 6.
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FIG. 6. CHARGE DENSITY AND POTENTIAL PROFILES IN THE SHEATH, MODEL IV,
PLANAR GEOMETRY.

SEL-65-102 - 26 -




3

E. DISCUSSION

1. Comparison Between the Different Models

In the first three models it is assumed that the time variation
of potential is too rapid for the ions to follow. In Model I, the
acceleration of the ions in the sheath by the dc field is neglected
but the electron density is fairly well described by Boltzmann's law.
In Models II and III the acceleration of ions is taken into account
although there is some inconsistency at the sheath edge because the
Child-Langmuir law assumes that the ions are emitted without initial
velocity while Bohm's theory assumes that they enter the sheath with an
energy equal to eVé/2. The profile of the electron density is
discontinuous at the sheath edge.

In order to see under what conditions these assumptions are
justified, one can examine Fig. 6 which displays the most realistic
charge density profiles.

It can be seen that Model I must be used for slightly negative
potential when it is not permissible to adopt a discontinuous profile
for the electron density and when the ion acceleration is small. Con-
Tarily, Models II and III ar ToLe is very
Then the rarefaction of ions due to their acceleration is important
but the electron content of the sheath is small with respect to the
ion content. The error made in the computation of the sheath capacitance
by taking a discontinuous electron profile can be estimated by comparing
Egqs. {17) and {20). This error effectively decreases when the potential
of the probe becomes more and more negative. This relative error is
less than 6 percent in the case of a probe at floating potential in a
mercury plasma.

In Model IV, it is assumed that both ions and electrons respond
without appreciable delay to the alternating potential when the frequency
of the ac signal is sufficiently low.

The variations of » with vy are plotted for each model on

Fig. 7. The range of Ve values is suitable for gases of atomic masses

between 1 and 200,
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It is satisfying that the first three models, valid in the
upper frequency range, give very similar results notwithstanding the
differences between the initial assumptions. Model IV, which describes
the behaviour of the sheath at lower frequencies, gives values of vy
approximately half of those found from the previous models. One must
note that Eqs. (25) and {29) are only valid for a probe at floating
potential while Eqs. (17) and (31) are also valid for a biased probe.
We cannot say a priori what frequency delimits the ranges of applica-
tion of Models I, II and III on one hand, and Model 1V, on the other

hand. We will approach this problem from an experimental standpoint.

2. Effect of a Magnetic Field

The interaction of a magnetic field with a moving probe was first
27
studied by Beard and Johnson, For instance, if an electromotive force
is induced by the earth's magnetic field in a cylindrical probe moving

in the ionosphere, the Laplacian of the potential becomes
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hif

Py - 1 o) - oV N 37V
= rdr 5;) z2 ’

This equation reduces to a one dimension problem only when

of =z and the total capacitance is found by an integration.
Although a magnetic field does not perturb the velocity distri-
bution function of the components of an infinite plasma, it does affect

the collection of these particles by a probe. An approach to this

28
problem was undertaken by Zachary but his results, which are in integro-

differential form, are not yet suitable for numerical applications. A
more direct attempt was made by Fontheim, Hoegy, Kanal and Nagy.29 They
assumed that the particles are emitted at the sheath edge with a
Maxwellian velocity distribution function. Their study is limited to
the case of a cylindrical probe in the presence of an axial magnetic
field. They found that, if the potential is retarding, the random

current to the probe is unaffected by the magnetic field when

where, yo = eVo/kT is the normalized potential of the probe, r0 and
r1 are respectively the probe and sheath radii, We, is the cyclotron
angular frequency and vo is the particle thermal velocity.
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IITI. EXPERIMENTAL STUDY OF THE SHEATH IN THE LABORATORY

This is a description of the laboratory experiments carried out to

verify the validity of the theory presented in the preceding chapter.

A. THE ARC DISCHARGE
1. The Tube

The tube is made of a sealed pyrex cylinder one meter long and
six centimeters in diameter. This tank has been emptied of air and
filled with a saturated mercury vapor. At the ends of the tube are
the cathode and the anode: the cathode is coated with an oxide and
heated by a tungsten filament; the anode is made of a hollow cylinder.
The tube is shown in Fig. 8. The filament is supplied with 35 watts
dc power from a battery charger. The anode is connected to a regulated
power supply; when a dc potential of about 200 volts exists between
the extremities of the tube, a discharge can be established with a
Tesla coil. After ignition, the difference of potential between anode
and cathode drops to 36 volts; a series 2.5 k{ resistance limits the

current.
2. The Plasma

We determine the characteristics of the plasma in the positive
column by the Langmuir technique. Using Eq. (6) and neglecting the
ion current, we may write the logarithm of the random current collected
by the probe as

A

) =24+ 0
nl v + 4n Ise

e

It follows that Jfn Ie varies linearly with the probe potential
and that the slope of the curve yields the electron potential, Ve
This relation applies for VO < 0. When the probe is at space potential
(VO = 0), the current reaches its saturation value, Ise’ as is shown
on Fig. 16. Using Eq. (9), one can obtain the electron density from

the saturation current.
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HOLLOW
ANODE

- FIG. 8. EXPERIMENTAL MERCURY-VAPOR DISCHARGE TUBE. (Dimensions
in cm, tube inside diameter, 6 cm)

Table 1 summarizes the results obtained with four different
probes; the dimensions of the probes are given by Table 2. The large
collecting area of electrode 2 does not allow one to reach the saturation
current without seriously perturbing the discharge.

Other average parameters of the plasma for an arc current of

100 ma are:

7
electron velocity, v_ =8 X 10 cm/s,
9 -1
plasma angular frequency, a% =1.75 X 10 s
dc resistivity, n =1.27 § x m,

2 7
electron-neutral collision frequency, v = € qap = 3.5 X 10 s

electron-neutral mean free path, lc = ve/v = 2.3 cm.
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TABLE 1.

FOR A 100 MA DISCHARGE CURRENT,

PLASMA PARAMETERS DETERMINED WITH DIFFERENT PROBES

Probe Number 2 5 3 6
Ve: electron potential 2.3 2.26 1.59 1.63
volts
Te: electron temperature, | 26500 26000 18300 18800
°K
Vet floating potential, -11.8 -8 -7.2
volts
= X£ - 5.2 -5 -4.4
YTV - :
e
Ise: saturation current, 3.2 2.8 0.23
ma
15 15 5
n: electron density, 1.06 x 10 1.37 X 10 1.35 X 10l
-3
m
\D: Debye length, 0.338 0.255 0.258
mm
TABLE 2. DETAILS OF THE PROBE ELECTRODES
Cylindrical
Probe Geometry Planar
Loop Straight
Probe number 1,7 4 2 5 3 6
Probe width, or
wire diameter,
d, mm 20 40 2.54 0.254 2.54 0.254
Length, cm 6 61 3x 3n 0.75 0.6
2
Surface area, cm 37.7 75.4 7.52 0.752 0.60 0.05
(d/AD) at 100 ma ~ 70 ~ 140 ~ 10 ~ 1 ~ 10 ~ 1
tube current

SEL-65-102
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There are some discrepancies between the electron temperature
measurements made with the different probes, but good agreement is
observed between the results found from electrodes similarly located
with respect to the tube axis; electrodes 3 and 6 are on the axis,
electrodes 2 and 5 are equidistant from the axis and the wall. However,
the existence of a radial gradient of temperature is not in accord with
the conclusions of Crawford and Self.30 For an average room temperature
of 30 °C the neutral pressure inside the tube equals 2.8 microns. The
mercury vapor pressure doubles with a temperature increase of nine
degrees, and room temperature variations as large as 5 °C during one
day are common. Then, it is possible that part of the electron tempera-
ture discrepancies is due to a variation of the neutral pressure. An
alternative explanation is that some electrodes are perturbing the plasma
when their potential is positively biased towards the space potential,
Having a large collecting area, they draw a current which cannot be
neglected.

The values of the normalized floating potential, Yo compares
favorably (within 20 percent) with the theoretical determination of
Bohm's.

There is a 22 percent drop in the electron density from the
axis of the tube {electrodes 3 and 6) to a point half-way between the
axis and the glass wall (electrodes 2 and 5). In a cylindrical tube
where the ratio of the diameter over the Debye length on the axis equals
roughly 250, Parker23 suggested that a fall-off of 18 percent should
occur.

The electron density at the sheath edge against the wall is not
known but can be computed from the density on the axis. After Bohm, we
assume that the ions entering the sheath have an energy (eVe/2) and
that, consequently, there is a potential drop of (Ve/2) between the
axis and the wall sheath. Applying Boltzmann's law, we find that the
electron density at the sheath edge is 1.36 X 1015 exp (—1/2) =

0.825 x 1072 (0”3

); this estimate is about 40 percent higher than Parker's
prediction. The electron density varies linearly with the discharge
current but the electron temperature does not vary significantly with

the tube current.
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3. Impedance of the Plasma Column

3
The impedance of a mercury plasma column, computed by Crawford, 1

is given by

Jii'\Ro vV o+ Jw

t” v b+ jw'’

where R is the dc resistance of the tube and (; is the angular
o

frequency. The value of the constant b can be shown to be

) <eV >/2
b=2l_e
T a M !

where a 1is the radius of the tube,

In the conditions of our experiment we have approximately:

5 -1 7 - 6 -
b=1.5xXx10 s , v =23.4 X110 s 1 and ¢ < 41 X 10 s 1.
The admittance of the column can be written
2
;L Y v-b j v bv + o
Z_ R 2 2 2 2’
t o Vv + w LORO A )
which can be simplified to
1 1 . 1 /b w
= dn(ty)
t o o
by taking into consideration the orders of magnitude of b, v and w.

Consequently, over our range of approximations, the parallel ac
resistance of the tube equals its dc resistance. We find experimentally
that the parallel ac resistance of the column is fluctuating between
370 O and 490 ( when the frequency varies from 0.1 Mc/s to 1.6 Mc/s,
while its dc resistance equals roughly 360 (). Experimentation shows
also that the parallel ac reactance of the column is at least four

times larger than the resistance.
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B. EXPERIMENTAL EQUIPMENT
1. The Probes

Electrodes 1, 4 and 7 are made of metallic cylinders lining the
inside wall of the tube; we consider these electrodes as being planar
because their width and radius of curvature are much larger than the
Debye length. Electrode 4 is coated with an insulator (alumina) to
avoid perturbing the longitudinal gradient of the potential. Electrodes
3 and 6 are made o tungsten wires parallel to the axis of
the tube.

Electrodes 2 and 5 have the shape of a torus centered on the
axis of the tube; these probes will be treated as cylinders also because
the diameter of the loop is much larger than both the Debye length and
the diameter of the wire.

The supports of electrodes 2, 3, 5 and 6 are surrounded by a
shielding cylinder which is itself coated with glass, as shown on Fig. 9.
From a practical point of view it has been very difficult to limit the
glass coating to the support alone and roughly one third of electrodes
3 and 6 was also covered with glass. However, this perturbing effect

is negligihle for probes 3 and 6 and therefore we can expect much more

accurate results from these electrodes.

FIG. 9., DETAILS OF THE SCREENED
SUPPORT OF A PROBE.

TUNGSTEN WIRE
(0.64mm DIA)
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The shielding effect of the cylinder which surrounds the probe

support is explained on Fig. 10 where

Co = the capacitance between the central conductor and the
cylinder,

ZS = the sheath impedance of the probe,

Z; = the sheath impedance of the support, and

Zp = the impedance of the plasma column.

| RF BRIDGE

GLASS

DY AT

SHIELDED SUPPORT

PROBE

\CATHODE

TS O S TSI W R N L

RF BRIDGE
|
1
L=s |
7z, +
L=s |

FIG. 10. A REPRESENTATION OF THE SYSTEM UTILIZED TO SHIELD
THE SUPPORT AND CORRESPONDING CIRCUIT DIAGRAM.
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The sheath impedance of the support is effectively short-circuited

by the much lower impedance of the plasma column and the capacitance Co
can be easily measured or taken into account in the initial balance of

the bridge.

2. The Measurement Circuit

A simplified representation of the circuit is shown on Fig. 11.
The anode is connected to the ground by a large capacitor which offers a
low impedance to the alternating signal. The total ac impedance

between probe and ground is

z
a k
+ 2z
s Za x
where Za and Zk are, respectively, the probe-anode and probe-cathode
plasma column impedances.

The second term is maximum when the probe is located at the same
distance from the anode as from the cathode, then Za = Zk = Zt/Z and
Z =2 + Z /4.

s t/
We know that Zt = 400 (; we will see that Zt/4 is always

negligible with respect to Zs.

FIG. 11. A SCHEMATIC REPRESENTA-
TION OF THE MEASUREMENT SYSTEM

R.F. AND CORRESPONDING CIRCUIT
BRIDGE | DIAGRAM.
I SHEATH
Zk Z, A
PLASMA PLASMA
ar s
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The complete measurement circuit is shown on Fig. 12. The
potential of the probe can be swept by an auxiliary circuit made of a
variable regulated power supply in series with a high resistance,

0.25 M{, connected between the probe and the cathode,

The admittance between the probe and the ground is measured with
a radio frequency bridge. The signal of a variable frequency generator
is injected in the bridge. It is essential that the amplitude of the
alternating voltage applied to the probe be small with respect to the
electron temperature; otherwise, a detection effect biases the probe
to a more negative potential and changes the magnitude of the sheath
admittance, This effect has been studied by Butler and Kino.20

The bridge equilibrium is detected with a spectrum analyzer.

It is very convenient to use a Panoramic spectrum analyzer as a null
detector because it allows us to distinguish the ac signal given by
the generator from the noise emitted by the plasma tube. It is not
possible to eliminate this noise in the bridge balance because it
occurs in one of the bridge arms.

The measurement of the admittance is performed in two steps.
First, when the tube is turned off, one measures the admittance of the
system which sweeps the probe voltage in parallel with the capacity Co
which exists between the probe support and its shield. Secondly, when

the tube is ignited, one measures the perturbing admittance mentioned
25K
HEATER fijéif]
T T

16pf L
BYPASS
2'528#"2 CAPACITOR FIG. 12. CIRCUIT USED FOR THE
¢ |§ 0.25M [PROBE BIAS MEASUREMENT OF THE SHEATH
AFQRFBRmGE L SUPPLY ADMITTANCE.

«4
OSCILLATOR DETECTOR
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o
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above in parallel with the admittance of the probe itself. The

difference between these two measurements yields the probe admittance,

C. SHEATH ADMITTANCE MEASUREMENTS

1. The Sheath Conductance

It can be seen from Fig. 13 that the ion contribution to the

incremental sheath conductance is negligible when the probe potential

is equal or superior to the floating potential. In fact the variation

of the ion current with potential is less than 5 percent of the total

current variation around the floating potential. The approximation

made in order to obtain Eq. (10) is consequently justified. We must

now verify that the principal features of this equation are confirmed

by experimentation.

100
A "y 3. A L. J
(] [} 2 i3 [ 15 14
PROBE -CATHODE VOLTAGE (volts)
FIG. 13.
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T Nion cuRRENT 300

DC PROBE CHARACTERISTICS

BELOW FLOATING POTENTIAL. (Elec-

b messmreant TON ma )
rrcnt 100 ma)

The sheath conductance was measured over a range of frequency

including the ion plasma frequency, fi = 450 kc/s.

Figure 14 shows

that the conductance remains constant and equal to the value found by

graphical differentiation of the dc
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Langmuir probe characteristic.
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The sheath conductance varies linearly with the electron density,
which is proportional to the tube current. Supporting results are
shown on Fig. 15. Furthermore, one checks that the conductance is
geometry independent, since linear variations are observed in planar

and cylindrical geometry.

2000 800 80 160
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FIG. 15. VARIATION OF THE PROBE CONDUCTANCE AND CAPACITANCE WITH DIS-
CHARGE CURRENT. (Working frequency 500 kc. Probes at floating
potential.)
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Equation (10) shows also that the conductance is proportional
to the probe current. Experiments were carried out to verify this point
by biasing the potential of the probe. Results are shown on Fig. 16 and
compared to those obtained by using the conventional Langmuir technique.
The slope of the curve yields Ve = 2,15 volts which agrees within less
than 3 percent with the electron temperature previously determined from
the dc¢ characteristic. It must be noted that the electron temperature
can be determined from a single measurement of the ac conductance
while the Langmuir method requires sweeping a part of the dc character-
istic. Equation (10) breaks down at floating potential and the deter-
mination of the "breakpoint" gives Ise = 3 ma which agrees within
6 percent with the saturation current obtained with the same probe by
the Langmuir technique. In order to measure the saturation current with
accuracy, it is necessary that the impedance of the plasma column remain

negligible with respect to the sheath impedance at floating potential.

10.0
4+
FREQUENCY 500kc

gllse
] ©
£ 4 E
: —

2_

-

0 1 i A { 1 1

0] 0.5 i .S -10 -5 0] 5

Gs{m mho) V, (Volt)

FIG. 16, COMPARISON OF CONDUCTANCE AND CONVENTIONAL LANGMUIR PROBE
CHARACTERISTICS. {Cylindrical geometry, probe 5, electron
density =~ 109 cm™3)
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From a practical standpoint there are some advantages in using
the conductance measurements to locate the space potential., The sheath
conductance is reasonably stable in time whereas the dc potential of
the probe suffers small erratic fluctuations due to variations of the
plasma column resistance. Furthermore, the "breakpoint'" is somewhat
sharper and can be determined with better accuracy on a linear conduct-
ance plot than on a semilogarithmic dc probe characteristic.

Finally, we can compute from Eq. (10) the normalized floating
potential of the probes, Vf/Ve, assuming for the electron potential
an average value Ve = 2 volts. The results are shown on Table III and
agree within 20 percent with the results of Table I and Bohms'

theoretical determination.

2, The Sheath Capacitance

Figure 14 shows that the capacitance is frequency independent
over the same range of frequency as the conductance. This implies that
rf ion motions are negligible and suggests that Egqs. {(18), (24), and
(28), which we know a priori to be valid above the ion plasma fre-
quency, apply also below this frequency. The range of applicability of
Eq. (30) cannot be reached with our experimental apparatus. In effect,
it is not possible to carry out the measurements at frequencies lower
than 100 kc/s because the sheath susceptance becomes negligible with
respect to the conductance.

All capacitance models indicate that the sheath capacitance in
planar geometry must be inversely proportional to the Debye length.

This condition may be expressed as direct proportionality of Ci to

the discharge current. Figure 15 shows the effect of current variation.
For the planar probe, which is large compared to a Debye length, we see
that the proportionality is satisfied. For the cylindrical probe whose
diameter does not greatly exceed the sheath thickness, the required
proportionality breaks down. '

Finally, a direct check of the capacitance is required. Some
typical measurements at floating potential are shown on Table III. One

notes that the admittance measurements made with electrodes 1 and 7 are

different. These electrodes are physically identical but they are
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TABLE 3. COMPARISON BETWEEN THE THEORETICAL AND EXPERIMENTAL
DETERMINATIONS OF THE SHEATH CAPACITANCE FOR A
100 MA DISCHARGE CURRENT

Probe Number 1 7 2 5
1 15
Electron density, 0.825><1()15 0.825x10 S 1.06x10 1.06><1015
-3
m
Debye length, )D’ 0.366 0.366 0.323 0.323
mm
- g : 3. .393
x_ ro/ > o o0 93 0.39
Measured sheath 260 ! 185 66.6 15
conductance, l
umho
=V _/V -5. -5.75 -5, -4.
Ve f/ o 39 5 5.41 4.60
Model I 31 30 9.5 2,72
Computed
sheath Model II 32 27 9.35 2.8
rapaci tance
pf Model III 34 39 - -
Model 1V 1¢ 18 - -
Measured sheath 32 25 6.3 2.35
capacitance,
pf

located at opposite ends of the positive column., It is possible that a
lack of uniformity of the plasma parameters is responsible for these
differences.

The predicted values of the capacitances are found from Egs. (18),
(23), (27), and (30) in planar geometry (electrodes 1 and 7), and from
Eqs. (19) and (26) in cylindrical geometry (electrodes 2 and 5). We
used an average value for the electron temperature, Ve = Z volts, and

we determined Vf/V from the conductance measurements., The predictions
e
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from Models I, II, and III are slightly too large and the average dis-
crepancy for the planar probes equals 4pf., The predictions in cylindri-
cal geometry are, on the average, 50 percent and 18 percent too high,
respectively for electrodes 2 and 5. The discrepancies can be explained
by the simplifications made in the conventional Langmuir probe data
reduction on which the comparison is based. The predictions from Model
IV are too small and it seems that we have to disregard this model in

the frequency range of our measurements.

D. DISCUSSION

The conductance measurements of a biased probe, which are displayed
on Fig. 16, give electron density and temperature. This method has some
advantage with respect to the classic Langmuir technique but sweeping
the probe potential is still required. Measurements of the electron
temperature, which is obtained from a single point of the characteristic,
can be made continuously, however.

The admittance measurements at floating potential are particularly
simple and are also suitable for continuous measurement but are only
appropriate where the electron velocity distribution function is approxi-
mately Maxwellian up to energies corresponding to floating potential.
The conductance measurements are very sensitive to this requirement but
yield a fairly good determination of the space potential.

Though we were able to predict the magnitude of the capacitance from
the plasma parameters with reasonably small discrepancies, it is more
difficult, inversely, to obtain the electron density from the capaci-
tance with a good accuracy. In effect, n which is proportional to
Cz, is very sensitive to the simplifications made in the theoretical
computation of the sheath capacitance.

However, the proportionalities of GS and Cz to n have been
checked by experiment and one can make use of these properties to record
continuously the relative variations of the electron density. We assume
that the results can be calibrated by an independent method and that
the electron temperature is simultaneously recorded with a biased

probe.
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If we assume that the smallest capacitance which can be measured
with reasonable accuracy, say 10 percent, is 1 pf, we see from Fig. 15
that the smallest electron density which can be detected with an
electrode such as probe 1 is 106 cm—3.

Continuous measurements are particularly interesting in time-varying
plasmas and in space applications where the probe is traveling in a non-
uniform medium. However, the sheath must always have time to adjust
itself to the ambient conditions before the ac incremental theory
applies. The minimum period of adjustment for small variations of the
plasma parameters can be estimated from the time required by an ion to

travel a distance of 3 Debye lengths which is approximately the thickness

of the sheath

where Qpi is the ion plasma frequency. This time has the order of
magnitude of the ion plasma relaxation period, if we assume Ve = 2Vi
at the sheath edge.

Continuous evaluaiion of ithe sheaih aduittance cannot be cvalua
with a bridge method in which a finite time is required for the sampling.
Instead, the probe voltage and current are recorded on magnetic or
photographic tape and the admittance is determined by subsequent data
processing.

Another interesting feature of the admittance probe is that, in
principle, measurements can be made without any probe inside the tube.

In effect one can make an electrode by carefully wrapping a piece of
aluminum foil around the tube. The impedance which is measured between
this electrode and the ground is due to the dielectric effect of the
glass wall in series with the impedance of the sheath which lines the
inside of the tube. Xnowing the dielectric constant and the thickness
of the glass allows one to obtain the sheath impedance at floating

potential.
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Iv. IMPEDANCE PROBE MEASUREMENTS IN THE IONOSPHERE

A, DESCRIPTION OF THE EXPERIMENT
1. The Probe

A rocket was fired from Wallops Island during the night of
July 9, 1963. The flight lasted 455 seconds and the peak altitude was
205 km. The payload, designed at Stanford Research Institute, by Orsak
and his co—workers18 included a very low frequency impedance probe.

The probe was made of two flat strips attached to the outside
of the nosecone. This nosecone was made of fiber glass of thickness
1.6 mm. Figure 17 illustrates the configuration of this symmetric dipole,
the length and width of the electrodes are rvespectively L = 107 cm and
h = 2,54 cm. In first approximation we will assume that the rocket is a
perfect cylinder of diameter D = 33 cm and that the strips are

parallel,
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FIG. 17. MODEL OF THE DIPOLE AND
ITS APPROXIMATION.
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The admittance of the dipole was found from the ratio of the
constant alternating current injected into the probe over the voltage
measured between the terminals. This voltage equaled at the most 10 mV.
It always remained much smaller than the electron potential, and had no
perturbing effect on the floating potential of the strips.

The rocket was rotating about its axis with an angular velocity
of 2.9 revolutions per second. The angle made by the rocket axis and

1
the earth

ualed roughly 30° during the flight.
2. The Data

The admittance measurements were made at two frequencies,
1.54 kc/s and 120 kc/s, and transmitted to the ground at the rate of
14 samples per second for each frequency.

The plots of the measured conductance and capacitance are taken
from Orsak's report and are shown on Figs. 18 - 21. They show a very
strong dependence on the electron density, and offer a very good spatial
resolution which allows us to pinpoint the sporadic E 1layer and even
to distinguish elementary layers less than 1 km thick within the Es
layer itself. The conductance of the dipole was negligible with respect
to the susceptance at 120 kc/s and only the susceptance was measured.

One notes that the capacitance and conductance measured at
1.54 kc/s below 90 km during the ascent are surprisingly large. This
was tentatively attributed by the experimenters to contamination of the
nosecone during its travel across the dense layer of the atmosphere.

If this effect were due to the ionization of the medium, which is
improbable at this altitude during the night, it would increase with
altitude; it would also appear during the descent and would affect in
a similar way the measurements made at 120 kc/s.

If one disregards the measurements made at the lower frequency
during the ascending part of the trajectory, one notes that the con-
ductance is negligible below 100 km; this proves that the ionization
of the ambient gas could not be detected by the probe. The correspond-
ing capacitance has an average value of 15 pf and is practically equal

to the free space capacitance for the dipole.
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FIG. 18. IMPEDANCE PROBE CONDUCTANCE DATA, 1.54 KC.
(Courtesy of L. E. Orsak, L, H. Rorden, G. B. Car-
penter and B. P, Ficklin, Stanford Research Insti-
tute, Final Rept., Contract NASr-49(0l1), Jan 1965.)
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FIG. 19. IMPEDANCE PROBE CAPACITANCE DATA, 1.54 KC. (Courtesy of L. E.
Orsak, L. H. Rorden, G. B, Carpenter and B. P. Ficklin, Stanford
Research Institute, Final Rept., Contract NASr-49(01), Jan 1965. )
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FIG. 20. IMPEDANCE PROBE CAPACITANCE DATA, 120 KC. (Courtesy of L. E.
Orsak, L. H. Rorden, G. B, Carpenter and B. P. Ficklin, Stanford
Research Institute, Final Rept., Contract NASr-49(0l), Jan 1965.)
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FIG. 21. IMPED:«NCE PROBE CONDUCTANCE AND CAPACITANCE IN THE SPORADIC
E LAYER. (Courtesy of L. E. Orsak, L. H. Rorden, G. B. Carpenter
and B. P. Ficklin, Stanford Research Institute, Final Rept., Con-

tract NASr-49(01), Jan 1965.)
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The electron density was measured during the flight with a cw
propagation method, and it appears that the probe was not sensitive to

9 -3
electron densities lower than 10 m .

3. The Components of the Impedance

The impedance of the dipole, as shown on Fig. 22, can schemat-
ically be divided into 3 components. The first one, Zs’ is the imped-
ance of the sheath which separates the outer surface of the strips from
the plasma. The second component, Zp’ represents the contribution of
the plasma which surrounds the probe. The third impedance is due to
the internal capacitance, Ci’ coupling the two strips through the
body of the rocket.

An accurate evaluation of Ci is not feasible because the
rocket body is not homogeneous. However, we will determine bounds to

its magnitude as follows.
ééa;”

= i

PLASMA

FIG. 22. A SCHEMATIC REPRESENTATION
OF THE DIPOLE SECTION AND ITS
APPROXIMATION.
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In order to set an upper limit for Ci’ we may assume that
every electric field line ends on the inner part of the strips and that
the coupling takes place entirely through the rocket body. Then Ci
equals the total capacitance of the dipole measured in free space.

We can determine a lower limit for the internal coupling by
assuming that the charge distribution on one electrode is not influenced
by the presence of the other electrode. Then the charge borne by the
inner surface of one strips equals very closely the charge borne by its
outer surface and Ci equals approximately half of the total free
space capacitance.

Consequently, we will write Ci =11 * 4 pf.

B. EVALUATION OF THE PLASMA IMPEDANCE

1. Approach to the Problem

We must estimate the contribution of the plasma to the total
dipole impedance measured in the ionosphere. We assume that the medium
is homogeneous, i.e., we neglect the rarefaction of ions and electrons
in the sheath and in the wake.

One approach to iiils pioblem is toc writc for the probhe canacity

¢ - _ (32)

where S 1is the probe surface area, o 1is the surface charge density,
E is the electric field displacement, and 2; is the complex per-
mittivity tensor which includes the effects of magnetic field and
collisions.

The ratio of the capacitance with plasma present, Cp, to that

with free space as dielectric, Co’ is

= (33)

OIO
k=]

[«}
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This approach was used by Herman;32 unfortunately, he assumed
that the electric field was the same in both numerator and denominator.
This simplification can be employed only if the electric field is
everywhere parallel or perpendicular to the magnetic field, then Eq.

(33) simplifies to

O|’UO
1

ml m

o |u

o}

where €p must be replaced respectively by the relative permittivity

parallel,

T

EL, or perpendicular, :T, to the magnetic field.

Balmain9 has developed a theory of a dipole antenna in an aniso-
tropic medium under quasi-static conditions, and has shown that his
result could be simply rederived by applying a proper scaling to the
space coordinates and the charge density. We will summarize this method
and apply it to the present problem.

In a plasma with a magnetic field oriented along the Z axis,
Poisson's equation is written
2% 3% 3%

2

T . 2 T =- (34)
(S
dy

oz o
where [ 1is the charge density.

Poisson's equation is elliptic when €T and €L have the same
sign and hyperbolic when they have opposite sign. First we will assume
that eT and ¢ are both positive.

L
The charge conservation equation is written

-

Vo« J 4+ jop = o0, (35)

-
where J 1is the vector current density.

If one applies the following transformation

- 36
NOTEE T ez (36)
p

(37)

w
Il
m
=
m
—
"
«
"

j+v)
=]
o))
©
|

2 s
LT
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equations (34) and (35), respectively, reduce to the free space

formulation
2 '
TV = _.ep_ (38)
[0}
and
.
Ve I+ JuR' =0, (39)

where the operator V' stands for 5:' + 53| + 52'

One notes that this transformation leaves the potential and
the frequency invariant. Though the charge density is transformed by
Eq. (37), the charge itself is also an invariant.

If we apply the space transformation (36) to the electric field

E and the element of surface area &é we obtain

N aV/C\)X SV/BX' N
E=-{oVRy )=~ (m){ov/oy' )= - (m) E', (40)
oV [z ov/dz!
[ e e
where (m) = ( o JeLeT o and E' is found from Eq. (38),
\ o o €p
R Oydz Jy 'ox' N
ds ={0zdx )= (n){ dz'0x'} = (n) dS’ (41)
Oxdy %'y’
1
[ - o o
SrVEeLer L
where (n) = o _ o
“r VELET L
o o -
LT
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Replacing Eqs. (40) and (41) in Eq. {32), and noting that E'

-
and dS' are parallel we obtain

where the space transformation has also been applied to the integration
boundaries, that is the surface of the electrodes.

Therefore, the impedance of a dipole immersed in a plasma is
the same as the free space impedance of a new dipole obtained from the
first one through the scaling law (36).

When €L and eT are both negative, the space transformation

is still meaningful if the scaling equations are written

»
<
Il

x' = V(=) (- ¢ V-ep) ey, 2= (-ey) 2,

js¥)
o
Q.
T
Il

Then Egs. (38) and (39) are unchanged but, since the sign of the charge
has been changed, it is clear that the capacitance is negative, i.e.,

the reactance of the dipole is inductive.

2. Impedance of a Dipole Made of Two Flat Strips

The basic coordinate system xyz 1is such that the magnetic
field is oriented along the =z axis. However, it is convenient to
use a second coordinate system xuv obtained from the first one
through a rotation of angle 6 around the x axis and such that the
v axis is a symmetry axis for the dipole.

9
Balmain showed that the space transformation (36) becomes
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2 2
v' =,/eq‘¢él_sin 6 + € cos 8 v . (42)

Application of the transformation (42) to a dipole made of two
flat strips is illustrated on Fig. 23. The length of the equivalent

dipole is

/ 2 2.
L' =‘/€T €L sin 6 + €T cos § L

When the azimuthal angle ¢ varies, the equivalent strips
describe an elliptical cylinder. Their separation, D', and their
width, h', are consequently functions of .

When the magnetic field is parallel to the electrode surface,

¢ =0 and

! 1 2 2 D
- o= véL sin"6 + €, cos & ¢ . (43)

Vv €T h

=

=2

When the magnetic field makes an angle © with the electrode surface,

(44)

=0
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GEOMETRY OF THE DIPOLE AND THE FREE SPACE EQUIVALENT

23.
CONFIGURATION.

FIG.
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The capacitance of two parallel strips in an homogeneous medium
33
has been computed by Palmer and some useful approximate results are
34
given by Terman. The variation of the capacitance per meter with the

ratio of strip separation over strip width is given on Fig. 24.

1
If I gT >> 1, the strip capacitance is given by
neoL’
En45~'—
Dl
if B << 1, this capacitance becomes
hl[ Dl( hl
C:€—1+———1+22——)]L’. 46
p_ ‘oD <h' Y (46)

Finally, the strip impedance can be written

where Cp is found from one of the preceding equations, depending on

the magnitude of the ratio [D'/h'].

el
; L
2
é L
g FIG. 24. CAPACITANCE OF TWO LONG
Sm_ PARALLEL STRIPS IN FREE SPACE.
4 L IR S A L 1 A1 113y
o3} X 0

SEPARATION / WiDTH
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3. Discussion

One must keep in mind that the above derivation is rigorous

only if ¢ and ¢ are real and have the same sign. In the case of

L

a plasma with one species of ion, the relative permittivities parallel

and transverse to the magnetic field are given, respectively, by

and

where m and M

2
“Pe ~

the electron cyclotron frequency.

are the electron and ion masses, respectively,

2
ne /gom is the electron plasma frequency and Boe = eB/m is

The regions of applicability of the scaling method are shown in

Fig. 25, The impedance Zp is capacitive in regions 1, 4 and 8, where

eL and ET are both positive; it is inductive in regions 3 and 7 where

€L and ET are both negative,

In regions 2, 5, 6 and 9, €T and €L have opposite signs and

Laplace's equation is hyperbolic.
imaginary and one is left with the

solving Laplace's equation in free

The space transformation (36) becomes
unusual and non-physical problem of

space with imaginary boundaries!

The scaling method was also used by Pyati and Weil,35 who com-
puted the capacitance of a biconical antenna in a magneto-ionic medium.
These authors mentioned that it was possible analytically to continue
the expression found for Zp, valid in the regions where Laplace's
equation is elliptic, into the regions where Laplace's equation is
The work of Balmain9

hyperbolic. also supports this conclusion.

When Laplace's equation is hyperbolic, it can be seen from

Eqs. (43) and (44) that D'/h' may become imaginary. Then the
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FIG. 25. REGIONS OF APPLICABILITY OF THE SCALING
METHOD .

capacitance of the strips, given by Eq. (45) or (46) becomes complex
and the impedance Zp presents a real part in a lossless medium.

The physical meaning of this resistance is not well understood
and the validity of this theoretical result is sometimes rejected.
Balmain9 suggests that this resistance is due to radiation. Pyati and
Weil35 and Walsh and Haddock36 do not agree with this interpretation
and mention that a quasi-static approximation is no longer valid when
the wavelengths in certain propagation directions are no longer large

with respect to the size of the antenna.

- 61 - SEL-65-102




The determination of the impedance of an antenna in a magneto-
ionic medium is very important for very low frequency reception and
transmission aboard rockets and satellites. This problem has not been
solved satisfactorily yet; an accurate treatment would require using
the wave equation instead of Laplace's equation in the computations, but
this is not mathematically feasible.

No reliable measurements of impedance have been made so far in
the controversial regions of Fig. 25. Such experimentation would be
very valuable; it would show if the available impedance models are valid
and at least would help to understand the behavior of an antenna in a

medium where Poisson's equation is hyperbolic.

4., Numerical Application

The dipole model used in the preceding computations is similar
to the one used in the ionospheric experiment with the exception that
a portion of space is occupied by the rocket in the latter model. The
equations which were written do not represent exactly the plasma imped-
ance of the real probe, but will give an insight into its magnitude.

We have computed the modulus of the capacitance of two flat
strips for a frequency of 1.54 kc/s and for two values of the azimuthal
angle, ¢ = o and @ = %. Collisions are neglected and the range of
electron density is similar to that observed during the rocket flight.
The plasma is assumed to be made of ionized oxygen. The electron and
ion gyrofrequencies are supposed to be, respectively, 1.45 Mc/s and
49 c/s. Such conditions are characteristic of region 7 on Fig. 25.

The results are displayed on Fig. 26. This figure is more than
illustrative because it shows that the plasma capacitance is very large
compared to the measured external capacitance at 1.54 kc/s. In the
worst case, when ¢ = o, a ratio of at least 500 exists between the
modulus of these two capacitances. Consequently, it is justified to
assume that the plasma is a perfect conductor at the lower frequency.

Therefore, if we have Zp:: (0] we see from Fig. 22 that the impedance

b

of the dipole consists of the internal capacitance in parallel with the

sheath impedance of the strips.
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FIG. 26. MODULUS OF THE DIPOLE CAPACITANCE IN A
MAGNETO-IONIC MEDIUM, FREQUENCY 1.54 KC/S.

Conclusions relative to the upper frequency, 120 kc/s, cannot
be drawn because Poisson's equation is hyperbolic in region 5 of Fig.
25 and the scaling process cannot be applied with confidence.

However, the magnitude of the elements of the dielectric tensor
suggests that the plasma impedance is no longer negligible at high
frequency and that the corresponding data are not characteristic of the

sheath impedance.

C. EFFECT OF THE PARTICLE THERMAL VELOCITY ON THE PLASMA IMPEDANCE
1. Theory

At an altitude of 200 km, the top of the trajectory, and under
nighttime conditions, the electron temperature given by Johnson37 is
700 °K. Electrons are consequently moving on helical orbits along the
magnetic field direction with an average velocity of 140 km/s. Since
the magnetic field makes an angle of only 30° with the rocket axis, we
can roughly define a time during which an electron is interacting with
the electric field of the dipole. This transit time equals the ratio
of the dipole length over the electron velocity, that is roughly 10—5 S.
In other words, an average electron travels over a distance of 100 m

during one period of the 1.54 kc/s signal. Under such conditions we
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may wonder if the cold plasma approximation used in the preceding
computations is still valid at low frequency.

The effect of the temperature was also mentioned by Kaiser;21
we will try to estimate its importance by using a simpler electrode
configuration. We will compute the impedance of a slab of plasma
limited by two parallel plates as shown on Fig. 27, A uniform ac
electric field exists along the =z axis and a uniform dc¢ magnetic
field is applied along the y axis. We assume that there is no

collision and we neglect the collection of particles by the electrodes.

B

I
I
i
|
g Y%*d% b

o
k————t——--

a

v

FIG. 27, THE MODEL UTILIZED IN THE COMPUTATION OF
THE EFFECT OF TEMPERATURE UPON THE IMPEDANCE OF
THE PLASMA.

The law of motion of a particle of charge q and mass m is

written
mé =q(E+cxB), (47)

-
where c¢ = the velocity of the particle.

Equation (47) is equivalent to the following set

mx = - qB b4 , (48)
m'y = 0 ,
mz = q (E + Bx) . (49)
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Integrating Eq. (48) and replaxing

% in Eq. (49), we obtain

.. 2 a
=—=E
i+wz=_E, (50)
B
where W, = Sm_ .
If we assume that E = Eo cos ot, the complete solution of
Eq. (50) is
q EO
z -z =_—3 5 Cos wt + A cos (aEt +0), (51)
W, ~w
c
where A and ¢ are two integration constants and z, is the value
of z at y = o.

The particle which is at position
position y = o at time t - (yo/v), v
particle along the 2z axis.

boundary conditions =z = z, and z = 20

These conditions can be written

We can determine A and ¢

at time t was at

y =75,
being the velocity of the
by the

at y = o.

(o]

E wy wy
% —§~—2—§ cos <a¢ - —;2> + A cos (@ct - 2'0 + ¢ = O
W, w
(]
E wy .y
g o] . _ o] _ . _ c o I
o 5 g ® sin (mt -—-—v ) A (Dc sin (wct v + ¢f =z
W, - w

from which we obtain the integration constants,

q E0
A=-~—=—]f/——cos -
m 2 2 @®
w, w
and ©y
. c’o
¢ = Arc tgX +
v
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where

Then taking the derivative of Eq. (47) we obtain

q Eo U‘)yo 2
A [—w sin wt + w, cos wt - —— + X sin (AI'C tg X +
- .
c

or
E wy wy
i:g——o—— - sin ot + oy X cos (ot -2 cos co
m 2 2 c v v
w. - w
(¢
< Cl')yo> . CL\’cyo]
+ w cos \pt - —} sin
c A v
W,
Putting ho= — and replacing for X, we obtain
W
E
q o) . . < CL‘)yo> CDcyo
Z = - — ] sin oot - sin (@t - — ] cos
m 2y v v
1 -p
< coyo> LY ' 0
- cos (wt = ——) sin + 2 cos
v v o v
or
E wy
. | o 1 - 1 + _ _ o
2 = 5 sin oyt 5 sin Lpt (1) -
1 -u
1 - . W, BYo
- —5— sin th - (1+u) —|p + z cos —- .
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The last term can be dropped because it gives no contribution at fre-
quency ; it just represents the projection along the 2z axis of the
circular motion of a charged particle in a magnetic field.

The total current along the 2z axis due to a beam of particles

of velocity v is obtained from Eq. (52) through the following

I=nqa/-bidy

<0

integration

or

2
CDp Eo b 1+ yu v
e 22 i ot - - ; P ) &Y
I=e - 5 a/; {51n wt 5 sin [Lot (1-u) v]

1 -u
_ wy
S Tl - [wt - {1+ u) °]}dy , (53)
2 v
2 n 2
where @b = Eg_' a and b being, respectively, the width and the
o

length of the plates.
After integration of Eq. (53) and some transformations, the

current density in the =z direction J = is found to be

ab

2
j-ec P o sin ot [1 1+ psin (1 -pu 1 -u sin (1 + u)u]
w

2 (1 - u)u 2 (1 + pu

R uz 1 1+ucos (1 -p)u_1-ypecos (1 + pu
+ cos w 2 u 2 (1 - up)u 2 (1 + p)u ’
1 -u
where u = 99.
v
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These calculations are relative to a beam of particles which
has a velocity v along 2z axis. We must now average this result
over the velocity distribution function of the particles. For
simplicity we assume a monoenergetic and isotropic distribution function

as shown on Fig., 28a.

f(v})/£{0)

a. Monoenergetic and isotropic
distribution function

Vo ¢ Vo v

Fig. 28a., Garad
65 percent

f(v) /7£(0)

b. Maxwellian distribution
function

-V 0 Vo v

FIG. 28. TWO KINDS OF VELOCITY DISTRIBUTION FUNCTION.
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where v
(o)

obtain

[

i

m
8!'5’

by
NE

_osin [(1 + u)T]

is the velocity of the particles.

sin ot

_cos [(1 + u)t]

o
&
3]

Putting

%l

4
(1 - )

Z 2
(1+u) 7

-8i T(1+ )t} +

NR

(1 +p)7

_sin [(1 - p)T]
2 2
1 -w'r7

_cos [(1 - u)7]
1-u)r-

- 8i [(1 - u)t] +

NR

s cos ot d_Lru 2
0SS 2.2

1 -u%?%

_ cos (1 + p)T]

, &in [+ wr] _ ci [(1 + p)T]

(1+w)? < A+rw)
cos [(1 - p)7]  sin [(1 - u)T] ' o
- + == Ci (1 - )T}
2 2 1 - T
(1‘5-1) - ( U)

The total current density will be found by adding the contri-
bution of each species of particles and the vacuum displacement current.

Then the equivalent relative permittivity of the medium is

(54)

where the summation sign indicaies that one must add the cffect of all

species of particles and where
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1 T Jsin (1 + pn) T  cos (L + )T . n
o, = —— - = + +8i [(L+ w)t)] -2
1 T
T oy, 4 (1 )2 P 1+ ) 2
i - T 1 - T
L sin (@ 2“)2 + c°?1(_ u)u% w81 (1 -l -
(1 -p)r
(55)
and
5 = 1+ uz 1 Tcos (1 +p)T sin (1 + )T s oci [(1 4 u)T]
T 2,2 21 4 2 2 1+ T
(1 - u?) 1+ ) (1 +w)

, cos (1 -p) T sin (1 -p) T

(1 - w)? (1 =) Fon -

(56)
When the magnetic field is parallel to the electric field, or

when no magnetic field is present, the relative permittivity is given

by

V]

(o

M
e

i

ot

!
]

[

NLUV

+ 3B,), (57)

where aL and BL are given by Egs. (55) and (56) where 1 has been

put equal to zero, that is

1 |sin T . Tt
a =1-3 [ —— + cos T + T Si (t) -7 2] (58)
and
1|1 ~-cos T . .
BL = E [————;—~—~ + sin T - T Ci (T)] (59)
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One sees that the equivalent permittivity of the plasma is com-
plex; the medium appears to be lossy not because of the collisions,
which we neglected, but because the particles have increased their
kinetic energy during their interaction with the electric field and have
taken that energy away from the system.

A plot of Eqs. (58) and (59) is made on Fig. 29. It can be seen
that when T goes to infinity, that is, when the product of the transit
time by the frequency is large, B8

L
then Eq. (57) yields the permittivity of a cold plasma.

goes to zero and aL goes to 1,

1.Or
@

0‘8 B

006 —

04 B

02

o) 05 1.0 L5 20 25 3.0 35 4.0 45 50

FI1G. 29. PLOT OF THE QUANTITIES aL AND BL' MONOENERGETIC
DISTRIBUTION.

In order to check the importance of the shape of the velocity
distribution function on these results, we have also considered the case
of a Maxwellian distribution function shown on Fig. 28b. This problem
was solved with a computer by decomposing this distribution function
into a large number of monoenergetic and isotropic distribution functions

and by adding the contribution of each elementary group of particles.
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The variations of the quantities aL and BL with T for a

Maxwellian distribution function are shown in Fig. 30. The difference

between these curves and those displayed on Fig. 29 is very small,

FIG. 30. PLOT OF THE QUANTITIES «
DISTRIBUTION.

AND B , MAXWELLIAN

L

2., Numerical Application

We will try now to evaluate Eqgs. (54) and (57), using the
features of the plasma corresponding to the top of the trajectory. We
assume that the plasma is made of ionized oxygen and that its tempera-
ture equals 700 °K. The frequency is 1.54 kc/s and the length of
interaction between the electric field and the particles is 1 m.

The electron parameters are

o = 21 X 106 S_1 ,
pe
o =21 x 1.45 x 10° sV,
ce
6
1.45 x 10 3
o= 22 2SN >0
e 3 ’
1.54 x 10
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and

and

and

on ¢
T

be that of a lossy medium an

3
140 x 10" m/s

v =
oe
3
Te=2n><1.54><10 —L—'-‘—‘O.O7 .
140 x 10
The ion parameters are
m . = 2x X 5.8 X 103 s_l ,
pi
-1
Wey = 211 X 49 s ,
4 -2
ui=——9————-—=3.2><10 )
1.54 x 10
= 820
voi m/s
3 1
T, = 2 1.54 1 —_ > 12
i n X X 10 820 1

Putting these quantities into Egs. (54) - (59) one finds

2 2
(Dpe (f)pi
i S T
[b] - w (&b} = W
ce Ci
2
(L)pe
&6 %1 -—% (0.1 + j 0.2) .

€A}

In other words the transit time effect has little influence

but perturbs seriously eL.
Effectively, the longitudinal dielectric constant appears to

PR

d its modulus is approximately 5 times

smaller than its value computed from the cold plasma theory. This
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discrepancy is sizeable but not large enough to invalidate the conclu-
sion of the preceding paragraph and we can consider that, under the
less favorable conditions, the plasma impedance is of the order of 1 .
percent of the sheath impedance, at 1.54 kc/s.
In fact, because of the edge effect, the electric field acting
on the particles is not varying abruptly from zero to a constant value;
this lengthens the interaction time between the particles and the field
and yields a transit time effect less important than that which was

computed above.

D. THE IMPEDANCE OF THE SHEATH

1. The Modulation of the Data

We will now consider the low frequency data for further numerical
comparisons. They represent mainly the sheath admittance because the
plasma contribution has been shown to be negligible. Figure 31, due to
Orsak et al,18 displays the components of the admittance as a function
of the azimuthal angle of the dipole. It shows that the capacitance
and the conductance are modulated at twice the spin rate of the rocket. -

Only 5 samples were transmitted for each revolution of the
rocket around its axis and the curves are the result of the superposition
of the data received during 8 consecutive revolutions. These curves
correspond to the top of the trajectory where the rocket altitude is
stationary and the plasma parameters are relatively constant during
several revolutions. Elsewhere on the trajectory it is not possible to
separate the effect of the rocket spin from that of the electron density
variation.

The directions of the velocity and magnetic field components
normal to the rocket axis are shown., It is not possible to determine
what factor is responsible for the modulation because the admittance
shows a maximum in the velocity direction and a minimum in the magnetic
field direction.

The size of the sheath and the floating potential are perturbed
when the strip is in the wake of the rocket, because the transverse

velocity of the vehicle has the same order of magnitude as the ion
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FIG. 31. ROCKET SPIN MODULATION OF IMPEDANCE AT THE TOP OF THE

TRAJECTORY, FREQUENCY 1.54 kc/s. (Courtesy of L. E. Orsak,

L. H. Rorden, G. B. Carpenter and B. P, Ficklin, Stanford

Research Institute, Final Rept., Contract NASr—49(Ol), Jan

1965.)
thermal velocity. Therefore we can assume that the most accurate
reading of the dipole admittance is made when the vector velocity is
parallel to the surface of the electrodes. Then, the motion of the
ions in the vicinity of the strips and the size of the sheath are the
same as if the rocket were at rest. Consequently, for comparisons with

we consider that the dipole conductance and

capacitance are respectively 0.29 pmhos and 24 pf.
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2, The Probe Admittance

Using Egs. (8) and (9), the sheath conductance is written

A

exp (60)

v
e
where GS, the conductance of one strip, eq;als 0.58 umhos.
The surface area, A, equals 271 cm . At an altitude of 200 km,
the top of the trajectory, a propagation method gave n = 1.7 X 1010 m-s.
The electron temperature, measured with a Langmuir probe was 800 °K,
which corresponds to Ve = 0.07 volts, and is in good agreement with
the data given by Johnson.
Putting these numerical values into Eq. (60) gives for the

floating potential

Vv, =-430V = -0.31 volts ,
f e

which compares favorably with Bohm's prediction, Vf = ~ 4,23 Ve

where it is assumed that the ambient plasma consists of ionized oxygen.

’

The electromotive force induced by the earth's magnetic field
in one strip, which varies from O to 7 m-volt, is absolutely negligible
with respect to the probe floating potential.

If we assume that Vf/Ve is a constant and if we know Ve,

Eq. (60) can give the electron density profile. We assume that the
temperature vs altitude is given by Fig. 32. This curve is given by
Johnson37 and has been normalized to give a temperature of 800 °K at
an altitude of 200 km.

We used the data of Fig. 18 to plot the electron density profile
on Fig., 33. The profile was normalized in such a way that a dipole
conductance of 0.29 umhos corresponds to an electron density of
1.7 x 108 072,

The discrepancies between the ascent and the descent data

and the subsequent inaccuracy of the density profile have several

origins. The modulation of the data due to the rocket wake can cause
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a relative error as high as 30 percent at the top of the trajectory;
this error is larger during the descent than during the ascent since
the velocity component normal to the rocket axis was increasing with
time. The nose cone was contaminated, or heated, during the initial
part of the flight, and this resulted in an increase of the conductance;
this effect, which dissipated during the rest of the flight, could
explain why the conductance is generally higher during the ascent than
during the descent. ©Space and time variations of the ionospheric
parameters may also explain part of the discrepancies. Finally, the
temperature model that we used could be inadequate. An attempt was
made during the flight to measure the electron temperature with a
Langmuir probe, but no information was obtained, except at the top of
the trajectory, because the rocket was traveling a distance of the

order of 1 km during the time required for sweeping the probe potential.

3. The Probe Capacitance

We will now attempt to compare the predicted value of the dipole
capacitance with that measured at 200 km.

The plasma is an excellent conductor and the sheath capacitance
of one strip is equivalent to twice the free space capacitance of the
strip and its image with respect to the sheath edge, as shown on Fig. 31.

This equivalence is not perfect because the strip is not isolated
in space but attached to the nosecone; this will somewhat increase the
value of the capacitance, but not drastically, because the rocket skin,
made of fiber glass, is only 1.6 mm thick. This model implies also that
the curvature of the rocket skin can be neglected; in fact, we can use
the planar approximation to compute the thickness of the sheath,

d = KD/y, because the ratio of the rocket radius over the Debye length
is larger than 10. The computed value of XD is 1.5 em. As for v,

we read the average of Models I, II and III on Fig. 7, which is 0.412
for ionized oxygen. Then the sheath thickness is estimated to be 3.5 cm
and the separation between the strip and its image is 7 cm.

The width of the strip being 2.54 cm, one can readily check on
Fig. 24 that the capacitance of one probe and its image equals 10.8 pf.
This is also the total sheath capacitance of a dipole made of two

identical probes in series.
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To that sheath capacitance one must add the internal capacitance,
which has been estimated previously to be Ci = 11 = 4 pf, in order to

find the total capacitance of the dipole

C = Cs + Ci = 21.8 * 4 pf ,
which agrees fairly well with the measured value, 24 pf.
The cause of errors in the interpretation of the capacitance
data are the same as those mentioned for the conductance. Moreover,
the fact that Ci is not precisely known adds also to the uncertainty

of the sheath capacitance.

E. DISCUSSION

The measurements of the dipole impedance at low frequency can be
explained by the contribution of the sheath alone. But the interpreta-
tion of these data has been complicated by the singular geometry of the
probe and the lack of information on the electron temperature. Computing
the part of the impedance due to the magnetized plasma is not straight-
forward even for simple geometries. The effect of the particle thermal
motions must also be taken into account. Consequently, the working
frequency must be low enough for the plasma impedance to be negligible
with respect to the sheath impedance. In the present case a frequency
of the order of 1 kc/s seemed adequate.

Working at low frequency can make the sheath susceptance negligible
but it seems preferable to limit the measurements to the conductance

and be sure that the plasma impedance is negligible. The conductance
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depends less on the geometry than the susceptance and the interpretation
of the capacitance measurements can be complicated by the presence of an
internal capacitance which is not well defined.

The conductance measurements should be made with a probe biased to
a constant positive potential with respect to the carrying vehicle.

The biasing potential can be of the order of magnitude of the electron
potential, say 0.05 volt in the lower ionosphere. This insures that the
velocity distribution function of the collected electrons is more closely
represented by a Maxwellian function. Furthermore, the electron
temperature can be obtained from the ratio of the conductance over the

dc collected current.

One must not expect a direct determination of the electron density
from the conductance because the latter varies exponentially with the
probe potential and an accurate measurement of this potential cannot
be made. However, an electron density profile can be drawn if the
probe has been calibrated by an independent measurement.

The data of the present experiment are perturbed by the wake of the
rocket. Therefore, the VLF impedance probe seems to be an interesting
tool for studying the deformation of the sheath due to the wake. 1If
such an experiment were to be performed, it would be more informative
to measure the impedance of one strip only with respect to the rocket
body acting as an electric ground, instead of the impedance of two
strips in series. The modulation due to the spin would be more impor-
tant and the data could be interpreted more easily. If the wake per-
turbation must be avoided, however, the location of the probe should be
changed. A cylindrical dipole mounted on the top of the nosecone would
give data less influenced by the wake of the rocket. It would also

eliminate the internal capacitance.
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V. CONCLUSION

If the low-frequency impedance is measured between two electrodes,
two extreme conditions can be distinguished: that in which the impedance
of the plasma substantially unperturbed by the probe dominates, and that
in which local space-charge sheaths around the electrodes constitute the
most important impedance components. Which of these is approached in
an experimental situation will depend on the electrode sizes and separa-
tion, and on the measuring frequency. The impedance of the sheath
becomes negligible with respect to the impedance of the plasma when the
frequency and the distance between the electrodes become sufficiently
large.

The former case can be handled using the effective plasma permit~
tivity concept. The theory is relatively simple in an isotropic and
homogeneous medium, but becomes more complicated when the medium is not
isotropic, for example, at very low frequency in a magnetoplasma. More-
over we have shown that the cold plasma approximation is no longer valid
when the distance traveled by the electrons during one period of the
ig large with respect to the size of the probe. Consequently,
the plasma impedance probe must be used at a frequency well above the
electron cyclotron and plasma freguencies; this technique can be used
with more confidence over a wider range of frequency if the perturbing
effect of the sheath is reduced by biasing the potential of the probe
to the space potential.

This kind of measurement yields the electron density. It is,
however, recommended that more data be gathered in the frequency domains
where Poisson's equation is hyperbolic, because the physical behavior
of an antenna under such conditions is not well understood yet and is
the subject of controversy.

Such an experiment could be realized on a rocket at a frequency
sufficiently high that the ion response to the ac field, the colli-
sions and the electron thermal velocity could be neglected. If the
working frequency is chosen to be 2 Mc/s, the ratio (wcﬁm)z will be

approximately constant during the entire flight and equal to 0.5.
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Let us assume that the electron density increases monotonically
from zero to about 1011 m = at the top of the trajectory. Then the
point corresponding to the working conditions in the frequency domain
will move on a horizontal line from the left to the right and will
reach an abscissa equal roughly to 1.5. This is illustrated in Fig. 35,
which is similar to Fig. 25, except that now we neglect the effect of
the ions. The antenna impedance will be capacitive in region 1 and
inductive in region 3. It will be the most interesting to observe
its behavior in region 2.

The case where the impedance of the sheath is dominant has been
the primary topic of this study. A simplified theory of the sheath
admittance was developed and checked with results to a reasonable
accuracy in the laboratory. As expected, the sheath admittance is
frequency independent. At floating potential, these measurements can
provide continuous relative information about the electron density.
One should be aware that an absolute determination of the electron
density requires that the floating potential be known with accuracy,
and that the electron velocity distribution function be Maxwellian up
to energies corresponding to the floating potential. Both requirements
are not always satisfied. However, one can consider that the velocity
distribution function of the electrons collected by the probe is more
closely represented by a Maxwellian function if the potential of the

probe is slightly biased toward the space potential. Furthermore,

\

FI1G. 35. THE FREQUENCY DOMAIN.
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with a biased probe, an absolute estimate of the electron temperature
can be made from the knowledge of the ac conductance and the dc
collected current.

The interpretation of the low frequency data of the rocket experi-
ment was complicated by the probe geometry, the spin-modulation of the
data, and the lack of information about the temperature. 1In a new
experiment it would be preferable to mount a conventional cylindrical
dipole on the top of the nosecone; this would eliminate the wake effect
due to the rocket body and the internal capacitance. On the other hand,
if the effect of the wake on the sheath must be studied, the present
geometry should be preserved but the impedance of only one strip with
respect to the rocket body should be measured.

Since the wake is a perturbing factor in a number of other experi-
ments performed aboard rockets and satellites, we suggest that a syste-
matic study be made of this phenomenon. The size of the wake depends
on the temperature of the neutrals and ions (the electrons which have a
lighter mass follow the ions, in order to keep the medium neutral).
Therefore, by studying the wake, one can, in principle, obtain
information about the ion and neutral temperature.

A simple experiment could be realized in the following manner. An
insulating rod, mounted perpendicularly to the rocket axis supports a
number of equally spaced probes, as shown in Fig. 36. These probes
are negatively biased and collect the ion saturation current, which is
proportional to the local ion density. The rocket is generally spinning
around its axis and this configuration will allow the ion density

profile in the wake to be measured.

FIG. 36. EXPERIMENTAL STUDY OF
THE WAKE.

ROCKET
CROSS-SECTION
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An order of magnitude of the size of the wake is given by Dw/v
where D is the rocket diameter, w 1is the rocket transverse velocity
and v 1is the gas thermal velocity.

This experiment, combined with measurements of the plasma impedance
under hyperbolic conditions, will provide information about the two
major perturbing factors of the sheath impedance measurement technique.

However, the investigation made so far allows us to draw these
final conclusions. The unique advantage of the sheath impedance probe
lies in the fact that instantaneous and continuous measurements of the
electron density and temperature can be made with a probe kept at a
fixed potential. In contrast with the Langmuir probe and the resonance
probe, the impedance probe requires no sweeping. It is particularly
suitable for continuous measurement in time-varying plasmas and for
space applications. It can be a significant tool in the study of the
lower ionosphere, where steep gradients of electron density are
observed, and where the collisions are frequent enough to keep the

electron velocity distribution function approximately Maxwellian.
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